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Accelerating materials discovery using artificial intelligence,
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New tools enable new ways of working, and materials science is no exception. In materials discovery, traditional manual, serial, and
human-intensive work is being augmented by automated, parallel, and iterative processes driven by Artificial Intelligence (AI),
simulation and experimental automation. In this perspective, we describe how these new capabilities enable the acceleration and
enrichment of each stage of the discovery cycle. We show, using the example of the development of a novel chemically amplified
photoresist, how these technologies’ impacts are amplified when they are used in concert with each other as powerful,
heterogeneous workflows.
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INTRODUCTION
Events such as the COVID-19 global pandemic have starkly
illustrated the need for ever accelerating cycles of scientific
discovery. This challenge has instigated one of the greatest races
in the history of scientific discovery—one that has demanded
unprecedented agility and speed. This requirement is not localized
to the healthcare domain, however; with significant pressure
being exerted on the speed of materials discovery by challenges
such as the climate emergency, which arguably are of an even
greater magnitude. Fortunately, our tools for performing such
discovery cycles are transforming—with data, artificial intelligence
and hybrid cloud being used in new ways to break through long-
standing bottlenecks1,2.
Historically, science has seen a number of major paradigm

shifts, as depicted in Fig. 1, which have been driven by the advent
and advancement of core underlying technology3. Moving from
empirical studies, the collection and sharing of studies allowed a
more global view of scientific problems, and led to the
development of key underpinning theory. As the advent of
computational systems allowed ever more complex calculations to
be achieved, our understanding grew, with technology driving
scale to new heights. The last two decades have seen the
emergence of the Fourth Paradigm of big-data-driven science,
dominated by an exa-flood of data4 and the associated systems
and analytics to process it. The Fourth Paradigm has definitively
made science a big-data problem5. For example, today virtual
chemical databases contain billions of identified and characterized
compounds6. Now, with the maturation of AI and robotic
technology, alongside the further scaling of high-performance
computing and hybrid cloud technologies, we are entering a new
paradigm where the key is not any one individual technology, but
instead how heterogeneous capabilities work together to achieve
results greater than the sum of their parts.
A typical materials discovery effort can be decomposed into a

series of phases: (1) specification of a research question, (2)
collection of relevant existing data, then (3) formation of a
hypothesis and finally (4) experimentation and testing of this

hypothesis, which may in turn lead to knowledge generation and
the creation of a new hypothesis. This process, whilst conceptually
simple, has many significant bottlenecks which can hinder its
successful execution7. For example, there are challenges in
determining impactful research challenges, which requires
increasingly deep and broad expertise. This is in part due to the
known difficulties in keeping up with the rapidly expanding base
of domain knowledge; for example, more than 28,000 articles
were published on the subject of ‘photovoltaics’ since 2020—and
this is just one area of research in our drive for renewable energy.
Even when the materials space is constrained to be molecular,
there are significant challenges in developing hypotheses relating
structure to function, in part due to the sheer size of chemical
space. Estimates say there are 10108 potential organic molecules8

which implies an intelligent navigation is necessary for any kind of
accelerated discovery beyond serendipity. Similarly, there are gaps
in experimentation, bridging digital models and physical testing,
and ensuring reproducibility—it has been reported that 70% of
scientists have at least once tried and failed to replicate the results
of another9. Figure. 2 shows how the inclusion of AI, automation
and improvements to deployment technologies can move
towards a community-driven, closed loop process. This includes
advances at each step, for example, to extract, integrate, and
reason with knowledge at scale to better respond to question10, to
the use of deep generative models to automatically propose new
hypotheses, to automating testing and experimentation using
robotic labs11. Important advances in the machine representation
of knowledge also enable new results to lead to new questions
and hypotheses12.
In this perspective, we describe technologies we have been

exploring for this aim, and concretize our view with a real example
where we have applied these technologies to a problem of
commercial importance, the development of more sustainable
photoacid generators (PAGs) for chemically amplified
photoresists13.
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ENABLING TECHNOLOGIES
Capturing unstructured technical data
Historical material science data is embedded in unstructured
patents, papers, reports, and datasheets. Automated platforms are
needed to ingest these documents, extract the data and
ultimately present it to users for query and downstream use. For
each individual component of the process, there are both
proprietary and non-proprietary solutions available. For example,
Semantic Scholar14 provides search access to over 190M scholarly
articles. They also provide trained AI models for document
conversion. Furthermore, solutions such as ChemDataExtractor15

and tmChem16 allow users to extract materials related entities
from these documents, either in the generic case or for very
specific use-cases—for example, zeolites17. Each of these compo-
nents solve one aspect of the bigger problem, i.e. extracting
unstructured materials related data from documents. We have
devised the IBM DeepSearch platform to provide a holistic
solution to the overall challenge of extracting unstructured data
from documents, by having different tight-coupled services. These
services allow users to upload documents and apply NLP

algorithms on them in order to create KGs for deep queries (see
Fig. 3).
Specifically, the IBM DeepSearch platform consists of the Corpus

