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Time-series in healthcare: 
challenges and solutions



Machine learning & medicine/healthcare/bio-science
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• ML/AI drives a revolution in medicine
• Medicine drives innovations in ML/AI



1) deliver precision medicine at the patient level
2) understand the basis and trajectories of  health and disease
3) empower healthcare professionals and patients
4) inform and improve clinical pathways, better utilize resources & 

reduce costs
5) transform population health and public health policy  
6) enable new discoveries – clinical, therapeutics

Machine learning can transform medicine & healthcare
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Machine learning 

…can’t do medicine! 

...can provide interpretable, trustworthy, actionable information!

Data

Machine learning 
algorithms

Clinical
practice

Personalized risk scores

Personalized treatment recommendations

Data-driven hypotheses

Trustworthy
recommendations

The “augmented” clinician, researcher, patient
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Engagement sessions: Revolutionizing Healthcare

https://www.vanderschaar-lab.com/ 
 Engagement sessions

 Revolutionizing Healthcare
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An integrated clinical decision ecosystem using ML



Integrated care:
– Prevention
– Screening
– (Early) Diagnosis 
– Treatment
– Monitoring

Multiple venues/areas:
– In-patient/out-patient
– At home

Many stakeholders in every 
stage of  care

– Clinicians, nurses
– Healthcare planners
– Patients!

An integrated clinical decision support ecosystem using machine learning to 
provide patient-level recommendations and support
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An integrated clinical decision ecosystem using ML



Today’s tutorial
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Time-series models
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RNN/LSTM/GRU

Transformers

CNNs

Gaussian 
Process



Time-series models: Resources
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Forecasting Big Time Series, Faloutsos et al., KDD Tutorial (2019) [Link]

Understanding LSTM Networks, Christopher Olah [Link]

Gaussian processes for Machine Learning, Rasmussen & Williams [Link]

The Art of  Gaussian Processes, Mattos & Tobar, NeurIPS Tutorial (2021) [Link]

Deep Implicit Layers - Neural ODEs, Deep Equilibrium Models, and Beyond, Kolter, 
Dubenaud & Johnson, NeurIPS Tutorial (2020) [Link]

…and many more!

https://lovvge.github.io/Forecasting-Tutorial-KDD-2019/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://www.gaussianprocess.org/gpml/chapters/RW.pdf
https://neurips.cc/Conferences/2021/ScheduleMultitrack?event=21890
http://implicit-layers-tutorial.org/


Time-series in healthcare: a multi-faceted problem
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Dynamic 
forecasting

Treatment 
effects

Survival 
analysis

Clustering & 
phenotyping

Screening & 
monitoring

Early 
diagnosis

Time 
series 
data



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization

Time-series in healthcare: a multi-faceted problem
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Part 1: tailoring development of  
time series models to healthcare 
challenges

Part 2: making time series models 
as useful as possible



More information and updates
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 Research pillars
 Time series
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 Engagement sessions
 Inspiration Exchange

Engagement sessions: Inspiration Exchange



Part 1: 
tailoring development of  time series models 

to healthcare challenges
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Time-series in healthcare: a multi-faceted problem
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization



• Multiple streams of  measurements
• Measurements are sparse, irregularly and informatively sampled
• Multiple outcomes of  interest (various events of  interest, various morbidities)
• True clinical states are unobserved (e.g., onset of  diseases)
• Many possible patterns (heterogeneous phenotypes, comorbidities)

Healthcare data - Unique challenges
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• Build disease progression models 
• Understand and model carefully the available data!

• Learn the model parameters from available EHR data (Training time)

• Issue dynamic forecasts for the patient at hand (Test time/Run-time)

• Unravel new understanding of  disease progression 
• Population 
• Sub-groups of  patients
• Personalized Input data

(time-series)

Observational EHR data +
clinical knowledge

Dynamic
forecasts

Disease progression 
model

Time-series analysis and dynamic forecasting
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Markov Models

Current disease progression models: formalisms 

Disadvantages
• Observable models
• One disease at a time
• “Average” patient

Population-level representation 
of  disease states
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Hidden Markov Models (HMMs)

Introducing latent (hidden/unobservable) disease states

Disease Stages

Clinical findings
Lab measurements
Vital signs
Treatments
Events of  interest
Observation times

Current disease progression models: formalisms 
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22

Ignore history  
- Previous states
- Order of  states
- Duration in a state

Pathological 
event 1

Pathological 
event 2

Pathological
event 1

Pathological
event 2

Most likely future 
Disease A

Most likely future 
Disease B

History matters! One size fits all!

Only capture population-level 
transitions across progression stages
Ignores individual clinical trajectories

Markov models?
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Recurrent Neural Nets?



Goal A: Accurately forecast individual-level disease trajectories

Goal B: Understand disease progression mechanisms.

What are the risks of  mortality, relapse, comorbidities, complications, etc. in 
the future? 

Underlying latent structure of  disease evolution

Patients’ subgroup analysis

Refined phenotypes

Two central goals
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Observable 
models

RNN

No latent structure

Uninterpretable predictions, 
Uninterpretable latent 

structure

Deep learning models?
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1. Embed observations {x1,…,xi}
2. Generate α using RNNα
3. Generate ß using RNNß
4. Generate context vector using 

attention α, ß and representations ν
5. Make prediction

Retain [Choi et al., NeurIPS 2016]
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Observable 
models

RNN

No latent structure

Uninterpretable predictions, 
Uninterpretable latent 

structure

Deep learning models?
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RETAIN Interpretable predictions, 
Uninterpretable latent 

structure



Main idea: a general and versatile deep probabilistic model capturing 
complex, non-stationary representations for patient-level trajectories

Maintain probabilistic structure of  HMMs But use RNNs to model state dynamics

Emission Transition

Attentive state space models [Alaa & vdS, 2018, NeurIPS 2019]
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• Attention weights determine the influences of  past state realizations 
on future state transitions

• PASS repeatedly updates attention weights to focus on past state

Attention weights Patient context

v
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Going beyond Markov



Attention weights create a "soft" version of  a non-stationary, variable-order Markov model where 
underlying dynamics of  a patient change over time based on an individual’s clinical context!

