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Abstract

We stand on the threshold of a new era in artificial intelligence that promises to achieve an unprece-
dented level of ability. A new generation of agents will acquire superhuman capabilities by learning pre-
dominantly from experience. This note explores the key characteristics that will define this upcoming era.

The Era of Human Data
Artificial intelligence (AI) has made remarkable strides over recent years by training on massive amounts of
human-generated data and fine-tuning with expert human examples and preferences. This approach is exem-
plified by large language models (LLMs) that have achieved a sweeping level of generality. A single LLM
can now perform tasks spanning from writing poetry and solving physics problems to diagnosing medical
issues and summarising legal documents.

However, while imitating humans is enough to reproduce many human capabilities to a competent level,
this approach in isolation has not and likely cannot achieve superhuman intelligence across many important
topics and tasks. In key domains such as mathematics, coding, and science, the knowledge extracted from
human data is rapidly approaching a limit. The majority of high-quality data sources - those that can actually
improve a strong agent’s performance - have either already been, or soon will be consumed. The pace of
progress driven solely by supervised learning from human data is demonstrably slowing, signalling the need
for a new approach. Furthermore, valuable new insights, such as new theorems, technologies or scientific
breakthroughs, lie beyond the current boundaries of human understanding and cannot be captured by existing
human data.

The Era of Experience
To progress significantly further, a new source of data is required. This data must be generated in a way that
continually improves as the agent becomes stronger; any static procedure for synthetically generating data
will quickly become outstripped. This can be achieved by allowing agents to learn continually from their
own experience, i.e., data that is generated by the agent interacting with its environment. AI is at the cusp of
a new period in which experience will become the dominant medium of improvement and ultimately dwarf
the scale of human data used in today’s systems.

This transition may have already started, even for the large language models that epitomise human-centric
AI. One example is in the capability of mathematics. AlphaProof [20] recently became the first program to
achieve a medal in the International Mathematical Olympiad, eclipsing the performance of human-centric
approaches [27, 19]. Initially exposed to around a hundred thousand formal proofs, created over many years

*This is a preprint of a chapter that will appear in the book Designing an Intelligence, published by MIT Press.
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by human mathematicians, AlphaProof’s reinforcement learning (RL) algorithm1 subsequently generated a
hundred million more through continual interaction with a formal proving system. This focus on interactive
experience allowed AlphaProof to explore mathematical possibilities beyond the confines of pre-existing
formal proofs, so as to discover solutions to novel and challenging problems. Informal mathematics has
also achieved success by replacing expert generated data with self-generated data; for example, recent work
from DeepSeek “underscores the power and beauty of reinforcement learning: rather than explicitly teaching
the model on how to solve a problem, we simply provide it with the right incentives, and it autonomously
develops advanced problem-solving strategies.” [10]

Our contention is that incredible new capabilities will arise once the full potential of experiential learning
is harnessed. This era of experience will likely be characterised by agents and environments that, in addition
to learning from vast quantities of experiential data, will break through the limitations of human-centric AI
systems in several further dimensions:

• Agents will inhabit streams of experience, rather than short snippets of interaction.

• Their actions and observations will be richly grounded in the environment, rather than interacting via
human dialogue alone.

• Their rewards will be grounded in their experience of the environment, rather than coming from human
prejudgement.

• They will plan and/or reason about experience, rather than reasoning solely in human terms

We believe that today’s technology, with appropriately chosen algorithms, already provides a sufficiently
powerful foundation to achieve these breakthroughs. Furthermore, the pursuit of this agenda by the AI
community will spur new innovations in these directions that rapidly progress AI towards truly superhuman
agents.

