
FactSelfCheck: Fact-Level Black-Box Hallucination Detection for LLMs

Albert Sawczyn1 Jakub Binkowski1 Denis Janiak1

Bogdan Gabrys2 Tomasz Kajdanowicz1

1Wrocław University of Science and Technology
2University of Technology Sydney

albert.sawczyn@pwr.edu.pl

Abstract

Large Language Models (LLMs) frequently
generate hallucinated content, posing signif-
icant challenges for applications where fac-
tuality is crucial. While existing hallucina-
tion detection methods typically operate at the
sentence level or passage level, we propose
FactSelfCheck, a novel black-box sampling-
based method that enables fine-grained fact-
level detection. Our approach represents text
as knowledge graphs consisting of facts in the
form of triples. Through analyzing factual
consistency across multiple LLM responses,
we compute fine-grained hallucination scores
without requiring external resources or train-
ing data. Our evaluation demonstrates that
FactSelfCheck performs competitively with
leading sampling-based methods while provid-
ing more detailed insights. Most notably, our
fact-level approach significantly improves hal-
lucination correction, achieving a 35% increase
in factual content compared to the baseline,
while sentence-level SelfCheckGPT yields only
an 8% improvement. The granular nature of
our detection enables more precise identifica-
tion and correction of hallucinated content.

1 Introduction

Large Language Models (LLMs) have gained sig-
nificant attention from academia and industry re-
cently. However, a major limitation of LLMs is
their tendency to generate hallucinated information
(Farquhar et al., 2024; Huang et al., 2025), pos-
ing significant challenges for applications where
factual correctness is crucial, such as healthcare
(Sallam, 2023). Although numerous methods have
been proposed to reduce hallucinations (Zhang
et al., 2023), it is not possible to eliminate them,
and LLMs will constantly hallucinate (Lee, 2023;
Xu et al., 2024). Therefore, there remains a critical
need for reliable hallucination detection in LLM
responses. Effective detection enables system in-
terventions by either preventing the transmission

of hallucinated content to users or facilitating its
correction (Zhang et al., 2023).

Previous approaches to hallucination detection
have primarily focused on classifying hallucina-
tions at either the passage or sentence level (Huang
et al., 2025). While valuable, these approaches are
limited in their granularity, as they do not provide
detailed information about specific hallucinated
facts. To address this limitation, we propose a novel
method for hallucination detection that operates at
the fact level, offering finer-grained analysis. In our
approach, we define a fact as a triple consisting of a
head, relation, and tail – a standard representation
in knowledge graphs (e.g., (Robert Smith, mem-
ber of, The Cure)) (Hamilton et al., 2017). Our
method provides more precise and actionable in-
formation by computing hallucination scores for
individual facts than traditional passage-level or
sentence-level classification approaches. Moreover,
our method represents facts in a structured way
through knowledge graphs (KGs), enabling more
straightforward interpretation, processing, and ver-
ification of factual content (Pan et al., 2024).

Our granular approach is motivated by two key
observations. First, a single sentence or text pas-
sage can contain multiple facts, with the number
of facts varying significantly across sentences, con-
texts, and domains. This variability makes it chal-
lenging to identify hallucinated aspects of gener-
ated output precisely when using sentence-level or
passage-level detection. Second, false information
can be dispersed throughout a text, as a single fact
may appear across multiple sentences. That can
mislead the sentence-level detection, as the factu-
ality of a sentence is dependent on the previous
sentences (Zhang et al., 2024). These challenges
become particularly acute when analyzing long
texts generated by LLMs. Fine-grained fact-level
detection provides a more precise understanding of
text factuality than a sentence or passage analysis.
It enables better assessment of content reliability

1

ar
X

iv
:2

50
3.

17
22

9v
1

 [
cs

.L
G

]
 2

1
M

ar
 2

02
5

LLM

FactSelfCheck-Text

FactSelfCheck-KG

LLM

Fact-Text

Consistency

Assessment

Fact-KG

Consistency

Assessment

Hallucination Scores

Hallucination Scores

Figure 1: The pipeline of FactSelfCheck in two variants. For response p, entities Ep and relations Rp are extracted,
followed by the construction of knowledge graphs KGp, for which hallucination scores Hfact are calculated.
Samples’ entities ES and relations RS are created by merging Ep and Rp with entities and relations from KGp. For
each sample s, the knowledge graph KGs is extracted. FactSelfCheck-KG assesses the consistency between a fact
and all KGs. FactSelfCheck-Text assesses the consistency between a fact and all s directly. To obtain sentence-level
Hsentence and passage-level Hpassage scores, fact-level scores are aggregated, as indicated by dashed arrows.

and, as we show later, more effective factuality
correction.

We propose FactSelfCheck, a black-box method
for fact-level hallucination detection, meaning it
does not require access to the model’s internal pa-
rameters. This design choice makes our approach
universally applicable across any LLM, including
closed models, like GPT (OpenAI et al., 2024).
Following a sampling-based detection paradigm,
introduced by Manakul et al., 2023, our method
utilizes multiple response generations and analyzes
the factual consistency of extracted facts across
these samples. This paradigm is based on the phe-
nomenon that factual information remains largely
consistent across different generations, while hal-
lucinated content tends to vary or contradict itself
between samples (Manakul et al., 2023; Wang et al.,
2023). This way, we can effectively identify hallu-
cinated facts without relying on external resources
(zero-resource) or access to the model’s internal
parameters (black-box). Moreover, our method is
non-parametric, as it does not require any training,
making it easy to implement in any domain with-
out the need for training data. The FactSelfCheck
pipeline consists of three main steps: knowledge
graph extraction, which extracts sets of facts from
the initial response and samples; fact-level hallu-
cination scoring; and calculating sentence-level
and passage-level scores by aggregating fact-level
scores.

We evaluated our method using the WikiBio
GPT-3 Hallucination Dataset (Manakul et al.,

2023), aggregating fact-level scores into sentence-
level and passage-level scores. Our approach
achieves performance comparable to leading
sampling-based methods while providing more
detailed information about hallucinations. Addi-
tionally, we demonstrate that our fact-level ap-
proach significantly improves hallucination correc-
tion. Compared to a baseline, providing incorrect
facts to the correction method leads to a 35% in-
crease in factual content, while passing incorrect
sentences leads to an 8% increase.

Our key contributions are as follows:

1. The novel black-box sampling-based method
for fact-level hallucination detection – Fact-
SelfCheck. It enables fine-grained hallucina-
tion detection in LLM responses without re-
quiring training data or external resources, as
it is both non-parametric and zero-resource.

2. The effective approaches for measuring fac-
tual consistency across multiple samples:
FactSelfCheck-KG using knowledge graph
comparisons and FactSelfCheck-Text using
direct text comparison.

3. Comprehensive evaluation of our method,
which shows competitive performance with
leading sampling-based methods while pro-
viding more detailed insights.

4. Demonstration that fact-level detection sig-
nificantly improves hallucination correction
compared to sentence-level approaches.

2

Our code is available on GitHub 1.

2 Related work

Xu et al., 2024 have proven that hallucinations are
inevitable in LLMs. As LLMs are powerful tools,
many recent studies have been conducted regarding
hallucination mitigation and detection (Zhang et al.,
2023; Huang et al., 2025). The detection methods
can be divided into two groups: white-box and
black-box.

White-box methods analyze LLMs’ internal
states (Farquhar et al., 2024; Azaria and Mitchell,
2023). While these methods are universal across
all LLMs, they often require multiple generations,
similar to sampling-based methods. Notable ap-
proaches include: SAPLMA (Azaria and Mitchell,
2023), which predicts from hidden states whether
generated text is correct or incorrect; INSIDE
(Chen et al., 2024), which evaluates hidden state
consistency across generations; SEPs (Kossen et al.,
2024) that predict entropy directly from model hid-
den states; Lookback Lens (Chuang et al., 2024)
and AttentionScore (Sriramanan et al., 2024) that
uses attention maps to detect hallucinations.

Black-box approaches operate without access to
the model’s internal states and aim to detect halluci-
nations based solely on the text generated by LLMs.
Some of these methods use external resources to
collect evidence (Min et al., 2023; Chern et al.,
2023). Others leverage LLMs to detect hallucina-
tions like CoVe (Dhuliawala et al., 2024), which
utilizes the chain-of-thought paradigm for detec-
tion. Another category is sampling-based meth-
ods, such as SelfCheckGPT (Manakul et al., 2023),
which evaluate factuality by generating multiple
responses (stochastic samples) and assessing con-
sistency between the original response and these
samples.

The most popular approach is to classify halluci-
nations at sentence-level or passage-level (Huang
et al., 2025). Few methods have been specifically
designed to detect hallucinations at the fact level
(where facts are defined as triples). GraphEval
(Sansford et al., 2024) generates a KG from LLM
output and compares it with the context provided
in the LLM input. FactAlign (Rashad et al., 2024)
builds KGs from input and output, then compares
them after performing entity alignment, a technique
that pairs the same entity in different KGs. Most

1https://github.com/graphml-lab-pwr/
FactSelfCheck license: CC BY-SA 4.0

similar to our approach is GCA (Fang et al., 2024),
which constructs KGs from the response and sam-
ples and then compares them by aggregating mul-
tiple scores. GCA has significant methodological
concerns - they tuned several parameters directly
on the evaluation set (which is the only set in this
dataset), thus we do not compare against it despite
using the same dataset. Moreover, our method
belongs to a fundamentally different class as it is
zero-shot, requiring no parameter tuning.

3 Method

We propose FactSelfCheck, a black-box sampling-
based method for fact-level hallucination detection,
as illustrated in Figure 1. We list used prompts in
Appendix F.

3.1 Notation
Let p denote the initial response passage generated
by the LLM to a user query, which we aim to eval-
uate for hallucinations. Let S = {s1, . . . , sN} rep-
resent a set of N stochastic LLM response samples.
The text passage p consists of a set of sentences U .
For each sentence u ∈ U and each sample s ∈ S,
we extract knowledge graphs KGu and KGs, re-
spectively. Each knowledge graph comprises a set
of facts, where a fact f is defined as a triple (h, r, t)
consisting of a head h, relation r, and tail t, e.g.
(Robert Smith, member of, The Cure). We define
KGp =

⋃
u∈U KGu as the knowledge graph con-

sisting of all facts from the passage p.
Our objective is to compute a fact-level halluci-

nation score Hfact for each fact f in KGp. Subse-
quently, to facilitate comparisons with other meth-
ods, we aggregate these scores to obtain a sentence-
level hallucination score Hsentence for each sentence
u and a passage-level hallucination score Hpassage
for the entire passage p.

3.2 FactSelfCheck pipeline
As shown in Figure 1, the pipeline of Fact-
SelfCheck consists of three main steps: (1) Knowl-
edge Graph Extraction that extracts sets of enti-
ties, relations, and finally, knowledge graph from
the initial response p and samples S; (2) Fact-
level Hallucination Scores, that score facts by
measuring factual consistency between facts in
KGp and, depending on the variant, KGs in
FactSelfCheck-KG or directly s in FactSelfCheck-
Text; (3) Sentence-Level and Passage-Level
Scores calculation by aggregation of the fact-level
scores.

3

https://github.com/graphml-lab-pwr/FactSelfCheck
https://github.com/graphml-lab-pwr/FactSelfCheck

3.3 Knowledge Graph Extraction
We adopt an approach that decomposes the knowl-
edge graph extraction task into simpler subtasks,
similarly to Edge et al., 2024. This process involves
three primary steps: extracting entities, identifying
relations, and formulating facts, which are imple-
mented as a sequence of LLM prompts.