Conversion Service (CCS)18 and Corpus Processing Services
(CPS)19. The CCS leverages state-of-the-art AI models20 to convert
documents from PDF to the structured file format JSON. In this
ingestion stage, there are a number of technical challenges—the
segmentation of pages of the document into their component
structure, the assignment of labels to each of these segments, and
the identification and extraction of data from tables embedded in
the document. To achieve sufficient accuracy across these tasks, a
range of different models are required20–22. All these models run
concurrently on a cloud-deployed cluster, enabling a conversion
rate of 0.25 page/sec/core. This enables the conversion of the
entire ArXiv repository23 in less than 24 h on 640 cores. Using the
converted documents, the CPS service builds document-centric
Knowledge Graphs (KGs) and supports rich queries and data
extraction for downstream use. Common queries consist of
searching for previously patented materials or associating
reported properties with known materials. To this end, we pre-
trained natural language processing (NLP) models for Named

Fig. 1 The progression of the scientific method. Science has seen a number of major paradigm shifts, which have been driven by the advent
and advancement of core underlying technology.

Fig. 2 Technology-driven acceleration of the discovery cycle. AI, HPC and robotic automation are helping to accelerate and enrich all stages
of the discovery cycle through the ability to further scale efforts through improved generation of, access to and reasoning on a wide variety
of data.
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Entity Recognition (NER) of materials, properties, materials classes
and unit-and-values. These entities become nodes in the graph
linked by edges corresponding to detected relationships. Cur-
rently, the creation of KGs from corpora of hundreds of thousands
of documents can be completed in approximately 6 h on
640 cores.
Key open challenges in the use of unstructured data in materials

discovery include data access, entity resolution, and complex ad
hoc queries. Data access is an issue as much of the content of
interest, particularly technical papers and domain-specific data-
bases, are not yet open access, particularly for large-scale machine
ingestion. Navigating the appropriate copyright and usage
agreements is often the most complex phase of an unstructured
data project. The entity resolution problem in materials is often
also complex. For example, the text of a paper might describe a
material sample, which is then sub-divided and processed
according to parameters shown in a table. Subsequent graphs
of the properties for each individual sample may be labeled with
symbolic references that require combining the information from
both the text and the table to accurately identify the material and
processing conditions which yield the graphed property. In effect,
the materials entity is specified in a diffuse fashion across multiple
modalities in the document. Finally, as capabilities to collect and
organize materials data improve, there is a natural expectation
that more complex queries should be supported, progressing
from existence (‘Has this material been made?’) through
performance (‘What’s the highest recorded Tc?’) to hypothesis
(‘Could a Heusler compound be useful in this spintronic device?’).

Using AI to make simulation workflows more efficient and
effective
The materials literature is overwhelmingly vast, but also incom-
plete24. Property data on existing materials is sparse, and data on
hypothetical materials are necessarily absent. Simulation gives us
the means to generate this data, but this switch from physical to
digital experimentation provides some challenges. For example,
the choice of simulation protocol can present complexity, and a
poor choice can doom a discovery campaign before it is begun25.
Even if an accurate protocol exists, the computational expense of
executing it may severely limit the size of the design space being
searched26. The area of AI or ML-assisted simulations can address
some of these issues, and has been gaining some significant
traction in recent years1,27. Emerging from the use of neural
networks to bypass expensive physics-based routines28,29, AI has
been used to predict ever more complex properties, such as
energetic materials30, solid-state materials properties31,32 and
even the structure of proteins33. In addition, we have seen the
emergence of machine-learned potentials which enable access to
quantum-chemical-like accuracies at a fraction of the cost34.

In our accelerated discovery paradigm, we consider that
modeling and simulation workflows have the following structure.

