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This critical review explores two interrelated trends: the rapid increase in studies on machine learning (ML) 
applications within health informatics and the growing concerns about the reproducibility of these applications 
across different healthcare settings. Addressing these concerns necessitates acknowledging the uncertainty 
inherent in evaluating medical decision support systems. Therefore, we emphasize the importance of external 
validation and robustness assessment of the underlying ML models to better estimate their performance across 
diverse real-world scenarios.
To raise awareness among health practitioners and ML researchers, we advocate for the widespread adoption 
of external validation practices and uncertainty quantification techniques. Our survey of specialized literature 
reveals that fewer than 4% of studies published in high-impact medical informatics journals over the past 13 
years have validated their systems using data from settings different from those that provided the training data. 
This low percentage is incompatible with responsible research, given the potential risks posed by unreliable ML 
models in healthcare.
Raising the standards for medical AI evaluation is crucial to improving practitioners’ understanding of the 
potential and limitations of decision support systems in real-world settings. It is essential that uncertainty is 
not hidden in studies aimed at advancing knowledge in this field.

1. Introduction

The integration of machine learning (ML) into medical informatics 
has created transformative opportunities for clinical decision-making. 
However, it also presents significant challenges related to reproducibil-
ity and robustness across diverse healthcare environments [1,2]. Central 
to these challenges is the inherent uncertainty in medical decision sup-
port systems, as well as the critical need for external validation to ensure 
reliable model performance in real-world settings. These factors are es-
sential for addressing the reproducibility crisis in medical AI, wherein 
many systems fail to generalize beyond their original development con-
texts [3,4].

Uncertainty, a fundamental concept in medical AI, arises from 
intrinsic data variability (aleatoric uncertainty) and gaps in model 
knowledge (epistemic uncertainty) [5]. Effectively quantifying and 
managing uncertainty is essential for enhancing model reliability and 
safety, particularly in high-stakes clinical decision-making [6]. External 
validation—by testing models on data from different institutions, re-
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gions, or timeframes—provides critical evidence of generalizability and 
ensures that models are not overfitted to their development environ-
ments [7].

Despite widespread recognition of these best practices, our review 
identifies significant gaps in their implementation. While prior research 
emphasizes the role of external validation in demonstrating model gen-
eralizability, it remains underutilized within the broader field of medical 
informatics. Fewer than 4% of ML studies published in high-impact 
medical informatics journals conduct external validation, and an even 
smaller proportion incorporate uncertainty quantification. This lack of 
rigor underscores the urgent need for improved standards in the devel-
opment and evaluation of medical AI.

To address these challenges, this critical review synthesizes exist-
ing literature on external validation and uncertainty in medical AI, 
emphasizing their implications for medical AI practices. By analyzing 
methodological trends in high-impact studies, we identify significant 
gaps and misconceptions that impede the adoption of rigorous evalua-
tion standards. Our findings highlight the urgent need for comprehen-
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sive approaches that incorporate diverse datasets and robust statistical 
techniques to quantify uncertainty and enhance model reliability.

In this review, we aim to bridge the gap between current practices 
and ideal standards in medical AI evaluation. We propose actionable 
recommendations for researchers, practitioners, and journal editors. By 
establishing these practices as benchmarks for publication, we seek to 
elevate the quality and accountability of AI applications in healthcare, 
ensuring their safe and effective integration into clinical workflows.

2. Background and motivation

The application of decision aids in medicine presents significant chal-
lenges due to the inherent complexity and uncertainty involved. Medical 
phenomena, such as human phenotypes and adverse events, are influ-
enced by multiple factors, many of which are either imprecisely mea-
sured or entirely unmeasurable. Ensuring the robustness, uncertainty 
quantification, and external validation of ML models in medical AI is 
essential to guarantee their reliability across diverse clinical settings. 
Without these safeguards, models that perform well in controlled en-
vironments may fail in real-world applications, potentially leading to 
harmful consequences in clinical decision-making.