Streams
An experiential agent can continue to learn throughout a lifetime. In the era of human data, language-based AI
has largely focused on short interaction episodes: e.g., a user asks a question and (perhaps after a few thinking
steps or tool-use actions) the agent responds. Typically, little or no information carries over from one episode
to the next, precluding any adaptation over time. Furthermore, the agent aims exclusively for outcomes
within the current episode, such as directly answering a user’s question. In contrast, humans (and other
animals) exist in an ongoing stream of actions and observations that continues for many years. Information is
carried across the entire stream, and their behaviour adapts from past experiences to self-correct and improve.
Furthermore, goals may be specified in terms of actions and observations that stretch far into the future of
the stream. For example, humans may select actions to achieve long-term goals like improving their health,
learning a language, or achieving a scientific breakthrough.

Powerful agents should have their own stream of experience that progresses, like humans, over a long
time-scale. This will allow agents to take actions to achieve future goals, and to continuously adapt over
time to new patterns of behaviour. For example, a health and wellness agent connected to a user’s wearables
could monitor sleep patterns, activity levels, and dietary habits over many months. It could then provide
personalized recommendations, encouragement, and adjust its guidance based on long-term trends and the
user’s specific health goals. Similarly, a personalized education agent could track a user’s progress in learning

1An RL algorithm is one that learns to achieve a goal by trial and error, i.e., adapting its behaviour from its experience of interacting
with its environment. Adaptation may happen by any means, for example updating the weights of a neural network, or adapting in-
context based on feedback from the environment.
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a new language, identify knowledge gaps, adapt to their learning style, and adjust its teaching methods over
months or even years. Furthermore, a science agent could pursue ambitious goals, such as discovering a new
material or reducing carbon dioxide. Such an agent could analyse real-world observations over an extended
period, developing and running simulations, and suggesting real-world experiments or interventions.

In each case, the agent takes a sequence of steps so as to maximise long-term success with respect to the
specified goal. An individual step may not provide any immediate benefit, or may even be detrimental in the
short term, but may nevertheless contribute in aggregate to longer term success. This contrasts strongly with
current AI systems that provide immediate responses to requests, without any ability to measure or optimise
the future consequences of their actions on the environment.

Actions and Observations
Agents in the era of experience will act autonomously in the real world. LLMs in the era of human data
focused primarily on human-privileged actions and observations that output text to a user, and input text from
the user back into the agent. This differs markedly from natural intelligence, in which an animal interacts
with its environment through motor control and sensors. While animals, and most notably humans, may
communicate with other animals, this occurs through the same interface as other sensorimotor control rather
than a privileged channel.

It has long been recognised that LLMs may also invoke actions in the digital world, for example by
calling APIs (see for example, [43]). Initially, these capabilities came largely from human examples of
tool-use, rather than from the experience of the agent. However, coding and tool-use capabilities have built
increasingly upon execution feedback [17, 7, 12], where the agent actually runs code and observes what
happens. Recently, a new wave of prototype agents have started to interact with computers in an even more
general manner, by using the same interface that humans use to operate a computer [3, 15, 24]. These
changes herald a transition from exclusively human-privileged communication, to much more autonomous
interactions where the agent is able to act independently in the world. Such agents will be able to actively
explore the world, adapt to changing environments, and discover strategies that might never occur to a human.

These richer interactions will provide a means to autonomously understand and control the digital world.
The agent may use ‘human-friendly’ actions and observations such as user interfaces, that naturally facilitate
communication and collaboration with the user. The agent may also take ‘machine-friendly’ actions that
execute code and call APIs, allowing the agent to act autonomously in service of its goals. In the era of
experience, agents will also interact with the real world via digital interfaces. For example, a scientific agent
could monitor environmental sensors, remotely operate a telescope, or control a robotic arm in a laboratory
to autonomously conduct experiments.

Rewards
What if experiential agents could learn from external events and signals, and not just human preferences?

