Time-series in healthcare: challenges and solutions

AAAI 2022 Tutorial

Mihaela van der Schaar & Fergus Imrie

University of Cambridge and University of California, Los Angeles

Machine learning & medicine/healthcare/bio-science

- ML/AI drives a revolution in medicine
- Medicine drives innovations in ML/AI

Machine learning can transform medicine & healthcare

- 1) deliver precision medicine at the patient level
- 2) understand the basis and trajectories of health and disease
- **3) empower** healthcare professionals and patients
- 4) inform and improve clinical pathways, better utilize resources & reduce costs
- 5) transform population health and public health policy
- 6) enable new discoveries clinical, therapeutics

The "augmented" clinician, researcher, patient

Machine learning

... can't do medicine!

... can provide interpretable, trustworthy, actionable information!

Engagement sessions: Revolutionizing Healthcare

Revolutionizing Healthcare is a series of engagement sessions aiming to share ideas and discuss topics that will define the future of machine learning in healthcare. These events target the healthcare community and focus on challenges and opportunities in clinical application of machine learning. We now have roughly 400 clinicians from anout the world registered to participate in these sessions.

As a lab, our purpose is to create new and powerful machine learning techniques and methods that can revolutionize healthcare. This doesn't happen in a vacuum. At inception, we are inspired by ideas and discussions; in implementation, we need connections, trust, and partnership to make a real difference.

While you can learn about our work at major conferences in machine learning or in our papers, we think it's a better idea to create a community and keep these conversations going. We're also aware that many people—both in healthcare and machine learning—have questions about what we do, and how they can contribute.

For more information about Revolutionizing Healthcare—and to sign up to join in—please have a look at the sections below, and keep checking for new updates

Themed discussion sessions specifically for <u>healthcare professionals</u> (primarily clinicians).	
We would like to: - Introduce machine learning concepts as they relate to healthcare - spark new projects and collaborations - demonstrate the real-world fingact of machine learning in clinical settings - discuss institutional barries preventing wider adoption - develop a shared vision for the future of machine learning in healthcare.	
Standard session format: - brief introductory presentation	
- roundtable discussion featuring clinicians	\smile

https://www.vanderschaar-lab.com/
→ Engagement sessions
→ Revolutionizing Healthcare

van_der_Schaar \LAB

An integrated clinical decision ecosystem using ML

An integrated clinical decision ecosystem using ML

An <u>integrated clinical decision support ecosystem</u> using machine learning to provide patient-level recommendations and support

Integrated care:

- Prevention
- Screening
- (Early) Diagnosis
- Treatment
- Monitoring

Multiple venues/areas:

- In-patient/out-patient
- At home

Many stakeholders in every stage of care

- Clinicians, nurses
- Healthcare planners
- Patients!

Today's tutorial

Time-series models

Time-series models: Resources

Forecasting Big Time Series, Faloutsos et al., KDD Tutorial (2019) [Link]

Understanding LSTM Networks, Christopher Olah [Link]

Gaussian processes for Machine Learning, Rasmussen & Williams [Link]

The Art of Gaussian Processes, Mattos & Tobar, NeurIPS Tutorial (2021) [Link]

Deep Implicit Layers - Neural ODEs, Deep Equilibrium Models, and Beyond, Kolter, Dubenaud & Johnson, NeurIPS Tutorial (2020) [Link]

...and many more!

van_der_Schaar

Time-series in healthcare: a multi-faceted problem

Time-series in healthcare: a multi-faceted problem

- 1) Dynamic forecasting
- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability

van_der_Schaar

- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Part 1: tailoring development of time series models to healthcare challenges

Part 2: making time series models as useful as possible

More information and updates

vanderschaar-lab.com/ → Research pillars → Time series

Engagement sessions: Inspiration Exchange

vanderschaar-lab.com/ → Engagement sessions → Inspiration Exchange

Inspiration Exchange

Themed discussion sessions specifically for <u>machine learning students</u> (particularly masters, Ph.D., and post-docs).

We would like to:

- discuss machine learning models and techniques
- share ideas about how machine learning can revolutionize healthcare
- spark new projects and collaborations
- raise awareness about this unique and exciting area of machine learning.