This review critically examines the issues of reproducibility and ro-
bustness in medical AI, both of which are mandated by current reg-
ulatory frameworks. Reproducibility ensures research transparency by 
allowing results to be replicated across different settings, while robust-
ness guarantees consistent AI system performance under varying condi-
tions. The necessity of external validation is particularly emphasized, as 
it plays a fundamental role in assessing the generalizability of AI systems 
beyond the data used for model development.

Despite the importance of these factors, our review reveals a sig-
nificant gap in their implementation within medical AI research. Stud-
ies rarely incorporate external validation or uncertainty quantification, 
raising concerns about the reliability and generalizability of reported 
results. To address this, our review adopts a rigorous query strategy, 
focusing exclusively on high-impact (Q1) medical informatics journals. 
While this approach may exclude some relevant contributions, it ensures 
a sharp focus on literature that meets the highest editorial standards, 
offering a refined perspective on external validation and uncertainty 
quantification.

To operationalize this perspective, we conducted a targeted search 
in the Scopus database in April 2024. Structured queries combined the 
terms machine learning or deep learning with external validation uncer-

tainty quantification uncertainty management or uncertainty evaluation. 
Searches were restricted to nine journals ranked in the first quartile (Q1) 
of relevant categories, based on JCR and SJR rankings, and covered pub-
lications from 2010 to 2023.

For each journal, we executed four separate queries to identify: (i) 
all ML/DL-related articles; (ii) those mentioning external validation; (iii) 
those referring to uncertainty-related concepts; and (iv) those address-
ing both. This approach enabled us to estimate the relative prevalence 
of external validation and uncertainty quantification practices within 
top-tier medical informatics literature. Full query specifications are pro-
vided in the footnotes of the Findings section to ensure transparency and 
reproducibility.

We excluded articles from non-Q1 journals and those published out-
side the 2010–2023 timeframe. Although no formal filters were applied 
regarding document type (e.g., reviews, editorials, or conference pro-
ceedings), the corpus predominantly comprises peer-reviewed empirical 
studies. This likely reflects both the editorial standards of the selected 
journals and the practical orientation of the search terms.

Uncertainty in ML is commonly classified into aleatoric uncertainty, 
which arises from intrinsic variability in the data and cannot be reduced 
by acquiring more data, and epistemic uncertainty, which reflects a lack 
of knowledge about the model or dataset and can be mitigated through 
model refinement or data expansion [5]. In medical AI, effective uncer-
tainty quantification is essential for supporting clinical decision-making 

[6], offering a structured means to assess and enhance model robust-
ness.

Key sources of uncertainty include the quantity and heterogeneity 
of available data, which impact precision, as well as the complexity of 
mathematical models, which affects their capacity to accurately repre-
sent and extrapolate data. Surprisingly, despite its significance, uncer-
tainty quantification remains underexplored in medical AI, particularly 
in prognostic and diagnostic applications. A structured representation of 
uncertainty, such as confidence intervals and conformal prediction sets, 
can enhance the interpretability and practical utility of decision-support 
systems.

While confidence intervals are increasingly used in medical research, 
their application in medical informatics remains limited, particularly in 
assessing performance metrics. Furthermore, these techniques primar-
ily address variability due to data quantity but provide limited insights 
into data representativeness. Even when model performance is reported 
with accuracy measures and confidence intervals, assumptions about the 
representativeness of test data for future applications are often overly 
optimistic.

Among the most promising methodologies for addressing uncer-
tainty, cautious classification and conformal prediction have demon-
strated effectiveness in various clinical applications. Notable studies 
have applied these approaches to diagnostic pathology [8] and sepsis 
detection [9,10], highlighting their potential for enhancing robustness 
and reliability in medical AI.

To ensure that AI-driven medical decision-support systems are gen-
uinely beneficial — improving error rates, resource utilization, and user 
satisfaction — robust evaluation practices must be implemented. Rather 
than concealing uncertainty from users, it should be quantified and 
transparently communicated.