Human-centric LLMs typically optimise for rewards based on human prejudgement: an expert observes
the agent’s action and decides whether it is a good action, or picks the best agent action among multiple al-
ternatives. For example, an expert may judge a health agent’s advice, an educational assistant’s teaching, or a
scientist agent’s suggested experiment. The fact that these rewards or preferences are determined by humans
in absence of their consequences, rather than measuring the effect of those actions on the environment, means
that they are not directly grounded in the reality of the world. Relying on human prejudgement in this manner
usually leads to an impenetrable ceiling on the agent’s performance: the agent cannot discover better strate-
gies that are underappreciated by the human rater. To discover new ideas that go far beyond existing human
knowledge, it is instead necessary to use grounded rewards: signals that arise from the environment itself.
For example, a health assistant could ground the user’s health goals into a reward based on a combination of
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signals such as their resting heart rate, sleep duration, and activity levels, while an educational assistant could
use exam results to provide a grounded reward for language learning. Similarly, a science agent with a goal
to reduce global warming might use a reward based on empirical observations of carbon dioxide levels, while
a goal to discover a stronger material might be grounded in a combination of measurements from a materials
simulator, such as tensile strength or Young’s modulus.

Grounded rewards may arise from humans that are part of the agent’s environment.2 For example, a
human user could report whether they found a cake tasty, how fatigued they are after exercising, or the level
of pain from a headache, enabling an assistant agent to provide better recipes, refine its fitness suggestions,
or improve its recommended medication. Such rewards measure the consequence of the agent’s actions
within their environment, and should ultimately lead to better assistance than a human expert that prejudges
a proposed cake recipe, exercise program, or treatment program.

Where do rewards come from, if not from human data? Once agents become connected to the world
through rich action and observation spaces (see above), there will be no shortage of grounded signals to
provide a basis for reward. In fact, the world abounds with quantities such as cost, error rates, hunger, pro-
ductivity, health metrics, climate metrics, profit, sales, exam results, success, visits, yields, stocks, likes,
income, pleasure/pain, economic indicators, accuracy, power, distance, speed, efficiency, or energy consump-
tion. In addition there are innumerable additional signals arising from the occurrence of specific events, or
from features derived from raw sequences of observations and actions.

One could in principle create a variety of distinct agents, each optimising for one grounded signal as its
reward. There is an argument that even a single such reward signal, optimised with great effectiveness, may
be sufficient to induce broadly capable intelligence [34].3 This is because the achievement of a simple goal
in a complex environment may often require a wide variety of skills to be mastered.

However, the pursuit of a single reward signal does not on the surface appear to meet the requirements of a
general-purpose AI that can be steered reliably towards arbitrary user-desired behaviours. Is the autonomous
optimisation of grounded, non-human reward signals therefore in opposition to the requirements of modern
AI systems? We argue that this is not necessarily the case, by sketching one approach that may meet these
desiderata; other approaches may also be possible.

The idea is to flexibly adapt the reward, based on grounded signals, in a user-guided manner. For example,
the reward function could be defined by a neural network that takes the agent’s interactions with both the user
and the environment as input, and outputs a scalar reward. This allows the reward to select or combine
together signals from the environment in a manner that depends upon the user’s goal. For example, a user
might specify a broad goal such as ’improve my fitness’ and the reward function might return a function
of the user’s heart rate, sleep duration, and steps taken. Or the user might specify a goal of ‘help me learn
Spanish’ and the reward function could return the user’s Spanish exam results.

Furthermore, users could provide feedback during the learning process, such as their satisfaction level,
which could be used to fine-tune the reward function. The reward function can then adapt over time, to
improve the way in which it selects or combines signals, and to identify and correct any misalignment. This
can also be understood as a bi-level optimisation process that optimises user feedback as the top-level goal,
and optimises grounded signals from the environment at the low level.4 In this way, a small amount of human
data may facilitate a large amount of autonomous learning.

2Experience and human data are not exact opposites. For example, a dog learns entirely from experience, but human interaction is
part of its experience.

3The reward-is-enough hypothesis suggests that intelligence, and its associated abilities, can emerge naturally from the maximisation
of reward. This may include environments containing human interaction and rewards based on human feedback.

4In this case, one may also view grounded human feedback as a singular reward function forming the agent’s overall objective, which
is maximised by constructing and optimising an intrinsic reward function [8] based on rich, grounded feedback.

