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Scaling deep learning for materials discovery

Amil Merchant1,3 ✉, Simon Batzner1,3, Samuel S. Schoenholz1,3, Muratahan Aykol1, 
Gowoon Cheon2 & Ekin Dogus Cubuk1,3 ✉

Novel functional materials enable fundamental breakthroughs across technological 
applications from clean energy to information processing1–11. From microchips to 
batteries and photovoltaics, discovery of inorganic crystals has been bottlenecked by 
expensive trial-and-error approaches. Concurrently, deep-learning models for 
language, vision and biology have showcased emergent predictive capabilities with 
increasing data and computation12–14. Here we show that graph networks trained at 
scale can reach unprecedented levels of generalization, improving the efficiency of 
materials discovery by an order of magnitude. Building on 48,000 stable crystals 
identified in continuing studies15–17, improved efficiency enables the discovery of  
2.2 million structures below the current convex hull, many of which escaped previous 
human chemical intuition. Our work represents an order-of-magnitude expansion in 
stable materials known to humanity. Stable discoveries that are on the final convex 
hull will be made available to screen for technological applications, as we demonstrate 
for layered materials and solid-electrolyte candidates. Of the stable structures, 736 
have already been independently experimentally realized. The scale and diversity of 
hundreds of millions of first-principles calculations also unlock modelling capabilities 
for downstream applications, leading in particular to highly accurate and robust 
learned interatomic potentials that can be used in condensed-phase molecular- 
dynamics simulations and high-fidelity zero-shot prediction of ionic conductivity.

The discovery of energetically favourable inorganic crystals is of fun-
damental scientific and technological interest in solid-state chemistry. 
Experimental approaches over the decades have catalogued 20,000 
computationally stable structures (out of a total of 200,000 entries) 
in the Inorganic Crystal Structure Database (ICSD)15,18. However, this 
strategy is impractical to scale owing to costs, throughput and synthesis 
complications19. Instead, computational approaches championed by 
the Materials Project (MP)16, the Open Quantum Materials Database 
(OQMD)17, AFLOWLIB20 and NOMAD21 have used first-principles cal-
culations based on density functional theory (DFT) as approximations 
of physical energies. Combining ab initio calculations with simple 
substitutions has allowed researchers to improve to 48,000 computa-
tionally stable materials according to our own recalculations22–24 (see 
Methods). Although data-driven methods that aid in further materials 
discovery have been pursued, thus far, machine-learning techniques 
have been ineffective in estimating stability (decomposition energy) 
with respect to the convex hull of energies from competing phases25.

In this paper, we scale up machine learning for materials exploration 
through large-scale active learning, yielding the first models that accu-
rately predict stability and, therefore, can guide materials discovery. 
Our approach relies on two pillars: first, we establish methods for gen-
erating diverse candidate structures, including new symmetry-aware 
partial substitutions (SAPS) and random structure search26. Second, we 
use state-of-the art graph neural networks (GNNs) that improve model-
ling of material properties given structure or composition. In a series 
of rounds, these graph networks for materials exploration (GNoME) 
are trained on available data and used to filter candidate structures. 

The energy of the filtered candidates is computed using DFT, both 
verifying model predictions and serving as a data flywheel to train more 
robust models on larger datasets in the next round of active learning.

Through this iterative procedure, GNoME models have discovered 
more than 2.2 million structures stable with respect to previous work, 
in particular agglomerated datasets encompassing computational and 
experimental structures15–17,27. Given that discovered materials compete 
for stability, the updated convex hull consists of 381,000 new entries for 
a total of 421,000 stable crystals, representing an-order-of-magnitude 
expansion from all previous discoveries. Consistent with observations 
in other domains of machine learning28, we observe that our neural 
networks predictions improve as a power law with the amount of data. 
Final GNoME models accurately predict energies to 11 meV atom−1 and 
improve the precision of stable predictions (hit rate) to above 80% with 
structure and 33% per 100 trials with composition only, compared 
with 1% in previous work17. Moreover, these networks develop emer-
gent out-of-distribution generalization. For example, GNoME enables 
accurate predictions of structures with 5+ unique elements (despite 
omission from training), providing one of the first strategies to effi-
ciently explore this chemical space. We validate findings by compar-
ing predictions with experiments and higher-fidelity r2SCAN (ref. 29) 
computations.

Finally, we demonstrate that the dataset produced in GNoME discov-
ery unlocks new modelling capabilities for downstream applications. 
The structures and relaxation trajectories present a large and diverse 
dataset to enable training of learned, equivariant interatomic poten-
tials30,31 with unprecedented accuracy and zero-shot generalization. 
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We demonstrate the promise of these potentials for materials prop-
erty prediction through the estimation of ionic conductivity from 
molecular-dynamics simulations.

Overview of generation and filtration
The space of possible materials is far too large to sample in an unbiased 
manner. Without a reliable model to cheaply approximate the energy 
of candidates, researchers guided searches by restricting generation 
with chemical intuition, accomplished by substituting similar ions or 
enumerating prototypes22. Although improving search efficiency17,27, 
this strategy fundamentally limited how diverse candidates could be. 
By guiding searches with neural networks, we are able to use diversified 
methods for generating candidates and perform a broader exploration 
of crystal space without sacrificing efficiency.

To generate and filter candidates, we use two frameworks, which 
are visualized in Fig. 1a. First, structural candidates are generated by 
modifications of available crystals. However, we strongly augment 
the set of substitutions by adjusting ionic substitution probabilities 
to give priority to discovery and use newly proposed symmetry aware 
partial substitutions (SAPS) to efficiently enable incomplete replace-
ments32. This expansion results in more than 109 candidates over the 

course of active learning; the resulting structures are filtered by means 
of GNoME using volume-based test-time augmentation and uncer-
tainty quantification through deep ensembles33. Finally, structures 
are clustered and polymorphs are ranked for evaluation with DFT (see 
Methods). In the second framework, compositional models predict 
stability without structural information. Inputs are reduced chemical 
formulas. Generation by means of oxidation-state balancing is often 
too strict (for example, neglecting Li15Si4). Using relaxed constraints 
(see Methods), we filter compositions using GNoME and initialize 100 
random structures for evaluation through ab initio random structure 
searching (AIRSS)26. In both frameworks, models provide a predic-
tion of energy and a threshold is chosen on the basis of the relative 
stability (decomposition energy) with respect to competing phases. 
Evaluation is performed through DFT computations in the Vienna Ab 
initio Simulation Package (VASP)34 and we measure both the number 
of stable materials discovered as well as the precision of predicted 
stable materials (hit rate) in comparison with the Materials Project16.