Attention weights Patient context

ASSM - “memory” is shaped by patient’s current context (clinical events, treatments, etc.) 

Overcomes shortcoming of  Markov Models
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Variable-order 
HMM 

(Context Trees)

DT-HMMCT-HMM

Multi-task
RNN

HSMM,
HASMM

Sequential
Hypothesis 

Testing

Deep Markov 
Model

Autoregressive 
Models

ASSM

ASSM: A General, Versatile and Clinically Actionable Model
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Dynamic-DeepHit [Lee & vdS, TBME 2019]
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Longitudinal survival data:
 𝒳𝒳𝑖𝑖: History of  longitudinal measurements until time the last measurement

– 𝒳𝒳𝑖𝑖 𝑡𝑡 = {𝑥𝑥𝑖𝑖 𝑡𝑡𝑗𝑗𝑖𝑖 : 0 ≤ 𝑡𝑡𝑗𝑗𝑖𝑖 ≤ 𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,⋯ ,𝑀𝑀𝑖𝑖} where 𝑀𝑀𝑖𝑖 is the number of  measurements.

 𝜏𝜏 : Time-to-event including right-censoring

 𝑘𝑘 : Event label

New goal: Estimate “dynamic” Cumulative Incidence Function

𝒟𝒟 = 𝒳𝒳(𝑖𝑖), 𝜏𝜏(𝑖𝑖),𝑘𝑘(𝑖𝑖)
𝑖𝑖=1
𝑁𝑁

�𝐹𝐹𝑘𝑘 𝜏𝜏 𝒳𝒳∗ ≝ 𝑃𝑃 𝑇𝑇 ≤ 𝜏𝜏,𝐸𝐸 = 𝑘𝑘 𝒳𝒳∗,𝑇𝑇 > 𝑡𝑡𝑀𝑀∗
∗

The patient was alive at the 
time of the last measurement!

Longitudinal measurements 
accrued by the time of risk 
predictions 



Dynamic-DeepHit [Lee & vdS, TBME 2019]
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Longitudinal survival data:
 𝒳𝒳𝑖𝑖: History of  longitudinal measurements until time the last measurement

– 𝒳𝒳𝑖𝑖 𝑡𝑡 = {𝑥𝑥𝑖𝑖 𝑡𝑡𝑗𝑗𝑖𝑖 : 0 ≤ 𝑡𝑡𝑗𝑗𝑖𝑖 ≤ 𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓 𝑗𝑗 = 1,⋯ ,𝑀𝑀𝑖𝑖} where 𝑀𝑀𝑖𝑖 is the number of  measurements.

 𝜏𝜏 : Time-to-event including right-censoring

 𝑘𝑘 : Event label

New goal: Estimate “dynamic” Cumulative Incidence Function (CIF)

𝒟𝒟 = 𝒳𝒳(𝑖𝑖), 𝜏𝜏(𝑖𝑖),𝑘𝑘(𝑖𝑖)
𝑖𝑖=1
𝑁𝑁

�𝐹𝐹𝑘𝑘 𝜏𝜏 𝒳𝒳∗ ≝ 𝑃𝑃 𝑇𝑇 ≤ 𝜏𝜏,𝐸𝐸 = 𝑘𝑘 𝒳𝒳∗,𝑇𝑇 > 𝑡𝑡𝑀𝑀∗
∗

The patient was alive at the 
time of the last measurement!

Longitudinal measurements 
accrued by the time of risk 
predictions 

Estimation of  the incidence of  the occurrence of  an event
while taking competing risks into account!



Dynamic-DeepHit [Lee & vdS, TBME 2019]
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High-level schematic



Dynamic-DeepHit [Lee & vdS, TBME 2019]
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Network architecture and loss functions
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Loss functions: Step-ahead 
Prediction loss

ℒ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ℒ1 + ℒ2 + ℒ3

Log-likelihood of joint 
TTE distribution

Ranking loss

Dynamic-DeepHit [Lee & vdS, TBME 2019]

Network architecture and loss functions
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Loss functions:

ℒ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ℒ1 + ℒ2 + ℒ3

Log-likelihood of joint 
TTE distribution

Dynamic-DeepHit [Lee & vdS, TBME 2019]

Network architecture and loss functions
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Loss functions:

ℒ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ℒ1 + ℒ2 + ℒ3

Ranking loss

Dynamic-DeepHit [Lee & vdS, TBME 2019]

Network architecture and loss functions
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Loss functions:

 Prediction loss (ℒ3): 
penalizes error on the step-ahead predictions

Step-ahead 
Prediction loss

ℒ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = ℒ1 + ℒ2 + ℒ3

where or

Dynamic-DeepHit [Lee & vdS, TBME 2019]

Network architecture and loss functions



vanderschaar-lab.com

Dynamic-DeepHit updates the survival predictions as new observations are collected over time.