For each instance, we extract a list of entities Ep
by passing p to the LLM (Prompt 1).

Ep = LLMentities(p) (1)

Next, we provide p and Ep to the LLM to extract
relation types between entities, resulting in Rp

(Prompt 2).

Rp = LLMrelations(p, Ep) (2)

We then input Ep, Rp, and each sentence u ∈ U
into the LLM to extract the knowledge graph KGu

(Prompt 3). We also provide an initial response p
to add contextual information. The output is a set
of facts:

KGu = LLMsentence_facts(u, p, Ep,Rp) (3)

After extracting KGu for each sentence u ∈ U ,
we compile the sets of entities ES and relations
RS required for extracting knowledge graph KGs

from each sample s (Prompt 4)2:

ES = Ep ∪
⋃
u∈U

{h, t | (h, r, t) ∈ KGu} (4)

RS = Rp ∪
⋃
u∈U

{r | (h, r, t) ∈ KGu} (5)

KGs = LLMsample_facts(s, ES ,RS) (6)

Extracting KGs by utilizing ES and RS is more
convenient than extraction without them, as it elimi-
nates the need for entity alignment and ensures that
the KG is built using the same schema as KGp.

2Although we could theoretically use Ep and Rp for KGs

extraction, in practice, LLMs are not sufficiently accurate to
extract all entities and relations from the response p when cal-
culating Ep and Rp. This results in KGu containing entities
and relations not present in Ep and Rp, even if the prompt
restricts them. Empirical tests showed that extending ES and
RS by adding entities and relations from all KGu improved
the results.

3.4 Fact-Level Hallucination Scores
We define two variants for measuring fact-level hal-
lucination scores. The first variant, FactSelfCheck-
KG, assesses the consistency between a fact and
the knowledge graphs extracted from samples. The
second variant, FactSelfCheck-Text, evaluates the
consistency between a fact and the samples directly.

3.4.1 FactSelfCheck-KG
In the FactSelfCheck-KG variant, we introduce two
metrics to assess the reliability of each fact.

Frequency-Based Hallucination Score The
frequency-based fact-level hallucination score is
based on the intuition that the probability of a fact
being hallucinated is inversely proportional to the
fraction of samples containing the same fact.

Hfact(f) = 1− 1

|S|
∑
s∈S

I{f ∈ KGs} (7)

where Hfact(f) is the hallucination score for fact
f , and I{f ∈ KGsn} is an indicator function that
equals 1 if fact f appears in KGsn and 0 other-
wise. The higher the Hfact value, the higher the
plausibility of hallucination.

LLM-Based Hallucination Score To allow se-
mantic matching and reasoning over knowledge
graphs, rather than only exact fact matching, we
introduce the LLM-based fact-level hallucination
score. We instruct the LLM to determine whether
each fact is supported by the knowledge graphs
extracted from the samples (Prompt 5). The LLM
is expected to respond with ’yes’ or ’no’. We then
average the valid responses from the LLM to get
the final score as in Equation (8). Any invalid re-
sponses are not included in the averaging.

Hfact(f) =
1

|Vf |
∑
s∈Vf

Ψ(f,KGs) (8)

where Vf represents the set of samples with valid
LLM responses for the fact f , and the function Ψ
is defined as follows:

Ψ(·) =

{
0 if the LLM returns ’yes’
1 if the LLM returns ’no’

(9)

3.4.2 FactSelfCheck-Text
In the FactSelfCheck-Text variant, we check if a
fact is supported by each textual sample directly

4

without using the knowledge graphs. We prompt
the LLM to evaluate whether a fact f is supported
by the textual sample s (Prompt 5). As in the pre-
vious variant, we average the valid LLM responses
using the Ψ function:

Hfact(f) =
1

|Vf |
∑
s∈Vf

Ψ(f, s) (10)

3.5 Sentence-Level and Passage-Level
Hallucination Scores

While detecting hallucinations at the fact level of-
fers fine-grained insights, there are scenarios where
sentence-level or passage-level detection is neces-
sary. To achieve this, we aggregate fact-level scores
to compute sentence-level scores Hsentence(u) and
a passage-level score Hpassage(p).

Hsentence(u) = Aggf∈KGu
Hfact(f) (11)

Hpassage(p) = Aggu∈UHsentence(u) (12)

where u represents a single sentence, and U is the
set of sentences of the response p. The aggrega-
tion function Agg can be based on operations such
as mean or max. The mean function provides
a smoothed factuality score, whereas max is sen-
sitive to the most hallucinated facts or sentences.
Additionally, sentences without facts are excluded
from the aggregation when calculating the passage-
level score.

As discussed in Section 4.1, the dataset choice
influences the calculation of the passage-level score
in Equation 12. Since the ground truth scores are
derived by averaging sentence-level scores, we
also employ the mean function for aggregation.
It is worth mentioning that a more intuitive ap-
proach would be to average the fact-level scores
from KGp, but such an approach cannot be eval-
uated with the current dataset. Nevertheless, this
technique could be promising for real-world appli-
cations and future research.

4 Experimental Setup

In this section, we describe the experimental setup,
including the used data, implementation details,
and aspects we investigated.

4.1 Evaluation Data

We utilized the WikiBio GPT-3 Hallucination
Dataset (Manakul et al., 2023) 3 for all experi-
ments. It is designed to evaluate sampling-based
hallucination detection methods. It consists of 238
passage-level annotations and 1908 sentence-level
annotations. As it contains only test data, tuning
parameters on this dataset would not be method-
ologically correct. While the dataset focuses on
sentence-level and passage-level evaluation, our ap-
proach goes further by providing more fine-grained
insights. To ensure a meaningful comparison with
SelfCheckGPT, we evaluated these levels using ag-
gregation approaches (see Section 3.5). Following
the protocol established by Manakul et al., 2023,
we merged the labels major-inaccurate and minor-
inaccurate into a single hallucinated class.

Additionally, we conducted a fact-level evalu-
ation to provide a more comprehensive analysis,
with the detailed description and results presented
in Appendix B.

4.2 Implementation Details

We employed the Llama-3.1-70B-Instruct model
(Grattafiori et al., 2024) as the LLM in our method,
hosting it locally using vLLM (Kwon et al., 2023)
on a server with 2xNvidia H100 94GB. The sole
exception was the hallucination correction experi-
ment, for which we utilized GPT-4o (OpenAI et al.,
2024), as detailed in Section 4.5. We set the LLM’s
temperature to 0.0 for all calls, except during hal-
lucination correction (see Section 4.5), where we
set it to 0.5. We implemented the methods and
experiments using LangChain (Chase, 2022) and
Hugging Face Datasets (Lhoest et al., 2021). All
pipeline steps were defined using DVC (Kuprieiev
et al., 2025) to facilitate reproducibility.

To determine whether a language model’s re-
sponse was ’yes’ or ’no’ in Equation 9, we parsed
the text into individual words and verified the pres-
ence of the words ’yes’ or ’no’. If either word
was detected, the response was excluded from the
averaging process in Equations 8 and 10.

4.3 Evaluation of Sentence-Level and
Passage-Level Hallucination Detection

For a fair comparison, we employed the same eval-
uation protocol as SelfCheckGPT. We reported
area under the precision-recall curve (AUC-PR) for

3huggingface.co/datasets/potsawee/wiki_bio_
gpt3_hallucination (cc-by-sa-3.0 license)

5

huggingface.co/datasets/potsawee/wiki_bio_gpt3_hallucination
huggingface.co/datasets/potsawee/wiki_bio_gpt3_hallucination

the sentence-level task and Pearson and Spearman
correlation coefficients for the passage-level task.
We evaluated our method against all variants of
SelfCheckGPT, including Prompt, NLI, Unigram
(Max), QA, and BERTScore. We reproduced the
results of the Prompt variant using the same LLM
employed in our study, namely Llama-3.1-70B-
Instruct, whereas the original method utilized an
unspecified release of GPT-3.5-turbo. We obtained
the remaining results of SelfCheckGPT from the
original paper. We ensured consistency in the eval-
uation protocol by reviewing their source code 4.

4.4 Effect of Sample Size on Detection
Performance

We investigated the impact of varying the num-
ber of samples on the detection performance of
our method. Specifically, we evaluated the per-
formance at both the sentence and passage levels
by changing the number of samples from 1 to 20.
We compared our method with the SelfCheckGPT
(Prompt) approach.

4.5 Role of Fact-Level Detection in
Hallucination Correction

One potential application of hallucination detec-
tion methods is their use in correcting hallucinated
responses. In this experiment, we investigate the
effectiveness of our fact-level detection approach
in enhancing hallucination correction and compare
the results with those obtained using sentence-level
detection and a baseline method. Each of the three
tested approaches uses different input for the LLM:
(1) Baseline: the original prompt and the generated
response (Prompt 7). (2) Sentence-level: the orig-
inal prompt, the generated response, and a list of
hallucinated sentences (Prompt 8). (3) Fact-level:
the original prompt, the generated response, and a
list of hallucinated facts (Prompt 9).

The original prompt is the one used during the
creation of the dataset: "This is a Wikipedia pas-
sage about {concept_name}:". We instructed the
LLM to return a list of sentences, allowing it to
correct each sentence or leave it unchanged if no
hallucinations were detected. We obtained the lists
of incorrect sentences/facts using the best variants
of models (see Section 5.1) with thresholds that
achieved the highest F1-scores on the dataset (0.3
for FactSelfCheck and 0.75 for SelfCheckGPT).

Subsequently, we evaluated the factuality of the

4github.com/potsawee/selfcheckgpt

corrected responses using the LLM-as-judge ap-
proach (Zheng et al., 2023) using Prompt 10. For
each corrected sentence, we provided the external
biography from Wikipedia. We instructed LLM-
as-judge to return ’yes’ if the source supported
the sentence, ’no’ if it was not, or ’refused’ if the
LLM declined to correct the sentence (e.g., due to
insufficient knowledge). We then categorized the
responses into three labels: ’factual’, ’non-factual’,
’refused’.

As mentioned in Section 4.2, we utilized GPT-
4o for this experiment instead of Llama-3.1-70B-
Instruct (used in detection). This choice was mo-
tivated by the challenging nature of the correction
task – the model needs to correct hallucinations
using only its internal knowledge, without access
to external references. While the model knows hal-
lucinated parts, it must rely on its knowledge to
determine the correct information.

While the described correction method is not our
main contribution, we used it to study the potential
benefits of fact-level detection. Although the cor-
rection method employed here may not be the most
sophisticated, the key takeaway is the observed
difference in performance.

5 Results

This section presents the results of the experiments
described in the previous section. The results of
the fact-level evaluation are given in Appendix B.

5.1 Evaluation of Sentence-Level and
Passage-Level Hallucination Detection

Tables 1 and 2 present a comparative analysis of
our method against SelfCheckGPT (SCGPT). In
the sentence-level evaluation, FactSelfCheck-Text
utilizing max as an aggregation function achieves
an AUC-PR score of 92.45. It demonstrates that
our approach is comparable in performance to the
leading SCGPT variants – Prompt (93.60) and NLI
(92.50). Notably, while our method operates at a
more granular level, it maintains competitive per-
formance with a marginal decrease of 1.2% com-
pared to the best SCGPT. Figure 3 illustrates the
precision-recall trade-off across various detection
thresholds.