GNoME
All GNoME models are GNNs that predict the total energy of a crystal. 
Inputs are converted to a graph through a one-hot embedding of the 
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Fig. 1 | GNoME enables efficient discovery. a, A summary of the GNoME-based 
discovery shows how model-based filtration and DFT serve as a data flywheel 
to improve predictions. b, Exploration enabled by GNoME has led to 381,000 
new stable materials, almost an order of magnitude larger than previous work. 
c, 736 structures have been independently experimentally verified, with six 
examples shown50–55. d, Improvements from graph network predictions enable 

efficient discovery in combinatorial regions of materials, for example, with six 
unique elements, even though the training set stopped at four unique elements. 
e, GNoME showcases emergent generalization when tested on out-of-domain 
inputs from random structure search, indicating progress towards a universal 
energy model.
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elements. We follow the message-passing formulation35,36, in which 
aggregate projections are shallow multilayer perceptrons (MLPs) with 
swish nonlinearities. For structural models, we find it important to 
normalize messages from edges to nodes by the average adjacency of 
atoms across the entire dataset. Initial models are trained on a snapshot 
of the Materials Project from 2018 of approximately 69,000 materials. 
Previous work benchmarked this task at a mean absolute error (MAE) of 
28 meV atom−1 (ref. 37); however, we find that the improved networks 
achieve a MAE of 21 meV atom−1. We fix this promising architecture (see 
Methods) and focus on scaling in the rest of this paper.

Active learning
A core step in our framework for accelerating materials discovery is 
active learning. In both structural and compositional frameworks, 
candidate structures filtered using GNoME are evaluated using DFT 
calculations with standardized settings from the Materials Project. 
Resulting energies of relaxed structures not only verify the stabil-
ity of crystal structures but are also incorporated into the iterative 
active-learning workflow as further training data and structures for 
candidate generation. Whereas the hit rate for both structural and 
compositional frameworks start at less than 6% and 3%, respectively, 
performance improves steadily through six rounds of active learning. 
Final ensembles of GNoME models improve to a prediction error of 
11 meV atom−1 on relaxed structures and hit rates of greater than 80% 
and 33%, respectively, clearly showing the benefits of scale. An analysis 
of final GNoME hit rates is provided in Fig. 1d.

Scaling laws and generalization
The test loss performance of GNoME models exhibit improvement as 
a power law with further data. These results are in line with neural scal-
ing laws in deep learning28,38 and suggest that further discovery efforts 
could continue to improve generalization. Emphatically, unlike the case 
of language or vision, in materials science, we can continue to gener-
ate data and discover stable crystals, which can be reused to continue 

scaling up the model. We also demonstrate emergent generalization 
to out-of-distribution tasks by testing structural models trained on 
data originating from substitutions on crystals arising from random 
search26 in Fig. 1e. These examples are often high-energy local minima 
and out of distribution compared with data generated by our struc-
tural pipeline (which, by virtue of substitutions, contains structures 
near their minima). Nonetheless, we observe clear improvement with 
scale. These results indicate that final GNoME models are a substan-
tial step towards providing the community with a universal energy 
predictor, capable of handling diverse materials structures through  
deep learning.

Discovered stable crystals
Using the described process of scaling deep learning for materials 
exploration, we increase the number of known stable crystals by 
almost an order of magnitude. In particular, GNoME models found 
2.2 million crystal structures stable with respect to the Materials Pro-
ject. Of these, 381,000 entries live on the updated convex hull as newly 
discovered materials.

Consistent with other literature on structure prediction, the GNoME 
materials could be bumped off the convex hull by future discoveries, 
similar to how GNoME displaces at least 5,000 ‘stable’ materials from 
the Materials Project and the OQMD. See Supplementary Note 1 for dis-
cussion on improving structures of already-discovered compositions. 
Nevertheless, Figs. 1 and 2 provide a summary of the stable materials, 
with Fig. 1b focusing on the growth over time. We see substantial gains 
in the number of structures with more than four unique elements in 
Fig. 2a. This is particularly promising because these materials have 
proved difficult for previous discovery efforts27. Our scaled GNoME 
models overcome this obstacle and enable efficient discovery in com-
binatorially large regions.

Clustering by means of prototype analysis39 supports the diversity 
of discovered crystals with GNoME, leading to more than 45,500 novel 
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Fig. 2 | Summaries of discovered stable crystals. a, GNoME enables efficient 
discovery in the combinatorial spaces of 4+ unique elements that can be difficult 
for human experts. b, Phase-separation energies (energy to the convex hull) for 
discovered quaternaries showcase similar patterns but larger absolute numbers 

than previous catalogues. c, Discovered stable crystals correspond to 45,500 
novel prototypes as measured by XtalFinder (ref. 39). d, Validation by r2SCAN 
shows that 84% of discovered binary and ternary crystals retain negative phase 
separations with more accurate functionals.
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prototypes in Fig. 2c (a 5.6 times increase from 8,000 of the Materials 
Project), which could not have arisen from full substitutions or proto-
type enumeration. Finally, in Fig. 2b, we compare the phase-separation 
energy (also referred to as the decomposition enthalpy) of discovered 
quaternaries with those from the Materials Project to measure the 
relative distance to the convex hull of all other competing phases. 
The similarities in distribution suggest that the found materials 
are meaningfully stable with respect to competing phases and not 
just ‘filling in the convex hull.’ Further analyses of materials near 
to (but not on) the updated convex hull is given in Supplementary  
Note 3.

Validation through experimental matching and r2SCAN
All candidates for GNoME are derived from snapshots of databases 
made in March 2021, including the Materials Project and the OQMD. 
Concurrent to our discovery efforts, researchers have continued to 
experimentally create new crystals, providing a way to validate GNoME 
findings. Of the experimental structures aggregated in the ICSD, 736 
match structures that were independently obtained through GNoME. 
Six of the experimentally matched structures are presented in Fig. 1c 
and further details of the experimental matches are provided in Sup-
plementary Note 1. Similarly, of the 3,182 compositions added to the 
Materials Project since the snapshot, 2,202 are available in the GNoME 
database and 91% match on structure. A manual check of ‘newly’ dis-
covered crystals supported the findings, with details in Supplementary 
Note 4.