Dynamic-DeepHit [Lee & vdS, TBME 2019]
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Revolutionizing
Healthcare
Engagement

October 2021



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Motivation: How should we group patients?
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Example of  3 patients diagnosed with breast cancer (BC)
Should we group patients based on similarity in the time-series observations?

conventional notion of  clustering
Key idea: similarity in time-series observations

Autoencoder-based approaches 
 N. S. Madiraju et al., 2018
 Q. Ma et al., 2019

(e.g. dynamic time warping,  auto-encoders)



Motivation: How should we group patients?
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Example of  3 patients diagnosed with breast cancer (BC)
What if  both Patient A and C will have an adverse event (e.g., death) that can be expected by 
increases in cancer antigen and mammographic density

New notion of  clustering
Key idea: similarity in future outcomes

no adverse outcomes BC-related Death BC-related Death



New notion of  phenotype (clustering):
- Predictive of  similar future outcomes
- Doctors and patients can actively plan

Learn discrete representations of  past observations (time-series data) that 
best describe future events and outcomes of  interest

Temporal Phenotyping using Deep Predicting Clustering 
of  Disease Progression [Lee, vdS, ICML 2020]
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Notation
• 𝐱𝐱1:𝑇𝑇 = 𝐱𝐱1,⋯ , 𝐱𝐱𝑇𝑇 and y𝑇𝑇: input (sub)sequence and output label at time 𝑡𝑡
• 𝑠𝑠𝑇𝑇: cluster assignment at time 𝑡𝑡 and ℰ = 𝐞𝐞 1 ,⋯ , 𝐞𝐞 𝐾𝐾 : cluster centroids
• 𝒞𝒞 = {𝒞𝒞 1 ,⋯ ,𝒞𝒞(𝐾𝐾)}: a set of  𝐾𝐾 predictive clusters where 𝒞𝒞 𝑘𝑘 = {𝐱𝐱1:𝑇𝑇

𝑛𝑛 |𝑠𝑠𝑇𝑇𝑛𝑛 = 𝑘𝑘}

We establish identifying a set of  predictive clusters, 𝒞𝒞, as

Challenges
• NP-hard combinatorial problem  iteratively solving two subproblems
• Assigning clusters involves sampling process  actor-critic training [Konda & 

Tsitsiklis, 2000]

label distribution 
given a sequence
(continuous rep.)

label distribution
given a cluster assignment
(discrete rep.)

(1)

Problem Formalism
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AC-TPC [Lee & vdS, ICML 2020] 
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AC-TPC [Lee & vdS, ICML 2020] 
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Subproblem 1  - Optimize network parameters (θ,ϕ,ψ)

Given ℰ = (𝐞𝐞 1 ,⋯ , 𝐞𝐞 𝐾𝐾 ) fixed, update 
(𝜃𝜃,𝜙𝜙,𝜓𝜓) based on:

predictive clustering loss 
ℒ1(𝜃𝜃,𝜓𝜓,𝜙𝜙)

sample-wise entropy of cluster assignment
ℒ2(𝜃𝜃,𝜓𝜓)



AC-TPC [Lee & vdS, ICML 2020] 
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Subproblem 2  - Optimize embeddings (𝓔𝓔 = (𝐞𝐞 1 ,⋯ , 𝐞𝐞 𝐾𝐾 ))

Given (𝜃𝜃,𝜙𝜙,𝜓𝜓) fixed, updated ℰ =
(𝐞𝐞 1 ,⋯ , 𝐞𝐞 𝐾𝐾 ) based on:

predictive clustering loss ℒ1(ℰ)

embedding separation loss
ℒ3(ℰ)



Example Trajectories [Lee & vdS, ICML 2020] 
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Patient A
Cluster 1 → Cluster 9 → Cluster 3

Patient B
Cluster 2 → Cluster 7 

Cl
us

te
r

Cl
us

te
r



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Personalized screening/monitoring
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- What is the value of  various information over time for this event  for 
this individual?

Who to Screen? 
When to Screen? 
What to Screen?



How to formalize the personalized monitoring problem?
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Lab test Event of  
Interest

Who to Screen? 
When to Screen? 
What to Screen?
• Deep Sensing [Yoon, Jordon, vdS, 2018] 
• Disease Atlas [Yoon, Jordon, vdS, 2019] 
• Clairvoyance [Jarrett et al, 2021]



• Motivation:
• Monitoring and screening (sensing) is costly
• Trade-off  between value of  information and cost of  sensing
• Sensing should be an active choice

• Challenges:
• Value of  information is unknown & dynamically changing – needs to be 

learned!

How to do this???

Deep Sensing: Active Sensing using multi-directional 
recurrent neural networks [Yoon, Zame, vdS, ICLR 2018]
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Deep sensing architecture

Training time
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Imputation
Method



Deep sensing architecture
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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ED&D – A complex problem
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Current thinking in ED&D
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Risk prediction
Segments individuals using population-based risks, 

usually based on few variables
rarely uses longitudinal data
usually only calculated once 

Risk scores then lead to guideline-driven management of  patients
often rigid
many diseases lack guidelines and protocols

This is all predicated upon a quantitative understanding of  disease 
progression



How can we detect disease early?
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Early diagnosis is more than just event prediction/forecasting
- It involves unravelling and dissecting the underlying states of  disease 

progression towards the event of  interest  

A quantitative understanding of  disease progression is needed!



Disease 
Progresses

Non-specific
Symptoms

Early diagnosis: How?

vanderschaar-lab.com

Genetic
“Offset”

Pathology
PresentHealthy

Diagnosis
Made

Emerging Pre-malignant
Conditions (Dysplasia)



Disease 
Progresses

Emerging Pre-malignant
Conditions (Dysplasia)

Non-specific
Symptoms

Early diagnosis: How?

vanderschaar-lab.com

Genetic
“Offset”

Pathology
PresentHealthy

Diagnosis
Made

Early diagnosis
Made  
(with ML support)



Revolutionizing Healthcare: roundtable on ED&D
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Double-header (February 8 and 
March 10) on ED&D – one of  
healthcare’s holy grails!

https://www.vanderschaar-lab.com/ 
 Engagement sessions

 Revolutionizing Healthcare

Visit our extensive new reference 
page on ML for ED&D!

https://www.vanderschaar-lab.com/ 
 Impact

 Early detection and diagnosis



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Chemotherapy Radiotherapy

Decide best future treatment plan

Tu
m

or
 v

ol
um

e

c

Counterfactual 
outcomes

Patient history

TimeCurrent time
Past Predictions

Longitudinal patient features:
• Lab test
• Treatments administered
• Symptoms
• Hospital visits
• CT scans