In the passage-level evaluation, our method
achieves Pearson and Spearman correlation coeffi-
cients of 79.69 and 76.68, respectively. Although
these results are lower than SCGPT (Prompt)
(83.12 and 78.65), they demonstrate the effec-

6

github.com/potsawee/selfcheckgpt

Method Agg. AUC-PR

Sentence-level methods
SCGPT (Prompt) - 93.60
SCGPT (NLI) - 92.50
SCGPT (Unigram-max) - 85.63
SCGPT (QA) - 84.26
SCGPT (BERTScore) - 81.96
RandomSentence - 72.96

Fact-level methods (ours)
FSC-Text max 92.45
FSC-KG (LLM-based) max 91.82
FSC-Text mean 91.01
FSC-KG (LLM-based) mean 90.24
FSC-KG (Freq.-based) max 88.48
FSC-KG (Freq.-based) mean 88.25
RandomFact mean 74.22

Table 1: Results on the sentence-level hallucination
detection task. Comparison of sentence-level and fact-
level methods based on AUC-PR scores. SCGPT stands
for SelfCheckGPT, FSC represents FactSelfCheck, and
Agg denotes the aggregation method used for calculat-
ing sentence-level scores.

Method Agg. Pear. Spear.

Sentence-level methods
SCGPT (Prompt) - 83.12 78.65
SCGPT (NLI) - 74.14 73.78
SCGPT (Unigram-max) - 64.71 64.91
SCGPT (QA) - 61.07 59.29
SCGPT (BERTScore) - 58.18 55.90

Fact-level methods (ours)
FSC-Text max 79.69 76.68
FSC-KG (LLM-based) max 77.30 75.37
FSC-Text mean 77.03 75.89
FSC-KG (LLM-based) mean 73.92 72.28
FSC-KG (Freq.-based) mean 71.50 70.45
FSC-KG (Freq.-based) max 64.05 66.09

Table 2: Results on the passage-level hallucination de-
tection task. Comparison of sentence-level and fact-
level methods based on Pearson and Spearman corre-
lation scores. Results are sorted by the Pearson corre-
lation score. SCGPT stands for SelfCheckGPT, FSC
represents FactSelfCheck, and Agg denotes the aggrega-
tion method used for calculating sentence-level scores.
As mentioned in Section 4, passage-level scores were
calculated using the mean of sentence-level scores.

tive scalability of the fact-level detection to the
sentence-level and passage-level detections.

Among the FactSelfCheck (FSC) variants, FSC-

Text, which performs the direct comparison be-
tween facts and samples, consistently outperforms
FSC-KG, which relies on knowledge graph com-
parisons. FSC-Text offers computational advan-
tages by eliminating the knowledge graph extrac-
tion step. However, FSC-KG may be more compu-
tationally efficient for processing longer samples
with a lower fact density because of reduced to-
ken usage. Both variants perform better than the
Frequency-based FSC, which employs a simple
fact occurrence counting mechanism. This perfor-
mance differential highlights the benefits of incor-
porating semantic matching and knowledge graph
reasoning in hallucination detection. Nevertheless,
the frequency-based method’s computational effi-
ciency may make it suitable for applications where
its reduced accuracy is acceptable. Regarding ag-
gregation functions, max consistently yields better
results than mean, as it is more sensitive to the
presence of hallucinated facts in the text.

An interesting side observation is that our
reproduced SCGPT on Llama-3.1-70B-Instruct
marginally surpassed the original implementation
using GPT-3.5-turbo (93.60 vs 93.42 5). Further-
more, for passage-level detection, Llama achieved
a better Pearson correlation coefficient than the
GPT-3.5-turbo (83.12 vs. 78.32 5), while the Spear-
man correlation coefficient remained at a similar
level (78.65 vs. 78.30 5). This indicates that con-
temporary open-source models can exceed the per-
formance of previous closed models.

5.2 Effect of Sample Size on Detection
Performance

Figures 2 and 4 illustrate the relationship between
the number of samples and detection performance
for both FactSelfCheck variants and SelfCheckGPT
(Prompt). The results show that FactSelfCheck ex-
hibits similar behavior to SelfCheckGPT regarding
sample requirements. The performance improves
dramatically with up to 5 samples, after which the
improvement curve flattens. While additional sam-
ples continue to yield benefits, these improvements
become incremental, with modest gains observed
up to 20 samples.

5.3 Role of Fact-Level Detection in
Hallucination Correction

Table 3 presents the results of our hallucination
correction experiment. The fact-level approach

5The scores on GPT-3.5-turbo were obtained from the
original paper (Manakul et al., 2023).

7

5 10 15 20
n_samples

87

88

89

90

91

92

93
AU

C-
PR

SelfCheckGPT (Prompt)
FactSelfCheck-Text (Agg: max)
FactSelfCheck-KG (LLM-based) (Agg: max)
FactSelfCheck-Text (Agg: mean)
FactSelfCheck-KG (LLM-based) (Agg: mean)
FactSelfCheck-KG (Freq.-based) (Agg: max)
FactSelfCheck-KG (Freq.-based) (Agg: mean)

Figure 2: Impact of the number of samples on sentence-
level detection task.

Level Factual ↑ Non-Factual ↓ Refused

baseline 0.23 0.74 0.04
sentence 0.25 (+8%) 0.71 (-4%) 0.05 (+30%)
fact 0.31 (+35%) 0.64 (-12%) 0.05 (+30%)

Table 3: Effectiveness of hallucination correction by
providing detected hallucinations at sentence-level, fact-
level, and a baseline (without providing any hallucina-
tions). The table presents the proportions of factual, non-
factual sentences, and refused corrections. Percentages
in parentheses indicate the relative change compared to
the baseline. Arrows ↑ and ↓ denote whether a higher
or lower value is better.

shows substantial improvements over the baseline
and sentence-level methods. We observed a 35%
increase in factual content and 12% reduction in
non-factual content compared to the baseline. In
contrast, the sentence-level detection achieves only
modest improvements of 8% and 4%, respectively,
indicating that pointing out hallucinations at the
fact level enables more effective corrections and
underscoring the importance of our study and con-
tributions.

The overall rate of refusals remains low, increas-
ing only marginally from 0.04 in the baseline to
0.05 with fact-level and sentence-level detection.
We hypothesize that the model becomes more cau-
tious with provided information about hallucina-

tions and more likely to know its limitations.

6 Conclusion

Our study introduces FactSelfCheck, a novel ap-
proach to hallucination detection that operates at
the fact level rather than the sentence level or pas-
sage level. The evaluation results demonstrate that
this granular approach achieves competitive perfor-
mance with methods like SelfCheckGPT, with the
AUC-PR score of 92.45 on sentence-level detec-
tion compared to SelfCheckGPT (Prompt)’s 93.60,
while offering more detailed insights into the nature
of hallucinations.

Our fact-level approach improves hallucination
correction. Providing the correction system with a
list of incorrect facts rather than incorrect sentences
allows for more effective corrections. Compared
to baseline, we achieved 35% increase in factual
content and 12% reduction in non-factual content.
In contrast, the sentence-level approach achieved
a 8% increase and 4% reduction, respectively. It
underscores the importance of fine-grained hallu-
cination detection in enhancing the reliability and
trustworthiness of systems that use LLMs, partic-
ularly in applications requiring high factual accu-
racy.

Limitations

Our study faces two primary limitations. First,
we are constrained by the availability of suitable
datasets. Currently, the WikiBio GPT-3 Halluci-
nation Dataset, to the best of our knowledge, is
the only dataset designed for evaluating sampling-
based methods, and it only provides sentence-level
and passage-level annotations. It forced us to eval-
uate our method through aggregation rather than
directly assessing our fact-level detection capabili-
ties. Second, while the granular approach of Fact-
SelfCheck justifies its increased complexity, the
multiple LLM-based steps make it more compu-
tationally intensive compared to more straightfor-
ward methods like SelfCheckGPT.

Several promising directions could address these
limitations. An important step would be creating
new datasets with fact-level hallucination annota-
tions, enabling direct evaluation of our method’s
core capabilities. Additionally, we see significant
potential for improving computational efficiency.
Our current prompt engineering was largely empiri-
cal and not optimized for token usage. Future work
could focus on reducing prompt lengths and merg-

8

ing steps, such as simultaneously assessing support
for multiple facts or merging the KG extraction
steps. Finally, incorporating external knowledge
graphs could enhance fact verification while poten-
tially reducing our reliance on stochastic sampling.

Ethical Considerations

Like all machine learning methods, FactSelfCheck
can produce false positives and false negatives.
Therefore, it should not completely replace hu-
man verification of factual correctness in LLM
responses. Additionally, since the fact-level an-
notations (Appendix B) are generated by an LLM,
there remains a risk of fact mislabeling.

Acknowledgments

This work was funded by the European Union un-
der the Horizon Europe grant OMINO – Over-
coming Multilevel INformation Overload (grant
number 101086321, http://ominoproject.eu/).
Views and opinions expressed are those of the au-
thors alone and do not necessarily reflect those of
the European Union or the European Research Ex-
ecutive Agency. Neither the European Union nor
the European Research Executive Agency can be
held responsible for them. It was also co-financed
with funds from the Polish Ministry of Education
and Science under the programme entitled Inter-
national Co-Financed Projects, grant no. 573977.
This work was co-funded by the National Science
Centre, Poland under CHIST-ERA Open & Re-
usable Research Data & Software (grant number
2022/04/Y/ST6/00183).

References
Amos Azaria and Tom Mitchell. 2023. The internal

state of an LLM knows when it‘s lying. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2023, pages 967–976, Singapore. Associa-
tion for Computational Linguistics.

Harrison Chase. 2022. Langchain.

Chao Chen, Kai Liu, Ze Chen, Yi Gu, Yue Wu,
Mingyuan Tao, Zhihang Fu, and Jieping Ye. 2024.
Inside: Llms’ internal states retain the power of hal-
lucination detection. Preprint, arXiv:2402.03744.

I-Chun Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan,
Kehua Feng, Chunting Zhou, Junxian He, Graham
Neubig, and Pengfei Liu. 2023. Factool: Factual-
ity detection in generative ai – a tool augmented
framework for multi-task and multi-domain scenar-
ios. Preprint, arXiv:2307.13528.

Yung-Sung Chuang, Linlu Qiu, Cheng-Yu Hsieh, Ran-
jay Krishna, Yoon Kim, and James R. Glass. 2024.
Lookback lens: Detecting and mitigating contextual
hallucinations in large language models using only
attention maps. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1419–1436, Miami, Florida, USA.
Association for Computational Linguistics.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu,
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and
Jason Weston. 2024. Chain-of-verification reduces
hallucination in large language models. In Findings
of the Association for Computational Linguistics:
ACL 2024, pages 3563–3578, Bangkok, Thailand.
Association for Computational Linguistics.

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From local to global: A
graph rag approach to query-focused summarization.
Preprint, arXiv:2404.16130.

Xinyue Fang, Zhen Huang, Zhiliang Tian, Minghui
Fang, Ziyi Pan, Quntian Fang, Zhihua Wen, Hengyue
Pan, and Dongsheng Li. 2024. Zero-resource hal-
lucination detection for text generation via graph-
based contextual knowledge triples modeling. arXiv
preprint arXiv:2409.11283.

Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and
Yarin Gal. 2024. Detecting hallucinations in large
language models using semantic entropy. Nature,
630(8017):625–630. Publisher: Nature Publishing
Group.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,

9

http://ominoproject.eu/
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://doi.org/10.18653/v1/2023.findings-emnlp.68
https://github.com/langchain-ai/langchain
https://arxiv.org/abs/2402.03744
https://arxiv.org/abs/2402.03744
https://arxiv.org/abs/2307.13528
https://arxiv.org/abs/2307.13528
https://arxiv.org/abs/2307.13528
https://arxiv.org/abs/2307.13528
https://doi.org/10.18653/v1/2024.emnlp-main.84
https://doi.org/10.18653/v1/2024.emnlp-main.84
https://doi.org/10.18653/v1/2024.emnlp-main.84
https://doi.org/10.18653/v1/2024.findings-acl.212
https://doi.org/10.18653/v1/2024.findings-acl.212
https://arxiv.org/abs/2404.16130
https://arxiv.org/abs/2404.16130
https://doi.org/10.1038/s41586-024-07421-0
https://doi.org/10.1038/s41586-024-07421-0

Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-

ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj

10

Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

William L. Hamilton, Rex Ying, and Jure Leskovec.
2017. Representation learning on graphs: Meth-
ods and applications. In IEEE Data Eng. Bull., vol-
ume 40, pages 52–74.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2025. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. ACM Trans. Inf. Syst., 43(2).

Jannik Kossen, Jiatong Han, Muhammed Razzak, Lisa
Schut, Shreshth Malik, and Yarin Gal. 2024. Seman-
tic entropy probes: Robust and cheap hallucination
detection in llms. Preprint, arXiv:2406.15927.

Ruslan Kuprieiev, skshetry, Peter Rowlands, Dmitry
Petrov, Paweł Redzyński, Casper da Costa-Luis,
David de la Iglesia Castro, Alexander Schepanovski,
Ivan Shcheklein, Gao, Batuhan Taskaya, Jorge Or-
pinel, Fábio Santos, Daniele, Ronan Lamy, Aman
Sharma, Zhanibek Kaimuldenov, Dani Hodovic,
Nikita Kodenko, Andrew Grigorev, Earl, Nabanita
Dash, George Vyshnya, Dave Berenbaum, maykulka-
rni, Max Hora, Vera, and Sanidhya Mangal. 2025.
Dvc: Data version control - git for data & models.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Minhyeok Lee. 2023. A mathematical investigation of
hallucination and creativity in gpt models. Mathe-
matics, 11(10).

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,

Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Potsawee Manakul, Adian Liusie, and Mark Gales. 2023.
SelfCheckGPT: Zero-resource black-box hallucina-
tion detection for generative large language models.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
9004–9017, Singapore. Association for Computa-
tional Linguistics.

Sewon Min, Kalpesh Krishna, Xinxi Lyu, Mike Lewis,
Wen-tau Yih, Pang Koh, Mohit Iyyer, Luke Zettle-
moyer, and Hannaneh Hajishirzi. 2023. FActScore:
Fine-grained atomic evaluation of factual precision
in long form text generation. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 12076–12100, Singa-
pore. Association for Computational Linguistics.

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,
Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec
Radford, Aleksander Mądry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex
Chow, Alex Kirillov, Alex Nichol, Alex Paino, Alex
Renzin, Alex Tachard Passos, Alexander Kirillov,
Alexi Christakis, Alexis Conneau, Ali Kamali, Allan
Jabri, Allison Moyer, Allison Tam, Amadou Crookes,
Amin Tootoochian, Amin Tootoonchian, Ananya
Kumar, Andrea Vallone, Andrej Karpathy, Andrew
Braunstein, Andrew Cann, Andrew Codispoti, An-
drew Galu, Andrew Kondrich, Andrew Tulloch, An-
drey Mishchenko, Angela Baek, Angela Jiang, An-
toine Pelisse, Antonia Woodford, Anuj Gosalia, Arka
Dhar, Ashley Pantuliano, Avi Nayak, Avital Oliver,
Barret Zoph, Behrooz Ghorbani, Ben Leimberger,
Ben Rossen, Ben Sokolowsky, Ben Wang, Benjamin
Zweig, Beth Hoover, Blake Samic, Bob McGrew,
Bobby Spero, Bogo Giertler, Bowen Cheng, Brad
Lightcap, Brandon Walkin, Brendan Quinn, Brian
Guarraci, Brian Hsu, Bright Kellogg, Brydon East-
man, Camillo Lugaresi, Carroll Wainwright, Cary
Bassin, Cary Hudson, Casey Chu, Chad Nelson,
Chak Li, Chan Jun Shern, Channing Conger, Char-
lotte Barette, Chelsea Voss, Chen Ding, Cheng Lu,
Chong Zhang, Chris Beaumont, Chris Hallacy, Chris
Koch, Christian Gibson, Christina Kim, Christine
Choi, Christine McLeavey, Christopher Hesse, Clau-
dia Fischer, Clemens Winter, Coley Czarnecki, Colin
Jarvis, Colin Wei, Constantin Koumouzelis, Dane
Sherburn, Daniel Kappler, Daniel Levin, Daniel Levy,
David Carr, David Farhi, David Mely, David Robin-
son, David Sasaki, Denny Jin, Dev Valladares, Dim-
itris Tsipras, Doug Li, Duc Phong Nguyen, Duncan
Findlay, Edede Oiwoh, Edmund Wong, Ehsan As-
dar, Elizabeth Proehl, Elizabeth Yang, Eric Antonow,

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
http://sites.computer.org/debull/A17sept/p52.pdf
http://sites.computer.org/debull/A17sept/p52.pdf
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://doi.org/10.1145/3703155
https://arxiv.org/abs/2406.15927
https://arxiv.org/abs/2406.15927
https://arxiv.org/abs/2406.15927
https://doi.org/10.5281/zenodo.14636677
https://doi.org/10.3390/math11102320
https://doi.org/10.3390/math11102320
https://arxiv.org/abs/2109.02846
https://arxiv.org/abs/2109.02846
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.557
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741
https://doi.org/10.18653/v1/2023.emnlp-main.741

Eric Kramer, Eric Peterson, Eric Sigler, Eric Wal-
lace, Eugene Brevdo, Evan Mays, Farzad Khorasani,
Felipe Petroski Such, Filippo Raso, Francis Zhang,
Fred von Lohmann, Freddie Sulit, Gabriel Goh,
Gene Oden, Geoff Salmon, Giulio Starace, Greg
Brockman, Hadi Salman, Haiming Bao, Haitang
Hu, Hannah Wong, Haoyu Wang, Heather Schmidt,
Heather Whitney, Heewoo Jun, Hendrik Kirchner,
Henrique Ponde de Oliveira Pinto, Hongyu Ren,
Huiwen Chang, Hyung Won Chung, Ian Kivlichan,
Ian O’Connell, Ian O’Connell, Ian Osband, Ian Sil-
ber, Ian Sohl, Ibrahim Okuyucu, Ikai Lan, Ilya
Kostrikov, Ilya Sutskever, Ingmar Kanitscheider,
Ishaan Gulrajani, Jacob Coxon, Jacob Menick, Jakub
Pachocki, James Aung, James Betker, James Crooks,
James Lennon, Jamie Kiros, Jan Leike, Jane Park,
Jason Kwon, Jason Phang, Jason Teplitz, Jason
Wei, Jason Wolfe, Jay Chen, Jeff Harris, Jenia Var-
avva, Jessica Gan Lee, Jessica Shieh, Ji Lin, Jiahui
Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joanne Jang,
Joaquin Quinonero Candela, Joe Beutler, Joe Lan-
ders, Joel Parish, Johannes Heidecke, John Schul-
man, Jonathan Lachman, Jonathan McKay, Jonathan
Uesato, Jonathan Ward, Jong Wook Kim, Joost
Huizinga, Jordan Sitkin, Jos Kraaijeveld, Josh Gross,
Josh Kaplan, Josh Snyder, Joshua Achiam, Joy Jiao,
Joyce Lee, Juntang Zhuang, Justyn Harriman, Kai
Fricke, Kai Hayashi, Karan Singhal, Katy Shi, Kavin
Karthik, Kayla Wood, Kendra Rimbach, Kenny Hsu,
Kenny Nguyen, Keren Gu-Lemberg, Kevin Button,
Kevin Liu, Kiel Howe, Krithika Muthukumar, Kyle
Luther, Lama Ahmad, Larry Kai, Lauren Itow, Lau-
ren Workman, Leher Pathak, Leo Chen, Li Jing, Lia
Guy, Liam Fedus, Liang Zhou, Lien Mamitsuka, Lil-
ian Weng, Lindsay McCallum, Lindsey Held, Long
Ouyang, Louis Feuvrier, Lu Zhang, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Hewitt, Luke Metz,
Lyric Doshi, Mada Aflak, Maddie Simens, Madelaine
Boyd, Madeleine Thompson, Marat Dukhan, Mark
Chen, Mark Gray, Mark Hudnall, Marvin Zhang,
Marwan Aljubeh, Mateusz Litwin, Matthew Zeng,
Max Johnson, Maya Shetty, Mayank Gupta, Meghan
Shah, Mehmet Yatbaz, Meng Jia Yang, Mengchao
Zhong, Mia Glaese, Mianna Chen, Michael Jan-
ner, Michael Lampe, Michael Petrov, Michael Wu,
Michele Wang, Michelle Fradin, Michelle Pokrass,
Miguel Castro, Miguel Oom Temudo de Castro,
Mikhail Pavlov, Miles Brundage, Miles Wang, Mi-
nal Khan, Mira Murati, Mo Bavarian, Molly Lin,
Murat Yesildal, Nacho Soto, Natalia Gimelshein, Na-
talie Cone, Natalie Staudacher, Natalie Summers,
Natan LaFontaine, Neil Chowdhury, Nick Ryder,
Nick Stathas, Nick Turley, Nik Tezak, Niko Felix,
Nithanth Kudige, Nitish Keskar, Noah Deutsch, Noel
Bundick, Nora Puckett, Ofir Nachum, Ola Okelola,
Oleg Boiko, Oleg Murk, Oliver Jaffe, Olivia Watkins,
Olivier Godement, Owen Campbell-Moore, Patrick
Chao, Paul McMillan, Pavel Belov, Peng Su, Pe-
ter Bak, Peter Bakkum, Peter Deng, Peter Dolan,
Peter Hoeschele, Peter Welinder, Phil Tillet, Philip
Pronin, Philippe Tillet, Prafulla Dhariwal, Qiming
Yuan, Rachel Dias, Rachel Lim, Rahul Arora, Ra-
jan Troll, Randall Lin, Rapha Gontijo Lopes, Raul
Puri, Reah Miyara, Reimar Leike, Renaud Gaubert,

Reza Zamani, Ricky Wang, Rob Donnelly, Rob
Honsby, Rocky Smith, Rohan Sahai, Rohit Ramchan-
dani, Romain Huet, Rory Carmichael, Rowan Zellers,
Roy Chen, Ruby Chen, Ruslan Nigmatullin, Ryan
Cheu, Saachi Jain, Sam Altman, Sam Schoenholz,
Sam Toizer, Samuel Miserendino, Sandhini Agar-
wal, Sara Culver, Scott Ethersmith, Scott Gray, Sean
Grove, Sean Metzger, Shamez Hermani, Shantanu
Jain, Shengjia Zhao, Sherwin Wu, Shino Jomoto, Shi-
rong Wu, Shuaiqi, Xia, Sonia Phene, Spencer Papay,
Srinivas Narayanan, Steve Coffey, Steve Lee, Stew-
art Hall, Suchir Balaji, Tal Broda, Tal Stramer, Tao
Xu, Tarun Gogineni, Taya Christianson, Ted Sanders,
Tejal Patwardhan, Thomas Cunninghman, Thomas
Degry, Thomas Dimson, Thomas Raoux, Thomas
Shadwell, Tianhao Zheng, Todd Underwood, Todor
Markov, Toki Sherbakov, Tom Rubin, Tom Stasi,
Tomer Kaftan, Tristan Heywood, Troy Peterson, Tyce
Walters, Tyna Eloundou, Valerie Qi, Veit Moeller,
Vinnie Monaco, Vishal Kuo, Vlad Fomenko, Wayne
Chang, Weiyi Zheng, Wenda Zhou, Wesam Manassra,
Will Sheu, Wojciech Zaremba, Yash Patil, Yilei Qian,
Yongjik Kim, Youlong Cheng, Yu Zhang, Yuchen
He, Yuchen Zhang, Yujia Jin, Yunxing Dai, and
Yury Malkov. 2024. Gpt-4o system card. Preprint,
arXiv:2410.21276.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak
Nathani, Xinyi Wang, and William Yang Wang. 2024.
Automatically correcting large language models: Sur-
veying the landscape of diverse automated correction
strategies. Transactions of the Association for Com-
putational Linguistics, 12:484–506.