This need is reinforced by two interrelated trends: the exponen-
tial growth in ML-based health informatics research (Fig. 1) and the 
widening “reproducibility crisis” in biomedical science [11], medical in-
formatics [12], and AI-driven medical applications [13,14]. The latter 
issue underscores the risk that findings validated in one setting may not 
generalize to another. In a previous editorial [15], referencing Ioanni-
dis [16], we provocatively argued that “most published accuracy scores 
are false” or, more bluntly, “most published studies applying ML tech-
niques to medicine are simply not valid enough”. Although we were not 
the first to make this claim (see e.g., [17,18]), we recognized it as the 
proverbial elephant in the room of medical informatics [19] that few 
were willing to acknowledge. Despite being cited nearly 150 times in 
the past three years, that editorial seems to have failed to bring about 
the necessary change in the status quo.

In this evolving landscape, uncertainty quantification in AI models 
is increasingly recognized as a critical factor. Key studies [20,21] have 
outlined key aspects of uncertainty in clinical AI. A recent review [22] 
offered an in-depth examination of the topic, covering several crucial 
aspects: the types of uncertainty, their implications for healthcare ap-
plications, and the benefits of uncertainty-aware models. However, the 
scarcity of studies that effectively integrate these methodologies under-
scores a significant research opportunity.

A major conceptual challenge lies in the differing definitions of vali-
dation across disciplines [23]. In medical research, particularly for med-
ical devices, validation entails demonstrating that a system consistently 
meets intended-use requirements.2 In contrast, ML practitioners often 
use “validation” to describe internal procedures such as hyperparame-
ter tuning or comparisons based on models’ performance on a subset of 
the available data (the so called validation data3) to identify the best 
one and report its performance. To clarify this distinction, we consider 

2 Artificial Intelligence Medical Devices (AIMD) Working Group of the Inter-
national Medical Device Regulators Forum. Machine Learning-enabled Medical 
Devices: Key Terms and Definitions. IMDRF/AIMD WG/N67. 2022.

3 Cf. definition 3.2.15 from the ISO/IEC FDIS 22989:2022.
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Fig. 1. Number of articles published in health-related journals on machine learning and deep learning over the last 13 years. 
According to a search executed on 11/04/2024 on Scopus with the following query string: ((SRCTITLE (health) OR SRCTITLE (medical)) AND (TITLE-ABS-KEY 
(“machine learning”) OR TITLE-ABS-KEY (“deep learning”))) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO (SUBJAREA, “MEDI”) OR LIMIT-TO (SUBJAREA, 
“COMP”) OR LIMIT-TO (SUBJAREA, “HEAL”) OR LIMIT-TO (SUBJAREA, “ENGI”)) AND (LIMIT-TO (PUBYEAR, 2023) OR LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO 
(PUBYEAR, 2021) OR LIMIT-TO (PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR, 2017) OR LIMIT-TO 
(PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014) OR LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO (PUBYEAR, 2012) OR LIMIT-TO 
(PUBYEAR, 2011) OR LIMIT-TO (PUBYEAR, 2010)).

internal validation as model evaluation based on internal data (i.e. data 
used to develop and test the model), whereas external validation as-
sesses model performance under varying conditions and on independent 
datasets.

True external validation involves providing statistically significant 
evidence — and indications of practical relevance — that a system will 
function reliably across anticipated scenarios within the scope of its 
intended use. This means the system should maintain similar accuracy 
when tested with naturally varied and distinct data, as opposed to data 
that has been artificially or maliciously altered, such as in adversarial 
attacks or other cybersecurity threats, compared to the data used for 
training and internal validation.

In the context of AI regulations, such as the European AI Act, val-
idation primarily refers to evaluating trained AI systems to confirm 
expected performance before deployment. Here, our focus is on external 
validation, which requires independent test datasets from institutions 
distinct from those contributing to model training. This practice is essen-
tial for confirming real-world applicability and ensuring that AI-driven 
medical tools meet clinical standards.

Uncertainty quantification further enhances robustness by assess-
ing the confidence level in collected data and model predictions. The 
ISO/IEC FDIS 22989:2022 standard defines robustness as “the ability 
[of a system] to maintain [its] level of performance, as intended by its 
developers, under any circumstances”. Similarly, it refers to “the ability 
to perform comparably on atypical data, as opposed to the data expected 
in typical operations, or on inputs dissimilar to those on which it was 
trained” (see ISO/IEC TR 24029-1). Concept drift and label noise [7] 
can render internally validated models ineffective in real-world scenar-
ios, highlighting the necessity of rigorous external testing.