We also validate predictions to ensure that model-based explora-
tion did not overfit simulation parameters. We focus on the choice 
of functional. Standard projector augmented wave (PAW)-Perdew–
Burke–Ernzerhof (PBE) potentials provided a speed–accuracy trade-off 
suited for large-scale discovery40,41, but the r2SCAN functional provides 
a more accurate meta-generalized gradient approximation29,42,43. 84% 
of the discovered binaries and ternary materials also present negative 
phase-separation energies (as visualized in Fig. 2d, comparable with 
a 90% ratio in the Materials Project but operating at a larger scale). 
86.8% of tested quaternaries also remain stable on the r2SCAN convex 
hull. The discrepancies between PBE and r2SCAN energies are further 
analysed in Supplementary Note 2.

Composition families of interest
We highlight the benefits of a catalogue of stable materials an order of 
magnitude larger than previous work. When searching for a material 
with certain desirable properties, researchers often filter such cata-
logues, as computational stability is often linked with experimental 
realizability. We perform similar analyses for three applications. First, 
layered materials are promising systems for electronics and energy 
storage44. Methods from previous studies45 suggest that approximately 
1,000 layered materials are stable compared with the Materials Project, 
whereas this number increases to about 52,000 with GNoME-based 
discoveries. Similarly, following a holistic screening approach with 
filters such as exclusion of transition metals or by lithium fraction, 
we find 528 promising Li-ion conductors among GNoME discoveries, 
a 25 times increase compared with the original study46. Finally, Li/Mn 
transition-metal oxides are a promising family to replace LiCoO2 in 
rechargeable batteries25 and GNoME has discovered an extra 15 can-
didates stable relative to the Materials Project compared with the 
original nine.

Scaling up learned interatomic potentials
The process of discovery of stable crystals also provides a data source 
beyond stable materials. In particular, the ionic relaxations involve 
computation of first-principles energies and forces for a diverse set 
of materials structures. This generates a dataset of unprecedented 
diversity and scale, which we explore to pretrain a general-purpose 

machine-learning interatomic potential (MLIP) for bulk solids. MLIPs 
have become a promising tool to accelerate the simulation of materials 
by learning the energies and forces of reference structures computed 
at first-principles accuracy30,47–49. Existing efforts typically train models 
per material, with data often sampled from ab initio molecular dynam-
ics (AIMD). This markedly limits their general applicability and adop-
tion, requiring expensive data collection and training a new potential 
from scratch for each system. By making use of the GNoME dataset of 
first-principles calculations from diverse structural relaxations, we 
demonstrate that large-scale pretraining of MLIPs enables models that 
show unprecedented zero-shot accuracy and can be used to discover 
superionic conductors, without training on any material-specific data.

Zero-shot scaling and generalization
We scale pretraining of a NequIP potential30 on data sampled from ionic 
relaxations. Increasing the pretraining dataset, we observe consist-
ent power-law improvements in accuracy (see Fig. 3a,b). Despite only 
being trained on ionic relaxations and not on molecular-dynamics 
data, the pretrained GNoME potential shows remarkable accuracy 
when evaluated on downstream data sampled from the new distribu-
tion of AIMD in a zero-shot manner, that is, in which no training data 
originate from AIMD simulations (see Fig. 3). Notably, this includes 
unseen compositions, melted structures and structures including 
vacancies, all of which are not included in our training set (see Sup-
plementary Note 6.4). In particular, we find that the scale of the GNoME 
dataset allows it to outperform existing general-purpose potentials 
(see Fig. 3d) and makes the pretrained potential competitive with 
models trained explicitly on hundreds of samples from the target data 
distributions (see Supplementary Note 6.4). We observe particularly 
pronounced improvements in the transferability of MLIPs, one of the 
most pressing shortcomings of MLIPs. To assess the transferability of 
the potentials, we test their performance under distribution shift: we 
train two types of NequIP potential on structures sampled from AIMD at 
T = 400 K, one in which the network is trained from randomly initialized 
weights and the other in which we fine-tune from a pretrained GNoME 
checkpoint. We then measure the performance of both potentials on 
data sampled from AIMD at T = 1,000 K (see Fig. 3c), out of distribu-
tion with respective to the 400-K data. The potential pretrained on 
GNoME data shows systematic and strong improvements in transfer-
ability over the potential trained from scratch, even when training 
is performed on more than 1,000 structures. The zero-shot GNoME 
potential, not fine-tuned on any data from this composition, out-
performs even a state-of-the-art NequIP model trained on hundreds  
of structures.

Screening solid-state ionic conductors
Solid electrolytes are a core component of solid-state batteries, promis-
ing higher energy density and safety than liquid electrolytes, but suffer 
from lower ionic conductivities at present. In the search for novel elec-
trolyte materials, AIMD allows for the prediction of ionic conductivities 
from first principles. However, owing to the poor scaling of DFT with 
the number of electrons, routine simulations are limited to hundreds 
of picoseconds, hundreds of atoms and, most importantly, small com-
positional search spaces. Here we show that the GNOME potentials 
show high robustness in this out-of-distribution, zero-shot setting 
and generalizes to high temperatures, which allows them to serve as 
a tool for high-throughput discovery of novel solid-state electrolytes. 
We use GNoME potentials pretrained on datasets of increasing size in 
molecular-dynamics simulations on 623 never-before-seen composi-
tions. Figure 3a shows the ability of the pretrained GNoME potentials to 
classify unseen compositions as superionic conductors in comparison 
with AIMD.

When scaled to the GNoME dataset—much larger than existing 
approaches—we find that deep learning unlocks previously impos-
sible capabilities for building transferable interatomic potentials for 
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inorganic bulk crystals and allows for high-accuracy, zero-shot predic-
tion of materials properties at scale.

Conclusion
We show that GNNs trained on a large and diverse set of first-principles 
calculations can enable the efficient discovery of inorganic materials, 
increasing the number of stable crystals by more than an order of mag-
nitude. Associated datasets empower machine-learned interatomic 
potentials, giving accurate and robust molecular-dynamics simulations 
out of the box on unseen bulk materials. Our findings raise interesting 
questions about the capabilities of deep-learning systems in the natural 
sciences: the application of machine-learning methods for scientific 
discovery has traditionally suffered from the fundamental challenge 
that learning algorithms work under the assumption of identically 
distributed data at train and test times, but discovery is inherently an 
out-of-distribution effort. Our results on large-scale learning provide 
a potential step to move past this dilemma, by demonstrating that 
GNoME models exhibit emergent out-of-distribution capabilities at 
scale. This includes discovery in unseen chemical spaces (for example, 
with more than four different elements), as well as on new downstream 
tasks (for example, predicting kinetic properties).