Mohamed Rashad, Ahmed Zahran, Abanoub Amin,
Amr Abdelaal, and Mohamed Altantawy. 2024. Fac-
tAlign: Fact-level hallucination detection and clas-
sification through knowledge graph alignment. In
Proceedings of the 4th Workshop on Trustworthy Nat-
ural Language Processing (TrustNLP 2024), pages
79–84, Mexico City, Mexico. Association for Com-
putational Linguistics.

Malik Sallam. 2023. Chatgpt utility in healthcare ed-
ucation, research, and practice: Systematic review
on the promising perspectives and valid concerns.
Healthcare, 11(6).

Hannah Sansford, Nicholas Richardson, Hermina Petric
Maretic, and Juba Nait Saada. 2024. Grapheval: A
knowledge-graph based llm hallucination evaluation
framework. Preprint, arXiv:2407.10793.

Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar
Sadasivan, Shoumik Saha, Priyatham Kattakinda,
and Soheil Feizi. 2024. LLM-check: Investigating
detection of hallucinations in large language models.
In The Thirty-eighth Annual Conference on Neural
Information Processing Systems.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V.
Le, Ed H. Chi, Sharan Narang, Aakanksha Chowd-
hery, and Denny Zhou. 2023. Self-consistency
improves chain of thought reasoning in language
models. In The Eleventh International Conference

12

https://arxiv.org/abs/2410.21276
https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.1162/tacl_a_00660
https://doi.org/10.18653/v1/2024.trustnlp-1.8
https://doi.org/10.18653/v1/2024.trustnlp-1.8
https://doi.org/10.18653/v1/2024.trustnlp-1.8
https://doi.org/10.3390/healthcare11060887
https://doi.org/10.3390/healthcare11060887
https://doi.org/10.3390/healthcare11060887
https://arxiv.org/abs/2407.10793
https://arxiv.org/abs/2407.10793
https://arxiv.org/abs/2407.10793
https://openreview.net/forum?id=LYx4w3CAgy
https://openreview.net/forum?id=LYx4w3CAgy
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw

on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. 2024.
Hallucination is inevitable: An innate limitation of
large language models. Preprint, arXiv:2401.11817.

Muru Zhang, Ofir Press, William Merrill, Alisa Liu,
and Noah A. Smith. 2024. How language model
hallucinations can snowball. In Proceedings of the
41st International Conference on Machine Learning,
ICML’24. JMLR.org.

Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu,
Tingchen Fu, Xinting Huang, Enbo Zhao, Yu Zhang,
Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei
Bi, Freda Shi, and Shuming Shi. 2023. Siren’s song
in the ai ocean: A survey on hallucination in large
language models. Preprint, arXiv:2309.01219.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Proceedings of the 37th International Conference on
Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA. Curran Associates Inc.

13

https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219

A Additional Figures for Results

Figure 3 depicts the precision-recall curve for
sentence-level detection (see Section 5.1). Figure 4
shows the impact of the number of samples on the
passage-level detection task (see Section 5.2).

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.75

0.80

0.85

0.90

0.95

1.00

Pr
ec

isi
on

SelfCheckGPT (Prompt)
FactSelfCheck-Text (Agg: max)
FactSelfCheck-KG (LLM-based) (Agg: max)
FactSelfCheck-Text (Agg: mean)
FactSelfCheck-KG (LLM-based) (Agg: mean)
FactSelfCheck-KG (Freq.-based) (Agg: max)
FactSelfCheck-KG (Freq.-based) (Agg: mean)

Figure 3: Precision-recall curve for the sentence-level
detection task.

5 10 15 20
n_samples

40

45

50

55

60

65

70

75

80

Sp
ea

rm
an

SelfCheckGPT (Prompt)
FactSelfCheck-Text (Agg: max)
FactSelfCheck-Text (Agg: mean)
FactSelfCheck-KG (LLM-based) (Agg: max)
FactSelfCheck-KG (LLM-based) (Agg: mean)
FactSelfCheck-KG (Freq.-based) (Agg: mean)
FactSelfCheck-KG (Freq.-based) (Agg: max)

Figure 4: Impact of the number of samples on passage-
level detection task.

B Fact-Level Detection Evaluation

While the evaluation in Section 5.1 focused on the
sentence-level and passage-level detection due to
dataset constraints, we present a complementary
evaluation at the fact level here. Since this evalu-
ation is not based on human annotations, we have
placed it in the appendix.

Evaluation Data To enable fact-level evaluation,
we annotated facts from the extracted response
knowledge graph (KGp) using the LLM-as-judge
approach (Zheng et al., 2023). This approach anno-
tated whether each fact is supported by the external
Wikipedia biography (Prompt 11). As a result, we
obtained 5488 binary annotated facts.

Experimental Setup We evaluated all variants of
FactSelfCheck using the fact-level score Hfact. For
comparison with SelfCheckGPT, which provides
only sentence-level granularity, we derived fact-
level scores by averaging the sentence-level scores
across all sentences containing each fact.

Results Table 4 presents the comparative results.
FactSelfCheck-Text demonstrates superior perfor-
mance with an AUC-PR score of 93.41, followed
by FactSelfCheck-KG (LLM-based) at 92.25. The
frequency-based method achieves 87.99, while
SelfCheckGPT (Prompt) scores 86.18. These re-
sults demonstrate the effectiveness of our method
in detecting hallucinations at the fact level. Fur-
thermore, the lower performance of averaging the
sentence-level scores highlights the importance of
designing fact-level methods and validating our
approach.

Method AUC-PR

FactSelfCheck-Text 93.41
FactSelfCheck-KG (LLM-based) 92.25
FactSelfCheck-KG (Freq.-based) 87.99
SelfCheckGPT (Prompt) 86.18
RandomFact 65.79

Table 4: Results on the fact-level hallucination detec-
tion task. Comparison of sentence-level and fact-level
methods based on AUC-PR scores.

C Passage-level Score: Size of Knowledge
Graphs Extracted from Samples

As a side study, we examined the effectiveness of
scoring hallucinations at the passage level based

14

on the size of knowledge graphs extracted from
samples.

Score Definition We propose using the average
size of restricted knowledge graphs extracted from
samples as a passage-level score. Restriction in-
volves keeping only facts where all entities and re-
lations are present in ES or RS , respectively. This
results in KG′

s defined as:

KG′
s = {(h, r, t) ∈ KGs |

h ∈ ES ∧ r ∈ RS ∧ t ∈ ES}
(13)

The passage-level score is then calculated as:

Hpassage(p) =
1

|S|
∑
s∈S

−|KG′
s| (14)

The rationale behind this score is that the size of
KG′

s reflects how well the samples align with the
original response p. A smaller KG′

s indicates that
the sample contains facts than those in the original
response, suggesting potential hallucinations. In
distinction from the previously defined scores, this
metric operates outside the standard [0, 1] range.

Results The method achieved Pearson and Spear-
man correlation scores of 72.35 and 71.18, re-
spectively. When compared to the main results
in Table 2, this approach shows lower correlation
scores than LLM-based methods but outperforms
the frequency-based method. It is important to note
that while it is the passage-level score, frequency-
based methods operate at the fact level. Neverthe-
less, this approach offers the most computation-
ally efficient way to calculate passage-level scores
among tested methods utilizing knowledge graphs,
as it does not require any LLM calls during factual
consistency assessment.

D Case Study of FactSelfCheck vs
SelfCheckGPT

Table 5 and Figure 5 present a comparative case
study of predictions made by FactSelfCheck and
SelfCheckGPT. The table contains an external
Wikipedia biography, sentences from the response,
facts extracted from the response, and the predic-
tions of both methods. This comparison demon-
strates that fact-level detection provides more de-
tailed information about the factuality of the re-
sponse. We observe that LLM did not hallucinate
all facts, as some are consistent with the exter-
nal Wikipedia biography. However, when using

sentence-level detection, we cannot distinguish be-
tween correct and hallucinated facts – all sentences
are predicted as hallucinated.

E SelfCheckGPT with Enhanced Prompt

To ensure a fair comparison between
FactSelfCheck and SelfCheckGPT, we con-
ducted an additional experiment using an enhanced
prompt for SelfCheckGPT. The original Self-
CheckGPT prompt is relatively simple, while
our FactSelfCheck prompts are more elaborate,
directly allowing reasoning and inference of new
facts, and providing examples. These character-
istics could potentially increase the performance
of methods. We designed an alternative prompt
for SelfCheckGPT, presented in Prompt 12, that
incorporates these features, making it similar to
our FactSelfCheck prompts.

For sentence-level detection, the enhanced
prompt for SelfCheckGPT achieved an AUC-PR
score of 93.38, slightly lower than the original
prompt’s 93.60. This minimal difference indicates
that SelfCheckGPT’s performance is not signifi-
cantly affected by prompt design in our experi-
mental setting. In fact, the enhanced prompt even
lowered the performance rather than increasing it,
despite its more sophisticated design. For passage-
level detection, we observed similar results, with
the enhanced prompt achieving Pearson and Spear-
man correlation scores of 82.36 and 76.71, respec-
tively, compared to the original prompt’s 83.12 and
78.65.

Due to these findings, we chose to use the orig-
inal prompt for SelfCheckGPT in our main ex-
periments. These consistent results confirm that
our comparison between methods is fair, as the en-
hanced prompt did not improve the performance of
SelfCheckGPT.

F FactSelfCheck Prompts

In this section, we present the prompts used in
FactSelfCheck. These include prompts for the en-
tity extraction (Prompt 1), the relation extraction
(Prompt 2), and the knowledge graph extraction
from a sentence (Prompt 3) or a sample (Prompt
4). Additionally, we provide prompts for assessing
factual consistency in FactSelfCheck-KG (Prompt
5) and FactSelfCheck-Text (Prompt 6).

15

G Correction Prompts

The following prompts are instructions for cor-
recting hallucinated responses generated by the
LLM. The prompts are for the baseline (Prompt 7),
sentence-level (Prompt 8), and fact-level (Prompt
9) correction. The prompts take several inputs:
{generated_sentences} containing the response as a
numbered list of sentences, {incorrect_sentences}
listing the hallucinated sentences with their cor-
responding numbers from the generated text, and
{incorrect_facts} providing a formatted list of hallu-
cinated facts organized by sentence. The {format}
field specifies the output format as an empty num-
bered list with a length equal to the number of
sentences in the {generated_sentences} field.