Part 1: tailoring development of time series models to healthcare challenges

Time-series in healthcare: a multi-faceted problem

1) Dynamic forecasting

- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability
- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Healthcare data - Unique challenges

- Multiple streams of measurements
- · Measurements are sparse, irregularly and informatively sampled
- Multiple outcomes of interest (various events of interest, various morbidities)
- True clinical states are unobserved (e.g., onset of diseases)
- Many possible patterns (heterogeneous phenotypes, comorbidities)

Time-series analysis and dynamic forecasting

- Build disease progression models
 - Understand and model carefully the available data!
- Learn the model parameters from available EHR data (Training time)
- Issue dynamic forecasts for the patient at hand (Test time/Run-time)
- Unravel new understanding of disease progression
 - Population
 - Sub-groups of patients

Current disease progression models: formalisms

Markov Models $P(\boldsymbol{Z}_{n+1} | \mathcal{H}_{t_n}) = P(\boldsymbol{Z}_{n+1} | \boldsymbol{Z}_n)$

Disadvantages

- Observable models
- One disease at a time
- "Average" patient

van_der_Schaar \LAB Population-level representation of disease states

UNIVERSITY OF CAMBRIDGE

Current disease progression models: formalisms Hidden Markov Models (HMMs)

Introducing latent (hidden/unobservable) disease states

Hidden states

Disease Stages

Clinical findings Lab measurements Vital signs Treatments Events of interest Observation times

Markov models?

History matters!

Ignore history

- Previous states
- Order of states
- Duration in a state

One size fits all!

Only capture population-level transitions across progression stages Ignores individual clinical trajectories

Recurrent Neural Nets?

Two central goals

Goal A: Accurately forecast individual-level disease trajectories

What are the risks of mortality, relapse, comorbidities, complications, etc. in the future?

Goal B: Understand disease progression mechanisms.

- Underlying <u>latent structure</u> of <u>disease evolution</u>
- Patients' <u>subgroup</u> analysis
- Refined <u>phenotypes</u>

Deep learning models?

Retain [Choi et al., NeurIPS 2016]

- 1. Embed observations $\{x_1, \dots, x_i\}$
- 2. Generate α using RNN_{α}
- 3. Generate ß using RNN_β
- 4. Generate context vector using attention α , ß and representations v
- 5. Make prediction

Deep learning models?

Attentive state space models [Alaa & vdS, 2018, NeurIPS 2019]

Main idea: a general and versatile deep probabilistic model capturing complex, non-stationary representations for patient-level trajectories

Maintain probabilistic structure of HMMs

But use RNNs to model state dynamics

Going beyond Markov

 Attention weights determine the influences of past state realizations on future state transitions

Overcomes shortcoming of Markov Models

Attention weights create a "soft" version of a non-stationary, variable-order Markov model where underlying dynamics of a patient change over time based on an individual's clinical context!

ASSM - "memory" is shaped by patient's current context (clinical events, treatments, etc.)

ASSM: A General, Versatile and Clinically Actionable Model

Time-series: a multi-faceted problem

- 1) Dynamic forecasting
- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability
- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Longitudinal survival data: $\mathcal{D} = \{(\mathcal{X}^{(i)}, \tau^{(i)}, k^{(i)})\}_{i=1}^{N}$

- X^i : History of longitudinal measurements until time the last measurement
 - $\mathcal{X}^{i}(t) = \{x^{i}(t_{j}^{i}): 0 \leq t_{j}^{i} \leq t \text{ for } j = 1, \dots, M^{i}\}$ where M^{i} is the number of measurements.
- τ : Time-to-event including right-censoring
- k : Event label

van_der_Schaar

Estimation of the incidence of the occurrence of an event while taking competing risks into account!

New goal: Estimate "dynamic" Cumulative Incidence Function (CIF)

$$\widehat{F}_k(\tau|\mathcal{X}^*) \stackrel{\text{\tiny def}}{=} P(T \leq \tau, E = k|\mathcal{X}^*, T > t^*_{M^*})$$

Longitudinal measurements accrued by the time of risk predictions

The patient was alive at the time of the last measurement!