GNoME models have already found 2.2 million stable crystals with 
respect to previous work and enabled previously impossible modelling 
capabilities for materials scientists. Some open problems remain for the 
transition of findings in applications, including a greater understand-
ing of phase transitions through competing polymorphs, dynamic 
stability arising from vibrational profiles and configurational entro-
pies and, ultimately, synthesizability. Nevertheless, we see pretrained, 
general-purpose GNoME models being used as powerful tools across 
a diverse range of applications to fundamentally accelerate materials 
discovery.
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Methods

Datasets and candidate generation
Snapshots of available datasets. GNoME discoveries aim to extend the 
catalogues of known stable crystals. In particular, we build off previous 
work by the Materials Project16, the OQMD17, Wang, Botti and Marques 
(WBM)27 and the ICSD15. For reproducibility, GNoME-based discoveries 
use snapshots of the two datasets saved at a fixed point in time. We use 
the data from the Materials Project as of March 2021 and the OQMD as 
of June 2021. These structures are used as the basis for all discovery 
including via SAPS, yielding the catalogue of stable crystals as a result 
of GNoME. Further updates and incorporation of discoveries by these 
two groups could yield an even greater number of crystal discoveries.

For a revised comparison, another snapshot of the Materials Project, 
the OQMD and WBM was taken in July 2023. Approximately 216,000 
DFT calculations were performed at consistent settings and used to 
compare the rate of GNoME discoveries versus the rate of discoveries 
by concurrent research efforts. From 2021 to 2023, the number of stable 
crystals external to GNoME expanded from 35,000 to 48,000, relatively 
small in comparison with the 381,000 new stable crystal structures 
available on the convex hull presented in this paper.

Substitution patterns. Structural substitution patterns are based on 
data-mined probabilities from ref. 22. That work introduced a proba-
bilistic model for assessing the likelihood for ionic species substitution 
within a single crystal structure. In particular, the probability of sub-
stitution is calculated as a binary feature model such that 
p X X( , ′) ≈

∑ λ f X X

Z

exp ( , ′)i i i
n( )

, in which X and X′ are n-component vectors of 
n different ions. The model is simplified so that fi is 0 or 1 if a specific 
substitution pair occurs and λi provides a weighting for the likelihood 
of a given substitution. The resulting probabilities have been helpful, 
for example, in discovering new quaternary ionic compounds with 
limited computation budgets.

In our work, we adjust the probabilistic model so as to increase the 
number of candidates and give priority to discovery. In particular, the 
conditional probability computation in the original substitution pat-
terns prefers examples that are more likely to be found in the original 
dataset. For example, any uncommon element is assigned a smaller 
probability in the original model. To give priority to novel discovery and 
move further away from the known sets of stable crystals, we modify 
the implementation so that probabilities are only computed when two 
compositions differ. This minor modification has substantial benefits 
across our pipeline, especially when scaling up to six unique elements.

We also introduce changes to the model parameters to promote novel 
discovery. In the original probabilistic model, positive lambda refers 
to more likely substitutions, although ‘unseen’ or uncommon substi-
tution resulted in negative lambda values. We increase the number of 
generations by setting the minimum value of any substitution pair to 
be 0. We then threshold high-probability substitutions to a value of 
0.001, enabling efficient exploration in composition space through 
branch-and-bound algorithms available from pymatgen. Overall, these 
settings allow for many one-ion or two-ion substitutions to be con-
sidered by the graph networks that otherwise would not have been 
considered. We find this to be a good intermediate between the original 
model and using all possible ionic substitutions, in which we encounter 
combinatorial blow-ups in the number of candidates.

For the main part of this paper, substitutions are only allowed into 
compositions that do not match any available compositions in the 
Materials Project or in the OQMD, rather than comparing structures 
using heuristic structure matchers. This ensures that we introduce 
novel compositions in the dataset instead of similar structures that 
may be missed by structure matchers.

SAPS. To further increase the diversity of structures generations, 
we introduce a framework that we refer to as symmetry aware partial 

substitutions (SAPS), which generalizes common substitution frame-
works. For a motivating example, consider the cases of (double) per-
ovskites. Ionic substitutions on crystals of composition A2B2X6 does 
not lead to discovering double perovskites A2BB′O6, although the two 
only differ by a partial replacement on the B site.

SAPS enable efficient discovery of such structures. Starting with an 
original composition, we obtain candidate ion replacements using 
the probabilities as defined in the ‘Substitution patterns’ section. We 
then obtain Wyckoff positions of the input structures by means of 
symmetry analysers available through pymatgen. We enable partial 
replacements from 1 to all atoms of the candidate ion, for which at each 
level we only consider unique symmetry groupings to control the com-
binatorial growth. Early experiments limited the partial substitutions 
to materials that would charge-balance after partial substitutions when 
considering common oxidation states; however, greater expansion of 
candidates was achieved by removing such charge-balancing from the 
later experiments. This partial-substitution framework enables greater 
use of common crystal structures while allowing for the discovery 
of new prototypical structures, as discussed in the main part of this 
paper. Candidates from SAPS are from a different distribution to the 
candidates from full substitutions, which increases the diversity of our 
discoveries and our dataset.

To validate the impact of the SAPS, we traced reference structures 
from substitutions of all 381,000 novel stable structures back to a struc-
ture in the Materials Project or the OQMD by means of a topological 
sort (necessary as discovered materials were recycled for candidate 
generation). A total of 232,477 out of the 381,000 stable structures 
can be attributed to a SAPS substitution, suggesting notable benefit 
from this diverse candidate-generation procedure.

Oxidation-state relaxations. For the compositional pipeline, inputs  
for evaluation by machine-learning models must be unique stoichi-
ometric ratios between elements. Enumerating the combinatorial 
number of reduced formulas was found to be too inefficient, but com-
mon strategies to reduce such as oxidation-state balancing was also 
too restrictive, for example, not allowing for the discovery of Li15Si4. 
In this paper, we introduce a relaxed constraint on oxidation-state 
balancing. We start with the common oxidation states from the Semi-
conducting Materials by Analogy and Chemical Theory (SMACT)57, 
with the inclusion of 0 for metallic forms. We allow for up to two 
elements to exist between two ordered oxidation states. Although 
this is a heuristic approach, it substantially improves the flex-
ibility of composition generation around oxidation-state-balanced  
ratios.