A straightforward approach to achieving external validation involves 
testing models on data from multiple healthcare settings, such as differ-
ent laboratories or hospitals [24], potentially spanning different regions 
or time periods. If performance metrics remain stable across internal and 
external data—analyzed via hypothesis testing (e.g., binomial tests for 
error rates, t-tests for regression metrics) or confidence intervals—then 
the model can be considered externally valid and robust. However, true 

reliability also necessitates that AI systems outperform unaided human 
decision-making within their intended clinical use.

In [7], we also noted that the similarity between internal and exter-
nal data should be considered, with higher performance on more varied 
data indicating greater robustness. This robustness can also be assessed 
qualitatively using a diagram similar to the one we called External Per-
formance Diagram (depicted in Fig. 2). Such a diagram can be currently 
generated with an online tool.4 This diagram also considers other rele-
vant quality dimensions, such as model calibration (the extent to which 
the model estimates probabilities correctly) and utility (the extent to 
which errors undermine the benefits of correct decisions). Although the 
scientific community currently regards evaluations based solely on error 
rates as decisive and informative, we believe that an evaluation aimed 
at determining the actual value of a predictive model (as any validation 
should, by definition) should not be limited to the discriminative di-
mension alone. Instead, it should assess the model’s performance in a 
holistic and multidimensional manner [25], provided the evaluation is 
based on data that represents the intrinsic variability—population, bio-
logical, and instantial—of the medical phenotype under consideration.

3. Findings

Once we have clarified what we mean by robustness, uncertainty, 
and external validation, it becomes clear that this type of analysis is es-
sential and should no longer be left to the discretion—and therefore the 
potential arbitrariness or thoroughness—of researchers developing ML 
models for prospective medical applications, nor to the idiosyncrasies 
and preferences of selected reviewers. What has this inaction led to?

To address this, let us consider how many articles in the medical 
informatics domain have included results from external validation and 
uncertainty quantification. The answer is surprisingly few. In the last 
13 years, fewer than one in twenty-six articles (3.7%) have reported 
external validation results among those published in a selection of the 
most impactful journals in the medical informatics field (see Table 1). 

4 https://mudilab.github.io/dss-quality-assessment/.

https://mudilab.github.io/dss-quality-assessment/
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Fig. 2. An External Performance Diagram, as it was first proposed in [7]. In this kind of visualization, robustness is qualitatively rendered as a function of discriminative 
performance, as well as of calibration and utility scores. All dimensions are put in relation with the extent test and training datasets are similar, and with the sample 
size of the test sets.

Only four journals have a percentage higher than 5%, and in one journal, 
only 3 out of 322 papers report external validation (approximately 9‰). 
However, interest in external validation is undoubtedly increasing: of 
the 239 ML articles reporting external validation in medical settings, 
232 were published in the last five years. Nevertheless, over the last 
13 years, the prevalence of studies incorporating uncertainty quantifi-
cation or uncertainty management in a selection of the most impactful 
journals in the medical informatics field remains remarkably low, with 
only 0.3% of ML articles addressing this aspect. In our search, the num-
ber of ML articles,5 external validations,6 uncertainty quantification (or 
uncertainty management or uncertainty evaluation) studies,7 and stud-
ies including both external validations and uncertainty quantification 

5 Number of articles retrieved on Scopus with the following query: (SRC-
TITLE(“Journal Name”) AND (TITLE-ABS-KEY(“machine learning”) OR TITLE-
ABS-KEY(“deep learning”))).

6 Number of articles retrieved on Scopus with the following query: (SRCTI-
TLE(“Journal Name”) AND (TITLE-ABS-KEY(“machine learning”) OR TITLE-
ABS-KEY(“deep learning”)) AND (TITLE-ABS-KEY(“external validation”) OR 
TITLE-ABS-KEY(“externally”) OR TITLE-ABS-KEY(“external dataset”))).