16

External Wikipedia Bio
Kenan Hasagić (born 1 February 1980) is a Bosnian football goalkeeper who plays for Balıkesirspor. His football career
began in his hometown with FK Rudar. At the age of 16, he made his debut in a first division match. He was the most
promising goalkeeper in Bosnia and Herzegovina; he played for youth selections and was later transferred to Austrian side
Vorwärts Steyr. After that, he was a member of Altay SK in Turkey but didn’t see much first team football. He went back
to Bosnia and played for Bosna Visoko. In 2003, he signed a contract with FK Željezničar. Here he found good form and
even became first choice goalkeeper for the Bosnian national team. In the 2004–05 season, he moved to Turkey once again
where he signed for Turkish Süper Lig side Gaziantepspor. He made his debut for the national team on 12 February 2003
in a game between Wales and Bosnia and Herzegovina which ended in a 2–2 draw.

Sentence 1 (SelfCheckGPT: 1.0)
Kenan Hasagić (born 28 April 1988) is a Bosnian professional footballer who plays as a midfielder for Bosnian Premier
League club Željezničar.

Fact FactSelfCheck
(’Kenan Hasagić’, ’DATE OF BIRTH’, ’April 28, 1988’) 1.00
(’Kenan Hasagić’, ’NATIONALITY’, ’Bosnian’) 0.00
(’Kenan Hasagić’, ’OCCUPATION’, ’professional footballer’) 0.20
(’Kenan Hasagić’, ’POSITION PLAYED’, ’midfielder’) 0.55
(’Kenan Hasagić’, ’LEAGUE’, ’Bosnian Premier League’) 0.45
(’Kenan Hasagić’, ’CURRENT CLUB’, ’Željezničar’) 0.85

Sentence 2 (SelfCheckGPT: 1.0)
Hasagić started his career at his hometown club Željezničar, where he made his professional debut in 2006.

Fact FactSelfCheck
(’Kenan Hasagić’, ’CURRENT CLUB’, ’Željezničar’) 0.85
(’Kenan Hasagić’, ’PROFESSIONAL DEBUT’, ’2006’) 0.90
(’Kenan Hasagić’, ’CURRENT CLUB’, ’Željezničar’) 0.85

Sentence 3 (SelfCheckGPT: 1.0)
He has since gone on to make over 200 appearances for the club, winning the Bosnian Premier League title in 2008 and
the Bosnian Cup in 2009.

Fact FactSelfCheck
(’Kenan Hasagić’, ’TEAM APPEARANCES’, ’Željezničar’) 0.60
(’Željezničar’, ’CHAMPIONSHIP WON’, ’Bosnian Premier League title’) 0.90
(’Željezničar’, ’YEAR OF CHAMPIONSHIP’, ’2008’) 1.00
(’Željezničar’, ’CHAMPIONSHIP WON’, ’Bosnian Cup’) 0.95
(’Željezničar’, ’YEAR OF CHAMPIONSHIP’, ’2009’) 1.00

Sentence 4 (SelfCheckGPT: 0.9)
He has also represented Bosnia and Herzegovina at international level, making his debut in 2011.

Fact FactSelfCheck
(’Kenan Hasagić’, ’COUNTRY REPRESENTED’, ’Bosnia and Herzegovina’) 0.05
(’Kenan Hasagić’, ’INTERNATIONAL DEBUT’, ’2011’) 0.85

Table 5: Comparison of fact-level FactSelfCheck with sentence-level SelfCheckGPT. An external Wikipedia
biography is provided to analyse the correctness of the methods. The red value indicates hallucinations, and the
green value indicates factual correctness. The facts were classified using a threshold of 0.4 utilizing FactSelfCheck,
and the sentences were classified using a threshold of 0.75 with SelfCheckGPT. These thresholds achieved the
highest F1-scores in fact-level (Appendix B) and sentence-level (Section 5.1) evaluation, respectively.

17

Figure 5: Example of a knowledge graph extracted from a response. Edge width represents the hallucination score
for each fact, with red edges indicating hallucinated facts and green edges indicating correct facts. Facts were
classified using a threshold of 0.4, which achieved the highest F1-score in the fact-level evaluation (Appendix B).

================================ System Message ================================

You are a top-tier algorithm designed for extracting entities in structured formats.
These entities will be used to build a knowledge graph.
Your task is to identify the entities requested with the user prompt from a given text.
You must generate the output in a JSON format containing a list with JSON objects.
Each object should have the key: "entities".
The "entities" key must contain a list of strings, where each string is an extracted entity.
Attempt to extract as many entities as you can.
It is very important to cover all the entities in the text!
Entities can be in many types, such as people, organizations, locations, events, positions, dates, roles, titles,

objects, and more.
If an entity, such as "John Doe", is mentioned multiple times in the text but is referred to by different names

or pronouns (e.g., "Joe", "he"), always use the most complete identifier for that entity.
IMPORTANT NOTES:
- Don't add any explanation and text.
- It is very important to cover all the entities in the text!
- Remember to cover dates.
- Remember to cover events eg. publication of book, employment, graduation, marriage.
- All numbers, dates has to be in string format. eg. "2023", "1980s".

================================ Human Message =================================

Below are a number of examples of text and their extracted entities.
[{'text': "Donald John Trump (born June 14, 1946) is an American politician, media personality, and businessman

who served as the 45th president of the United States from 2017 to 2021. Having won the 2024 presidential
election as the nominee of the Republican Party, he is the president-elect and will be inaugurated as the 47
th president on January 20, 2025. Trump graduated with a bachelor's degree in economics from the University
of Pennsylvania in 1968.", 'entities': ['Donald John Trump', 'American politician', 'media personality', '
businessman', '45th president', 'United States', '2017', '2021', '2024 presidential election', 'Republican
Party', 'president-elect', '47th president', 'January 20, 2025', 'University of Pennsylvania', 'graduation',
'bachelor', 'degree', 'economics', '1968']}]

For the following text, extract entities as in the provided example.
{format_instructions}
Text: {input}

Prompt 1: Instructions for the LLM to extract entities Ep from the response ({input}). The {format_instructions}
field contains formatting instructions for JSON output, constructed by the LangChain library based on the expected
output schema.

18

================================ System Message ================================

You are a top-tier algorithm designed for extracting relationship types in structured formats.
These relationship types will be used to build a knowledge graph in the future.
Your task is to identify the relationship types requested with the user prompt from a given text and list of

entities.
You must generate the output in a JSON format containing a list with JSON objects.
Each object should have the key: "relationship_types".
The "relationship_types" key must contain a list of strings, where each string is an extracted relationship type.
Attempt to extract as many relationship types as you can.
It is very important to cover all the relationship types in the text!
Ensure the relationships accurately describe the interaction or connection between entities.
Relationship types should be simple and concise, but also specific and informative, to cover all the

relationships between entities in the text.
If it is possible, use the WikiData relationship types. If not, use the most appropriate relationship type.
IMPORTANT NOTES:
- Don't add any explanation and text.
- It is very important to cover all the relationship types in the text!
- Omit long and complex relationship types.
- Use double quotes, not single quotes for json format.

================================ Human Message =================================

Below are a number of examples of text and their extracted relationship types.
[{'text': "Donald John Trump (born June 14, 1946) is an American politician, media personality, and businessman

who served as the 45th president of the United States from 2017 to 2021. Having won the 2024 presidential
election as the nominee of the Republican Party, he is the president-elect and will be inaugurated as the 47
th president on January 20, 2025. Trump graduated with a bachelor's degree in economics from the University
of Pennsylvania in 1968.", 'entities': ['Donald John Trump', 'American politician', 'media personality', '
businessman', '45th president', 'United States', '2017', '2021', '2024 presidential election', 'Republican
Party', 'president-elect', '47th president', 'January 20, 2025', 'University of Pennsylvania', 'graduation',
'bachelor', 'degree', 'economics', '1968'], 'relationship_types': ['DATE OF BIRTH', 'NATIONALITY', '

OCCUPATION', 'POSITION HELD', 'TERM OF OFFICE', 'MEMBER OF', 'ELECTED AS', 'NOMINEE OF', 'FUTURE POSITION',
'DATE OF START', 'DATE OF END', 'EDUCATED AT', 'DEGREE IN', 'DEGREE FROM', 'DEGREE TYPE', 'DATE OF
GRADUATION']}]

For the following text and entities, extract relationship types as in the provided example.
{format_instructions}
Text: {input}
Entities: {entities}

Prompt 2: Instructions for the LLM to extract relations Rp from the response ({input}). The {entities} field contains
entities extracted using Prompt 1. The {format_instructions} field specifies JSON output formatting requirements
constructed by the LangChain library based on the expected schema.

19

================================ System Message ================================

You are a top-tier algorithm designed for extracting information in CSV format to build a knowledge graph.
In input, you will receive: sentence, full text, list of entities, and list of relationships.
Your task is to identify facts (triples) consisting of a subject, relation, and object from a given sentence.
Do not generate relationships that are defined in the full text but not in the sentence.
You must generate the output in CSV format with semicolon ";" as the separator, and lines separated by "\n".
The first line should be the header: subject;relation;object
Each subsequent line should contain one triple with the following columns:
- subject: the text of the extracted entity which is the subject of the relation
- relation: the type of relation between the subject and object
- object: the text of the extracted entity which is the object of the relation
The extracted entities must be from the list provided by the user.
The relations must be from the list of allowed relation types provided by the user.
Attempt to extract as many facts / triples as you can.
Entities can be in many types, such as people, organizations, locations, dates, roles, titles, objects, and more.
Maintain Entity Consistency: When extracting entities, it's vital to ensure consistency.
If an entity, such as "John Doe", is mentioned multiple times in the text but is referred to by different names

or pronouns (e.g., "Joe", "he"), always use the most complete identifier for that entity.
The knowledge graph should be coherent and easily understandable, so maintaining consistency in entity references

is crucial.
The knowledge graph should be complete, so it should cover all the facts in the sentence.
IMPORTANT NOTES:
- Don't add any explanation and text.
- It is very important to cover all triples (facts) in the sentence!
- Full text is only for understanding the context. Do not add any triples that are not in the sentence.
- Output must be in CSV format with semicolon (;) separators. Lines should be separated by "\n".
- Do not include quotes around the values unless they contain semicolons

================================ Human Message =================================

For the following sentence, full text, entities, and relation types, extract facts / triples as in the provided
sentence.

