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Fig. 1. Dress-1-to-3 can reconstruct simulation-ready textured clothed humans from casually posed single view images.

Recent advances in large models have significantly advanced image-to-3D
reconstruction. However, the generated models are often fused into a single
piece, limiting their applicability in downstream tasks. This paper focuses on
3D garment generation, a key area for applications like virtual try-on with
dynamic garment animations, which require garments to be separable and
simulation-ready. We introduce Dress-1-to-3, a novel pipeline that recon-
structs physics-plausible, simulation-ready separated garments with sewing
patterns and humans from an in-the-wild image. Starting with the image, our
approach combines a pre-trained image-to-sewing pattern generation model
for creating coarse sewing patterns with a pre-trained multi-view diffusion
model to produce multi-view images. The sewing pattern is further refined
using a differentiable garment simulator based on the generated multi-view
images. Versatile experiments demonstrate that our optimization approach
substantially enhances the geometric alignment of the reconstructed 3D
garments and humans with the input image. Furthermore, by integrating
a texture generation module and a human motion generation module, we

∗ indicates equal contributions.

produce customized physics-plausible and realistic dynamic garment demon-
strations1.

1 INTRODUCTION
Creating digital assets of clothed humans is crucial for a wide range
of applications, including virtual reality (VR), the film industry, fash-
ion design, and gaming. However, the traditional pipeline for digital
human and garment creation involves multiple intricate steps, such
as concept design, material selection, garment modeling, human
pose generation, garment fitting, and animation. These processes
are often labor-intensive and time-consuming.
In recent years, significant advancements in image-to-3D asset

reconstruction have been driven by the development of powerful
image and video generation models. Among these, multiview diffu-
sion models [Chen et al. 2024c; Gao et al. 2024; Liu et al. 2023a] have

1Project page: https://dress-1-to-3.github.io/
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emerged as a promising approach, effectively leveraging multiview
images as intermediate representations to capture 3D information.
When fine-tuned on human datasets, these models generalize well
to avatar reconstructions from in-the-wild images [He et al. 2024a;
Li et al. 2024e]. However, the generated results are often fused into
a single piece, making them unsuitable for downstream tasks such
as garment animation and interaction.

In the meantime, sewing patterns, a foundational representation
in the garment design industry, have been adopted as intermedi-
ate reconstruction outputs to recover garment geometries [Li et al.
2024b; Liu et al. 2023b]. This representation is particularly advan-
tageous due to its seamless integration with downstream applica-
tions such as physics simulation and garment editing. Despite their
promise, these feed-forward approaches face significant limitations
stemming from the scarcity of high-quality 3D data. As a result,
the reconstructed garments are often constrained by the distribu-
tion of the training dataset, leading to inaccuracies in aligning with
input images. This limitation hinders their ability to produce de-
tailed and diverse reconstructions reflective of real-world garment
variations. The question then arises: can we keep the advantages
of the simulation-ready representation of sewing patterns while
leveraging the powerful priors in large multi-view diffusion models
to reconstruct garments from solely an in-the-wild image?

To address this problem, we introduce Dress-1-to-3, a novel gar-
ment reconstruction pipeline that accurately transforms an in-the-
wild image into a simulation-ready representation of separated hu-
man and garment by leveraging the strengths of both 2D multi-view
diffusion and 3D sewing pattern reconstruction. To bridge those two
parts, we propose a generalized and unified IPC differentiable frame-
work for garment optimization, which enables the optimization of
3D sewing patterns using 2D generative multi-view RGB images
and normal maps as guidance. By refining imperfect generative out-
puts to align with the geometry encoded in multiview images, our
approach allows the reconstruction of out-of-distribution garment
shapes with high fidelity. Our contributions include:

• We propose a holistic garment reconstruction pipeline that
takes a single image as input and generates garments fitted
onto a posed human, ensuring both the human pose and
garments align with the input image.

• We derive a generalized and unified IPC differentiable frame-
work that is agonistic to constitutive models. We apply this
framework for co-dimensional garment optimization.

• We conduct extensive experiments to demonstrate the effec-
tiveness and versatility of our garment optimization frame-
work, successfully reconstructing garments across diverse
categories, including those not present in the training dataset.

2 RELATED WORK

2.1 Multi-view Diffusion
Owing to their powerful predictive ability, Diffusion Probabilistic
Models [Ho et al. 2020] have been applied to image [Dhariwal and
Nichol 2021; Nichol et al. 2021; Ruiz et al. 2023; Saharia et al. 2022;
Zhang et al. 2023], video [Chen et al. 2024d; Ho et al. 2022], and 3D
shape synthesis tasks [Long et al. 2023; Tang et al. 2023; Yu et al.
2023], etc. However, applying image diffusion models to generate

multi-view images separately poses significant challenges in main-
taining consistency across different views. To address multi-view
inconsistency, multi-view attentions and camera pose controls are
adopted to fine-tune pre-trained image diffusion models, enabling
the simultaneous synthesis of multi-view images [Long et al. 2024;
Shi et al. 2023a,b; Wang and Shi 2023; Xu et al. 2023b; Yang et al.
2024], though these methods might result in compromised geomet-
ric consistency due to the lack of inherent 3D biases. To ensure both
global semantic consistency and detailed local alignment in multi-
view diffusion models, 3D-adapters [Chen et al. 2024a] propose a
plug-in module designed to infuse 3D geometry awareness. Never-
theless, the generated images by these models are sparse views. To
address this issue, CAT3D [Gao et al. 2024] introduces an efficient
parallel sampling strategy to generate a large set of camera poses,
and MVDiffusion++ [Tang et al. 2025] adopts a pose-free architec-
ture and a view dropout strategy to reduce computational costs,
generating dense, high-resolution images.
Generating consistent images from multi-view diffusions offers

guidance for further 3D shape reconstruction [Gao et al. 2024]. PSHu-
man [Li et al. 2024e] integrates a body-face cross-scale diffusionwith
an SMPL-X conditioned multi-view diffusion for clothed human
reconstruction with high-quality face details. Recent work, Magic-
Man [He et al. 2024a], utilizes a hybrid human-specific multi-view
diffusion model with 3D SMPL-X-based body priors and 2D diffu-
sion priors to consistently generate dense multi-view RGB images
and normal maps, supporting high-quality human mesh reconstruc-
tion. Different from these works, we exploited multi-view diffusions
to generate multi-view normals and RGB images as guidance to
optimize sewing patterns and stitches instead of human meshes.

2.2 Garment Reconstruction
Previous work focusing on clothed human reconstruction [Xiu et al.
2023, 2022] typically generates garments fused with digital human
models, limiting them to basic skinning-based animations and re-
quires extra segmentation and editing to separate the garments from
the human body. In contrast, our approach focuses on reconstruct-
ing separately wearable, simulation-ready garments and human
models. Other closely related works include Li et al. [2024a], which
also generates simulation-ready clothes, but at the cost of creating
clothing templates by artists and precise point clouds by scanners.
NeuralTailor [Korosteleva and Lee 2022] exploits point-level atten-
tion for pattern shape and stitching information regression, enabling
the reconstruction of garment meshes from point clouds. In contrast,
our paper focuses on reconstructing non-watertight garments and
humans separately from a single image without additional inputs.
To reconstruct separated non-watertight garments from a sin-

gle image, GarVerseLOD [Luo et al. 2024] recovers garment details
hierarchically in a coarse-to-fine framework. However, it fails to
reconstruct complex skirts or dresses with slits or with complex
human poses due to the limited representation of such features in
the training data. ClothWild [Moon et al. 2022] exploits a weakly su-
pervised pipeline with DensePose-based loss to further increase ro-
bustness on in-the-wild images. BCNet [Jiang et al. 2020] introduces
a layered garment representation and a generic skinning weight
generation network to model garments with different topologies.
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Deep Fashion3D [Zhu et al. 2020] refines adaptable templates with
rich annotations to fit garment shapes. While they are limited to
garment categories in their training datasets, these works fail to
reconstruct complex categories such as jumpsuits. Additionally, they
require nearly frontal images as input, limiting reconstruction from
different views. AnchorUDF [Zhao et al. 2021] explores a learnable
unsigned distance function to query both 3D position features and
pixel-aligned image features via anchor points, which reconstructs
the coarse garment shape but lacks the generation of high-quality
geometric details.
Instead of directly reconstructing garment meshes, some works