4



Planning and Reasoning
Will the era of experience change the way that agents plan and reason? Recently, there has been significant
progress using LLMs that can reason, or “think” with language [23, 14, 10], by following a chain of thought
before outputting a response [16]. Conceptually, LLMs can act as a universal computer [30]: an LLM can
append tokens into its own context, allowing it to execute arbitrary algorithms before outputting a final result.

In the era of human data, these reasoning methods have been explicitly designed to imitate human thought
processes. For example, LLMs have been prompted to emit human-like chains of thought [16], imitate traces
of human thinking [42], or to reinforce steps of thinking that match human examples [18]. The reasoning
process may be fine-tuned further to produce thinking traces that match the correct answer, as determined by
human experts [44].

However, it is highly unlikely that human language provides the optimal instance of a universal computer.
More efficient mechanisms of thought surely exist, using non-human languages that may for example utilise
symbolic, distributed, continuous, or differentiable computations. A self-learning system can in principle
discover or improve such approaches by learning how to think from experience. For example, AlphaProof
learned to formally prove complex theorems in a manner quite different to human mathematicians [20].

Furthermore, the principle of a universal computer only addresses the internal computation of the agent;
it does not connect it to the realities of the external world. An agent trained to imitate human thoughts or
even to match human expert answers may inherit fallacious methods of thought deeply embedded within that
data, such as flawed assumptions or inherent biases. For example, if an agent had been trained to reason using
human thoughts and expert answers from 5,000 years ago it may have reasoned about a physical problem in
terms of animism; 1,000 years ago it may have reasoned in theistic terms; 300 years ago it may have reasoned
in terms of Newtonian mechanics; and 50 years ago in terms of quantum mechanics. Progressing beyond
each method of thought required interaction with the real world: making hypotheses, running experiments,
observing results, and updating principles accordingly. Similarly, an agent must be grounded in real-world
data in order to overturn fallacious methods of thought. This grounding provides a feedback loop, allowing
the agent to test its inherited assumptions against reality and discover new principles that are not limited by
current, dominant modes of human thought. Without this grounding, an agent, no matter how sophisticated,
will become an echo chamber of existing human knowledge. To move beyond this, agents must actively
engage with the world, collect observational data, and use that data to iteratively refine their understanding,
mirroring in many ways the process that has driven human scientific progress.

One possible way to directly ground thinking in the external world is to build a world model [37] that
predicts the consequences of the agent’s actions upon the world, including predicting reward. For example,
a health assistant might consider making a recommendation for a local gym or a health podcast. The agent’s
world model might predict how a user’s heart rate or sleep patterns might subsequently change following this
action, as well as predicting future dialogue with the user. This allows the agent to plan [36, 29] directly in
terms of its own actions and their causal effect upon the world. As the agent continues to interact with the
world throughout its stream of experience, its dynamics model is continually updated to correct any errors
in its predictions. Given a world model, an agent may apply scalable planning methods that improve the
predicted performance of the agent.

Planning and reasoning methods are not mutually exclusive: an agent may apply internal LLM computa-
tions to select each action during planning, or to simulate and evaluate the consequences of those actions.

Why Now?
Learning from experience is not new. Reinforcement learning systems have previously mastered a large
number of complex tasks that were represented in a simulator with a clear reward signal (c.f., approximately,
the “era of simulation” in Figure 1). For example, RL methods equalled or exceeded human performance
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Figure 1: A sketch chronology of dominant AI paradigms. The y-axis suggests the proportion of the field’s
total effort and computation that is focused on RL.

through self-play in board games such as backgammon [39], Go [31], chess [32], poker [22, 6] and Strat-
ego [26]; video games such as Atari [21], StarCraft II [40], Dota 2 [4] and Gran Turismo [41]; dextrous
manipulation tasks such as Rubik’s cube [1]; and resource management tasks such as data center cooling
[13]. Furthermore, powerful RL agents such as AlphaZero [33] exhibited impressive and potentially unlim-
ited scalability with the size of the neural network, the quantity of interactive experience, and the duration of
thinking time. However, agents based on this paradigm did not leap the gap between simulation (closed prob-
lems with singular, precisely defined rewards) to reality (open-ended problems with a plurality of seemingly
ill-defined rewards).