7 (SRCTITLE(“Journal Name”) AND (TITLE-ABS-KEY(“machine learning”) 
OR TITLE-ABS-KEY(“deep learning”)) AND (TITLE-ABS-KEY(“uncertainty quan-
tification”) OR TITLE-ABS-KEY(“uncertainty management”) OR TITLE-ABS-
KEY(“uncertainty evaluation”))).

(or management or evaluation)8 were computed by querying Scopus. 
This query strategy was carefully designed to focus on high-impact jour-
nals (all Q1) in medical informatics, ensuring rigor and relevance. While 
this focus may inherently exclude certain methodologies or articles from 
other domains, it aligns with the study’s objective of prioritizing robust 
and impactful literature.

When considering studies that address both external validation and 
uncertainty quantification or uncertainty management, the figure is 
even more strikingly low at just 0.01%, underscoring a critical gap in 
the robust application of ML in healthcare. Recent studies in our critical 
review have validated some key insights highlighted in a comprehen-
sive review on uncertainty quantification in healthcare AI systems [22]. 
Specifically, the benefits of including uncertainty quantification in AI 
models were highlighted by improvements in diagnostic accuracy in 
our review findings [26,27], aligning with the emphasis on enhanced 
clinical decision-making. Additionally, our research corroborates the re-
view’s findings regarding the scarcity of models that effectively account 
for uncertainty.

8 (SRCTITLE(“Journal Name”) AND ((TITLE-ABS-KEY(“machine learn-
ing”) OR TITLE-ABS-KEY(“deep learning”)) AND (TITLE-ABS-KEY(“external 
validation”) OR TITLE-ABS-KEY(“externally”) OR TITLE-ABS-KEY(“ex-
ternal dataset”)) AND (TITLE-ABS-KEY(“uncertainty quantification”) OR 
TITLE-ABS-KEY(“uncertainty management”) OR TITLE-ABS-KEY(“uncertainty 
evaluation”)))).
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Table 1
Prevalence of (i) externally validated studies, (ii) uncertainty quantification or uncertainty management studies, and (iii) studies addressing both external validations 
and uncertainty quantification or uncertainty management in some of the top journals in medical informatics.

JCR Impact 
Factor 2023

SJR Quartile Journal Name ML articles External Validations Uncertainty 
Management or 
Uncertainty Evaluation

External Validations and 
Uncertainty Quantification 
(or Management or 
Evaluation)

30.8 Q1 Lancet Digital health 234 51 (21.8%) 0 (0%) 0 (0%)

15.2 Q1 NPJ Digital Medicine 364 28 (7.7%) 2 (0.5%) 0 (0%)

7.7 Q1 Computers in Biology and 
Medicine

2009 32 (1.6%) 9 (0.4%) 0 (0%)

7.4 Q1 Journal of Medical Internet 
Research

666 37 (5.5%) 0 (0%) 0 (0%)

6.4 Q1 Journal of the American 
Medical Informatics 
Association

494 23 (4.6%) 0 (0%) 0 (0%)

6.1 Q1 Computer Methods and 
Programs in Biomedicine

1278 25 (1.9%) 4 (0.3%) 0 (0%)

5.3 Q1 Journal of Medical Systems 322 3 (0.9%) 0 (0%) 0 (0%)

4.9 Q1 International Journal of 
Medical Informatics

324 25 (7.7%) 1 (0.3%) 1 (0.3%)

4.5 Q1 Journal of Biomedical 
Informatics

768 15 (1.9%) 1 (0.1%) 0 (0%)

6459 239 (3.7%) 17 (0.3%) 1 (0.01%)

But should we care about this, and is it relevant? An increasing 
number of studies suggest that we should. For instance, the authors 
of [18,28,29] concluded that most ML models reported in the specialist 
literature on risk stratification, radiological discrimination, and cardio-
logical tasks (respectively) perform poorly on external (i.e., real-world) 
data, or significantly worse than on internal data, potentially render-
ing them practically useless, if not harmful, to health practitioners and 
their patients. This conclusion has also been reported in other studies 
(e.g., [30,7,31]).

In what follows, we structured the findings section based on method-
ological trends identified in the reviewed literature. The categorization 
emerged organically from recurring approaches and practices observed 
across the studies. This organization avoids artificial separations and en-
sures that each category encapsulates distinct methodological principles 
while maintaining coherence with broader research themes.