van_der_Schaar

Network architecture and loss functions

Network architecture and loss functions

Loss functions:

$$\mathcal{L}_{Total} = \mathcal{L}_{1} + \mathcal{L}_{2} + \mathcal{L}_{3}$$
Log-likelihood of joint
TTE distribution
$$\mathcal{L}_{1} = -\sum_{i=1}^{N} \left[\mathbb{1}(k^{i} \neq \emptyset) \cdot \log\left(\frac{o_{k^{i},\tau^{i}}^{i}}{1 - \sum_{k \neq \emptyset} \sum_{n \leq t^{i}_{J^{i}}} o_{k,n}^{i}} + \mathbb{1}(k^{i} = \emptyset) \cdot \log\left(1 - \sum_{k \neq \emptyset} \hat{F}_{k}(\tau^{i} | \mathcal{X}^{i})\right) \right]$$

Network architecture and loss functions

Loss functions:

Network architecture and loss functions

Dynamic-DeepHit updates the survival predictions as new observations are collected over time.

(a) A patient died of respiratory failure (k = 1)

van_der_Schaar

LAB

(b) A patient died of other causes (k = 2)

Revolutionizing Healthcare - getting ML-powered tools in the hands of clinicians (part 2)

van_der_Schaar

Time-series: a multi-faceted problem

- 1) Dynamic forecasting
- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability
- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Motivation: How should we group patients?

LAB

Motivation: How should we group patients?

Example of 3 patients diagnosed with breast cancer (BC)

What if both Patient A and C will have an adverse event (e.g., death) that can be expected by increases in cancer antigen and mammographic density

New notion of clustering

Key idea: similarity in future outcomes

Temporal Phenotyping using Deep Predicting Clustering of Disease Progression [Lee, vdS, ICML 2020]

New notion of phenotype (clustering):

- Predictive of similar future outcomes
- Doctors and patients can actively plan

Learn discrete representations of past observations (time-series data) that best describe future events and outcomes of interest

Problem Formalism

Notation

- $\mathbf{x}_{1:t} = (\mathbf{x}_1, \dots, \mathbf{x}_t)$ and \mathbf{y}_t : input (sub)sequence and output label at time t
- s_t : cluster assignment at time t and $\mathcal{E} = (\mathbf{e}(1), \dots, \mathbf{e}(K))$: cluster centroids
- $C = \{C(1), \dots, C(K)\}$: a set of *K* predictive clusters where $C(k) = \{\mathbf{x}_{1:t}^n | s_t^n = k\}$

We establish identifying a set of predictive clusters, \mathcal{C} , as

$$\begin{array}{l} \underset{\mathcal{C}}{\text{minimize}} \sum_{k \in \mathcal{K}} \sum_{\mathbf{x}_{1:t} \in \mathcal{C}(k)} KL(Y_t | \mathbf{X}_{1:t} = \mathbf{x}_{1:t} \| Y_t | S_t = k) \quad (1) \\ \text{label distribution} \\ \text{given a sequence} \\ (\text{continuous rep.}) \quad \text{label distribution} \\ \text{given a cluster assignment} \\ (\text{discrete rep.}) \\ \end{array}$$

Challenges

- NP-hard combinatorial problem \rightarrow iteratively solving two subproblems
- Assigning clusters involves sampling process → actor-critic training [Konda & Tsitsiklis, 2000]

van_der_Schaar

AC-TPC [Lee & vdS, ICML 2020]

Training Stage Actor Critic **Encoder** (f_{θ}) \hat{y}_t Predictor (g_{ϕ}) $\rightarrow \mathbf{Z}_t$ $\mathbf{x}_{1:t}$ \bar{y}_t LSTM Cell $\boldsymbol{e}(s_t)$ Selector (h_{ψ}) π_t Sampling Embeddings (E)

Testing Stage

AC-TPC [Lee & vdS, ICML 2020]

van_der_Schaar

LAB

Subproblem 1 - Optimize network parameters (θ, ϕ, ψ)

AC-TPC [Lee & vdS, ICML 2020]

Subproblem 2 - Optimize embeddings ($\mathcal{E} = (\mathbf{e}(1), \dots, \mathbf{e}(K))$)

Example Trajectories [Lee & vdS, ICML 2020]

Patient A

Cluster 1 \rightarrow Cluster 9 \rightarrow Cluster 3

Patient B

Cluster 2 \rightarrow Cluster 7

Time-series: a multi-faceted problem

- 1) Dynamic forecasting
- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability
- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Personalized screening/monitoring

Who to Screen? When to Screen? What to Screen?

 What is the value of various information over time for this event for this individual?

How to formalize the personalized monitoring problem?