Breast cancer 
patient

Tu
m

or
 v

ol
um

e

Patient history

TimeCurrent time
Past

Diagnosis (baseline) 
information

Causal inference 
model

Electronic Health 
Records

Train
Estimate 

counterfactual 
trajectories

Individualized treatment effects over time
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Tu
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Chemotherapy Radiotherapy

Tu
m

or
 v

ol
um

e

Time

Tu
m

or
 v

ol
um

e

c

Counterfactual 
outcomes

Patient history Counterfactual 
outcomes

Counterfactual 
outcomes

Patient history Patient history

TimeCurrent    
time

Current    
time

Time Current    
time

Past Predictions Past PredictionsPast Predictions

Best 
outcome

Best 
outcome

Best 
outcome

How to treat? When to give treatment? When to stop treatment?

(a) Decide treatment plan (b) Decide optimal time of  treatment (c) Decide when to stop treatment

Individualized treatment effects over time
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Observed (factual) outcome for treatment         given patient history        :

Time-dependent patient features:

Time-dependent treatments:

Patient history:

where

Static patient features:

Longitudinal patient 
features:
• Lab test
• Treatments 

administered
• Symptoms
• Hospital visits
• CT scans

Breast cancer 
patient

Tu
m

or
 v

ol
um

e

Patient history

TimeCurrent time
Past

Diagnosis 
(baseline) 

information

Causal inference 
model

Train

Electronic Health 
Records Longitudinal patient observational data

Causal effect inference based on 
longitudinal patient observational data
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The patient history                                         contains time-dependent confounders 
which bias the treatment assignment         in the observational dataset. 

Bias from time-dependent confounders. 

Patient covariates - affected by past treatments which then influence future treatments and outcomes

Challenges in using longitudinal observational data for 
estimating individualized outcomes
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Inverse probability of  treatment weighting 

Marginal structural models [Robins, Hernan, Brumback, Epidemiology 2000]

Recurrent marginal structural networks [Lim, Alaa, van der Schaar, NeurIPS 2018]

Handling time-dependent confounding bias
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Inverse probability of  treatment weighting 

Marginal structural models [Robins, Hernan, Brumback, Epidemiology  2000]

Recurrent marginal structural networks [Lim, Alaa, van der Schaar, NeurIPS 2018]

Representation Learning

Counterfactual recurrent network [Bica, Alaa, Jordon, van der Schaar, ICLR 2020]

Balanced representations/
Treatment invariant representations

Numerically unstable High variance

Handling time-dependent confounding bias
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Estimates counterfactual trajectories using sequence-to-sequence architecture.

Builds treatment invariant representations using domain adversarial training [Ganin et al., 2016].

Counterfactual Recurrent Network [Bica, Alaa, Jordon & van der Schaar, 
ICLR 2020]
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Part 2: 
making time series models as useful as possible
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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What is the challenge?

Stepwise Model 
Selection

Temporal distribution 
shifts, risk factors are 

changing!

Best model for each time step is 
different! Can’t manually select 

the best model for each time step

RNN cells (e.g. LSTM, GRU)
Architectures (e.g. Bidirectional, Encoder-decoder) 
Attention or not?
Long or short memory? 

Stepwise Model Selection for Sequence Prediction 
via Deep Kernel Learning [Zhang, Jarrett, vdS, AISTATS 2020]

Solution: novel BO algorithm to tackle model selection challenge

Which time-series method to select?
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Objective: Model performance at each 
time step

Multi-Objective Bayesian Optimization 
finds one model with best trade-off  
across all objectives

Expensive to compute volume 
gain w.r.t all the objectives 

Black box functions

Multi-Objective
Bayesian Optimization (MOBO)Other solutions?

Treat performance at each time step as its 
own black-box function

Select one optimal sequence model for all time steps? No!
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Multi-Task Bayesian Optimization (MTBO)

Warm-start: Transfer knowledge gained from previous optimizations to new tasks,
such that subsequent optimizations are more efficient

Apply BO sequentially across time-steps as multi-task? No!
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 MTBO requires evaluating deep learning models on large datasets which is prohibitively
expensive

 MTBO requires solving T separate BO procedures in a sequence - unclear how to allocate
evaluations among these subproblems

 MTBO does not take full advantage of information from all acquisition functions

Apply BO sequentially across time-steps as multi-task? No!
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A hyperparameter optimization tool for sequence model

Solve the multiple black-box function optimization problem jointly and efficiently by learning 
and exploiting correlations among black-box functions using deep kernel learning 

Stepwise Model Selection via Deep Kernel Learning – SMS-DKL

SMS-DKL [Zhang, Jarrett, vdS, AISTATS 2020]
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Idea: Using deep kernel learning 
Create feature maps to measure similarities between data tuples

SMS-DKL [Zhang, Jarrett, vdS, AISTATS 2020]

How do we jointly and efficiently learn and exploit correlations among black-box functions?
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Intrinsic vs. Post-Hoc Interpretability
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Model
f

Input Time Series
𝐗𝐗 ∈ ℝT×dX

Output
f(𝐗𝐗)

Intrinsic

Post-Hoc

Explanation

Black Box
f

Input Time Series
𝐗𝐗 ∈ ℝT×dX

Output
f(𝐗𝐗)

ExplanationExplainer

(e.g. LIME, SHAP)

(e.g. linear models, trees, attention)
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Feature Importance

Highlight most important features for the model

• Integrated Gradient  [Sundararajan et al. 2017]

𝑎𝑎𝑖𝑖 𝑓𝑓,𝒙𝒙 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖0 × �
0

1
𝜕𝜕𝑓𝑓 𝒙𝒙0 + 𝑡𝑡 𝒙𝒙 − 𝒙𝒙0

𝜕𝜕𝑥𝑥𝑖𝑖
𝑑𝑑𝑡𝑡

• SHAP [Lundberg et al. 2017]

𝑎𝑎𝑖𝑖 𝑓𝑓,𝒙𝒙 = �
𝑆𝑆⊂[dim 𝒳𝒳]∖ 𝑖𝑖

𝑆𝑆 ! dim𝒳𝒳 − 𝑆𝑆 − 1
dim𝒳𝒳 !