3.1. Findings on external validation

Regarding external validation, several studies have utilized deep 
learning models for diagnostic purposes, underscoring the necessity of 
external validation. For example, Xue et al. (2023) employed multiple 
instance learning with two-stage attention for COPD identification using 
CT scans. Their model was validated using data from different clini-
cal settings to ensure its robustness across various patient populations 
[32]. Similarly, Yoo et al. (2019) employed ML to identify candidates 
for corneal refractive surgery, validating their model with datasets from 
multiple sources to confirm its generalizability [33].

Risk prediction models have also highlighted the importance of ex-
ternal validation. Peng et al. (2020) used deep learning to predict the 
risk of late age-related macular degeneration, validating their model 
with external datasets to ensure its accuracy and applicability across 
different clinical environments [34]. Banda et al. (2019) applied ML 
to identify missed cases of familial hypercholesterolemia within health 
systems, demonstrating their model’s effectiveness across various demo-
graphic groups by validating it with external data [35].

Clinical decision support systems (CDSS) represent another critical 
application area, with numerous studies focusing on their development 
and validation. Eng et al. (2021) developed an automated coronary 
calcium scoring system, validated across multiple centers, which under-
scored its reliability and generalizability [36]. Similarly, Shashikumar 

et al. (2021) created a sepsis prediction algorithm that indicated uncer-
tainty in its predictions, validating it with data from different hospitals 
to ensure its applicability in varied clinical settings [10].

Methodological advancements also focused on enhancing model gen-
eralizability and robustness through external validation. Dou et al. 
(2021) employed federated learning to detect COVID-19 lung abnor-
malities from CT scans across multiple countries, ensuring data privacy 
and model generalizability [37]. Yang et al. (2022) used a 3D multi-scale 
residual fully convolutional neural network for large-sized kidney tumor 
segmentation, validating their model with diverse datasets to demon-
strate its effectiveness in various clinical scenarios [38].

Integrating multiple data modalities to enhance diagnostic and pre-
dictive performance was another common theme, with external valida-
tion playing a crucial role. Chen et al. (2023) proposed an AI-enabled 
dynamic risk stratification model for emergency department patients, 
integrating ECG and CXR data, and validated the model using external 
datasets to ensure comprehensive patient assessments [39].

3.2. Findings on uncertainty quantification

Regarding uncertainty quantification, the studies collectively high-
light its significance in enhancing the reliability and accuracy of medical 
diagnostic and prognostic tools.

Several studies employed Bayesian approaches to manage uncer-
tainty in medical applications. Garifullin et al. (2021) used a deep 
Bayesian model to segment diabetic retinopathy lesions, improving le-
sion identification by incorporating uncertainty into the segmentation 
process [40]. Similarly, Abdar et al. (2021) applied Bayesian deep learn-
ing for skin cancer classification, using a three-way decision model that 
quantifies uncertainty to improve diagnostic accuracy [41]. Kabir et al. 
(2022) focused on aleatory uncertainty in transfer learning, employing 
Bayesian methods to enhance model generalizability in diagnostic tasks 
[42]. Goncalves et al. (2019) employed Bayesian multitask learning 
to analyze heterogeneous patient cohorts, demonstrating the method’s 
ability to manage diverse clinical data with varying levels of uncertainty 
[43]. These studies share a common goal of improving model reliabil-
ity by explicitly modeling uncertainty, enabling more informed clinical 
decisions. Similarly, recent approaches, such as Monte Carlo Dropout 
(MCD) [44] and Monte Carlo DropBlock Sampling (MCDbS) [44,45], 
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extend Bayesian methodologies to neural network models for segmen-
tation and classification tasks. In cardiovascular modeling, Hamiltonian 
Monte Carlo (HMC) has been employed to quantify uncertainty in pa-
rameter estimation, providing robust posterior distributions in clinical 
decision-making [46].