[He et al. 2024b; Korosteleva and Sorkine-Hornung 2023; Liu et al.
2023b] treat sewing patterns as intermediate representations to
generate garments by stitching them together. Recent work, Gar-
mentRecovery [Li et al. 2024b], introduces implicit sewing patterns
(ISP) to provide shape priors integrated with deformation priors for
further garment recovery, though it builds specialized models for
each individual garment or garment type. Both SewFormer [Liu et al.
2023b] and PanelFormer [Chen et al. 2024b] utilize Transformers
to predict sewing patterns and stitches. However, their garment
results lack physical material parameters. Therefore, they fail to
reconstruct diverse shapes for garments with different physical
materials. In addition, these feed-forward methods require large
amounts of garment data for training, failing to synthesize garments
that fall outside the distribution of the training data. Our work aims
to generate diverse, image-aligned, simulation-ready garments with
high-quality details from in-the-wild images by optimizing sewing
patterns and stitches with physical parameters via differentiable
simulations.

2.3 Differentiable Simulation
Differentiable simulation has seen widespread application in recent
research, particularly for system identification and the inference of
material parameters from both synthetic [Li et al. 2023a, 2024d] and
real-world [Huang et al. 2024; Si et al. 2024] observations. The scope
of exploration spans various domains, including fluid dynamics
and control [Li et al. 2024d, 2023b; McNamara et al. 2004; Schenck
and Fox 2018], rigid-body dynamics [Freeman et al. 2021; Strecke
and Stueckler 2021; Xu et al. 2023a], articulated systems [Geilinger
et al. 2020; Qiao et al. 2021; Xu et al. 2021], soft-body dynamics [Du
et al. 2021; Hahn et al. 2019; Hu et al. 2019b; Huang et al. 2024;
Jatavallabhula et al. 2021], cloth [Li et al. 2024a, 2022; Stuyck and
Chen 2023], inelasticity [Huang et al. 2021; Li et al. 2023a], inflatable
structures [Panetta et al. 2021], and Voronoi diagrams [Numerow
et al. 2024].
Cloth-based applications, whether for static optimization or dy-

namic simulation, frequently involve extensive frictional contact.
Consequently, many works focus on robust methods for handling
dry frictional contact in differentiable simulations. Bartle et al. [2016]
proposes a physics-driven pattern adjustment for garment editing
using fixed-point optimization, which does not account for gradients.
Liang et al. [2019] is the first to introduce a fully functional differ-
entiable cloth simulator with frictional contact and self-collision,
formulating a quadratic programming problem. Jatavallabhula et al.
[2021] employs a penalty-based frictional contact model, while Du

et al. [2021] and Li et al. [2022] leverage the adjoint method for
Projective Dynamics [Bouaziz et al. 2014] with friction. Building on
Position-Based Dynamics [Macklin et al. 2016; Müller et al. 2007],
Stuyck and Chen [2023] and Li et al. [2024a] introduce differen-
tiable formulations for compliant constraint dynamics, and Huang
et al. [2024] presents an adjoint-based framework for differentiable
Incremental Potential Contact (IPC) [Li et al. 2020, 2021].

The finite difference (FD) method [Renardy and Rogers 2006] is a
standard approach to numerical differentiation. The complex-step
finite difference technique [Luo et al. 2019; Shen et al. 2021] offers an
alternative that mitigates issues such as subtractive cancellation and
accumulated numerical errors by leveraging complex Taylor expan-
sions [Brezillon et al. 1981]. They can be used to optimize low-DoF
system [Zheng et al. 2025]. Automatic differentiation (AD) [Margos-
sian 2019; Naumann 2011] and code transformation libraries like
NVIDIA Warp [Macklin 2022], DiffTaichi [Hu et al. 2019a,b], and
others [Herholz et al. 2024] automatically compute gradients based
on forward simulation, allowing for greater reuse of existing code.
However, they can introduce code constraints, incur a high memory
footprint, and may cause gradient explosion if applied naively. Our
framework combines NVIDIA Warp’s AD with an adjoint method
to achieve both development efficiency and high performance.

3 DIFFERENTIABLE GARMENT SIMULATION

3.1 Forward Simulation
We use Codimensional Incremental Potential Contact (CIPC) [Li
et al. 2021] as our underlying garment simulation method, which
is the state-of-the-art in cloth simulation regarding accuracy and
robustness. It ensures non-penetration through distance-based log
barrier energy and continuous collision detection (CCD). Below, we
summarize the simulation pipeline, with further details available in
Li et al. [2021].

The simulated codimensional surface is discretized into triangles
defined by vertices 𝑽 and faces 𝑭 . Let 𝑿 denote the vertex positions
in the undeformed state, and let 𝒙𝑛 and 𝒗𝑛 represent the vertex
positions and velocities, respectively, at time step 𝑡𝑛 . CIPC employs
an optimization-based time integrator to achieve the state transition
from time step 𝑡𝑛 to 𝑡𝑛+1 = 𝑡𝑛 +ℎ, minimizing the following energy:

𝒙𝑛+1 = arg min
𝒙

𝐸 (𝒙) = 1
2
∥𝒙 − 𝒙̃ ∥2𝑴 + Ψ(𝒙 ;𝑿 ) + 𝐵(𝒙). (1)

Here, 𝒙̃ = 𝒙𝑛 + 𝒗𝑛ℎ + 𝒈ℎ2 represents the predictive position under
backward Euler integration. ∥ · ∥𝑴 denotes the 𝐿2-norm weighted
by the vertex mass 𝑴𝑖𝑖 . Ψ(𝒙;𝑿 ) is the elastic energy, encompass-
ing both stretching and bending energies, depending on the user’s
choice. 𝐵(𝒙) is the log barrier energy introduced by IPC, defined
over all contacting vertex-triangle and edge-edge pairs. The barrier
energy for each pair of primitives increases from zero to infinity
as the gap decreases from a threshold 𝑑 to 0, providing sufficient
repulsion to prevent penetrations.
Newton’s method with line search is employed to solve the op-

timization problem, requiring the analytical computation of the
gradient and Hessian matrix of the energy at each iteration. The
step size upper bound in each line search is clamped by CCD to
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ensure that all intermediate states remain intersection-free, pro-
vided that 𝒙𝑛 is initially intersection-free. Finally, the new velocity
is updated as 𝒗𝑛+1 = (𝒙𝑛+1 − 𝒙𝑛)/ℎ.

3.2 Differentiable CIPC
Huang et al. [2024] provided an analytical derivation of differen-
tiable IPC using the adjoint method. However, their derivation is
closely tied to specific choices of constitutive models. To extend
their framework to support cloth simulation, tedious derivations of
analytical derivatives are required. In this work, we present a simple
and unified framework that leverages both automatic differentiation
and the adjoint method.