𝑓𝑓 𝒙𝒙𝑆𝑆∪ 𝑖𝑖 − 𝑓𝑓 𝒙𝒙𝑆𝑆

“Standard” feature importance methods perform poorly for time-series
[Ismail et al., NeurIPS 2020]



What makes Time Series special?

vanderschaar-lab.com

t

pricet

Wait

Sell

Buy

Time induces a context

Explanations should take 
this context into account



How to detect salient features?

Perturbation based detection

Premise: salient features affect the model’s prediction

Detect salient features by feature perturbations

Feature perturbation affects prediction → Salient feature
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t

pricet

SellBuy

Salient



How to take the time context into account?

Time context matters

Typical saliency methods treat each input xt,i as a feature

⟹ Time dependency is ignored by the saliency method

Dynamic Perturbation Operator

Idea: perturb each  xt∗,i by using neighbouring times:

π xt∗,i ; t∗, i = �
t=t∗ −W1

t∗+W2

ct(t∗, i) × xt,i

⟹ Time dependency is integrated in perturbation
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t

xt,i

t∗

t

ct(t∗, i)

Window perturbation:

Perturbed input Linear combination

[Crabbé, vdS, ICML 2021]



How to take the time context into account?

Time context matters

Typical saliency methods treat each input xt,i as a feature

⟹ Time dependency is ignored by the saliency method

Dynamic Perturbation Operator

Idea: perturb each  xt∗,i by using neighbouring times:

π xt∗,i ; t∗, i = �
t=t∗ −W1

t∗+W2

ct(t∗, i) × xt,i

⟹ Time dependency is integrated in perturbation
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t

xt,i

t∗

t

ct(t∗, i)

Past window perturbation:

[Crabbé, vdS, ICML 2021]



Dynamask [Crabbé, vdS, ICML 2021]
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Black Box
f

time

feature

Input Time Series
𝐗𝐗 ∈ ℝT×dX

Mask
𝐌𝐌 ∈ [0,1]T×dX

Perturbation
Operator

Π𝐌𝐌

Output
f(𝐗𝐗)

Perturbed
Output

f ∘ Π𝐌𝐌(𝐗𝐗)

Error
ℒe(𝐌𝐌)

Backpropagate



How to make the masks parsimonious?

What do we mean by parsimonious?

Masks should not highlight more features than necessary

⟹ We need to enforce feature selection

How to enforce parsimony?

The user selects the fraction a of  most important features

We add a regularization to enforce sparsity:

ℒa 𝐌𝐌 = vecsort 𝐌𝐌 − 𝐫𝐫a 2
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Useless:

Useful:

Sets the 1 − 𝑎𝑎 × 𝑇𝑇 × 𝑑𝑑𝑋𝑋
smallest mask 
coefficients to zero 

time

feature

[Crabbé, vdS, ICML 2021]



How to avoid quick variations of  saliency?

Quick time variations of  the saliency

Might want to avoid quick time variations of  the saliency

This can be a prior belief  or a preference of  the user

How to avoid this?

We add a regularization to penalize saliency jumps over time:

ℒc 𝐌𝐌 = �
t=1

T−1

�
i=1

dX

mt+1,i − mt,i
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time

feature

[Crabbé, vdS, ICML 2021]



Dynamask - Example

True saliency Dynamask saliency

Baseline saliency

[Crabbé, vdS, ICML 2021]
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Feature Importance

Highlight most important features for the model

• Integrated Gradient  [Sundararajan et al. 2017]

𝑎𝑎𝑖𝑖 𝑓𝑓,𝒙𝒙 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖0 × �
0

1
𝜕𝜕𝑓𝑓 𝒙𝒙0 + 𝑡𝑡 𝒙𝒙 − 𝒙𝒙0

𝜕𝜕𝑥𝑥𝑖𝑖
𝑑𝑑𝑡𝑡

• SHAP [Lundberg et al. 2017]

𝑎𝑎𝑖𝑖 𝑓𝑓,𝒙𝒙 = �
𝑆𝑆⊂[dim 𝒳𝒳]∖ 𝑖𝑖

𝑆𝑆 ! dim𝒳𝒳 − 𝑆𝑆 − 1
dim𝒳𝒳 !

𝑓𝑓 𝒙𝒙𝑆𝑆∪ 𝑖𝑖 − 𝑓𝑓 𝒙𝒙𝑆𝑆
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Example Based Explanations

Highlight relevant examples seen by the model

• Influence Functions [Koh & Liang 2017]

𝑎𝑎𝒛𝒛𝑖𝑖 𝑓𝑓𝜃𝜃 , 𝒛𝒛 = − 𝜵𝜵𝜃𝜃𝐿𝐿 𝒛𝒛 , 𝑯𝑯𝜃𝜃
−1𝜵𝜵𝜃𝜃𝐿𝐿 𝒛𝒛𝑖𝑖

• Representer Theorem [Yeh et al. 2018]

𝑎𝑎𝒛𝒛𝑖𝑖 𝑓𝑓𝜃𝜃 , 𝒛𝒛 = 𝑘𝑘(𝒙𝒙,𝒙𝒙𝑖𝑖 ,𝛼𝛼𝑖𝑖)
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Problem Setup