● Intent—the ‘translation’ of the property of interest into a
corresponding computational workflow

● Decision—the specific methodological choices used
● Execution—scheduling, prioritization, and monitoring
● Analysis—mapping output of the workflow to the real-world

property

We believe that AI has the ability to enrich this structure in a
number of ways. First, we perceive a valuable application of
mature AI methodologies such as recommender systems to
suggest which particular methodologies to use for particular tasks
based on cost and accuracy. Where there is existing experimental
data, this is trivial, but for new tasks, where data is sparse, this can
become problematic. To circumvent this, we use a pairwise task
similarity approach to guide the recommendation of low-data
tasks from what we already know about high-data tasks. This
method exploits the fact that the joint training of similar tasks will
be broadly additive and positive, whilst the effect of joint training
broadly dissimilar tasks will be net negative35. This has been
shown to provide chemically plausible similarity measures for a
range of tasks36.
Secondly, we can dynamically improve candidate prioritization

using Bayesian optimization37,38, allowing us to selectively spend
our computational budget, and thus use more accurate models on
a smaller amount of data, thus improving the traditional ‘virtual
high throughput screening’39 model shown in Fig. 4. This
methodology is similar to other active learning approaches40

and allows us to balance the exploitation of trends from data we
already have with the acquisition of new knowledge in
unexplored areas41,42. Bayesian optimization is a general metho-
dology often utilized when each data point is expensive (in time,
cost, or effort) to acquire43. At each stage of screening, candidates
are selected by optimizing an acquisition function which estimates
the value for acquiring each data point. Improved Bayesian
optimization algorithms allow the selection of batches of data
points. Parallel Distributed Thompson Sampling37 parallelizes
through sampling of the Bayesian model, while K-means Batch
Bayesian optimization38 parallelizes through unsupervised parti-
tioning of the acquisition function, and both have been deployed
successfully to chemical discovery problems. In order to maximize
the usability of this system, we present it to users through a simple
set of cloud APIs known as IBM Bayesian Optimization (IBO).
The final part of the workflow where we believe AI can add

value is to improve the relatedness of simulation outputs to real-
world data. We achieve this through the calibration of the output
of a simulation to better reflect an experimental outcome. This
calibration is a type of delta machine learning44 with the addition

Fig. 3 IBM deep search. Knowledge generation from unstructured data (PDF) is achieved through the use of a platform called IBM
DeepSearch, which consists of two systems; the Corpus Conversion Service (CCS) and Corpus Processing Service (CPS).
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of a concept of Bayesian uncertainty. Uncertainty aware models of
how simulations systematically differ from experiment can provide
highly accurate calibrations on a per-candidate basis, which avoid
the pitfall of overfitting through the communication of a notion of
the certainty of the correction (i.e. how much it can be trusted)25.
The methodology we have chosen to achieve this goal is a
Gaussian process model45 built on molecules described by their
circular fingerprint46. This enables more robustness in the
selection of simulation methods, and corresponding trust when
making critical design decisions.
For these complex, AI-driven workflows to deliver on the

promise of faster, more efficient simulation, several challenges
need to be addressed. First, the practice of ‘virtual experiments’
that capture all aspects of a given computational task needs to
become generally accepted and used in the community. Second,
the traditional high performance computing model of manual or
semi-manual long-running batch calculations will have to adapt to
the dynamic active learning model described here. Finally, there is
a need to eventually integrate the complex heterogeneous
computing systems of the future, whether they are quantum
computers, AI hardware accelerators, or classes of computer we
cannot yet imagine.

Applying computational creativity to the molecular design
problem
For molecular materials, across the wide range of structural scales,
the molecular structure is dominant in determining properties of

interest, and therefore, as we have previously noted, the materials
design space can be intractably vast. In conventional molecular
design processes, human experts explore this vast parameter
space guided with their knowledge, experience, and intuition in a
trial-and-error approach, which can yield a long development
period and potentially limited variety. To counter this, we adopt
an AI-driven generative modeling approach to collaborate with
human experts and augment their creativity. Deep generative
modeling (DGM) is one important example of such a class of
technologies. Recent developments in AI technology based on
pre-trained language models47 and Generative Adversarial Net-
works (GANs)48,49, have been used to automatically generate
images, speech, and natural language, and have recently been
applied to materials discovery problems50,51. In addition to DGM,
other AI approaches have been effectively used for this purpose,
including Monte Carlo tree search52, genetic algorithms53, and the
junction tree algorithm54. Generative AI models can generate new
candidate chemicals, molecules24,55,56, and materials57, and
expand both the discovery space and the creativity of scientists.
Our experience is that generative models can accelerate early
materials ideation processes by 100x58.
Since there are a large number of approaches to generating

materials candidates, it is important that the overall workflows are
kept consistent. This can be distilled into the following common
stages (see Fig. 5): after an initial training step, input molecular
structures are encoded in a space that is used to predict
associated properties. Next, the feature space (or latent space) is

Fig. 4 How computational funnels are commonly used to accelerate the discovery process. a The ‘traditional’ computational funnel of
high-throughput virtual screening. b Each level in the funnel is affected by the accuracy of screening, and the computational cost to perform
the screen. Machine learning has the ability to markedly improve both of these, if the right training data is available.