The governing equation of CIPC simulation can be expressed as
an implicit nonlinear system of equations derived from the first-
order optimality condition of the minimizer for Equation 1:

𝑮 (𝒙∗; 𝒙𝑛, 𝒗𝑛, 𝝇𝑛) = ∇𝐸 (𝒙∗; 𝒙𝑛, 𝒗𝑛, 𝝇𝑛) = 0, (2)

𝒙𝑛+1 = 𝒙∗, 𝒗𝑛+1 =
1
ℎ
(𝒙∗ − 𝒙𝑛), (3)

Here, 𝒙∗ is the minimizer of the system energy 𝐸, 𝒙𝑛, 𝒗𝑛 represents
the last system state, and 𝝇𝑛 denotes the set of all continuous param-
eters of the implicit equation, including shape parameters 𝑿 , mass
matrix𝑴 , elastic moduli, and others. We assume 𝝇𝑛 are independent,
although they may share the same values. This abstraction allows
the simulator to function as a differentiable layer with 𝒙𝑛, 𝒗𝑛, 𝝇𝑛

as input and 𝒙𝑛+1, 𝒗𝑛+1 as output. The computational graph can be
handled by any auto-differentiable framework such as PyTorch. The
backward operator computes dL

d𝒙𝑛 ,
dL
d𝒗𝑛 , and

dL
d𝝇𝑛 given dL

d𝒙𝑛+1 and
dL

d𝒗𝑛+1 for a given training loss function L.
Taking the full derivatives of Equation 2 with respect to 𝒙𝑛, 𝒗𝑛, 𝝇𝑛

on both sides, we obtain:

𝜕𝑮

𝜕𝒙∗

[
d𝒙∗

d𝒙𝑛
,
d𝒙∗

d𝒗𝑛
,
d𝒙∗

d𝝇𝑛

]
+
[
𝜕𝑮

𝜕𝒙𝑛
,
𝜕𝐺

𝜕𝒗𝑛
,
𝜕𝐺

𝜕𝝇𝑛

]
= 0, (4)

which leads to[
d𝒙∗

d𝒙𝑛
,
d𝒙∗

d𝒗𝑛
,
d𝒙∗

d𝝇𝑛

]
= −

[
𝜕𝑮

𝜕𝒙∗

]−1 [
𝜕𝑮

𝜕𝒙𝑛
,
𝜕𝐺

𝜕𝒗𝑛
,
𝜕𝐺

𝜕𝝇𝑛

]
. (5)

By the chain rule, we have:[
dL
d𝒙𝑛

,
dL
d𝒗𝑛

,
dL
d𝝇𝑛

]
=

dL
d𝒙𝑛+1

[
d𝒙𝑛+1

d𝒙𝑛
,
d𝒙𝑛+1

d𝒗𝑛
,
d𝒙𝑛+1

d𝝇𝑛

]
+ dL
d𝒗𝑛+1

[
d𝒗𝑛+1

d𝒙𝑛
,
d𝒗𝑛+1

d𝒗𝑛
,
d𝒗𝑛+1

d𝝇𝑛

]
.

(6)

Here, we assume dL
d𝒙𝑛 ,

dL
d𝒗𝑛 , and

dL
d𝝇𝑛 are all row vectors to ensure

dimension consistency. From Equation 3, we have:

d𝒙𝑛+1 = d𝒙∗, d𝒗𝑛+1 =
1
ℎ
(d𝒙∗ − d𝒙𝑛) . (7)

Plugging Equation 7 into Equation 6, we obtain:[
dL
d𝒙𝑛

,
dL
d𝒗𝑛

,
dL
d𝝇𝑛

]
=

dL
d𝒙𝑛+1

[
d𝒙∗

d𝒙𝑛
,
d𝒙∗

d𝒗𝑛
,
d𝒙∗

d𝝇𝑛

]
+ 1
ℎ

dL
d𝒗𝑛+1

[
d𝒙∗

d𝒙𝑛
− 𝑰 , d𝒙

∗

d𝒗𝑛
,
d𝒙∗

d𝝇𝑛

]
.

(8)

With some rearrangements, we arrive at:

dL
d𝒙𝑛

=

[
dL

d𝒙𝑛+1
+ 1
ℎ

dL
d𝒗𝑛+1

]
d𝒙∗

d𝒙𝑛
− 1
ℎ

dL
d𝒗𝑛+1[

dL
d𝒗𝑛

,
dL
d𝝇𝑛

]
=

[
dL

d𝒙𝑛+1
+ 1
ℎ

dL
d𝒗𝑛+1

] [
d𝒙∗

d𝒗𝑛
,
d𝒙∗

d𝝇𝑛

]
.

(9)

Denote A =

[
dL

d𝒙𝑛+1 +
1
ℎ

dL
d𝒗𝑛+1

] [
𝜕𝑮
𝜕𝒙∗

]−1. By Equation 5, we have:

dL
d𝒙𝑛

= −A 𝜕𝑮

𝜕𝒙𝑛
− 1
ℎ

dL
d𝒗𝑛+1

, (10)[
dL
d𝒗𝑛

,
dL
d𝝇𝑛

]
= −A

[
𝜕𝑮

𝜕𝒗𝑛
,
𝜕𝑮

𝜕𝝇𝑛

]
. (11)

Observe that A is obtained by solving a linear system, where the
coefficient matrix 𝜕𝑮

𝜕𝒙∗ is the Hessian matrix of the system energy
𝐸. The termA

[
𝜕𝑮
𝜕𝒙𝑛 ,

𝜕𝑮
𝜕𝒗𝑛 ,

𝜕𝑮
𝜕𝝇𝑛

]
back-propagates the differentials in

A to 𝒙𝑛 , 𝒗𝑛 , and 𝝇𝑛 through 𝑮 , respectively. This process can be
implemented by treating 𝑮 as a differentiable layer that supports
auto-differentiation. Using AutoDiff, we eliminate the need to man-
ually derive the analytical expressions for 𝜕𝑮

𝜕𝒗𝑛 and 𝜕𝑮
𝜕𝝇𝑛 . All other

components required for forward simulations have already been
derived.

4 METHOD OVERVIEW
We start our pipeline by estimating an initial garment sewing pattern
from a single-view image. Next, we generate consistent multi-view
RGB images and their corresponding normal maps, based on which
we predict the human body pose. The 3D garment is initialized by
stitching and draping the 2D patterns onto the predicted human
model. The garment’s interaction with the human body is simulated
using a differentiable CIPC simulator, allowing us to optimize the
physical parameters and the shapes of the sewing patterns guided by
the previously generated multi-view RGB images, normal maps, and
segmentation results. The optimized state produces a simulation-
ready scene with a human model wearing well-fitted 3D outfits
that align with the input. Garment textures are automatically gen-
erated using a visual-language model and image diffusion. Finally,
by applying our CIPC simulator, we can simulate dynamic scenes
where the predicted human body wears the optimized garments
while performing various motion sequences. An illustration of the
pipeline is shown in Figure 2. We elaborate on each component of
the pipeline in the following sections.

5 PRE-OPTIMIZATION STEPS

5.1 Simulatable Sewing Pattern Generation
From a single-view image, our pipeline starts by generating an ini-
tial sewing pattern decomposition along with stitch information
using SewFormer [Liu et al. 2023b]. Following SewFormer’s conven-
tion, the sewing pattern is represented as a set of quadratic Bézier
curves on a 2D plane, forming a collection of disconnected patches.
The curves for each patch are connected to form a loop. Let E de-
note the set of all curves, with its control parameters comprising
the set of curve vertices P = {𝑷𝑖 } and the set of control points
K = {𝑲𝑒 } for each edge curve 𝑒 ∈ E. To enable garment simulation,
the patches are discretized into triangle meshes. First, we apply
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Fig. 2. Dress-1-to-3 Pipeline. Starting with a single-view input image of a clothed human, we first derive an initial estimation of the sewing pattern.
Additionally, we employ multi-view diffusion to generate orbital camera views, which serve as ground-truth 3D information for both human pose and garment
shape. Next, we utilize differentiable simulation to sew and drape the pattern onto the posed human model, optimizing its shape and physical parameters
in conjunction with geometric regularizers. Finally, the optimized garment shape provides a physically plausible rest shape in its static state and is readily
animatable using a physical simulator.

arc-length parameterization to achieve uniform sampling along the
patch boundaries. For stitched patch edges, we ensure they share the
same number of sampled points. This consistency allows us to apply
vertex-to-vertex stitch constraints in garment simulations, simplify-
ing the sewing process. Using the sampled boundary points, we then
perform Delaunay triangulation [Shewchuk 2008] independently
for the interior of each patch.