AIRSS structure generation. Random structures are generated 
through AIRSS when needed for composition models26. Random struc-
tures are initialized as ‘sensible’ structures (obeying certain symmetry 
requirements) to a target volume and then relaxed through soft-sphere 
potentials. A substantial number of initializations and relaxations 
are needed to discover new materials, as different initial structures 
lead to different minima on the structure–energy landscape. For this 
paper, we always generate 100 AIRSS structures for every composi-
tion that is otherwise predicted to be within 50 meV of stable through 
composition-only model prediction.

As we describe in Supplementary Note 5, not all DFT relaxations 
converge for the 100 initializations per composition. In fact, for certain 
compositions, only a few initializations converge. One of the main dif-
ficulties arises from not knowing a good initial volume guess for the 
composition. We try a range of initial volumes ranging from 0.4 to 1.2 
times a volume estimated by considering relevant atomic radii, finding 
that the DFT relaxation fails or does not converge for the whole range 
for each composition. Prospective analysis was not able to uncover 
why most AIRSS initializations fail for certain compositions, and future 
work is needed in this direction.



Model training and evaluation
Graph networks. For structural models, edges are drawn in the graph 
when two atoms are closer than an interatomic distance cutoff (4.0 Å 
for structural models, 5.0 Å for interatomic potentials). Compositional 
models default to forming edges between all pairs of nodes in the graph. 
The models update latent node features through stages of message 
passing, in which neighbour information is collected through normal-
ized sums over edges and representations are updated through shallow 
MLPs36. After several steps of message passing, a linear readout layer 
is applied to the global state to compute a prediction of the energy.

Training structural and composition models. Following Roost (repre-
sentation learning from stoichiometry)58, we find GNNs to be effective 
at predicting the formation energy of a composition and structure.

For the structural models, the input is a crystal definition, which 
encodes the lattice, structure and atom definitions. Each atom is rep-
resented as a single node in the graph. Edges are defined when the 
interatomic distance is less than a user-defined threshold. Nodes are 
embedded by atom type, edges are embedded on the basis of the intera-
tomic distance. We also include a global feature that is connected in the 
graph representation to all nodes. At every step of the GNN, neighbour-
ing nodes and edge features are aggregated and used to update the 
corresponding representations of nodes, edges or globals individually. 
After 3–6 layers of message passing, an output layer projects the global 
vector to get an estimate of the energy. All data for training are shifted 
and scaled to approximately standardize the datasets. This structural 
model trained on the Materials Project data obtains state-of-the-art 
results of a mean absolute error of 21 meV atom−1. Training during the 
active-learning procedure leads to a model with a final mean absolute 
error of 11 meV atom−1. Training for structural models is performed 
with 1,000 epochs, with a learning rate of 5.55 × 10−4 and a linear decay 
learning rate schedule. By default, we train with a batch size of 256 
and use swish nonlinearities in the MLP. To embed the edges, we use a 
Gaussian featurizer. The embedding dimension for all nodes and edges 
is 256 and, unless otherwise stated, the number of message-passing  
iterations is 3.

For the compositional models, the input composition to the GNN is 
encoded as a set of nodes, for which each element type in the composi-
tion is represented by a node. The ratio of the specific element is multi-
plied with the one-hot vector. For example, SiO2 would be represented 
with two nodes, in which one node feature is a vector of zeros and a 
1/3 on the 14th row to represent silicon and the other node is a vector 
of zeros with a 2/3 on the 8th row to represent oxygen. Although this 
simplified GNN architecture is able to achieve state-of-the-art gener-
alization on the Materials Project (MAE of 60 meV atom−1 (ref. 25)), it 
does not offer useful predictions for materials discovery, which was also 
observed by Bartel et al.25. One of the issues with compositional models 
is that they assume that the training label refers to the ground-state 
phase of a composition, which is not guaranteed for any dataset. Thus, 
the formation-energy labels in the training and test sets are inherently 
noisy, and reducing the test error does not necessarily imply that one is 
learning a better formation-energy predictor. To explore this, we cre-
ated our own training set of compositional energies, by running AIRSS 
simulations on novel compositions. As described in Supplementary 
Note 5, we find that compositions for which there are only a few com-
pleted AIRSS runs tend to have large formation energies, often larger 
than predicted by the compositional GNN. We find that, if we limit 
ourselves to compositions for which at least ten AIRSS runs are com-
pleted, then the compositional GNN error is reduced to 40 meV atom−1. 
We then use the GNN trained on such a dataset (for which labels come 
from the minimum formation energy phase for compositions with 
at least ten completed AIRSS runs and ignoring the Materials Pro-
ject data) and are able to increase the precision of stable prediction  
to 33%.

Model-based evaluation. Discovering new datasets aided by neural 
networks requires a careful balance between ensuring that the neu-
ral networks trained on the dataset are stable and promoting new 
discoveries. New structures and prototypes will be inherently out of 
distribution for models; however, we hope that the models are still 
capable of extrapolating and yielding reasonable predictions. This is 
out-of-distribution detection problem is further exacerbated by the 
implicit domain shift, in which models are trained on relaxed structures 
but evaluated on substitutions before relaxation. To counteract these 
effects, we make several adjustments to stabilize test-time predictions.

Test-time augmentations. Augmentations at test time are a common 
strategy for correcting instabilities in machine-learning predictions. 
Specific to structural models, we especially consider isotropic scaling of 
the lattice vectors, which both shrinks and stretches bonds. At 20 values 
ranging from 80% to 120% of the reference lattice scaling volume, we 
aggregate by means of minimum reduction. This has the added benefit 
of potentially correcting for predicting on nonrelaxed structures, as 
isotropic scaling may yield a more appropriate final structure.

Deep ensembles and uncertainty quantification. Although neu-
ral network models offer flexibility that allows them to achieve 
state-of-the-art performance on a wide range of problems, they may 
not generalize to data outside the training distribution. Using an en-
semble of models is a simple, popular choice for providing predictive 
uncertainty and improving generalization of machine-learning pre-
dictions33. This technique simply requires training n models rather 
than one. The prediction corresponds to the mean over the outputs 
of all n models; the uncertainty can be measured by the spread of the 
n outputs. In our application of training machine-learning models for 
stability prediction, we use n = 10 graph networks. Moreover, owing 
to the instability of graph-network predictions, we find the median to 
be a more reliable predictor of performance and use the interquartile 
range to bound uncertainty.