Similarly, probabilistic approaches employ uncertainty quantifica-
tion through the generation of probability distributions. Toledo-Cortés 
et al. (2022) employed probabilistic representations via density matri-
ces to quantify uncertainty in ordinal regression tasks, such as diabetic 
retinopathy and prostate cancer grading [47]. By measuring the vari-
ance of predicted probability distributions, this approach provides an 
interpretable indicator of confidence, integrating uncertainty directly 
into the diagnostic workflow [47]. Jahmunah et al. (2023) DenseNet 
with Dirichlet priors have been used to quantify uncertainty in multi-
class classification tasks [48]. In the context of myocardial infarction 
(MI) diagnosis using ECG signals, this approach effectively captured un-
certainty [48]. Wang et al. (2023), introduced multi-tasking frameworks 
such as the use of alpha matte segmentation for boundary regions in 
medical images, where structural uncertainty is explicitly modeled [49]. 
The alpha matte approach leverages a probabilistic representation of 
transitional areas between tissues, capturing uncertainty in ambiguous 
or low-contrast regions [49].

Calibration was prominently featured in Buddenkotte et al. (2023), 
who used calibrated ensemble models for scalable uncertainty quantifi-
cation in medical image segmentation [50]. This approach aggregates 
predictions from multiple models to provide a more robust and reliable 
estimate, accounting for uncertainty in the segmentation process. Simi-
larly, Verhaeghe et al. (2023) developed calibrated ML models for atrial 
fibrillation risk prediction in ICU patients. They applied calibration 
methods to ensure that the predicted probabilities were well-aligned 
with actual event probabilities, which is crucial for making reliable 
clinical decisions. This calibration process adjusts the model outputs 
to accurately reflect the true uncertainty associated with the predic-
tions [51]. Notably, this study is the only one identified that integrates 
both external validation and uncertainty quantification. This highlights 
a substantial open research area, underscoring the need for more studies 
that rigorously combine these critical validation strategies. This find-
ing aligns with the overarching message of our review, which calls for 
increased attention to robustness and uncertainty management in the 
development of medical AI, ensuring reliable and responsible clinical 
applications.

Optimization-based methods also represent a growing field of inter-

est. For instance, the Slime Mold Algorithm (SMA) has been utilized 
to quantify uncertainty in cardiovascular parameter estimation, demon-
strating its ability to avoid local minima and provide significant solu-

tions [52].
To acknowledge the importance of alternative methodologies, we 

highlight the potential of cautious classification and conformal predic-
tion, as demonstrated in recent studies [8–10]. While these approaches 
were not captured by our review due to the specificity of the query 
design, they offer valuable contributions to uncertainty quantification, 
particularly in enhancing model interpretability and reliability in di-
verse clinical scenarios. This underscores the need for future studies to 
consider a broader methodological perspective, integrating these tech-
niques to enrich the current understanding and practice of uncertainty 
quantification in medical AI.

Incorporating uncertainty quantification in medical applications has 
shown significant potential for improving the reliability, accuracy, and 
generalizability of diagnostic and prognostic tools. By explicitly model-
ing and managing uncertainty, these methods support more robust and 
informed clinical decision-making, ultimately enhancing patient out-

comes.

4. Recommendations

To achieve reliable external validation and robust ML models in 
health informatics, we propose the following recommendations, ad-
dressing common misconceptions and informed by our insights. A de-
tailed justification for each recommendation, supported by empirical 
evidence and prior research, is provided in Appendix A.1 and Ap-
pendix A.2.

1. Researchers should prioritize external validation using diverse 
datasets spanning multiple institutions, populations, and time pe-
riods to enhance model generalizability and robustness [34,35,37, 
10,53]

2. External validation should employ a multidimensional evaluation 
approach, considering multiple performance metrics, calibration, 
and clinical impact rather than relying on a single metric such as 
accuracy [37,10,50].

3. Meaningful external validation can still be achieved with limited 
data through well-curated small datasets and federated learning, 
which also mitigate privacy concerns [54–56].

4. Uncertainty quantification techniques should be integrated into val-
idation processes to enhance trustworthiness and reliability in clin-
ical applications [22,57,58].

5. Predictor selection should be guided by clinical relevance and ex-
ternal knowledge to ensure model robustness and adherence to data 
minimization principles [59–62].