Curve Vertex Symmetry Constraint

5.1.1 Patch Symmetrization. The
sewing patterns generated by Sew-
Former often display certain sym-
metries, which we aim to pre-
serve during garment optimiza-
tion. SewFormer generates a fixed
number of patches with a prede-
fined order for patch names, though some patches may remain
inactive. Symmetry information, including self-symmetry and inter-
symmetry, is embedded in these patch names. Symmetric edge pairs
can be automatically identified by overlapping a patch with its mir-
rored symmetric counterpart or, in the case of self-symmetry, with
the mirrored version of itself. Given the set of symmetric edge pairs
E𝑆 = {(𝑖, 𝑗) ∼ (𝑘, 𝑙)}, we define the validated curve vertices {𝑷𝑖 } of
the patches prior to triangulation by solving the following quadratic
optimization problem:

min
{𝑷𝑖 }

∑︁
(𝑖, 𝑗 )∼(𝑘,𝑙 )

∥(𝑷𝑖 − 𝑷 𝑗 ) + 𝑹𝑆 (𝑷𝑘 − 𝑷𝑙 )∥22 + 𝜖
∑︁
𝑖

∥𝑷𝑖 − 𝑷𝑖 ∥22 . (12)

Here, 𝑹𝑆 =

[
−1 0
0 1

]
represents the flip matrix, assuming the sym-

metry axis is vertical. This optimization involves solving a fixed-
coefficient, positive definite linear system, which ensures differentia-
bility. The validated edge control points {𝑲̂𝑒 } are computed analyt-
ically by symmetrizing their relative coordinates. The symmetriza-
tion constraints are illustrated in the inset figure. Throughout this
paper, we omit the hat notation for validated vertices and control
points, as all computations are based on the symmetrized patches.
However, it is important to note that the underlying garment op-
timization variables remain the original, non-symmetry-enforced
geometry parameters.

5.1.2 Sewing Pattern Discretization. To enable direct optimization
of Bézier curves, we make the sampling from boundary curve pa-
rameters to mesh vertices differentiable. Both boundary sampling
and interior sampling are conceptualized as fixed-coordinate sam-
pling based on their control points. Each boundary edge curve
𝑒 ∈ E is defined by the starting vertex 𝑷𝑒0 , the control point 𝑲

𝑒 ,
and the endpoint 𝑷𝑒1 (which is also the starting point of the next
edge). The curve can be differentiably parameterized as 𝑷𝑒 (𝑡) =
(1−𝑡)2𝑷𝑒0 +2(1−𝑡)𝑡𝑲𝑒 +𝑡2𝑷𝑒1 . Uniform sampling along the curve in
terms of arc length is represented as a set of parameters {𝑡𝑒1 , . . . , 𝑡

𝑒
𝑛𝑒
},

with 𝑽𝑒
𝑖
= 𝑷𝑒 (𝑡𝑒

𝑖
) being the sampled points. The number of sampled

points 𝑛𝑒 may vary for different edges. After independent triangu-
lation for each patch, we compute the harmonic coordinate matrix
𝑯 ∈ R𝑛𝐼 ×𝑛𝐵 [Joshi et al. 2007] for all the interior points, where
𝑛𝐼 is the number of interior vertices and 𝑛𝐵 is the total number of
boundary vertices. With a slight abuse of notation, we reparameter-
ize the 𝑗-th interior vertex as 𝑽 𝐼

𝑗
=
∑
𝑖 𝑯 𝑗𝑖𝑽𝐵

𝑖
, with 𝑯 𝑗𝑖 denoting its

harmonic weight relative to the 𝑖-th boundary point 𝑽𝐵
𝑖
. Here 𝑯 𝑗𝑖 is
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zero if 𝑽 𝐼
𝑗
and 𝑽𝐵

𝑖
do not belong to the same patch. During backprop-

agation, we fix the boundary sampling coordinates
⋃

𝑒∈E,𝑖≤𝑛𝑒 {𝑡
𝑒
𝑖
}

and the interior harmonic coordinate matrix 𝑯 , so that the triangu-
lation is analytically determined by the original parameters of the
Bézier curves. These coordinates are updated only after remeshing
is performed, which will be discussed in the garment optimization
section.

5.2 Multi-view Image Generation
Given a single-view image of a full-body clothed human, we gener-
ate a set of multi-view RGB images and normal maps under orbital
camera views using a pre-trained multi-view diffusion model, Mag-
icMan [He et al. 2024a]. These multi-view images of the clothed
human are treated as ground truth data for human pose and garment
shape in the subsequent reconstruction steps.

5.3 Human Body Reconstruction
The generated garment is statically draped on a fixed human mesh.
To reduce the gap between the reconstructed garment and the image,
an accurate human body is required to correctly support the garment.
We use SMPL-X [Pavlakos et al. 2019] as our parameterized human
model. First, we apply OSX [Lin et al. 2023] to the input single-view
image to obtain an initial pose estimation 𝜽 and shape estimation
𝜷 . This initial estimation typically does not perfectly align with
other views, and the scaling and rotation are inconsistent across the
multi-view images. Subsequently, we fine-tune the pose based on
multi-view images using a coarse-to-fine strategy.
In the coarse stage, we estimate joint landmarks on the images

using DWPose [Yang et al. 2023]. Here, we optimize only the global
scaling 𝑆 and rotation 𝑹 of the SMPL-Xmodel based on the following
landmark loss:

LP
Land =

1
|Ω |

∑︁
𝑖

∥𝒘𝑖 ·
(
Proj(𝑱 (𝑆, 𝑹, 𝜽 , 𝜷); Ω𝑖 ) − 𝑱𝑖

)
∥22, (13)

where Ω = {Ω𝑖 } represents the set of camera parameters, 𝑱 is the
3D joint location map provided by the SMPL-X model, Proj is the
projection operator from world space to screen space, 𝑱𝑖 is the 2D
joint location estimated by DWPose, and 𝒘𝑖 is the per-landmark
confidence score of the estimation. We use ∥ · ∥22 to denote the
mean square error (MSE). This optimization essentially estimates the
model-to-world matrix of the SMPL-X model. To further refine pose
and shape parameters, in the fine stage, we additionally incorporate
the following RGB loss and mask loss:

LP
RGB =

1
|Ω |

∑︁
𝑖

∥(𝑴𝑜
𝑖 )

𝑐 · (𝑰 (𝑆, 𝑹, 𝜽 , 𝜷, 𝑪𝐻 ; Ω𝑖 ) − 𝑰𝑖 )∥1, (14)

LP
Mask =

1
|Ω |

∑︁
𝑖

∥(𝑴𝑜
𝑖 )

𝑐 · (𝑴 (𝑆, 𝑹, 𝜽 , 𝜷 ; Ω𝑖 ) − 𝑴̄𝑖 )∥1 . (15)

Here, 𝑪𝐻 represents the optimizable human body vertex color, while
𝑰 (·) and𝑴 (·) denote the posed human body RGB rendering process
and contour rendering process under camera view Ω𝑖 , implemented
using Nvdiffrast [Laine et al. 2020]. 𝑰𝑖 and 𝑴̄𝑖 are the generated
multi-view RGB images and masks, respectively. 𝑴𝑜

𝑖
represents the

occluded region of the human body, which includes the garment
region𝑴𝛽

𝑖
and other non-garment occlusions𝑴𝛼

𝑖
(such as footwear,

accessories, and hair). These regions are generated using SegFormer
[Xie et al. 2021]. The notation (·)𝑐 denotes the complement of the
specified region. We use ∥ · ∥1 to denote the mean absolute error
(MAE). By excluding the loss computation in the occluded region, we
can accommodate loosely fitted garments. In summary, we optimize
using the following loss in the fine stage:

LP (𝑆, 𝑹, 𝜽 , 𝜷,𝑪𝐻 ) = LPRGB + L
P
Mask + 𝜆1LPLand + 𝜆2 ∥𝜽 − 𝜽0 ∥1 + 𝜆3 ∥𝜷 − 𝜷0 ∥1 .