Model-based filtration. We use test-time augmentation and 
deep-ensemble approaches discussed above to filter candidate ma-
terials based on energy. Materials are then compared with the available 
GNoME database to estimate the decomposition energy. Note that 
the structures provided for model-based filtration are unlikely to be 
completely related, so a threshold of 50 meV atom−1 was used for active 
learning to improve the recall of stable crystal discovery.

Clustered-based reduction. For active-learning setups, only the struc-
ture predicted to have the minimum energy within a composition is 
used for DFT verification. However, for an in-depth evaluation of a 
specific composition family of interest, we design clustering-based 
reduction strategies. In particular, we take the top 100 structures for any 
given composition and perform pairwise comparisons with pymatgen’s 
built-in structure matcher. We cluster the connected components on 
the graph of pairwise similarities and take the minimum energy struc-
ture as the cluster representation. This provides a scalable strategy to 
discovering polymorphs when applicable.

Active learning. Active learning was performed in stages of generation 
and later evaluation of filtered materials through DFT. In the first stage, 
materials from the snapshots of the Materials Project and the OQMD 
are used to generate candidates with an initial model trained on the 
Materials Project data, with a mean absolute error of 21 meV atom−1 in 
formation energy. Filtration and subsequent evaluation with DFT led 
to discovery rates between 3% and 10%, depending on the threshold 
used for discovery. After each round of active learning, new structural 
GNNs are trained to improve the predictive performance. Furthermore, 
stable crystal structures are added to the set of materials that can be 
substituted into, yielding a greater number of candidates to be filtered 
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by the improved models. This procedure of retraining and evaluation 
was completed six times, yielding the total of 381,000 stable crystal 
discoveries. Continued exploration with active learning may continue 
to drive the number of stable crystals higher.

Composition-based hashing. Previous efforts to learn machine- 
learning models of energies often use a random split over different 
crystal structures to create the test set on which energy predictions 
are evaluated. However, as the GNoME dataset contains several crystal 
structures with the same composition, this metric is less trustworthy 
over GNoME. Having several structures within the same composition 
in both the training and the test sets markedly reduces test error, al-
though the test error does not provide a measure of how well the model 
generalizes to new compositions. In this paper, we use a deterministic 
hash for the reduced formula of each composition and assign examples 
to the training (85%) and test (15%) sets. This ensures that there are 
no overlapping compositions in the training and test sets. We take a 
standard MD5 hash of the reduced formula, convert the hexadecimal 
output to an integer and take modulo 100 and threshold at 85.

DFT evaluation
VASP calculations. We use the VASP (refs. 34,59) with the PBE41 func-
tional and PAW40,60 potentials in all DFT calculations. Our DFT settings 
are consistent with the Materials Project workflows as encoded in  
pymatgen23 and atomate61. We use consistent settings with the Materi-
als Project workflow, including the Hubbard U parameter applied to a 
subset of transition metals in DFT+U, 520 eV plane-wave-basis cutoff, 
magnetization settings and the choice of PBE pseudopotentials, except 
for Li, Na, Mg, Ge and Ga. For Li, Na, Mg, Ge and Ga, we use more recent 
versions of the respective potentials with the same number of valence 
electrons. For all structures, we use the standard protocol of two-stage 
relaxation of all geometric degrees of freedom, followed by a final 
static calculation, along with the custodian package23 to handle any 
VASP-related errors that arise and adjust appropriate simulations. For 
the choice of KPOINTS, we also force gamma-centred kpoint generation 
for hexagonal cells rather than the more traditional Monkhorst–Pack. 
We assume ferromagnetic spin initialization with finite magnetic mo-
ments, as preliminary attempts to incorporate different spin orderings 
showed computational costs that were prohibitive to sustain at the scale 
presented. In AIMD simulations, we turn off spin polarization and use 
the NVT ensemble with a 2-fs time step.

Bandgap calculations. For validation purposes (such as the filtration 
of Li-ion conductors), bandgaps are calculated for most of the stable 
materials discovered. We automate bandgap jobs in our computation 
pipelines by first copying all outputs from static calculations and using 
the pymatgen-based MPNonSCFSet in line mode to compute the band-
gap and density of states of all materials. A full analysis of patterns in 
bandgaps of the novel discoveries is a promising avenue for future work.

r2SCAN. r2SCAN is an accurate and numerically efficient functional 
that has seen increasing adoption from the community for increas-
ing the fidelity of computational DFT calculations. This functional is 
provided in the upgraded version of VASP6 and, for all corresponding 
calculations, we use the settings as detailed by MPScanRelaxSet and 
MPScanStaticSet in pymatgen. Notably, r2SCAN functionals require the 
use of PBE52 or PBE54 potentials, which can differ slightly from the PBE 
equivalents used elsewhere in this paper. To speed up computation, 
we perform three jobs for every SCAN-based computation. First, we 
precondition by means of the updated PBE54 potentials by running a 
standard relaxation job under MPRelaxSet settings. This precondition-
ing step greatly speeds up SCAN computations, which—on average—are 
five times slower and can otherwise crash on our infrastructure owing 
to elongated trajectories. Then, we relax with the r2SCAN functional, 
followed by a static computation.

Metrics and analysis methodology
Decomposition energies. To compute decomposition energies and 
count the total number of stable crystals relative to previous work16,17 
in a consistent fashion, we recalculated energies of all stable materials 
in the Materials Project and the OQMD with identical, updated DFT set-
tings as enabled by pymatgen. Furthermore, to ensure fair comparison 
and that our discoveries are not affected by optimization failures in 
these high-throughput recalculations, we use the minimum energy 
of the Materials Project calculation and our recalculation when both 
are available.

Prototype analysis. We validate the novel discoveries using XtalFinder 
(ref. 39), using the compare_structures function available from the com-
mand line. This process was parallelized over 96 cores for improved per-
formance. We also note that the symmetry calculations in the built-in 
library fail on less than ten of the stable materials discovered. We disable 
these filters but note that the low number of failures suggests minimal 
impact on the number of stable prototypes.

Families of interest. Layered materials. To count the number of  
layered materials, we use the methodology developed in ref. 45, which 
is made available through the pymatgen.analysis.dimensionality pack-
age with a default tolerance of 0.45 Å.
Li-ion conductors. The estimated number of viable Li-ion conductors 
reported in the main part of this paper is derived using the methodol-
ogy in ref. 46 in a high-throughput fashion. This methodology involves 
applying filters based on bandgaps and stabilities against the cathode 
Li-metal anode to identify the most viable Li-ion conductors.
Li/Mn transition-metal oxide family. The Li/Mn transition-metal 
oxide family is discussed in ref. 25 to analyse the capabilities of machine- 
learning models for use in discovery. In the main text, we compare 
against the findings in the cited work suggesting limited discovery 
within this family through previous machine-learning methods.