Fig. 5 Using generative models to explore chemical space. A conceptual framework of molecular generative model. Each component; data
formatting, encoding, prediction, sampling, and decoding are dependent on an approach (e.g. deep generative model, graph theory
approach, etc.).

E.O. Pyzer-Knapp et al.

4

npj Computational Materials (2022)    84 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



explored to sample feature vectors satisfying target properties.
Finally, the sampled feature vectors are decoded to molecular
structures. In deep generative models, our approach is to leverage
Wasserstein Auto Encoders (WAE) and Conditional Latent Space
Sampling (CLaSS) for this purpose which we have demonstrated
successfully in peptide sequence generation to design antimicro-
bial materials59,60. Another approach is a combination of VAE and
reinforcement learning (RL)61,62, where drug molecules’ SMILES
and target proteins are both encoded on a common latent space.
Reinforcement learning explores this space, guided by a model to
predict the efficacy of the generated drug to target cancer
proteins61. Another powerful scheme is the Molecular Generation
Experience (MolGX), which leverages an explicit graph enumera-
tion algorithm58,63. In MolGX, the encoder/decoder is pre-
configured by the graph algorithms to generate valid chemical
structures, therefore pre-training by a huge dataset is unnecessary.
In addition, a user can fine tune the molecular generation process
in atomistic detail (e.g. to control the number of (un)desired
functional groups). The base MolGX functions are provided as a
public web application at https://molgx.draco.res.ibm.com. The set
of those generative models work under review and control by
human experts, who tune and reinforce the models with domain
knowledges.
Looking forward, generative models will need to evolve in their

coverage of materials classes, extend beyond materials composi-
tion to processing and form, and effectively capture and encode
application constraints based on human knowledge. The first of
these, coverage of materials classes, is obvious, and will happen
gradually as data becomes available. An open question is whether
there will be a single unified generative model for all materials
classes, or the gradual coverage of materials categories with
independent models specialized for organic materials, crystalline
inorganic materials, polymers, metal-organic frameworks, and so
on. Regardless of the material category, these models will
eventually need to capture the full complexity of materials
manufacture and use. This will involve training the models on not
just materials structures but also the un- and semi-structured data
that describe materials synthesis and processing. Finally, we have
found that in practice generative models are most useful when
their outputs are either informed or filtered by the deep expertise
of human subject matter experts. Tools and technologies to
capture that expertise efficiently and encode it in the model will

maximize the chances of generating not just a possible material,
but a useful material.
Owing to its data-driven nature, generative model is highly

compatible with open-innovative contribution by multiple users.
For the sake of scalable offering of state-of-the-art pre-trained
generative models and algorithms, we’ve been underway to
integrate our algorithms onto a hybrid cloud platform, whereby
users can contribute to the development and reuse them. We
believe open science is a key concept to accelerate the evolution
of generative modeling.

Materials evaluation using AI and cloud-powered automated
labs
At the end of the design cycle, we face the need to accelerate the
synthesis and testing of the large number of materials hypotheses.
Recent advances in AI enabled digitization of common tasks in
chemical synthesis, including forward reaction prediction64, retro-
synthetic analysis65, and inference of experimental protocols to
execute novel chemical synthesis66. Concurrently, there is an
explosion of automation and AI in chemical synthesis, with the
important contribution in the use of commodity hardware67,
fluidic reactors68, or the use of robots able to execute the same
tasks as human chemists69.
The construction of autonomous synthesis platforms is still a

work in progress. One of the most recent efforts is RoboRXN,
relying on an integration of three technologies: cloud, AI, and
commercial automation to assist chemists all the way from the
selection of synthetic routes to the actual synthesis of the
molecule. A graphical overview of the architecture of RoboRXN is
shown in Fig. 6. The use of cloud technologies enables a remote
chemical laboratory as an embodiment of the cloud infrastructure,
thus providing chemical services wherever an internet connection
is available. AI is the core technology fueling the entire execution
of domain experts’ tasks.
A core component of RoboRXN is a pipeline of multiple

machine learning models that enables a complete automation of
the synthesis plan, starting from a target molecule or a paragraph
of a chemical recipe and ending with the process steps executed
by the robot. Reaction prediction tasks are cast as translation
tasks70, and trained on >2.5 million chemical reactions. These
models, based on the Molecular Transformer64, allow the design of
the synthesis starting from commercially available materials and
provide an essential requirement of autonomous synthesis: the