(16)
Here, we also regularize the pose and shape parameters where 𝜽0
and 𝜷0 are their initial estimates provided by OSX.

5.4 Garment Initialization
The generated sewing patterns are positioned near the human body
and sewn together to be dressed. SewFormer provides an initial
placement around the T-posed SMPL-X model. To ensure proper
layering, we adopt a bottom-to-top strategy for fitting the entire
set of garments onto the human body, allowing the top garments
to overlay the bottom ones. Connected components are identified
by treating stitched vertices as connected. These components are
sorted vertically and sequentially fitted from bottom to top through
simulations using CIPC. After completing the T-pose fitting, the
human body is interpolated from the T-pose to the reconstructed
pose, and the entire cloth-human interaction is simulated by treating
the human in motion as a moving boundary condition. To secure
the bottom garments and prevent them from slipping during pose
interpolation, we shrink the rest shape of the triangles near the
waist to generate sufficient friction.

6 GARMENT OPTIMIZATION

6.1 Optimization Overview
In garment optimization phase, we iteratively fine tune parameters
of sewing pattern so that the statically draped garments on a posed
human body match generated multi-view images in all views. We
optimize the curve vertex set P and the control point set K of
Bézier curves using differentiable CIPC simulation based on the
generated multi-view images. To further leverage RGB information
for assisting the optimization, we also optimize the vertex colors 𝑪𝐺
of the discretized garment mesh for RGB renderings. Additionally,
we optimize the global stretching stiffness 𝜅𝑠 and the global bending
stiffness 𝜅𝑏 to automatically discover a set of physical parameters
that align with the 2D observations.
For each optimization iteration, we use CIPC simulation to stat-

ically drape the garment onto the fixed-posed human body mesh.
Leveraging the robustness of CIPC, we simulate one step of 1 second
to directly reach near-static equilibrium. Since the static equilibrium
does not locally depend on the initial state, meaning that the Jaco-
bian matrix of the simulated state with respect to the initial state is
zero, we update the initial state of iteration 𝑛, 𝒙𝑛0 , to the previously
simulated state:

𝒙𝑛0 = Sim(𝒙𝑛−1
0 ; 𝝇 (𝜅𝑠 , 𝜅𝑏 ,P,K)). (17)

Here, Sim represents the simulation process described in section 3.
The initial state, 𝒙0

0 , is obtained from the initial garment fitting de-
scribed in subsection 5.4. 𝝇 (P,K) denotes the simulation rest shape
data, including nodal mass, per-stencil elastic stiffness, undistorted
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material space, and similar properties. To make the simulation as
path-independent as possible, we avoid adding friction during the
process. To prevent the bottom garments from slipping down, the
boundary loop of the bottom component near the waist area is fixed.
In summary, we solve the following optimization problem:

minL(P,K, 𝜅𝑠 , 𝜅𝑏 ; 𝒙, 𝒙0), (18)

where 𝒙 represents the simulated state starting from initial state 𝒙0,
which is iteratively updated to the previously simulated state. We
elaborate on the training losses in L that we use in the following
sections. We observe that edge curvatures K are more sensitive
than vertex positions P. Therefore, we employ a two-stage training
approach, where in the first stage, the update of K is frozen.

6.2 Rendering Losses
6.2.1 Garment Mask Loss. The dominant rendering loss we employ
is the garment mask loss. Given the multi-view ground-truth images,
we use SegFormer [Xie et al. 2021] to segment top, bottom, and dress
garment masks, assigning each component with a distinct color. The
mask loss is defined as follows:

LMask =
1
|Ω |

∑︁
𝑖

∥(𝑴𝛼
𝑖 )

𝑐 · (𝑴 (𝒙 ; 𝑪𝐶 ,Ω𝑖 ) − 𝑴̄𝑖 )∥1 . (19)

Here, 𝒙 represents the simulated state of garments draped over the
human body. 𝑪𝐶 denotes the component color, which is discussed
in the following section. The rendered colored mask 𝑴 (𝒙 ; 𝑪𝐶 ,Ω𝑖 )
is obtained by assigning 𝑪𝐶 to the corresponding garment vertices
and setting the human body to black, ensuring that only the non-
occluded parts of the garments are rendered. 𝑴̄𝑖 is the set of colored
garment masks generated from multi-view RGB images. We also
exclude the loss computation in the occluded regions 𝑴𝛼

𝑖
caused

by hair and accessories to avoid incorrect mask guidance.

Initialization of Component Colors. The component color 𝑪𝐶 is
automatically assigned prior to garment optimization. SewFormer
typically predicts garments with one or two connected components.
We vertically sort the sewn garment components and the 2D mask
regions from the first camera view. The component colors are then
assigned accordingly. If only one component is predicted but multi-
ple garment masks are present, we adjust the multi-view garment
masks to use a single color.

6.2.2 RGB and Normal Rendering Loss. We also utilize RGB and
normal rendering losses to improve garment optimization. These
losses are introduced to stabilize the training process, as the gradient
of the mask rendering loss within the interior regions of the garment
is zero. They are formulated similarly to the mask rendering loss:

LRGB =
1
|Ω |

∑︁
𝑖

∥𝑴𝛽

𝑖
· (𝑰 (𝒙 ; 𝑪𝐺 ,Ω𝑖 ) − 𝑰𝑖 )∥1, (20)

LNormal =
1
|Ω |

∑︁
𝑖

∥𝑴𝛽

𝑖
· (𝑵 (𝒙 ; Ω𝑖 ) − 𝑵̄𝑖 )∥1 . (21)

Here, 𝑰 (𝒙; 𝑪𝐺 ,Ω𝑖 ) represents the garment RGB rendering of the
vertex color 𝑪𝐺 under the camera view Ω𝑖 , and 𝑵 (𝒙; Ω𝑖 ) denotes
the corresponding normal map rendering. The sets {𝑰𝑖 } and {𝑵̄𝑖 }

are the multi-view RGB and normal images generated by the multi-
view diffusion process. The loss computation is restricted to the
garment regions 𝑴𝛽

𝑖
.

6.3 Geometric Regularizers
The sewing pattern optimization under rendering losses alone is
ill-posed because, for the same sewn 3D garment mesh, there are
infinitely many ways to decompose the mesh into flattened patches.
Therefore, we incorporate several geometric losses to regularize the
sewing pattern optimization.

6.3.1 Area Ratio Loss. We use the following area ratio loss to pre-
serve the relative area of each patch with respect to the connected
component it belongs to:

LAR =
1
𝑁𝑃

∑︁
𝑝

(
𝐴𝑝 (𝑿 )
𝐴𝑝 (𝑿0)

− 1
)2

, (22)

where 𝑁𝑃 is the number of garment patches,𝐴𝑝 is the operator that
computes the ratio between the area of the 𝑝-th patch and the area
of the component. 𝑿 represents the current 2D discretization of the
garment patches, and 𝑿0 denotes the initial sampling.

Boundary Corner
Regularizer

6.3.2 Corner Regularizers.

Boundary Corner Regularizer.
For the boundary loops of gar-
ment components, we identify all
corner vertices of the original
Bézier curves. At these corners,
where two patches are typically
sewn together, we apply the fol-
lowing boundary corner regular-
izer to penalize deviations of corner angles from right angles, as
illustrated in the inset figure:

LBC =
1

𝑁𝐵𝐶

∑︁
𝑐

(1 − 𝒅𝑐1 × 𝒅
𝑐
2). (23)

Here, 𝑁𝐵𝐶 represents the total number of boundary corners, 𝒅𝑐1 and
𝒅𝑐2 denote two consecutive unit tangent vectors at corner 𝑐 .