Definition of experimental match. In the main part of this paper, we 
refer to experimentally validated crystal structures with the ICSD. More 
specifically, we queried the ICSD in January 2023 after many of crystal 
discoveries had been completed. We then extracted relevant journal 
(year) and chemical (structure) information from the provided files. 
By rounding to nearest integer formulas, we found 4,235 composition 
matches with materials discovered by GNoME. Of these, 4,180 are suc-
cessfully parsed for structure. Then, we turn to the structural information 
provided by the ICSD. We used the CIF parser module of pymatgen to load 
the experimental ICSD structures into pymatgen and then compared 
those to the GNoME dataset using its structure matcher module. For 
both modules, we tried using the default settings as well as more tolerant 
settings that improve structure parsing and matching (higher occupancy 
tolerance in CIF parsing to fix cases with >1.0 total occupancy and allow-
ing supercell and subset comparison in matching). The latter resulted in 
a slight increase (about 100) in the number of matched structures with 
respect to the default settings. Given that we are enforcing a strict com-
positional match, our matching process is still relatively conservative and 
is likely to yield a lower bound. Overall, we found 736 matches, provid-
ing experimental confirmation for the GNoME structures. 184 of these 
structures correspond to novel discoveries since the start of the project.

Methods for creating figures of GNoME model scaling
Figures 1e and 3a,b show how the generalization abilities of GNoME 
models scale with training set size. In Fig. 1e, the training sets are sam-
pled uniformly from the materials from the Materials Project and from 
our structural pipeline, which only includes elemental and partial sub-
stitutions into stable materials in the Materials Project and the OQMD. 
The training labels are the final formation energy at the end of relaxa-
tion. The test set is constructed by running AIRSS on 10,000 random 



compositions filtered by the SMACT. Test labels are the final formation 
energy at the end of the AIRSS relaxation, for crystals that AIRSS and 
DFT (both electronically and ionically) converged. Because we apply 
the same composition-based hash filtering (see ‘Composition-based 
hashing’ section) on all of our datasets, there is no risk of label leakage 
between the training set from the structural pipeline and the test set 
from AIRSS.

In Fig. 3a, we present the classification error for predicting the out-
come of DFT-based molecular dynamics using GNN molecular dynam-
ics. ‘GNoME: unique structures’ refers to the first step in the relaxation 
of crystals in the structural pipeline. We train on the forces on each atom 
on the first DFT step of relaxation. The different training subsets are 
created by randomly sampling compositions in the structural pipeline 
uniformly. ‘GNoME: intermediate structures’ includes all the same 
compositions as ‘GNoME: unique structures’, but has all steps of DFT 
relaxation instead of just the first step. The red diamond refers to the 
same GNN interatomic potential trained on the data from M3GNet, 
which includes three relaxation steps per composition (first, middle 
and last), as described in the M3GNet paper62.

Coding frameworks
For efforts in machine learning, GNoME models make use of JAX and 
the capabilities to just-in-time compile programs onto devices such as 
graphics processing units (GPUs) and tensor processing units (TPUs). 
Graph networks implementations are based on the framework devel-
oped in Jraph, which makes use of a fundamental GraphsTuple object 
(encoding nodes and edges, along with sender and receiver information 
for message-passing steps). We also make great of use functionality 
written in JAX MD for processing crystal structures63, as well as Ten-
sorFlow for parallelized data input64.

Large-scale generation, evaluation and summarization pipelines 
make use of Apache Beam to distribute processing across a large num-
ber of workers and scale to the sizes as described in the main part of 
this paper (see ‘Overview of generation and filtration’ section). For 
example, billions of proposal structures, even efficiently encoded, 
requires terabytes of storage that would otherwise fail on single nodes.

Also, crystal visualizations are created using tooling from VESTA 
(ref. 65).

MLIPs
Pretrained GNoME potential. We train a NequIP potential30, imple-
mented in JAX using the e3nn-jax library66, with five layers, hidden 
features of 128 ℓ = 0 scalars, 64 ℓ = 1 vectors and 32 ℓ = 2 tensors (all even 
irreducible representations only, 128x0e + 64x1x + 32x2e), as well as an 
edge-irreducible representation of 0e + 1e + 2e. We use a radial cutoff of 
5 Å and embed interatomic distances rij in a basis of eight Bessel func-
tions, which is multiplied by the XPLOR cutoff function, as defined in 
HOOMD-blue (ref. 67), using an inner cutoff of 4.5 Å. We use a radial MLP 
R(r) with two hidden layers with 64 neurons and a SiLU nonlinearity. 
We also use SiLU for the gated, equivariant nonlinearities68. We embed 
the chemical species using a 94-element one-hot encoding and use a 
self-connection, as proposed in ref. 30. For internal normalization, we 
divide by 26 after each convolution. Models are trained with the Adam 
optimizer using a learning rate of 2 × 10−3 and a batch size of 32. Given 
that high-energy structures in the beginning of the trajectory are ex-
pected to be more diverse than later, low-energy structures, which are 
similar to one another and often come with small forces, each batch is 
made up of 16 structures sampled from the full set of all frames across 
all relaxations and 16 structures sampled from only the first step of the 
relaxation only. We found this oversampling of first-step structures to 
substantially improve performance on downstream tasks. The learning 
rate was decreased to a new value of 2 × 10−4 after approximately 23 
million steps, to 5 × 10−5 after a further approximately 11 million steps 
and then trained for a final 2.43 million steps. Training was performed 
on four TPU v3 chips.

We train on formation energies instead of total energies. Formation 
energies and forces are not normalized for training but instead we 
predict the energy as a sum over scaled and shifted atomic energies, 
such that ∑E � σ µ= ( + )i N i∈ atoms

̂ ̂ , in which �î is the final, scalar node fea-
ture on atom i and σ and μ are the standard deviation and mean of the 
per-atom energy computed over a single pass of the full dataset. The 
network was trained on a joint loss function consisting of a weighted 
sum of a Huber loss on energies and forces:
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in which Na and Nb denote the number of atoms in a structure and the 
number of samples in a batch, respectively, Eb̂ and Eb are the predicted 
and true energy for a given sample in a batch, respectively, and Fa,α  
is the true force component on atom a, for which α ∈ {x, y, z} is the  
spatial component. ̂δ a a( , , )HuberL  denotes a Huber loss on quantity a, 
for which we use δE = δF = 0.01. The pretrained potential has 16.24  
million parameters. Inference on an A100 GPU on a 50-atom system 
takes approximately 14 ms, enabling a throughput of approximately 
12 ns day−1 at a 2-fs time step, making inference times highly competi-
tive with other implementations of GNN interatomic potentials.  
Exploring new approaches with even further improved computational 
efficiency is the focus of future work.