Deep Sensing: Active Sensing using multi-directional recurrent neural networks [Yoon, Zame, vdS, ICLR 2018]

- Motivation:
 - Monitoring and screening (sensing) is costly
 - Trade-off between value of information and cost of sensing
 - Sensing should be an active choice
- Challenges:
 - Value of information is unknown & dynamically changing needs to be learned!

How to do this???

Deep sensing architecture

Training time

Trained functions $\Lambda = \{\Phi_r, \Psi_r, \Omega_r, \Upsilon_r\}_{r=1:R}$

Deep sensing architecture

Time-series: a multi-faceted problem

- 1) Dynamic forecasting
- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability
- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Current thinking in ED&D

Risk prediction

Segments individuals using population-based risks, usually based on few variables rarely uses longitudinal data usually only calculated once

Risk scores then lead to guideline-driven management of patients often rigid many diseases lack guidelines and protocols

This is all predicated upon a <u>quantitative</u> understanding of disease progression

How can we detect disease early?

Early diagnosis is more than just event prediction/forecasting

- It involves unravelling and dissecting the underlying states of disease progression towards the event of interest

A quantitative understanding of disease progression is needed!

van_der_Schaar

Early diagnosis: How?

van_der_Schaar

Early diagnosis: How?

van_der_Schaar \LAB

Revolutionizing Healthcare: roundtable on ED&D

Double-header (<u>February 8</u> and <u>March 10</u>) on ED&D – one of healthcare's holy grails!

https://www.vanderschaar-lab.com/
 → Engagement sessions
 → Revolutionizing Healthcare

Visit our extensive new reference page on ML for ED&D!

https://www.vanderschaar-lab.com/ → Impact → Early detection and diagnosis

van_der_Schaar

ΙΔΒ

Time-series: a multi-faceted problem

- 1) Dynamic forecasting
- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability
- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Individualized treatment effects over time

LAB

Individualized treatment effects over time

Causal effect inference based on longitudinal patient observational data

Observed (factual) outcome for treatment \mathbf{A}_t given patient history $\bar{\mathbf{H}}_t$: \mathbf{Y}_{t+1}

van_der_Schaar

vanderschaar-lab.com

济国济

Challenges in using longitudinal observational data for estimating individualized outcomes

The patient history $\bar{\mathbf{H}}_t = (\bar{\mathbf{X}}_t, \bar{\mathbf{A}}_{t-1}, \mathbf{V})$ contains time-dependent confounders which bias the treatment assignment \mathbf{A}_t in the observational dataset.

Patient covariates - affected by past treatments which then influence future treatments and outcomes

Bias from time-dependent confounders.

Handling time-dependent confounding bias

Inverse probability of treatment weighting

- → Marginal structural models [Robins, Hernan, Brumback, Epidemiology 2000]
- → Recurrent marginal structural networks [Lim, Alaa, van der Schaar, NeurIPS 2018]

$$\mathbf{SW}(t,\tau) = \prod_{n=t}^{t+\tau} \frac{f(\mathbf{A}_n | \bar{\mathbf{A}}_{n-1})}{f(\mathbf{A}_n | \bar{\mathbf{H}}_n)} = \prod_{n=t}^{t+\tau} \frac{\prod_{k=1}^{\Omega_a} f(A_n(k) | \bar{\mathbf{A}}_{n-1})}{\prod_{k=1}^{\Omega_a} f(A_n(k) | \bar{\mathbf{H}}_n)}$$

Handling time-dependent confounding bias

Inverse probability of treatment weighting

- → Marginal structural models [Robins, Hernan, Brumback, Epidemiology 2000]
- Recurrent marginal structural networks [Lim, Alaa, van der Schaar, NeurIPS 2018]

Numerically unstable

High variance

Representation Learning

Counterfactual recurrent network [Bica, Alaa, Jordon, van der Schaar, ICLR 2020]

$$P(\Phi(\bar{\mathbf{H}}_t) \mid \mathbf{A}_t = A_1) = \dots = P(\Phi(\bar{\mathbf{H}}_t) \mid \mathbf{A}_t = A_K)$$

Balanced representations/ Treatment invariant representations

Counterfactual Recurrent Network [Bica, Alaa, Jordon & van der Schaar, ICLR 2020]

- **Builds treatment invariant representations using domain adversarial training [Ganin et al., 2016].**
- **Estimates counterfactual trajectories using sequence-to-sequence architecture.**

Part 2: making time series models as useful as possible

Time-series: a multi-faceted problem

- 1) Dynamic forecasting
- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability
- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Which time-series method to select?