Fig. 6 The architectural design of the AI-powered, Cloud-based autonomous chemical laboratory. The prototype is made up of two parts.
The first one which includes AI, Frontend and Backend components can live either in the Cloud or Premise thanks to the OpenShift
technology that allows a seamless portability across different infrastructures. The second one comprising automation hardware physically
located on the edge behind a firewall.

E.O. Pyzer-Knapp et al.

5

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences npj Computational Materials (2022)    84 

https://molgx.draco.res.ibm.com


inference of precise sequence of operations that are executed by
the synthesis hardware. All the models are freely available through
a cloud platform called IBM RXN for Chemistry [https://rxn.res.ibm.
com]. In the IBM lab, the integration of analytical chemistry
technologies (LCMS and NMR) with the commercial synthesis
hardware provides real-time monitoring to monitor results and
generate feedback for improvement.
Future challenges in this space of automated chemistry include

the generation and integration of in silico chemical data, the
further integration of analytical chemistry and application-specific
testing, and the expansion and adaptation of these technologies
to other materials classes. The space of known chemical reactions,
while vast, is still finite. In contrast, computational chemistry
techniques could in principle allow the automated exploration of
the vast space of hypothetical reactions. Intelligent exploration of
this space could yield a wealth of training data for reaction
prediction, provided it can be generated accurately and integrated
with existing data-derived knowledge. These robotic systems also
offer an opportunity for exploration of a different kind, specifically
the prospect of independent active learning systems that on their
own explore the chemical space searching for materials that suit
application objectives. To do this effectively, the simulation and
analytical chemistry systems need to be integrated with
automated in-line application-specific testing. Finally, to fully
realize the dream of a general-purpose materials synthesis robot,
these capabilities need to be extended across materials classes. As
with generative models, the question of whether there would ever
be a single generalized robotic system or instead specialized
robotic systems for specific materials and applications
remains open.

EXEMPLAR USE CASE
As an exemplar use case, we carried out a project to address a key
sustainability challenge focused on photoacid generators (PAGs), a
critical photosensitive complex employed in chemically amplified
photoresists used in semiconductor manufacturing71. Of the
several classes of known PAGs72–74, sulfonium ([SR3]+) or
iodonium ([IR2]+) -based complexes are the most widely used in
semiconductor lithography75–77. Recently, onium-based photoacid
generators have come under heightened regulatory scrutiny for
potential persistence, bioaccumulation, and toxicity (PBT) risks78.
While studies have helped clarify the potential PBT risks associated
with representative PAGs79 as well as identify relevant photo-
decomposition products80,81, it remains extremely challenging for

industry to design, synthesize, test, and bring to market new PAGs
with improved sustainability profiles in a timely manner.
While both the cation and anion of prototypical onium PAGs

could benefit from improved sustainability profiles, we initially
focused our work on developing an accelerated discovery
workflow for the discovery of sulfonium-based PAG cations with
improved environmental health and safety profiles. The
workflow is summarized in Fig. 7. In the first stage of the
workflow, approximately 6000 patents, papers, and data sources
were ingested by Deep Search to form a knowledge graph from
which the structures of approximately 5000 sulfonium PAGs
were obtained. To overcome the limited availability of key
property values for most of the identified cations, AI-enriched
simulation was used to compute both UV absorption using TD-
DFT82 using the GAMESS-US framework83 and selected sustain-
ability properties for several hundred sulfoniums using OPERA84.
The predicted sustainability parameter set included basic
physicochemical properties (octanol-water partition coefficient
(LogP) and water solubility (LogWS)), an environmental persis-
tence parameter (biodegradability—LogHalfLife), and a toxicity
endpoint (CATMoS—LD50). The resulting structure-property
dataset was then used to train a generative model, which was
able to produce 3000 candidate sulfonium cations over the
course of a 6 h run. However, many application-specific
constraints that determine PAG utility in the context of
semiconductor lithography were either partially or completely
unaccounted for in the limited property dataset used to train the
generative model. To overcome this, a combination of expert-
defined rules and discriminative expert-in-the-loop (EITL) AI
models85 were used to first constrain the generative model
output and then aid in the candidate downselection process,
respectively. In this manner, the 3000 PAG candidates output
from the generative model were filtered down to only a few
hundred candidates, a more manageable number for which
property data could be simulated.
Simulation on these candidates was prioritized using the