Your response should be a list of semicolon separated values with header, eg:
```
subject;relation;object
Donald John Trump;DEGREE FROM;University of Pennsylvania
Donald John Trump;DEGREE IN;economics
```
Below are a number of examples of text and their extracted facts.
[{'full_text': "Donald John Trump (born June 14, 1946) is an American politician, media personality, and

businessman who served as the 45th president of the United States from 2017 to 2021. Having won the 2024
presidential election as the nominee of the Republican Party, he is the president-elect and will be
inaugurated as the 47th president on January 20, 2025. Trump graduated with a bachelor's degree in economics
from the University of Pennsylvania in 1968.", 'sentence': "Trump graduated with a bachelor's degree in
economics from the University of Pennsylvania in 1968.", 'allowed entities': ['Donald John Trump', 'American
politician', 'media personality', 'businessman', '45th president', 'United States', '2017', '2021', '2024

presidential election', 'Republican Party', 'president-elect', '47th president', 'January 20, 2025', '
University of Pennsylvania', 'graduation', 'bachelor', 'degree', 'economics', '1968'], 'allowed relation
types': ['DATE OF BIRTH', 'NATIONALITY', 'OCCUPATION', 'POSITION HELD', 'TERM OF OFFICE', 'MEMBER OF', '
ELECTED AS', 'NOMINEE OF', 'FUTURE POSITION', 'DATE OF START', 'DATE OF END', 'EDUCATED AT', 'DEGREE IN', '
DEGREE FROM', 'DEGREE TYPE', 'DATE OF GRADUATION'], 'triples': 'subject;relation;object\nDonald John Trump;
DEGREE FROM;University of Pennsylvania\nDonald John Trump;DEGREE IN;economics\nDonald John Trump;DEGREE TYPE;
bachelor\nDonald John Trump;DATE OF GRADUATION;1968\n'}]

Use the following entities, don't use other entity that is not defined below:
ALLOWED ENTITIES:
{allowed_nodes}
Use the following relation types, don't use other relation that is not defined below:
ALLOWED RELATION TYPES:
{allowed_relationships}
Full text: {input_text}
Sentence: {input_sentence}

Prompt 3: Instructions for the LLM to extract knowledge graph KGu from a sentence ({input_sentence}). We also
provide a full response ({input_text}) to give LLM a context. The {allowed_nodes} field contains the list of allowed
entities. The {allowed_relationships} field contains the list of allowed relations. The LLM is expected to return a
list of triples in the CSV format.

20

================================ System Message ================================

You are a top-tier algorithm designed for extracting information in CSV format to build a knowledge graph.
Your task is to identify facts (triples) consisting of a subject, relation, and object from a given text.
You must generate the output in CSV format with semicolon ";" as the separator, and lines separated by "\n".
The first line should be the header: subject;relation;object
Each subsequent line should contain one triple with the following columns:
- subject: the text of the extracted entity which is the subject of the relation
- relation: the type of relation between the subject and object
- object: the text of the extracted entity which is the object of the relation
The extracted entities must be from the list provided by the user.
The relations must be from the list of allowed relation types provided by the user.
Attempt to extract as many facts / triples as you can.
Entities can be in many types, such as people, organizations, locations, dates, roles, titles, objects, and more.
Maintain Entity Consistency: When extracting entities, it's vital to ensure consistency.
If an entity, such as "John Doe", is mentioned multiple times in the text but is referred to by different names

or pronouns (e.g., "Joe", "he"), always use the most complete identifier for that entity.
The knowledge graph should be coherent and easily understandable, so maintaining consistency in entity references

is crucial.
The knowledge graph should be complete, so it should cover all the facts in the text.
IMPORTANT NOTES:
- Don't add any explanation and text.
- It is very important to cover all triples (facts) in the text!
- Output must be in CSV format with semicolon (;) separators. Lines should be separated by "\n".
- Do not include quotes around the values unless they contain semicolons

================================ Human Message =================================

For the following text, allowed entities and allowed relation types, extract facts / triples as in the provided
example.

Your response should be a list of semicolon separated values with header, eg:
```
subject;relation;object
Donald John Trump;DATE OF BIRTH;June 14, 1946
Donald John Trump;NATIONALITY;American politician
```
Below are a number of examples of text and their extracted facts.
[{'text': "Donald John Trump (born June 14, 1946) is an American politician, media personality, and businessman

who served as the 45th president of the United States from 2017 to 2021. Having won the 2024 presidential
election as the nominee of the Republican Party, he is the president-elect and will be inaugurated as the 47
th president on January 20, 2025. Trump graduated with a bachelor's degree in economics from the University
of Pennsylvania in 1968.", 'allowed entities': ['Donald John Trump', 'American politician', 'media
personality', 'businessman', '45th president', 'United States', '2017', '2021', '2024 presidential election',
'Republican Party', 'president-elect', '47th president', 'January 20, 2025', 'University of Pennsylvania',
'graduation', 'bachelor', 'degree', 'economics', '1968'], 'allowed relation types': ['DATE OF BIRTH', '
NATIONALITY', 'OCCUPATION', 'POSITION HELD', 'TERM OF OFFICE', 'MEMBER OF', 'ELECTED AS', 'NOMINEE OF', '
FUTURE POSITION', 'DATE OF START', 'DATE OF END', 'EDUCATED AT', 'DEGREE IN', 'DEGREE FROM', 'DEGREE TYPE',
'DATE OF GRADUATION'], 'triples': 'subject;relation;object\nDonald John Trump;DATE OF BIRTH;June 14, 1946\
nDonald John Trump;NATIONALITY;American politician\nDonald John Trump;OCCUPATION;media personality\nDonald
John Trump;OCCUPATION;businessman\nDonald John Trump;POSITION HELD;45th president\n45th president;TERM OF
OFFICE;2017\n45th president;TERM OF OFFICE;2021\nDonald John Trump;ELECTED AS;2024 presidential election\
n2024 presidential election;NOMINEE OF;Republican Party\nDonald John Trump;FUTURE POSITION;47th president\
n47th president;DATE OF INAUGURATION;January 20, 2025\n47th president;DATE OF START;January 20, 2025\nDonald
John Trump;EDUCATED AT;University of Pennsylvania\nDonald John Trump;DEGREE FROM;University of Pennsylvania\
nDonald John Trump;DEGREE IN;economics\nDonald John Trump;DATE OF GRADUATION;1968\n'}]

Use the following entities, don't use other entity that is not defined below:
ALLOWED ENTITIES:
{allowed_nodes}
Use the following relation types, don't use other relation that is not defined below:
ALLOWED RELATION TYPES:
{allowed_relationships}
Text: {input}

Prompt 4: Instructions for the LLM to extract a knowledge graph KGs from a sample ({input}). The {allowed_nodes}
field contains the list of allowed entities. The {allowed_relationships} field contains the list of allowed relations.
The LLM is expected to return a list of triples in the CSV format.

21

================================ System Message ================================

You are a top-tier algorithm designed for verification whether fact is supported by the provided knowledge graph.
Your task is to answer whether the given fact is supported by the knowledge graph.
Return `yes` if the fact is supported, `no` otherwise.
You can reason over the knowledge graph and the fact to answer.
You can infer the answer from the knowledge graph, e.g. by inferring new facts from the knowledge graph.
Do not add new facts other than by inference from the knowledge graph.
Fact is a triple of the form `(subject, predicate, object)`. Knowledge graph is a list of facts.
You must return a single word, either `yes` or `no`.
You must not return any other text or explanation.

================================ Human Message =================================

Below are a number of examples of facts, knowledge graph and their verification results.
- Fact: (Donald Trump, president, United States)
Knowledge graph: [(Donald Trump, president, United States), (Donald Trump, born, 1946), (Donald Trump, graduated

, University of Pennsylvania)]
Is the fact supported by the knowledge graph?: yes

- Fact: (Joe Biden, born, 1942)
Knowledge graph: [(Joe Biden, proffesion, politician), (Joe Biden, president, United States), (Joe Biden,

graduated, University of Delaware)]
Is the fact supported by the knowledge graph?: no

- Fact: (Michael Jordan, played, basketball)
Knowledge graph: [(Michael Jordan, CEO, PepsiCo), (Michael Jordan, born, 1936), (Michael Jordan, graduated, Yale

University)]
Is the fact supported by the knowledge graph?: no

- Fact: (Kobe Bryant, played in, NBA)
Knowledge graph: [(Kobe Bryant, born, 1978), (Kobe Bryant, played in, Los Angeles Lakers)]
note: Los Angeles Lakers is a part of NBA
Is the fact supported by the knowledge graph?: yes

- Fact: (Bryant, profession, basketball player)
Knowledge graph: [(Kobe Bryant, born, 1978), (Kobe Bryant, played in, Los Angeles Lakers)]
note: In this context, Bryant is Kobe Bryant, and Los Angeles Lakers is a basketball team, so Kobe Bryant is a

basketball player
Is the fact supported by the knowledge graph?: yes

===
For the following fact and knowledge graph, verify if the fact is supported by the knowledge graph.
Fact: {input}
Knowledge graph: {knowledge_graph}
Is the fact supported by the knowledge graph?

Prompt 5: FactSelfCheck-KG: Instructions for the LLM to assess support of fact ({input}) by a knowledge graph
({knowledge_graph}). The LLM is expected to return ’yes’ if the fact is supported by the knowledge graph, ’no’
otherwise.

22

================================ System Message ================================

You are a top-tier algorithm designed for verification whether fact is supported by the provided context.
Your task is to answer whether the given fact is supported by the context.
Return `yes` if the fact is supported, `no` otherwise.
You can reason over the context and the fact to answer.
You can infer the answer from the context, e.g. by inferring new facts from the context.
Do not add new facts other than by inference from the context.
Fact is a triple of the form `(subject, predicate, object)`. Context is a text.
You must return a single word, either `yes` or `no`.
You must not return any other text or explanation.

================================ Human Message =================================

Below are a number of examples of facts, context and their verification results.
- Fact: (Donald Trump, president, United States)
Context: Donald Trump was president of the United States. Donald Trump was born in 1946 and graduated from the

University of Pennsylvania.
Is the fact supported by the context?: yes

- Fact: (Joe Biden, born, 1942)
Context: Joe Biden is a politician and president of the United States. He graduated from the University of

Delaware.
Is the fact supported by the context?: no

- Fact: (Michael Jordan, played, basketball)
Context: Michael Jordan is the CEO of PepsiCo. He was born in 1936 and graduated from Yale University.
Is the fact supported by the context?: no

- Fact: (Kobe Bryant, played in, NBA)
Context: Kobe Bryant was born in 1978 and played for the Los Angeles Lakers.
note: Los Angeles Lakers is a part of NBA
Is the fact supported by the context?: yes

- Fact: (Bryant, profession, basketball player)
Context: Kobe Bryant was born in 1978 and played for the Los Angeles Lakers.
note: In this context, Bryant is Kobe Bryant, and Los Angeles Lakers is a basketball team, so Kobe Bryant is a

basketball player
Is the fact supported by the context?: yes

===
For the following fact and context, verify if the fact is supported by the context.
Fact: {input}
Context: {context}
Is the fact supported by the context?

Prompt 6: FactSelfCheck-Text: Instructions for the LLM to assess support of fact ({input}) by a sample ({context}).
The LLM is expected to return ’yes’ if the fact is supported by the sample, ’no’ otherwise.

23

================================ System Message ================================

You are a top-tier algorithm designed for correcting sentences from the generated text generated by the LLM.
You will be given a original prompt, a generated text in form of a list of sentences.
We don't know whether the given sentences are correct or incorrect.
You need to correct the incorrect sentences to make it more factual and coherent.
If the sentence is correct, you should return the original sentence.
If you don't know how to correct the sentence, you should return the original sentence.
Put the corrected sentences in the following format, each sentence separated by a new line:
```
1. Corrected sentence 1.
2. Corrected sentence 2.
...
```
You must return only the corrected or original sentences, not return any other text or explanation.
Important: The number of corrected sentences should be the same as the number of sentences in the generated text.