What is the challenge?

- RNN cells (e.g. LSTM, GRU)
- Architectures (e.g. Bidirectional, Encoder-decoder)
- Attention or not?

Long or short memory?

Temporal distribution shifts, risk factors are changing!

Best model for each time step is different! Can't manually select the best model for each time step

Stepwise Model Selection

Stepwise Model Selection for Sequence Prediction via Deep Kernel Learning [Zhang, Jarrett, vdS, AISTATS 2020]

Solution: novel BO algorithm to tackle model selection challenge

van_der_Schaar

Select one optimal sequence model for all time steps? No!

Treat performance at each time step as its own black-box function

Objective: Model performance at each time step

Multi-Objective Bayesian Optimization finds *one* model with best trade-off across all objectives

Expensive to compute volume gain w.r.t all the objectives \otimes

Other solutions?

Black box functions

Multi-Objective Bayesian Optimization (MOBO)

van_der_Schaar

Apply BO sequentially across time-steps as multi-task? No!

Multi-Task Bayesian Optimization (MTBO)

© Warm-start: Transfer knowledge gained from previous optimizations to new tasks, such that subsequent optimizations are more efficient

Apply BO sequentially across time-steps as multi-task? No!

- MTBO requires evaluating deep learning models on large datasets which is prohibitively expensive
- MTBO requires solving T separate BO procedures in a sequence unclear how to allocate evaluations among these subproblems
- ⊗ MTBO does not take full advantage of information from all acquisition functions

van_der_Schaar

SMS-DKL [Zhang, Jarrett, vdS, AISTATS 2020]

A hyperparameter optimization tool for sequence model

Solve the multiple black-box function optimization problem jointly and efficiently by learning and exploiting correlations among black-box functions using deep kernel learning

Stepwise Model Selection via Deep Kernel Learning – SMS-DKL

van_der_Schaar

SMS-DKL [Zhang, Jarrett, vdS, AISTATS 2020]

How do we jointly and efficiently learn and exploit correlations among black-box functions?

Idea: Using deep kernel learning

Create feature maps to measure similarities between data tuples

van_der_Schaar

Time-series: a multi-faceted problem

- 1) Dynamic forecasting
- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability
- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Intrinsic vs. Post-Hoc Interpretability

Intrinsic (e.g. linear models, trees, attention)

Feature Importance

Highlight most important features for the model

• Integrated Gradient [Sundararajan et al. 2017]

$$a_i(f, \mathbf{x}) = \left(x_i - x_i^0\right) \times \int_0^1 \frac{\partial f[\mathbf{x}^0 + t(\mathbf{x} - \mathbf{x}^0)]}{\partial x_i} dt$$

• SHAP [Lundberg et al. 2017]

van_der_Schaar

LAB

$$a_i(f, \mathbf{x}) = \sum_{S \subset [\dim \mathcal{X}] \setminus \{i\}} \frac{|S|! (\dim \mathcal{X} - |S| - 1)}{(\dim \mathcal{X})!} [f(\mathbf{x}_{S \cup \{i\}}) - f(\mathbf{x}_S)]$$

"Standard" feature importance methods perform poorly for time-series [Ismail et al., NeurIPS 2020]

What makes Time Series special?

How to detect salient features?

Perturbation based detection

Premise: salient features affect the model's prediction

Detect salient features by **feature perturbations**

Feature perturbation affects prediction \rightarrow **Salient** feature

How to take the time context into account? [Crabbé, vdS, ICML 2021]

Time context matters

Typical saliency methods treat each input $x_{t,i}$ as a feature

 \Rightarrow Time dependency is **ignored** by the saliency method

Dynamic Perturbation Operator

Idea: perturb each $x_{t^*,i}$ by using neighbouring times:

 $\begin{array}{l} \mbox{Perturbed input} \\ \pi \big(x_{t^{*},i} \, ; t^{*},i \big) = & \sum_{t=t^{*}-W_{1}}^{t^{*}+W_{2}} \mbox{Linear combination} \\ \end{array}$

 \Rightarrow Time dependency is **integrated** in perturbation

vanderschaar-lab.com

Window perturbation:

How to take the time context into account? [Crabbé, vdS, ICML 2021]

vanderschaar-lab.com

Time context matters

van_der_Schaar

Typical saliency methods treat each input $\boldsymbol{x}_{t,i}$ as a feature

 \Rightarrow Time dependency is **ignored** by the saliency method

Dynamic Perturbation Operator

Idea: perturb each $x_{t^*,i}$ by using neighbouring times:

$$\pi(x_{t^*,i};t^*,i) = \sum_{t=t^*-W_1}^{t^*+W_2} c_t(t^*,i) \times x_{t,i}$$

 \Rightarrow Time dependency is **integrated** in perturbation

Dynamask [Crabbé, vdS, ICML 2021]

How to make the masks parsimonious?

What do we mean by parsimonious?

Masks should not highlight more features than necessary

 \Rightarrow We need to enforce feature selection

How to enforce parsimony?

The user selects the fraction a of most important features

We add a regularization to enforce sparsity:

 $\mathcal{L}_{a}(\mathbf{M}) = \|vecsort(\mathbf{M}) - \mathbf{r}_{a}\|^{2}$

Sets the $(1 - a) \times T \times d_X$ smallest mask coefficients to zero

How to avoid quick variations of saliency? [Crabbé, vdS, ICML 2021]

Quick time variations of the saliency

Might want to avoid **quick time variations** of the saliency

This can be a prior belief or a preference of the user

How to avoid this?

We add a regularization to penalize saliency jumps over time:

$$\mathcal{L}_{c}(\mathbf{M}) = \sum_{t=1}^{T-1} \sum_{i=1}^{d_{X}} \left| m_{t+1,i} - m_{t,i} \right|$$

Dynamask - Example

[Crabbé, vdS, ICML 2021]

-0.8

-0.6

-0.4

-0.2

0.0

Example number 5

True saliency

Baseline saliency

Feature Importance

Highlight most important features for the model

• Integrated Gradient [Sundararajan et al. 2017]

$$a_i(f, \mathbf{x}) = \left(x_i - x_i^0\right) \times \int_0^1 \frac{\partial f[\mathbf{x}^0 + t(\mathbf{x} - \mathbf{x}^0)]}{\partial x_i} dt$$

• SHAP [Lundberg et al. 2017]

$$a_i(f, \mathbf{x}) = \sum_{S \subset [\dim \mathcal{X}] \setminus \{i\}} \frac{|S|! (\dim \mathcal{X} - |S| - 1)}{(\dim \mathcal{X})!} [f(\mathbf{x}_{S \cup \{i\}}) - f(\mathbf{x}_S)]$$

Example Based Explanations

Highlight relevant examples seen by the model

• Influence Functions [Koh & Liang 2017]

 $a_{\mathbf{z}^{i}}(f_{\theta}, \mathbf{z}) = - \left\langle \nabla_{\theta} L(\mathbf{z}), \ \mathbf{H}_{\theta}^{-1} \nabla_{\theta} L(\mathbf{z}^{i}) \right\rangle$

• Representer Theorem [Yeh et al. 2018]

 $a_{\mathbf{z}^i}(f_{\theta}, \mathbf{z}) = k(\mathbf{x}, \mathbf{x}^i, \alpha^i)$

Problem Setup

LAB

A First Attempt – Input Similarity

Leveraging Learned Features

Latent space

Corpus Decomposition

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]

Corpus hull in latent space

 $\mathcal{CH}(\mathcal{C}) \equiv \left\{ \sum_{c=1}^{C} w^{c} \boldsymbol{h}^{c} \mid w^{c} \in [0,1] \forall c \in [C] \land \sum_{c=1}^{C} w^{c} = 1 \right\}$

• Find the best corpus decomposition of the example

 $\widehat{\boldsymbol{h}} = \arg \min \left\| \boldsymbol{h} - \widetilde{\boldsymbol{h}} \right\|_{\mathcal{H}} \quad s.t. \quad \widetilde{\boldsymbol{h}} \in \mathcal{CH}(\mathcal{C})$

• Might have a residual $r_{\mathcal{C}}(h) = \|h - \hat{h}\|_{\mathcal{H}}$

Explaining At The Feature Level

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]

SimplEx

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]

van_der_Schaar

What Makes Simplex Special?