𝒳𝒳 𝒴𝒴

𝒙𝒙
Example

𝒙𝒙𝟏𝟏

𝒙𝒙𝟐𝟐

𝒙𝒙𝟑𝟑

𝒞𝒞
Corpus

𝑦𝑦

𝑦𝑦1

𝑦𝑦2

𝑦𝑦3
𝑓𝑓

Goal: Explain 
predictions for a test 
example using a set of  
known examples
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A First Attempt – Input Similarity

𝒴𝒴

𝑓𝑓𝒙𝒙

𝒙𝒙𝟏𝟏

𝒙𝒙𝟐𝟐

𝒙𝒙𝟑𝟑
𝒞𝒞

𝑦𝑦

𝑦𝑦1

𝑦𝑦2

𝑦𝑦3𝑤𝑤1

𝑤𝑤2

𝑤𝑤3

�𝑤𝑤2

�𝑤𝑤3

Weights not conserved if  𝑓𝑓 nonlinear

Convex sets not conserved if  𝑓𝑓 nonconvex

Input space 𝒳𝒳does not reflect the black-box 𝑓𝑓

𝒳𝒳
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Leveraging Learned Features

𝒴𝒴

𝑓𝑓

𝑦𝑦

𝑦𝑦1

𝑦𝑦2

𝑦𝑦3

𝒙𝒙

𝒙𝒙𝟐𝟐

𝒙𝒙𝟑𝟑

𝒳𝒳

𝒙𝒙𝟏𝟏

𝒉𝒉
𝒉𝒉𝟐𝟐

𝒉𝒉𝟑𝟑

ℋ
Latent space

𝒉𝒉𝟏𝟏
𝑔𝑔 𝑙𝑙

𝑤𝑤2

𝑤𝑤3

𝒞𝒞

𝑤𝑤2

𝑤𝑤3

Linear
Representation



• Corpus hull in latent space 

𝒞𝒞ℋ 𝒞𝒞 ≡ ∑𝑐𝑐=1𝐶𝐶 𝑤𝑤𝑐𝑐𝒉𝒉𝑐𝑐 | 𝑤𝑤𝑐𝑐 ∈ 0,1 ∀𝑐𝑐 ∈ 𝐶𝐶 ⋀∑𝑐𝑐=1𝐶𝐶 𝑤𝑤𝑐𝑐 = 1

• Find the best corpus decomposition of  the example 

�𝒉𝒉 = arg min 𝒉𝒉 − �𝒉𝒉 ℋ 𝑠𝑠. 𝑡𝑡. �𝒉𝒉 ∈ 𝒞𝒞ℋ 𝒞𝒞

• Might have a residual 𝑓𝑓𝒞𝒞 𝒉𝒉 = 𝒉𝒉 − �𝒉𝒉 ℋ
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Corpus Decomposition

𝒉𝒉

𝒉𝒉𝟐𝟐

𝒉𝒉𝟑𝟑

ℋ

𝒉𝒉𝟏𝟏

�𝒉𝒉 𝑓𝑓𝒞𝒞 𝒉𝒉

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]
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Explaining At The Feature Level

𝒙𝒙

𝒙𝒙𝟎𝟎

𝒙𝒙𝒄𝒄

𝒳𝒳

𝑔𝑔

𝒉𝒉

𝒉𝒉𝒄𝒄

ℋ 𝒉𝒉𝟎𝟎

𝒋𝒋𝑖𝑖𝑐𝑐= �
0

1 𝜕𝜕𝑔𝑔 ∘ 𝛾𝛾𝑐𝑐

𝜕𝜕𝑥𝑥𝑖𝑖
𝑡𝑡 𝑑𝑑𝑡𝑡

𝛾𝛾𝑐𝑐

𝑔𝑔 ∘ 𝛾𝛾𝑐𝑐

𝒙𝒙𝟏𝟏

𝒙𝒙𝟐𝟐

𝒋𝒋𝟏𝟏𝒄𝒄
𝒋𝒋𝟐𝟐𝒄𝒄

𝑝𝑝𝟏𝟏𝒄𝒄
𝑝𝑝𝟐𝟐𝒄𝒄

𝑝𝑝𝑖𝑖𝑐𝑐= 𝒉𝒉−𝒉𝒉0 , 𝒋𝒋𝑖𝑖
𝑐𝑐

𝒉𝒉−𝒉𝒉0 ,𝒉𝒉−𝒉𝒉0

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]
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SimplEx

𝑝𝑝𝑖𝑖𝑐𝑐

−0.25

0

0.25

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]



What Makes Simplex Special?
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• SimplEx gives the user freedom to choose the corpus of  examples to explain the model 

predictions

• Advantage:

• No need for this corpus to be from the model’s training set

(a) The training set of  a model is not always accessible

(b) The user might want explanations in terms of  examples that make sense for them

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]



What Makes Simplex Special?
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• Keep humans in the loop

Leverage user’s knowledge: SimplEx explains with a corpus chosen by the user

• Increase the scientific content of  the models

Expand the picture: SimplEx unifies example and feature-based explanations

Enhance the picture: SimplEx captures insights from the model’s latent space 

• Debug the models

Trigger user’s scepticism: residual 𝑓𝑓𝒞𝒞 detects examples for which the model extrapolates

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]
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Detecting Model’s Limitations

• Start with non-oscillating time AR time series dataset 𝒟𝒟

• Split it into a training and testing set 𝒟𝒟 = 𝒟𝒟train ⊔ 𝒟𝒟test

• Train a forecasting RNN on 𝒟𝒟train

• Sample a corpus from training set 𝒞𝒞 ⊂ 𝒟𝒟train

• Corrupt the testing set with oscillating AR time series 𝒯𝒯 = 𝒟𝒟test ⊔ 𝒟𝒟oscil

• Make a corpus decomposition of  each example in 𝒯𝒯, compute the residual 𝑓𝑓𝒞𝒞

• Can we detect oscillating time series with corpus residual?