The era of human data offered an appealing solution. Massive corpuses of human data contain examples
of natural language for a huge diversity of tasks. Agents trained on this data achieved a wide range of com-
petencies compared to the more narrow successes of the era of simulation. Consequently, the methodology
of experiential RL was largely discarded in favour of more general-purpose agents, resulting in a widespread
transition to human-centric AI.

However, something was lost in this transition: an agent’s ability to self-discover its own knowledge.
For example, AlphaZero discovered fundamentally new strategies for chess and Go, changing the way that
humans play these games [28, 45]. The era of experience will reconcile this ability with the level of task-
generality achieved in the era of human data. This will become possible, as outlined above, when agents are
able to autonomously act and observe in streams of real-world experience [11], and where the rewards may
be flexibly connected to any of an abundance of grounded, real-world signals. The advent of autonomous
agents that interact with complex, real-world action spaces [3, 15, 24], alongside powerful RL methods that
can solve open-ended problems in rich reasoning spaces [20, 10] suggests that the transition to the era of
experience is imminent.

6



Reinforcement Learning Methods
Reinforcement learning (RL) has a rich history that is deeply rooted in autonomous learning, where agents
learn for themselves through direct interaction with their environment. Early RL research yielded a suite of
powerful concepts and algorithms. For example, temporal difference learning [35] enabled agents to estimate
future rewards, leading to breakthroughs such as superhuman performance in backgammon [39]. Exploration
techniques, driven by optimism or curiosity, were developed to help agents discover creative new behaviors
and avoid getting stuck in suboptimal routines [2]. Methods like the Dyna algorithm enabled agents to
build and learn from models of their world, allowing them to plan and reason about future actions [36,
29]. Concepts like options and inter/intra-option learning facilitated temporal abstraction, enabling agents to
reason over longer timescales and break down complex tasks into manageable sub-goals [38].

The rise of human-centric LLMs, however, shifted the focus away from autonomous learning and towards
leveraging human knowledge. Techniques like RLHF (Reinforcement Learning from Human Feedback) [9,
25] and methods for aligning language models with human reasoning [44] proved incredibly effective, driving
rapid progress in AI capabilities. These approaches, while powerful, often bypassed core RL concepts: RLHF
side-stepped the need for value functions by invoking human experts in place of machine-estimated values,
strong priors from human data reduced the reliance on exploration, and reasoning in human-centric terms
lessened the need for world models and temporal abstraction.

However, it could be argued that the shift in paradigm has thrown out the baby with the bathwater. While
human-centric RL has enabled an unprecedented breadth of behaviours, it has also imposed a new ceiling
on the agent’s performance: agents cannot go beyond existing human knowledge. Furthermore, the era of
human data has focused predominantly on RL methods that are designed for short episodes of ungrounded,
human interaction, and are not suitable for long streams of grounded, autonomous interaction.

The era of experience presents an opportunity to revisit and improve classic RL concepts. This era will
bring new ways to think about reward functions that are flexibly grounded in observational data. It will
revisit value functions and methods to estimate them from long streams with as yet incomplete sequences. It
will bring principled yet practical methods for real-world exploration that discover new behaviours that are
radically different from human priors. Novel approaches to world models will be developed that capture the
complexities of grounded interactions. New methods for temporal abstraction will allow agents to reason, in
terms of experience, over ever-longer time horizons. By building upon the foundations of RL and adapting
its core principles to the challenges of this new era, we can unlock the full potential of autonomous learning
and pave the way to truly superhuman intelligence.