- SimplEx gives the user freedom to choose the corpus of examples to explain the model predictions
- Advantage:
 - No need for this corpus to be from the model's training set

(a) The training set of a model is not always accessible

(b) The user might want explanations in terms of examples that make sense for them

What Makes Simplex Special?

• Keep humans in the loop

Leverage user's knowledge: SimplEx explains with a corpus chosen by the user

• Increase the scientific content of the models

Expand the picture: SimplEx **unifies** example and feature-based explanations **Enhance the picture:** SimplEx **captures insights** from the model's **latent space**

• Debug the models

Trigger user's scepticism: residual r_c detects examples for which the model **extrapolates**

Detecting Model's Limitations

- Start with non-oscillating time AR time series dataset \mathcal{D}
- Split it into a training and testing set $\mathcal{D} = \mathcal{D}_{train} \sqcup \mathcal{D}_{test}$
- Train a forecasting RNN on \mathcal{D}_{train}
- Sample a corpus from training set $\mathcal{C} \subset \mathcal{D}_{train}$
- Corrupt the testing set with oscillating AR time series $T = D_{test} \sqcup D_{oscil}$
- Make a corpus decomposition of each example in T, compute the residual $r_{\mathcal{C}}$
- Can we detect oscillating time series with corpus residual?

vanderschaar-lab.com

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]

Detecting Model's Limitations

[Crabbé, Qian, Imrie, vdS, NeurIPS 2021]

Sort the time series by decreasing order of residual r_c

Inspect the time series in this order

Increase the counter each time an oscillating time series is detected

SimplEx offers a better detection than 3NN baselines

Time-series: a multi-faceted problem

- 1) Dynamic forecasting
- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability
- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Objective: sequential confidence intervals for RNNs

Predictive intervals for Recurrent Neural Networks (RNNs).

Some solutions

Bayesian RNNs

Quantile RNNs

Probabilistic RNNs

Prior over RNN parameters Uncertainty = credible intervals

Posterior is intractable = Monte Carlo dropout (Gal & Ghahramani, 2016)

Explicitly train a multi-output RNN to predict intervals

Combine RNNs with variants of state-space models

Attentive state-space model (Alaa & van der Schaar, 2019)

Deep state-space model (Rangapuram et al., 2018)

vanderschaar-lab.com

Quantile loss for RNN training

(Gasthaus et al., 2019)

Why are these solutions not enough in healthcare?

Post-hoc application

- Does not affect model accuracy
- Does not interfere with model training

Generality and versatility

- **Does not require changes to model architecture**
- Applies to a wide range of sequence prediction settings

Frequentist coverage guarantees

van_der_Schaar

Formal frequentist procedure

Frequentist Uncertainty in Recurrent Neural Networks via Blockwise Influence Functions [Alaa & vdS, ICML 2020]

Uncertainty intervals = variability in re-sampled RNN outputs. RNN outputs are re-sampled by perturbing the model parameters through iterative deletion of blocks of data and re-training the model on the remaining data

Time-series: a multi-faceted problem

- 1) Dynamic forecasting
- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability
- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018]

Temporal data streams

- Interpolation temporal correlations
- Imputation cross-features correlations
- Both correlations must be simultaneously learned

van_der_Schaar

Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018]

Simple of a line of the second direction and advanced in the backward direction and

van_der_Schaar \LAB

Multi-directional RNN (M-RNN) [Yoon, Zame, vdS, TBME 2018]

- Correlations across features: **FC** network
- Multiple imputations: Dropout

 \hat{x}_t^d

Bi-RNN and FCN are jointly optimized

Can we do better? Learn from clinical judgements! [Alaa, Hu, vdS, ICML 2017]

Data - shaped by clinical judgments! Probabilistic model for learning from observational data

Informative sampling: Time-varying sampling frequency

Model a patient's trajectory as a marked point process modulated by their health state

Elements of the probabilistic model (I): the observation process

- Nature of Informative Sampling is Problem-dependent
- E.g. Cancer patient in regular hospital wards: evidence that sampling rate increases when patient is in a bad health state

Elements of the probabilistic model (II): the observation process

 $\{t_m\}_{m\in\mathbb{N}_+}$

Clinicians observe the patient's vital signs and lab tests according to a Hawkes process