Small-Angle Corner Regularizers. Small angles at patch corners
can introduce instabilities into optimization and simulation; thus,
we use the following regularizer to penalize such angles:

LSAC = − 1
𝑁𝐶

∑︁
𝑐

𝑠𝑐 (𝑿 ) �(𝑽𝑐1 − 𝑽𝑐0 ) × �(𝑽𝑐2 − 𝑽𝑐0 ). (24)

Here, 𝑁𝐶 is the number of patch
corners, (𝑽𝑐1 , 𝑽

𝑐
0 , 𝑽

𝑐
2 ) is the tu-

ple of three consecutive discrete
boundary sampling points at the
corner 𝑐 , (̂·) is the vector nor-
malization operator. 𝑠𝑐 (𝑿 ) is a
non-differentiable sign function:
𝑠𝑐 (𝑿 ) = 0 if the discretized corner
angle is larger than some thresh-
old, otherwise, 𝑠𝑐 (𝑿 ) equals the
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sign of the cross product on the initial sewing pattern. This regu-
larization applies to the two cases illustrated in the inset figure. It
tries to maintain the same sign of the angle and avoid the angle
becoming too small. However, Bézier curves may still intersect at
corners even though the discretized corner triangles are normal. We
use the following discretization consistency regularizer to align the
curve’s end tangents and discrete edge directions:

LDC =
1
𝑁𝐶

∑︁
𝑐

(2 − 𝝉𝑐1 · �(𝑽𝑐1 − 𝑽𝑐0 ) − 𝝉𝑐2 · �(𝑽𝑐2 − 𝑽𝑐0 )), (25)

where 𝝉𝑐1 ,𝝉
𝑐
2 are two consecutive end tangents of Bézier curves at

corner 𝑐 .

6.3.3 Comfort Loss. In addition to the appearance of the fitting
matching the observation, we also aim to ensure that the fitting is
comfortable. We use the stretching elasticity energy to evaluate the
tightness of the fitting. To prevent overly tight fitting, we introduce
the following comfort regularizer:

LComfort =

∫
∥𝑭 (𝒙,𝑿 ) − 𝑹 (𝑭 )∥2𝑑𝑿 , (26)

where 𝑹 (𝑭 ) represents the closest rotation matrix to 𝑭 . This is the
same as the as-rigid-as-possible (ARAP) stretching energy used
in the forward simulation, except that here we assume the global
stiffness is 1.

6.3.4 Laplacian Loss. To ensure the smoothness of the fitting, we
include a Laplacian regularizer:

LLap = ∥Δ𝒙 ∥2, (27)

where Δ represents the node-area-weighted Laplacian operator on
triangle meshes, and 𝒙 denotes the simulated garment vertex posi-
tions.

6.3.5 Seam Losses. The stitched curved edge pairs should have
the same shape to prevent undesired wrinkles near the seams. To
achieve this, we use a seam length regularization similar to [Li et al.
2024a] to regularize the paired stitched edges:

LSL =
1
𝑁𝑆

∑︁
𝑒𝑖∼𝑒 𝑗

����∫ ∥ ¤𝑷𝑒𝑖 (𝑡)∥𝑑𝑡 − ∫ ∥ ¤𝑷𝑒 𝑗 (𝑡)∥𝑑𝑡 ���� , (28)

where 𝑁𝑆 is the number of stitched seams, 𝑒𝑖 and 𝑒 𝑗 iterate over all
stitched edge pairs, and ¤𝑷𝑒 (𝑡) represents the tangent vector. The
integral is computed using finite difference and the Riemann sum.
Additionally, we regularize the seam curvatures on these pairs to
preserve their initial curvatures:

LSC =
1

2𝑁𝑆

∑︁
𝑒𝑖∼𝑒 𝑗

∥K̄𝑒𝑖 − K̄𝑒𝑖 ,0∥ + ∥K̄𝑒 𝑗 − K̄𝑒 𝑗 ,0∥, (29)

where K̄𝑒 represents the relative coordinate of the control point
within the frame of the curved edge segment 𝑒 , and K̄𝑒,0 denotes
its initial value.

6.4 Post-Iteration Processing
Occasionally, when two Bézier curves come close to each other—such
as when forming a thin strip—the curves may penetrate one another
after a parameter update in some iteration. This can lead to flipped
triangles, causing the simulation to fail in the next iteration. To

Before Remesh Aer Remesh

Pullback

Re-init. Relax

Fig. 3. Sewing Pattern Remeshing. We perform automatic remeshing
during optimization when ill-conditioned triangles are detected. To avoid
penetration, we pull back the new discretization to the initial unoptimized
stage and rerun the garment initialization to fit it onto the human.

address this, we enforce a safeguard that modifies the geometry
in-place to prevent such occurrences. Specifically, we optimize the
negative triangle areas using a least-squares penalty after each iter-
ation 𝑛:

LFlip (P,K) = 1
|𝐹 |

∑︁
𝑓

(𝜖 −min{𝐴𝑓 (𝑿 ), 𝜖}) + 𝜆Flip∥𝑿 − 𝑿𝑛+1∥1,

(30)
where |𝐹 | is the number of faces 𝐴𝑓 is the signed area of triangle
𝑓 and 𝑿𝑛+1 is the discretized garment vertices after the parameter
update at iteration 𝑛. We optimize the above loss only if no triangles
are close to flipping.

6.5 Remeshing
During optimization, we use cage deformations defined by a fixed
set of harmonic coordinates to deform a fixed number of interior
vertices. The triangulation quality can degrade significantly in re-
gions with large deformations, creating challenges for simulations.
To address this, we introduce automatic remeshing during the opti-
mization iterations when the mesh quality drops below a predefined
threshold. While rerunning the discretization on updated sewing
patterns is straightforward, directly remeshing the fitted garment
state on the human body can lead to penetrations. This occurs be-
cause the underlying smoothly interpolated surface may intersect
after re-triangulation, as the collision handling relies on the previous
discretization. To resolve this, we propose a refitting procedure that
sews and refits the garment patches onto the human body without
causing penetrations.

Assume 𝝌0 is the initial garment sewing pattern in the continuous
domain with triangulation T 0. The sewing pattern optimization at
step 𝑛 can be characterized by a map Φ𝑛 from 𝝌0 to 𝝌𝑛 , where Φ𝑛 is
a piecewise linear map defined on the continuous domain. Observe
that the initial fitting is sewn from the discretization of 𝝌0, where
SewFormer provides reasonable transformations to position the
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panels around the human body. After generating a new triangulation
T𝑛 of 𝝌𝑛 , we pull T𝑛 back to 𝝌0 as the new triangulation of 𝝌0:
T̃ 0 ← [Φ𝑛]−1 (T𝑛). We then apply the initial transformations to
the updated discretization T̃ 0 to position the patches around the
T-pose human body and execute the fitting procedure described
in subsection 5.4. During this fitting process, we set the rest shape
as T̃ 0. A relaxation process follows, using T𝑛 as the rest shape.
The newly fitted results are non-penetrating, and we set them as
the initial state 𝒙𝑛0 for the differentiable simulation process. Finally,
T 0 is replaced with T̃ 0. This remeshing process is illustrated in
Figure 3.

7 POST-OPTIMIZATION STEPS

7.1 Texture Generation
To complete our pipeline and deliver a fully textured garment di-
rectly from a single image input, tailored to the needs of the garment
fabrication industry, we incorporate an additional texture genera-
tion module. Unlike formulating texture creation as a reconstruction
task—an approach constrained by the ill-posed nature of the prob-
lem due to sparse inputs, severe distortion, and occlusions caused
by the human body and overlapping garment layers—our module
adopts generative methods to produce garment textures. This mod-
ule employs two strategies for texture generation:

Tileable Texture Generation via FabricDiffusion. In this strategy,
we assume that in real-world garment creation, clothing panels
are typically cut from a single piece of fabric and sewn together,
resulting in similar and tileable textures. Based on this assumption,
given the front-view ground truth input image and its correspond-
ing colored segmentation mask, we identify the largest uniform
color square area within the segmentation mask for each garment
component (e.g., top or bottom) as the captured texture region. This
region may exhibit distortions and varying illumination caused by
occlusions and poses in the input image. To address these issues, we
process the captured texture region using FabricDiffusion [Zhang
et al. 2024], which generates distortion-free and tileable texture
maps. To determine the appropriate tiling scale for aligning the
textures with the garment’s UV space (optimized in our pipeline),
we assume consistent camera view parameters for the front view.
This scale can be calculated by multiplying the derivative of the
cropped region’s size by a constant factor.