aforementioned IBM Bayesian optimization (IBO) functionality,
using a simple scoring metric, S, which combined the distance
from the target excitation energy (6.46 eV and 5.00 eV for the
common 193 nm and 248 nm targets) and the computed oscillator
strength:

S ¼ fobs
jEobs � Etargetj (1)

where Eobs is the computed excitation energy, Etarget is the target
excitation energy and fobs is the computed oscillator strength.

Fig. 7 Accelerating the discovery of novel photoacid generators. An example of how the technologies connect together to accelerate the
discovery of novel materials.
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An example of the speedup possible through this method can
be seen in Fig. 8, which shows a comparison between an IBO
accelerated workflow, and a non-accelerated workflow. For this
example, IBO was configured to use PDTS (parallel, distributed
Thompson sampling37), collecting batches of 10 simulations in
parallel, with molecules described using ECFP descriptors46. ECFP
fingerprints were chosen due to their previous successes at this
task37,41, their speed of calculation relative to other ‘learned’
representations, and their ability to be generated from 2D
information. For a library of over 400 candidate PAGs, the highest
performing molecule targeting the 193 nm wavelength was found
on average after only testing half the library, with the best
performing accelerated workflow locating this candidate after
only testing 90 molecules.
This multi-step refinement methodology enabled a 100-fold

reduction in the number of generated candidates that a human
environmental toxicology expert was required to analyze in order

to perform a final selection of a few top candidates for the next
stage of automated retrosynthetic analysis. With several top
candidates consisting of substituted variants of a dialkylphenyl-
sulfonium core, (4-methylphenyl)dimethylsulfonium triflate was
employed as a model candidate surrogate to simplify the final
experimental validation. Application of the AI retrosynthetic
model identified a one-step reaction involving the S-alkylation
of 4-(methylthio)toluene by methyl trifluoromethanesulfonate86,87

as the most promising pathway (shown in Fig. 9). The reaction
instruction set was generated and transferred via the cloud to the
RoboRXN system, which successfully carried out the reaction to
afford the expected product. This initial demonstration of the
applicability and utility of the discovery workflows for PAGs has
inspired us to begin expanding the simulation portfolio and
diversifying the types of generative AI models used in the
workflow for future discovery cycles.

OUTLOOK
The work described above illustrates a prototype for the future of
accelerated materials discovery. There are certainly examples of
larger-scale computational screening efforts88, as well as more
complex laboratory automation69, but in contrast, the workflow
we describe here is much more irregular and heterogeneous,
requiring the linking together of multiple distinct capabilities over
multiple geographies. Of note, the complexity of this irregular and
heterogeneous discovery workflow was enabled by the use of the
OpenShift hybrid cloud computing framework89, enabling a single
researcher to orchestrate the available resources across 3 data-
centers on 3 continents to execute the necessary steps – a model
which we believe will become more essential as the task of
materials discovery continues to globalize and new technologies
such as quantum computing continue to challenge what is
possible in each stage of the discovery cycle. In this prototype, a
series of sophisticated applications, algorithms, and computa-
tional systems are seamlessly orchestrated to accelerate cycles of
learning and support human scientists in their quest for knowl-
edge. In our research, we have seen tangible examples of this
acceleration across all stages of the discovery process, and we
strongly believe that the commoditization and democratization of
such diverse workflows will fundamentally alter the way we
respond to emerging discovery challenges.

Fig. 9 Using IBM RXN to generate a reterosynthetic pathway for a target molecule. RXN determined that a one-step reaction involving the
S-alkylation of 4-(methylthio)toluene by methyl trifluoromethanesulfonate would be the most promising pathway.

Fig. 8 A comparison between workflows accelerated by Bayesian
optimization (IBO accelerated) and those without this accelera-
tion. Solid lines represent bootstrap estimates of the mean run from
5 replicate workflows, with shaded areas representing 95%
confidence intervals for that estimate. Ideal behavior (i.e. the best
possible score) is shown as a gray dashed line, and the best IBO-
accelerated workflow is shown as a blue dashed line.
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