Training on M3GNet data. To allow a fair comparison with the smaller 
M3GNet dataset used in ref. 62, a NequIP model was trained on the 
M3GNet dataset. We chose the hyperparameters in a way that balances 
accuracy and computational efficiency, resulting in a potential with  
efficient inference. We train in two setups, one splitting the training and 
testing sets based on unique materials and the other over all structures. 
In both cases, we found the NequIP potential to perform better than 
the M3GNet models trained with energies and forces (M3GNet-EF) 
reported in ref. 62. Given this improved performance, to enable a fair 
comparison of datasets and dataset sizes, we use the NequIP model 
trained on the structure-split M3GNet data in the scaling tests (the pre-
trained M3GNet model is used for zero-shot comparisons). We expect 
our scaling and zero-shot results to be applicable to a wide variety of 
modern deep-learning interatomic potentials.

The structural model used for downstream evaluation was trained 
using the Adam optimizer with a learning rate of 2 × 10−3 and a batch 
size of 16 for a total of 801 epochs. The learning rate was decreased to 
2 × 10−4 after 601 epochs, after which we trained for another 200 epochs. 
We use the same joint loss function as in the GNoME pretraining, again 
with λE = 1.0, λF = 0.05 and δE = δF = 0.01. The network hyperparameters 
are identical to the NequIP model used in GNoME pretraining. To enable 
a comparison with ref. 62, we also subtract a linear compositional fit 
based on the training energies from the reference energies before train-
ing. Training was performed on a set of four V100 GPUs.

AIMD conductivity experiments. Following ref. 69, we classify a mate-
rial as having superionic behaviour if the conductivity σ at the tempera-
ture of 1,000 K, as measured by AIMD, satisfies σ1,000K > 101.18 mScm−1. 
Refer to the original paper for applicable calculations. See Supplemen-
tary Information for further details.

Robustness experiments. For the materials selected for testing the 
robustness of our models, As24Ca24Li24, Ba8Li16Se32Si8, K24Li16P24Sn8 
and Li32S24Si4, a series of models is trained on increasing training set 
sizes sampled from the T = 400 K AIMD trajectory. We then evaluate 
these models on AIMD data sampled at both T = 400 K (to measure 
the effect of fine-tuning on data from the target distribution) and 
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T = 1,000 K (to measure the robustness of the learned potentials). We 
trained two types of model: (1) a NequIP model from scratch and (2) a 
fine-tuned model that was pretrained on the GNoME dataset, starting 
from the checkpoint before the learning rate was reduced the first 
time. The network architecture is identical to that used in pretrain-
ing. Because the AIMD data contain fewer high-force/high-energy 
configurations, we use a L2 loss in the joint loss function instead of 
a Huber loss, again with λE = 1.0 and λF = 0.05. For all training set sizes 
and all materials, we scan learning rates 1 × 10−2 and 2 × 10−3 and batch 
sizes 1 and 16. Models are trained for a maximum of 1,000 epochs. 
The learning rate is reduced by a factor of 0.8 if the test error on a 
hold-out set did not improve for 50 epochs. We choose the best of 
these hyperparameters based on the performance of the final check-
point on the 400-K test set. The 400-K test set is created using the 
final part of the AIMD trajectory. The training sets are created by 
sampling varying training set sizes from the initial part of the AIMD 
trajectory. The out-of-distribution robustness test is generated from 
the AIMD trajectory at 1,000 K. Training is performed on a single  
V100 GPU.

Molecular dynamics simulations. The materials for AIMD simulation 
are chosen on the basis of the following criteria: we select all materials 
in the GNoME database that are stable, contain one of the conducting 
species under consideration (Li, Mg, Ca, K, Na) and have a computation-
ally predicted band gap >1 eV. The last criterion is chosen to not include 
materials with notable electronic conductivity, a desirable criterion 
in the search for electrolytes. Materials are run in their pristine struc-
ture, that is, without vacancies or stuffing. The AIMD simulations were 
performed using the VASP. The temperature is initialized at T = 300 K, 
ramped up over a time span of 5 ps to the target temperature, using 
velocity rescaling. This is followed by a 45-ps simulation equilibration 
using a Nosé–Hoover thermostat in the NVT ensemble. Simulations 
are performed at a 2-fs time step.

Machine-learning-driven molecular dynamics simulations using JAX 
MD63 are run on a subset of materials for which AIMD data were available 
and for which the composition was in the test set of the pretraining data 
(that is, previously unseen compositions), containing Li, Na, K, Mg and 
Ca as potentially conducting species. This results in 623 materials for 
which GNoME-driven molecular dynamics simulations are run. Simula-
tions are performed at T =1,000 K using a Nosé–-Hoover thermostat, 
a temperature equilibration constant of 40 time steps, a 2-fs time step 
and a total simulation length of 50 ps. Molecular dynamics simulations 
are performed on a single P100 GPU.

For analysis of both the AIMD and the machine learning molecular 
dynamics simulation, the first 10 ps of the simulation are discarded for 
equilibration. From the final 40 ps, we compute the diffusivity using the 
DiffusionAnalyzer class of pymatgen with the default smoothed=max 
setting23,70,71.

Data availability
Crystal structures corresponding to stable discoveries discussed 
throughout the paper will be made available at https://github.com/
google-deepmind/materials_discovery. In particular, we provide 
results for all stable structures, as well as any material that has been 
recomputed from previous datasets to ensure consistent settings. 
Associated data from the r2SCAN functional will be provided, expect-
antly serving as a foundation for analysing discrepancies between 
functional choices. Data will also be available via the Materials Project 

at https://materialsproject.org/gnome with permanent link: https://
doi.org/10.17188/2009989.

Code availability
Software to analyse stable crystals and associated phase diagrams, 
as well as the software implementation of the static GNN and the 
interatomic potentials, will be made available at https://github.com/
google-deepmind/materials_discovery.
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