In-the-Wild Texture Generation via GPT-4o and FLUX. For general-
ized textures that do not fall into the above case, we utilize Vision-
Language Models (VLMs) in collaboration with a Diffusion model.
Specifically, we process the input image using the GPT-4o [Achiam
et al. 2023] VLM to extract descriptive keywords for the textures
of various components, such as "denim, dark blue, smooth
fabric" and "argyle, grey and white, knitted fabric"
through prompt-based querying. These extracted keywords are
then fed into FLUX [Labs 2023], which generates the corresponding
textures.

7.2 Showcase under Human Motions
The reconstructed simulation-ready garment and human model can
be used to generate realistic dynamic human motion in clothing

using the robust CIPC physics-based simulator. However, IPC-based
simulators require the initial configuration of the human model to
be penetration-free. As IPC-based simulators produce intersection-
free results, self-penetrations of the human model during the given
motion can cause solution failures when the human model interacts
with garments. To address this issue, we replace the human model
during motion with the nearest intersection-free human model by
solving Injective Deformation Processing (IDP) [Fang et al. 2021]
problems. In solving these IDP problems, we follow the method
in Li et al. [2024c] where the authors use PBD simulations to re-
solve collisions between garments and human models. Instead, we
apply extended Position-Based Dynamics (XPBD) [Macklin et al.
2016] simulations to resolve self-penetrations in the human model
by repelling colliding vertices and faces, while preserving natural
deformations.

8 IMPLEMENTATION
Differentiable Simulation Layer. We implement CIPC simulation

using NVIDIA Warp [Macklin 2022] to utilize the Auto-Diff feature.
The simulator is wraped in a customized autograd.Function to be
integrated to the global computational graph.

Balancing between Losses. The training loss is weighted sum of all
rendering losses and geometric regularizers. We use the 𝐿Mask as the
dominant loss and set the relative weights for 𝐿RGB and 𝐿Normal to
𝜆RGB = 0.1 and 𝜆Normal = 0.1. For geometric regularizers, we do not
have a rule of thumb to balance them. For all experiments, we use
𝜆Lap = 0.001, 𝜆Comfort = 0.1, 𝜆AR = 0.01, 𝜆SAC = 0.01, 𝜆DC = 0.001,
𝜆BC = 0.001, 𝜆SL = 0.1, 𝜆SL = 0.1.

Training Time. The pre-optimization steps requires about 10 min-
utes. The garment optimization process can be finished within 2
hours on a single RTX 3090 with 24GB device memory.

9 EXPERIMENTS

9.1 Geometry Reconstruction Comparison
We first conduct comparison study to evaluate the reconstruction
accuracy of baseline methods and our proposed approach.

Benchmark. We use the CloSe [Antić et al. 2024] and 4D-Dress
[Wang et al. 2024] datasets for the comparison study. CloSe is a large-
scale 3D clothing dataset featuring detailed segmentation across
diverse clothing classes. 4D-Dress offers high-quality 4D textured
scans of dynamic clothed human sequences. For evaluation, we care-
fully select examples encompassing a variety of human body shapes,
poses, and their corresponding front-view images to establish a
comprehensive benchmark.

Baselines. pare our method with state-of-the-art single-view gar-
ment reconstruction methods, including BCNet [Jiang et al. 2020],
ClothWild [Moon et al. 2022], GarmentRecovery [Li et al. 2024b],
and SewFormer [Liu et al. 2023b]. Among these, BCNet and Cloth-
Wild are designed for clothed human reconstruction but are limited
to tight-fitting clothing and not readily adaptable for downstream
tasks such as animation and simulation. GarmentRecovery extends
to loose-fitting garments reconstruction by deforming predicted rest
shapes to align with input images. In contrast, SewFormer predicts
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Input BCNet ClothWild GarmentRecovery SewFormer Ours

Fig. 4. Qualitative Comparisons of Geometry Reconstruction. Our proposed method not only generates sewing patterns that seamlessly integrate into
animation and simulation workflows but also achieves superior garment reconstruction accuracy compared to baseline methods.

corresponding sewing patterns directly from images, enabling seam-
less integration into animation pipelines and physical simulations.
Our proposed method builds upon SewFormer and incorporate dif-
ferentiable simulation to refine 2D panels and physical parameters.
For SewFormer and our approach, we simulate the predicted sewing

patterns and use the resulting 3D garments for quantitative com-
parisons.

Results. We evaluate the accuracy of baseline methods and our ap-
proach using two metrics: Chamfer Distance (CD) and Intersection
over Union (IoU). CD quantifies the geometric similarity between
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Neural TailorInput SewFormer Dress-1-to-3 (Ours)

Fig. 5. Qualitative Comparison of Panel Shape Prediction. Neural Tailor [Korosteleva and Lee 2022] takes ground-truth garment meshes as input, while
SewFormer [Liu et al. 2023b] and our proposed method use single-view images as input. Extra unexpected panels and edges with significant errors are
highlighted in red.

Table 1. Quantitative Comparisons of Geometry Reconstruction. We
evaluate the performance of baseline methods and our approach on the
CloSe and 4D-Dress datasets. Our proposed method achieves the highest
reconstruction accuracy across both datasets.

Method CloSe 4D-Dress
CD↓ IoU↑ CD↓ IoU↑

BCNet 2.277 0.781 4.704 0.575
ClothWild 2.166 0.664 3.125 0.664
GarmentRecovery 2.058 0.831 2.983 0.776

SewFormer 2.233 0.748 2.926 0.720
Dress-1-to-3 (Ours) 1.623 0.862 2.441 0.808

reconstructed and ground-truth meshes, while IoU assesses the
alignment between the garment mask of the rendered reconstruc-
tion and the input front-view images. The quantitative results for
the CloSe and 4D-Dress datasets are presented in Table 1, and visu-
alized qualitative comparisons are shown in Figure 4. BCNet and
ClothWild tend to produce overly smooth garment meshes, lacking
fine wrinkle details. GarmentRecovery improves geometric details
but often results in interpenetrated reconstructions. SewFormer
predicts sewing patterns that can be directly used for simulation,
yet it neglects physical parameters, leading to simulated results that
deviate significantly from the ground-truth mesh. In contrast, our
method not only generates sewing patterns for seamless integra-
tion into downstream pipelines but also optimizes garment physical
parameters, enabling accurate geometry reconstruction that closely
aligns with ground truth.

9.2 Sewing Pattern Evaluation
We compare our method with two approaches that predict garment
sewing patterns: Neural Tailor [Korosteleva and Lee 2022] and Sew-
Former [Liu et al. 2023b]. Neural Tailor generates sewing patterns

from garment point cloud inputs, while SewFormer and our method
recover patterns directly from single-view image inputs. For com-
parison purposes, we sample points from garment meshes to serve
as inputs for Neural Tailor. The qualitative results are shown in Fig-
ure 5. Neural Tailor is trained on garments draped over an average
SMPL female body in a T-pose. Consequently, its predictions are
usually unsatisfactory if the human pose deviates from the T-pose,
and may produce unexpected additional panels. Furthermore, its
reliance on garment point clouds as input significantly restricts its
practical applicability. SewFormer, on the other hand, generates sym-
metric and organized panels. However, its predicted panel shapes
often fail to align with the input image. For instance, it may predict
long pant panels for an image with short pants. This is probably
due to the small scale of the dataset used for its training. Neverthe-
less, collecting a large-scale dataset of real-world clothed human
images paired with corresponding garment meshes and sewing pat-
terns is a challenging and resource-intensive task. In contrast, our
optimization-based method requires no additional training data. By
leveraging differentiable simulation, it refines an initial estimate of
the sewing patterns, achieving significantly more accurate results.