Consequences
The advent of the era of experience, where AI agents learn from their interactions with the world, promises a
future profoundly different from anything we have seen before. This new paradigm, while offering immense
potential, also presents important risks and challenges that demand careful consideration, including but not
limited to the following points.

On the positive side, experiential learning will unlock unprecedented capabilities. In everyday life, per-
sonalized assistants will leverage continuous streams of experience to adapt to individuals’ health, educa-
tional, or professional needs towards long-term goals over the course of months or years. Perhaps most
transformative will be the acceleration of scientific discovery. AI agents will autonomously design and con-
duct experiments in fields like materials science, medicine, or hardware design. By continuously learning
from the results of their own experiments, these agents could rapidly explore new frontiers of knowledge,
leading to the development of novel materials, drugs, and technologies at an unprecedented pace.

However, this new era also presents significant and novel challenges. While the automation of human
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capabilities promises to boost productivity, these improvements could also lead to job displacement. Agents
may even be able to exhibit capabilities previously considered the exclusive realm of humanity, such as long-
term problem-solving, innovation, and a deep understanding of real world consequences.

Furthermore, whilst general concerns exist around the potential misuse of any AI, heightened risks may
arise from agents that can autonomously interact with the world over extended periods of time to achieve
long-term goals. By default, this provides fewer opportunities for humans to intervene and mediate the
agent’s actions, and therefore requires a high bar of trust and responsibility. Moving away from human data
and human modes of thinking may also make future AI systems harder to interpret.

However, whilst acknowledging that experiential learning will increase certain safety risks, and that fur-
ther research is surely required to ensure a safe transition into the era of experience, we should also recognise
that it may also provide some important safety benefits.

Firstly, an experiential agent is aware of the environment it is situated within, and its behaviour can adapt
over time to changes in that environment. Any pre-programmed system, including a fixed AI system, can
be unaware of its environmental context, and become maladapted to the changing world into which it is
deployed. For example, a critical piece of hardware may malfunction, a pandemic might cause rapid societal
change, or a new scientific discovery may trigger a cascade of rapid technological developments. By contrast,
an experiential agent could observe and learn to circumvent malfunctioning hardware, adjust to rapid societal
change, or embrace and build upon new science and technology. Perhaps even more importantly, the agent
could recognise when its behaviour is triggering human concern, dissatisfaction, or distress, and adaptively
modify its behaviour to avoid these negative consequences.

Secondly, the agent’s reward function may itself be adapted through experience, for example using the bi-
level optimisation described earlier (see Rewards). Importantly, this means that misaligned reward functions
can often be incrementally corrected over time by trial and error. For example, rather than blindly optimising
a signal, such as the maximisation of paperclips [5], the reward function could be modified, based upon
indications of human concern, before paperclip production consumes all of the Earth’s resources. This is
analogous to the way that humans set goals for each other, and then adapt those goals if they observe people
gaming the system, neglecting long-term well-being, or causing undesired negative consequences; although
also like human goal-setting, there is no guarantee of perfect alignment.

Finally, advancements relying on physical experience are inherently constrained by the time it takes to
execute actions in the real world and observe their consequences. For example, the development of a new
drug, even with AI-assisted design, still requires real-world trials that cannot be completed overnight. This
may provide a natural brake on the pace of potential AI self-improvement.

Conclusion
The era of experience marks a pivotal moment in the evolution of AI. Building on today’s strong foundations,
but moving beyond the limitations of human-derived data, agents will increasingly learn from their own
interactions with the world. Agents will autonomously interact with environments through rich observations
and actions. They will continue to adapt over the course of lifelong streams of experience. Their goals
will be directable towards any combination of grounded signals. Furthermore, agents will utilise powerful
non-human reasoning, and construct plans that are grounded in the consequences of the agent’s actions upon
its environment. Ultimately, experiential data will eclipse the scale and quality of human generated data.
This paradigm shift, accompanied by algorithmic advancements in RL, will unlock in many domains new
capabilities that surpass those possessed by any human.
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