================================ Human Message =================================

Below are a number of examples of original prompt, list of sentences from the generated text.
- Original prompt: ```Donald Trump is```
Generated sentences:
```
1. Donald Trump is the president of Canada.
2. He was born in 1946 and graduated from the University of Pennsylvania.
```
Corrected sentences:
```
1. Donald Trump is the president of the United States.
2. Donald Trump was born in 1946 and graduated from the University of Pennsylvania.
```

- Original prompt: ```Kobe Bryant is```
Generated sentences:
```
1. Kobe Bryant (February 17, 1963 - January 26, 2020) was an American professional basketball player.
2. Bryant married Vanessa Laine in 2001.
```
Corrected sentences:
```
1. Kobe Bryant (August 23, 1978 - January 26, 2020) was an American professional basketball player.
2. Kobe Bryant married Vanessa Laine in 2001.
```

===
For the following original prompt, generated text, and incorrect sentences, correct the generated text.
Original prompt: ```{original_prompt}```
Generated sentences:
```
{generated_sentences}
```
Answer in format:
```
{format}
```
Corrected sentences:

Prompt 7: Instructions for the LLM to correct a hallucinated response without pointing out hallucinations. For a
description of input fields { }, see Appendix G.

24

================================ System Message ================================

You are a top-tier algorithm designed for correcting sentences from the generated text generated by the LLM.
You will be given a original prompt, sentences from the generated text, and a list of incorrect sentences from

the generated text.
Empty list means that no incorrect sentences were found.
You need to correct the sentences to make it more factual and coherent.
If the sentence is correct, you should return the original sentence.
If you don't know how to correct the sentence, you should return the original sentence.
Put the corrected sentences in the following format, each sentence separated by a new line:
```
1. Corrected sentence 1.
2. Corrected sentence 2.
3. Corrected sentence 3.
```
You must return only the corrected or original sentences, not return any other text or explanation.
Important: The number of corrected sentences should be the same as the number of sentences in the generated text.

================================ Human Message =================================

Below are a number of examples of original prompt, sentences from the generated text, and incorrect sentences.
- Original prompt: ```Donald Trump is```
Generated sentences:
```
1. Donald Trump is the president of Canada.
2. He was born in 1946 and graduated from the University of Pennsylvania.
```
Incorrect sentences:
```
1. Donald Trump is the president of Canada.
```
Corrected sentences:
```
1. Donald Trump is the president of the United States.
2. Donald Trump was born in 1946 and graduated from the University of Pennsylvania.
```

- Original prompt: ```Kobe Bryant is```
Generated sentences:
```
1. Kobe Bryant (February 17, 1963 - January 26, 2020) was an American professional basketball player.
2. Bryant married Vanessa Laine in 2001.
```
Incorrect sentences:
```
1. Kobe Bryant (February 17, 1963 - January 26, 2020) was an American professional basketball player.
```
Corrected sentences:
```
1. Kobe Bryant (August 23, 1978 - January 26, 2020) was an American professional basketball player.
2. Kobe Bryant married Vanessa Laine in 2001.
```

===
For the following original prompt, sentences from the generated text, and incorrect sentences, correct the

generated text.
Original prompt: ```{original_prompt}```
Generated sentences:
```
{generated_sentences}
```
Incorrect sentences:
```{incorrect_sentences}```
Answer in format:
```
{format}
```
Corrected sentences:

Prompt 8: Instructions for the LLM to correct a hallucinated response by pointing out hallucinated sentences. For a
description of input fields { }, see Appendix G.

25



================================ System Message ================================

You are a top-tier algorithm designed for correcting sentences from the generated text generated by the LLM.
You will be given a original prompt, sentences from the generated text, and list of incorrect facts for each

sentence.
Empty list means that no incorrect facts were found.
Fact is a triple of the form `(subject, predicate, object)`, just like in the knowledge graph.
You need to correct the sentences to make it more factual and coherent.
Use the provided incorrect facts to correct the sentences, by locating the incorrect facts in the sentences and

replacing them or removing them.
Put the corrected sentences in the following format, each sentence separated by a new line:
```
1. Corrected sentence 1.
2. Corrected sentence 2.
3. Corrected sentence 3.
```
You must return only the corrected or original sentences, not return any other text or explanation.
Important: The number of corrected sentences should be the same as the number of sentences in the generated text.

================================ Human Message =================================

Below are a number of examples of original prompt, sentences from the generated text, and incorrect sentences
from the generated text.

- Original prompt: ```Donald Trump is```
Generated sentences:
```
1. Donald Trump is the president of Canada.
2. He was born in 1946 and graduated from the University of Pennsylvania.
```
Incorrect facts:
```
1. [(Donald Trump, president, Canada)]
2. []
```
Corrected sentences:
```
1. Donald Trump is the president of the United States.
2. Donald Trump was born in 1946 and graduated from the University of Pennsylvania.
```

- Original prompt: ```Kobe Bryant is```
Generated sentences:
```
1. Kobe Bryant (February 17, 1963 - January 26, 2020) was an American professional basketball player.
2. Bryant married Vanessa Laine in 2001.
```
Incorrect facts:
```
1. [(Kobe Bryant, born, February 17 1963)]
2. []
```
Corrected sentences:
```
1. Kobe Bryant (August 23, 1978 - January 26, 2020) was an American professional basketball player.
2. Kobe Bryant married Vanessa Laine in 2001.
```

===
For the following original prompt, sentences from the generated text, and incorrect sentences, correct the

generated sentences.
Original prompt: ```{original_prompt}```
Generated sentences:
```
{generated_sentences}
```
Incorrect facts:
```
{incorrect_facts}
```
Answer in format:
```
{format}
```
Corrected sentences:

Prompt 9: Instructions for the LLM to correct a hallucinated response by pointing out hallucinated facts. For a
description of input fields { }, see Appendix G.

26



================================ System Message ================================

You are a top-tier algorithm designed for verification whether sentence are supported by the source.
You will be given a sentence, full text, and source.
The full text, as well as the sentence, are generated by the LLM.
Evaluate correctness of the sentence, not the full text.
You have to access the factual consistency of the sentence with the source.
If the sentence is fully supported by the source, you should return `yes`.
If some parts of the sentence are not supported by the source, you should return `no`.
If LLM refused to generate the sentence, e.g. LLM didn't have enough information to generate the sentence, you

should return `refused`.
You must return a single word, either `yes` or `no` or `refused`.
You must not return any other text or explanation.

================================ Human Message =================================

Below are a number of examples of sentence, full text, and source and their verification results.
- Source: Donald Trump was president of the United States. Donald Trump was born in 1946 and graduated from the

University of Pennsylvania.
Full text: Donald Trump was president of the United States. Donald Trump was born in 1946 and graduated from the

University of Pennsylvania.
Sentence: Donald Trump was president of the United States.
Is the sentence supported by the source?: yes

- Source: Michael Jordan is the CEO of PepsiCo. He was born in 1936 and graduated from Yale University.
Full text: Michael Jordan was born in 1963. He was a basketball player.
Sentence: He was a basketball player.
Is the sentence supported by the source?: no

- Source: Kobe Bryant was born in 1978 and played for the Los Angeles Lakers.
Full text: Kobe Bryant was born in 1978. He played in the NBA.
Sentence: He played in the NBA.
note: Los Angeles Lakers is a part of NBA
Is the sentence supported by the source?: yes

===
For the following sentence, full text, and source, verify if the sentence is supported by the source.
Source: {source}
Full text: {full_text}
Sentence: {input}
Is the sentence supported by the source?

Prompt 10: Instructions for the LLM to evaluate factuality of corrected sentences. The prompt takes three inputs: an
external Wikipedia biography ({source}), a complete corrected response ({full_text}), and a specific sentence to
evaluate ({input}).

================================ System Message ================================

You are a top-tier algorithm designed for annotate whether fact is supported by the source.
You will be given a fact and source.
Fact is a triple of the form `(subject, predicate, object)`, just like in the knowledge graph.
You have to access the factual consistency of the fact with the source.
You must return a single word, either `yes` or `no`.
You must not return any other text or explanation.

================================ Human Message =================================

Below are a number of examples of fact and source and their verification results.
- Source: Donald Trump was president of the United States. Donald Trump was born in 1946 and graduated from the

University of Pennsylvania.
Fact: ('Donald Trump', 'PRESIDENT', 'Canada')
Is the fact supported by the source?: no

- Source: Michael Jordan is the CEO of PepsiCo. He was born in 1936 and graduated from Yale University.
Fact: ('Michael Jordan', 'CEO', 'PepsiCo')
Is the fact supported by the source?: yes

===
For the following fact and source, verify if the fact is supported by the source.
Source: {source}
Fact: {fact}
Is the fact supported by the source?

Prompt 11: Instructions for the LLM to annotate hallucinations at the fact level. The LLM is asked to determine
whether a fact ({fact}) is supported by an external Wikipedia biography ({source}).

27



================================ System Message ================================

You are a top-tier algorithm designed for verification whether sentence is supported by the provided context.
Your task is to answer whether the given sentence is supported by the context.
Return `yes` if the sentence is supported, `no` otherwise.
You can reason over the context and the sentence to answer.
You can infer the answer from the context, e.g. by inferring new facts from the context.
Do not add new facts other than by inference from the context.
You must return a single word, either `yes` or `no`.
You must not return any other text or explanation.

================================ Human Message =================================

Below are a number of examples of context and sentences, and their verification results.
- Context: Donald Trump was president of the United States. Donald Trump was born in 1946 and graduated from the

University of Pennsylvania.
Sentence: Donald Trump served as president of the United States.
Is the sentence supported by the context above? yes

- Context: Joe Biden is a politician and president of the United States. He graduated from the University of
Delaware.

Sentence: Joe Biden was born in 1942.
Is the sentence supported by the context above? no

- Context: Michael Jordan is the CEO of PepsiCo. He was born in 1936 and graduated from Yale University.
Sentence: Michael Jordan played basketball.
Is the sentence supported by the context above? no

- Context: Kobe Bryant was born in 1978 and played for the Los Angeles Lakers.
Sentence: Kobe Bryant played in the NBA.
note: Los Angeles Lakers is a part of NBA
Is the sentence supported by the context above? yes

- Context: Kobe Bryant was born in 1978 and played for the Los Angeles Lakers.
Sentence: Bryant was a basketball player.
note: In this context, Bryant is Kobe Bryant, and Los Angeles Lakers is a basketball team, so Kobe Bryant is a

basketball player
Is the sentence supported by the context above? yes

===
For the following context and sentence, verify if the sentence is supported by the context.
Context: {context}
Sentence: {sentence}

Is the sentence supported by the context above?

Prompt 12: Enhanced prompt for SelfCheckGPT.

28


	Introduction
	Related work
	Method
	Notation
	FactSelfCheck pipeline
	Knowledge Graph Extraction
	Fact-Level Hallucination Scores
	FactSelfCheck-KG
	FactSelfCheck-Text

	Sentence-Level and Passage-Level Hallucination Scores

	Experimental Setup
	Evaluation Data
	Implementation Details
	Evaluation of Sentence-Level and Passage-Level Hallucination Detection
	Effect of Sample Size on Detection Performance
	Role of Fact-Level Detection in Hallucination Correction

	Results
	Evaluation of Sentence-Level and Passage-Level Hallucination Detection
	Effect of Sample Size on Detection Performance
	Role of Fact-Level Detection in Hallucination Correction

	Conclusion
	Additional Figures for Results
	Fact-Level Detection Evaluation
	Passage-level Score: Size of Knowledge Graphs Extracted from Samples
	Case Study of FactSelfCheck vs SelfCheckGPT
	SelfCheckGPT with Enhanced Prompt
	FactSelfCheck Prompts
	Correction Prompts