9.3 Textured Garment Reconstruction and Simulation
Test Images. To evaluate the generative capability of our method,

we perform extensive tests on a variety of images from different
sources. We begin by utilizing real-world images from the DeepFash-
ion2 [Ge et al. 2019] dataset, which comprises in-the-wild clothing
images sourced from the internet, including those from commercial
shops and customers. These images exhibit varying quality and
are captured under arbitrary camera and scene settings, reflecting
casual user captures. In addition to real-world images, we evaluate
our model using synthetic fashion images from the DeepFashion-
Multimodal [Jiang et al. 2022] dataset. This dataset features high-
resolution clothing images of various types, generated by a diffusion-
based transformer. To further extend the generative capability of
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Fig. 6. Qualitative Results of Textured Clothed Human.We showcase the generation capability of Dress-1-to-3 using in-the-wild test images from various
sources, including both real-world and synthetic images. Our streamlined pipeline generates perfectly fitted 3D garments with visually plausible textures.

our method with text prompts, we employ FLUX [Labs 2023] to gen-
erate input images using custom textual descriptions of clothing on
a model. For instance, prompts such as "a female model wearing
a blazer and pants" are used. To enhance the diversity of the
generated results, we randomly incorporate detailed descriptions,
including the shape and color of the clothing, as well as the pose
and appearance of the model.

Textured Garment Reconstruction. As demonstrated in Figure 6,
Dress-1-to-3 effectively reconstructs 3D garments that accurately fit
human models in both real-world and synthetic images. Our method
automatically retrieves visually plausible garment textures using
image diffusion techniques. This streamlined process requires mini-
mal human effort to reconstruct high-fidelity garments with sewing
patterns and offers users the flexibility to easily adjust garment
shape and texture.

Garment Simulation. The garments synthesized by our method
are simulation-ready due to the accurate sewing, fitting, and opti-
mization of garment patterns. The optimized 3D outfits align per-
fectly with the human body at steady state, avoiding artifacts such
as self- or interpenetration. These garments can be seamlessly inte-
grated into physics-based simulations, such as those used in video
games. In Figure 1 and Figure 7, we visualize several simulated
human motion sequences showcasing dynamic garment behavior.

9.4 Ablation Study
In Figure 8, we perform an ablation study for key individual compo-
nents in Dress-1-to-3, using the same garment images as in Section
9.3. This study evaluates the contributions of each proposed compo-
nent to the final garment reconstruction quality.

Patch Symmetrization. We first evaluate the effectiveness of the
proposed patch symmetrization, designed to facilitate better capture
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Fig. 7. Garment Simulation.We animate garment motion using various
human sequences as moving boundary conditions. Our simulation-ready
garments exhibit physically plausible dynamics.

of symmetrical geometry. As shown in Figure 8, removing symme-
try enforcement results in visibly asymmetric outputs compared to
the input garment image. This highlights the critical role of symme-
try enforcement in preserving structural coherence and alignment,
particularly for garments with strong symmetrical patterns, such as
dresses or jackets. By aligning the reconstructed mesh to expected
symmetrical features, this component ensures geometric fidelity.

Laplacian Loss. Laplacian loss LSmooth is applied to smooth out
noise and irregular wrinkles in the reconstructed garment mesh.
This loss minimizes high-frequency artifacts, enabling a cleaner and
more aesthetically pleasing surface. The weight of LSmooth is a tun-
able parameter, allowing users to control the degree of smoothness
based on their preferences. As shown in Figure 8, a higher weight
results in smoother results but may slightly reduce detail, whereas
a lower weight preserves intricate wrinkles but may retain noise.

Boundary Corner Regularizer. The boundary corner regularizer,
LBC, mitigates the occurrence of sharp angles in the reconstructed
sewing patterns. Sharp or acute angles can lead to practical diffi-
culties during garment fabrication, as they introduce challenges
in stitching and material handling. As demonstrated in Figure 8,
models trained without LBC often generate sewing patterns with
acute or impractical corner geometries, whereas incorporating this
regularizer results in smoother, more fabrication-friendly bound-
aries.

Comfort Loss. Comfort loss, LComfort, ensures the reconstructed
garment mesh adheres to an appropriate scale relative to the input
image. This prevents the generation of sewing patterns that are

Ours w.o.w.o. Symmetry w.o.

Ours w.o.

w.o.w.o. 

Ours w.o. 

Fig. 8. Ablation Study. We conduct ablation studies on our geometric
regularizer to ensure that the sewing pattern maintains both reasonable 2D
patterns and a plausible 3D fitted shape. We minimize irregularities such
as asymmetry, sharp or acute angles, and inconsistent scaling of the 2D
patterns while reducing noisy geometry and unrealistic wrinkles.

too small or tight, which could compromise wearability. Without
LComfort, as shown in Figure 8, the reconstructed sewing patterns
often exhibit significantly smaller dimensions than expected, leading
to impractical or unrealistic results. Incorporating this loss ensures
that the final garment size aligns with user expectations and real-
world usability requirements

Area Ratio Loss. To maintain realistic proportions between gar-
ment parts, the area ratio loss, LAR, is applied to ensure that the
relative area of each patch remains consistent with the connected
components, reflecting real-world fabrication principles. For in-
stance, in a skirt, the front and back panels should have comparable
areas to align with practical garment construction. As illustrated
in Figure 8, omitting LAR often results in disproportionate patch
sizes, such as an overly large front skirt panel compared to the back,
violating fabrication norms.

Seam Losses. Two seam losses: the length seam loss, LSL, and
the curvature seam loss, LSC are adopted to ensure that stitched
curved edge pairs should have the same shape to prevent undesired
wrinkles near the seam, and that enforces preservation of seam
curvatures, respectively. As shown in Figure 8, the absence of LSL
leads to uneven sleeve seams, introducing visual artifacts and po-
tential fabrication issues. Similarly, without LSC, the seams can
become overly curved, deviating significantly from the intended
design. Together, these losses contribute to producing smooth and
realistic seams.

10 CONCLUSION
In this paper, we present a garment reconstruction pipeline, Dress-
1-to-3, which takes a single-view image as input and reconstructs a
posed human wearing textured garments, with both the human pose
and garment shapes closely aligned with the input image. During
optimization, we refine the sewing pattern shapes and physical
material parameters by leveraging a differentiable CIPC simulator
with accurate frictional contact. The resulting garment assets are
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simulation-ready and can be seamlessly integrated into a physics-
based simulator.
We benchmark our pipeline against baseline methods through

two key experiments: a quantitative comparison of geometry recon-
struction using existing garment datasets and a qualitative evalu-
ation of sewing patterns. In both cases, Dress-1-to-3 significantly
outperforms the baseline approaches.

To further assess the Dress-1-to-3’s robustness and performance,
we test our textured garment reconstruction using in-the-wild real-
world and synthetic images, validated together with animations of
dressed humans. The high-quality results demonstrate the robust-
ness and effectiveness of our approach.
Additionally, ablation studies underscore the importance of the

patch symmetrization technique and the contributions of each reg-
ularization loss term, highlighting their critical role in optimizing
the pipeline’s performance.

Limitations and Future Work. While our method provides consis-
tent high-fidelity reconstruction and has been extensively tested
with in-the-wild images, its generation ability is somewhat limited
by the initial estimation of the sewing pattern. For instance, our
method cannot predict new connected pattern components if they
are not included in the initial estimation. Additionally, challenges
arise with layered clothing, as SewFormer can only predict single-
layer patterns, causing multi-layered garments to be fused into a
single cloth component. It is worth noting that with a more versa-
tile sewing pattern predictor capable of handling such cases, our
method would also be able to process more complex garments. We
leave this enhancement as future work.
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