...doubly stochastic point process

Captures impact of patient's health state on clinicians' sampling behavior

...with a self-exciting Triggering kernel

Captures dependence between observation events

vanderschaar-lab.com

UNIVERSITY OF CAMBRIDGE

Better inference using informative observations

Observation times are modeled as a Hawkes process

- Continuous-time jump process (like Poisson)
- Jump intensities depend on state (unlike Poisson)

Time-series: a multi-faceted problem

- 1) Dynamic forecasting
- 2) Time-to-event and survival analysis
- 3) Clustering and phenotyping
- 4) Screening and monitoring
- 5) Early diagnosis
- 6) Treatment effects
- 7) AutoML
- 8) Interpretability
- 9) Uncertainty estimation
- 10) Missing data and informatively missing data
- 11) Synthetic data generation
- Reproducibility and visualization

Healthcare data: not easy to access

Strict regulations for data access

... the result of perfectly valid concerns regarding privacy

Strong Regulation

Lack of high-quality healthcare data: impedes ML research in healthcare!

van_der_Schaar

De-identified data vs synthetic data

De-identified/anonymized data: real data with all personal identifiers removed/data fields scrambled

Synthetic data: data created from scratch, cannot be synced back to any individual (if modeled properly)

Requires ML/statistical modelling!

Generating synthetic data to be used for machine learning modeling is itself a machine learning problem!

Objective: To generate time-series data with preserving temporal dynamics

Key Example: Synthetic time-series healthcare data generation

Challenges: Capture the distributions of features within each time point as well as complex dynamics of those variables across time points

Time-series generative adversarial networks [Yoon, Jarrett, vdS, NeurIPS 2019]

Block diagram of component functions and objectives.

Generating time-series synthetic data

TimeGAN - intersection of multiple strands of research

- GAN-based methods for sequence generation
- autoregressive models for sequence prediction
- time-series representation learning.

Important: Time-GAN handles mixed-data setting, where both static and time-series data can be generated at the same time

Block diagram of component functions and objectives.

TimeGAN: some limitations

GAN-based models - powerful way to synthesize time-series data, but....

- difficult to train (especially for time-series data) [Srivastava et al. (2017)]
- hard to evaluate quantitatively due to the absence of an explicitly computable likelihood function (only implicit likelihood modeling)
- vulnerable to training data memorization [Nagarajan et al. (2018)]
- a problem that would be exacerbated in the temporal setting

Generative Time-series Modeling with Fourier Flows [Alaa, Chan, vdS, ICLR 2021]

Variable-length and variable-frequency sequences of vectors.

$$\boldsymbol{x} = [\boldsymbol{x}_0, \dots, \boldsymbol{x}_{T-1}], \, \boldsymbol{x}_t \in \mathcal{X}, \, \forall \, 0 \leq t \leq T-1$$
$$\boldsymbol{x}_{t,d}[r_d] \triangleq \begin{cases} x_{t,d}, & t \mod r_d = 0, \\ *, & t \mod r_d \neq 0. \end{cases}$$

Goals: Generative model: to enable sampling synthetic time series

Explicit likelihood model: easy to optimize the model, easy to evaluate the model

Conclusions

New Frontiers: Healthcare problems (and models) are interconnected

LAB

	Patient-oriented	Profession-oriented	
Individual	 Bespoke medicine Risk scores Competing risks Screening and monitoring Diagnostic support Longitudinal disease trajectories Treatment effects 	 Empowering healthcare professionals Personalised ML assistants to support clinicians Interpretable, explainable, trustworthy Multi-disciplinary clinical contributions 	Catalyze a revolution in healthcare
At scale	 Population health and public health policy Discover & disentangle public risks and risk factors Population risk assessment → personalized risk Data-driven guidelines, protocols, standards Cross-country learning and interventions 	 Systems, pathways and processes Improving healthcare pathways Integrating and curating data sources Integrating a multitude of analytics into delivery systems Cooperation, interaction and learning 	

Want to learn more?

vanderschaar-lab.com/ → Engagement sessions → Inspiration Exchange

Inspiration Exchange

Themed discussion sessions specifically for <u>machine learning students</u> (particularly masters, Ph.D., and post-docs).

We would like to:

- discuss machine learning models and techniques
- share ideas about how machine learning can revolutionize healthcare
- spark new projects and collaborations
- raise awareness about this unique and exciting area of machine learning.

van_der_Schaar