Model

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]
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Detecting Model’s Limitations

Sort the time series by 
decreasing order of  
residual 𝑓𝑓𝒞𝒞

Inspect the time series 
in this order

Increase the counter 
each time an 
oscillating time series 
is detected

Oscillating time 
series have a 
worse corpus 
approximation

SimplEx offers a 
better detection 

than 3NN 
baselines

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Predictive intervals for Recurrent Neural Networks (RNNs). 

RNN model

Input

Hidden 
states

Output

Time step

Confidence 
interval

Point prediction

1 2 3 4 5 6 7 8 9 10 11 12 13

RNN predictions

Objective: sequential confidence intervals for RNNs
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Bayesian RNNs Quantile RNNs Probabilistic RNNs

Prior 
distribution

Posterior 
distribution

Prior over RNN parameters
Uncertainty = credible intervals

Posterior is intractable =               
Monte Carlo dropout                          
(Gal & Ghahramani, 2016)

Probabilistic model

Combine RNNs with variants of  
state-space models

Attentive state-space model (Alaa 
& van der Schaar, 2019)

Deep state-space model  
(Rangapuram et al., 2018)

Explicitly train a multi-output RNN to 
predict intervals

Quantile loss for RNN training                         
(Gasthaus et al., 2019)

Some solutions
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Post-hoc application

Generality and versatility

Frequentist coverage guarantees

Does not affect model accuracy

Does not interfere with model training

Does not require changes to model architecture

Applies to a wide range of  sequence prediction settings

Formal frequentist procedure

Uncertainty 
quantification

RNN model 
(input)

Uncertainty estimates 
(output)

Loss 
gradient

RNN LSTM GRU

Why are these solutions not enough in healthcare?
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Uncertainty intervals =  variability in re-sampled RNN outputs.
RNN outputs are re-sampled by perturbing the model parameters through iterative deletion 
of  blocks of  data and re-training the model on the remaining data

Perturbed 
RNN models

Sequence

1

2

3

4

5

6

7

Block deletion RNN model re-training
RNN prediction re-

sampling

Confidence 
interval

Point 
prediction

Re-sampled 
prediction

Frequentist Uncertainty in Recurrent Neural Networks via 
Blockwise Influence Functions [Alaa & vdS, ICML 2020]
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1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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• Interpolation – temporal correlations
• Imputation –cross-features correlations
• Both correlations must be simultaneously learned

Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018]
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Sequentially operates across streams and within streams

Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018]
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Timing of  inputs into hidden layers is both lagged in forward direction and 
advanced in the backward direction



Bi-RNN and FCN are jointly optimized

• Correlations across features:

FC network

• Multiple imputations:

Dropout

Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018]
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Objective: Learning an Early Warning Score
From Observational Data! 

Model a patient’s trajectory as a marked point process modulated by their health state

Data - shaped by clinical judgments!
Probabilistic model for learning from observational data

vanderschaar-lab.com

Can we do better? Learn from clinical judgements!
[Alaa, Hu, vdS, ICML 2017]

Informative sampling:
Time-varying sampling 

frequency



Evidence for the Informative Sampling Hypothesis?

• Nature of  Informative Sampling is Problem-dependent

• E.g. Cancer patient in regular hospital wards: evidence that 
sampling rate increases when patient is in a bad health state
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Elements of  the probabilistic model (I):
the observation process



Clinicians observe the patient’s vital signs and lab tests according to a Hawkes process

…doubly stochastic 
point process

…with a self-exciting
Triggering kernel

Time

Time

Captures impact of  
patient’s health state on 

clinicians’ sampling behavior

Captures dependence 
between observation events

Elements of  the probabilistic model (II):
the observation process
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Better inference using informative observations 
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Observation times are modeled as a Hawkes process 
• Continuous-time jump process (like Poisson)
• Jump intensities depend on state (unlike Poisson)

= Intensity



1) Dynamic forecasting
2) Time-to-event and survival analysis
3) Clustering and phenotyping
4) Screening and monitoring
5) Early diagnosis
6) Treatment effects
7) AutoML
8) Interpretability
9) Uncertainty estimation
10) Missing data and informatively missing data 
11) Synthetic data generation
- Reproducibility and visualization

Time-series: a multi-faceted problem
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Lack of high-quality healthcare data: impedes ML research in healthcare!

Strict regulations for data access

…the result of  perfectly valid concerns regarding privacy

Private data
ML Community

Strong Regulation

Data holders 
(e.g., hospitals)

Impossible to share directly

Healthcare data: not easy to access
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De-identified/anonymized data: real 
data with all personal identifiers 
removed/data fields scrambled

Synthetic data: data created from scratch, 
cannot be synced back to any individual 

(if  modeled properly) 

Requires ML/statistical modelling!

Generating synthetic data to be used for 
machine learning modeling 

is itself  a machine learning problem!

ICML 2021
Tutorial

De-identified data vs synthetic data
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Objective: To generate time-series data with preserving temporal 
dynamics 

Key Example: Synthetic time-series healthcare data generation

Challenges: Capture the distributions of  features within each time 
point as well as complex dynamics of  those variables across time 
points
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Time-series generation



Time-series generative adversarial networks [Yoon, Jarrett, vdS, 
NeurIPS 2019]
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TimeGAN - intersection of  multiple strands of  research 
• GAN-based methods for sequence generation
• autoregressive models for sequence prediction
• time-series representation learning.

Important: Time-GAN handles mixed-data 
setting, where both static and time-series 
data can be generated at the same time
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Generating time-series synthetic data



GAN-based models - powerful way to synthesize time-series data, 
but….

• difficult to train (especially for time-series data) – [Srivastava et al. (2017)]
• hard to evaluate quantitatively due to the absence of  an explicitly 

computable likelihood function (only implicit likelihood modeling)
• vulnerable to training data memorization [Nagarajan et al. (2018)]
— a problem that would be exacerbated in the temporal setting

TimeGAN: some limitations
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Goals:

Variable-length and variable-frequency sequences of  vectors.

Generative model: to enable 
sampling synthetic time series

Explicit likelihood model: 
easy to optimize the model, 
easy to evaluate the model 
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Generative Time-series Modeling with Fourier Flows
[Alaa, Chan, vdS, ICLR 2021] 
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Conclusions



New Frontiers: Healthcare problems (and models) are 
interconnected
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Dynamic 
forecasting

Treatment 
effects

Survival 
analysis

Clustering & 
phenotyping

Screening & 
monitoring

Early 
diagnosis

Time 
series 
data



Individual

At scale

Patient-oriented Profession-oriented

Bespoke medicine Empowering healthcare 
professionals

Population health and public 
health policy

Systems, pathways and 
processes

• Risk scores
• Competing risks 
• Screening and monitoring
• Diagnostic support 
• Longitudinal disease trajectories
• Treatment effects 

• Personalised ML assistants to 
support clinicians

• Interpretable, explainable, 
trustworthy

• Multi-disciplinary clinical 
contributions

• Improving healthcare pathways
• Integrating and curating data sources
• Integrating a multitude of analytics 

into    delivery systems
• Cooperation, interaction and 

learning

• Discover & disentangle public risks and 
risk factors

• Population risk assessment 
personalized risk

• Data-driven guidelines, protocols, 
standards

• Cross-country learning and interventions

Catalyze
a revolution
in healthcare

vanderschaar-lab.com



vanderschaar-lab.com

Want to learn more?

vanderschaar-lab.com/
 Engagement sessions
 Inspiration Exchange


	Slide Number 1
	Machine learning & medicine/healthcare/bio-science
	Machine learning can transform medicine & healthcare
	Slide Number 4
	Slide Number 5
	Engagement sessions: Revolutionizing Healthcare
	Slide Number 7
	Slide Number 8
	Today’s tutorial
	Time-series models
	Time-series models: Resources
	Time-series in healthcare: a multi-faceted problem
	Time-series in healthcare: a multi-faceted problem
	More information and updates
	Engagement sessions: Inspiration Exchange
	Part 1: �tailoring development of time series models �to healthcare challenges
	Time-series in healthcare: a multi-faceted problem
	Healthcare data - Unique challenges
	Time-series analysis and dynamic forecasting
	Current disease progression models: formalisms 
	Current disease progression models: formalisms 
	Markov models?
	Two central goals
	Deep learning models?
	Retain [Choi et al., NeurIPS 2016] 
	Deep learning models?
	Attentive state space models [Alaa & vdS, 2018, NeurIPS 2019] 
	Going beyond Markov
	Overcomes shortcoming of Markov Models
	ASSM: A General, Versatile and Clinically Actionable Model
	Time-series: a multi-faceted problem
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Time-series: a multi-faceted problem
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Time-series: a multi-faceted problem
	Personalized screening/monitoring
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Time-series: a multi-faceted problem
	ED&D – A complex problem
	Current thinking in ED&D
	How can we detect disease early?
	Early diagnosis: How?
	Early diagnosis: How?
	Revolutionizing Healthcare: roundtable on ED&D
	Time-series: a multi-faceted problem
	Individualized treatment effects over time
	Individualized treatment effects over time
	Causal effect inference based on �longitudinal patient observational data
	Challenges in using longitudinal observational data for estimating individualized outcomes
	Handling time-dependent confounding bias
	Handling time-dependent confounding bias
	Counterfactual Recurrent Network [Bica, Alaa, Jordon & van der Schaar, ICLR 2020]
	Part 2: �making time series models as useful as possible
	Time-series: a multi-faceted problem
	Which time-series method to select?
	Select one optimal sequence model for all time steps? No!
	Apply BO sequentially across time-steps as multi-task? No!
	Apply BO sequentially across time-steps as multi-task? No!
	SMS-DKL [Zhang, Jarrett, vdS, AISTATS 2020]
	SMS-DKL [Zhang, Jarrett, vdS, AISTATS 2020]
	Time-series: a multi-faceted problem
	Intrinsic vs. Post-Hoc Interpretability
	Slide Number 82
	What makes Time Series special?
	How to detect salient features?
	How to take the time context into account?
	How to take the time context into account?
	Dynamask [Crabbé, vdS, ICML 2021]
	How to make the masks parsimonious?
	How to avoid quick variations of saliency?
	Dynamask - Example
	Slide Number 91
	Slide Number 92
	Slide Number 93
	Slide Number 94
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	What Makes Simplex Special?
	What Makes Simplex Special?
	Slide Number 101
	Slide Number 102
	Time-series: a multi-faceted problem
	Objective: sequential confidence intervals for RNNs
	Some solutions
	Why are these solutions not enough in healthcare?
	Frequentist Uncertainty in Recurrent Neural Networks via �Blockwise Influence Functions [Alaa & vdS, ICML 2020]
	Time-series: a multi-faceted problem
	Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018]
	Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018] 
	Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018] 
	Data - shaped by clinical judgments!�Probabilistic model for learning from observational data
	Elements of the probabilistic model (I):�the observation process
	Elements of the probabilistic model (II):�the observation process
	Better inference using informative observations 
	Time-series: a multi-faceted problem
	Healthcare data: not easy to access
	De-identified data vs synthetic data
	Time-series generation
	Time-series generative adversarial networks [Yoon, Jarrett, vdS, NeurIPS 2019]
	Generating time-series synthetic data
	TimeGAN: some limitations
	Generative Time-series Modeling with Fourier Flows�[Alaa, Chan, vdS, ICLR 2021] 
	Slide Number 124
	New Frontiers: Healthcare problems (and models) are interconnected
	Slide Number 126
	Want to learn more?