6. Iterative external validation combined with uncertainty quantifica-
tion strengthens model reliability, mitigates biases, and enhances 
generalizability across clinical settings [21,63,64].

7. Validation strategies should align with regulatory standards and 
incorporate real-world impact assessments to ensure AI models 
are clinically effective, ethically sound, and practically deployable 
[65–67].

Recent theoretical work has emphasized that methodological rigor in 
AI evaluation must be understood within a broader sociotechnical and 
normative framework. In particular, the notion of epistemic sustainabil-
ity, introduced in [68], extends the idea of sustainability to include the 
long-term validity, interpretability, and trustworthiness of AI-generated 
knowledge. This perspective aligns closely with our focus on external 
validation and uncertainty quantification, highlighting that these are 
not merely technical refinements, but normative imperatives essential 
to maintaining public trust and the ethical deployment of AI in health-
care.

Complementing this, Shin’s work [69] examines the politics of al-
gorithmic trust and the centrality of epistemic uncertainty in human-AI 
systems. Shin argues that uncertainty should be surfaced, not hidden, 
to support user understanding and cognitive calibration—particularly 
in high-stakes contexts such as clinical decision-making. While our re-
view underscores the scarcity of uncertainty quantification practices in 
medical AI research, grounding this critique in Shin’s conceptualization 
of algorithmic opacity reinforces the idea that failing to quantify and 
communicate uncertainty meaningfully not only weakens model perfor-
mance, but may also erode clinician confidence and compromise patient 
safety. Reframing uncertainty as an epistemological and ethical concern, 
rather than a purely technical one, strengthens the call for more respon-
sible and transparent practices in AI development.

In light of this growing body of work and evidence, we concur with 
the authors in [70], who assert that most “models produce inaccurate 
predictions that, if applied in clinical settings, could lead to worse out-
comes than simply an amusing and misplaced advertisement or finding 
the wrong movie to stream.”

For all these reasons, we argue that the most effective way to con-
tribute to the improvement of the scientific literature on ML, advance 
health informatics and enhance the safety of ML-based applications for 
clinical decision-making is for specialist journals to accept only studies 
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that include external validation and report all performance estimates 
with an uncertainty quantification technique, such as confidence inter-
vals.

As observed in Table 1, journals with higher impact factors exhibit a 
clear trend of incorporating a greater proportion of studies that include 
external validation and uncertainty quantification. This trend highlights 
the association between rigorous methodological practices and the pres-
tige of the publishing venue. These findings align with previous research 
emphasizing the necessity of robust evaluation methods to ensure the 
reliability and generalizability of ML models in medical applications.

Moreover, prior studies have underscored the importance of adher-
ing to rigorous methodological standards in medical informatics. In this 
context, Cabitza and Campagner (2021) propose a practical checklist to 
help authors self-assess the quality of their contributions and assist re-
viewers in identifying and promoting high-quality medical ML studies. 
This checklist explicitly addresses key methodological aspects, such as 
external validation and uncertainty quantification, recognizing them as 
fundamental for distinguishing robust research from studies that merely 
apply ML techniques to medical data without sufficient methodological 
rigor [15].

We recognize that this decision may result in a significant reduction 
in the number of papers submitted to journals adopting such a policy, 
potentially affecting the journal’s bibliometric indicators. However, van-
ity metrics should never interfere with a scientific journal’s mission to 
disseminate only the best research and most reliable conclusions.

Furthermore, if leading journals adopt this policy, others may follow, 
recognizing the importance of what is at stake and the potential impact 
of quality research on healthcare professionals and patient health. A 
joint initiative of this kind would undoubtedly raise the quality stan-
dards for articles in medical informatics and send a strong signal to the 
broader Artificial Intelligence and ML community to renew their testing 
and validation practices.

This policy would require researchers in medical ML to take greater 
responsibility for their work and implement necessary actions to en-
sure the generalizability and robustness of the systems they develop 
and evaluate, taking into account the uncertainty affecting their esti-
mates. We also hope that the public sharing of codes and training data, 
along with more complete descriptions of the ML training pipeline—as 
required by resources like the IJMEDI checklist for assessing the quality 
of ML articles9—will facilitate the replication of these pipelines by other 
researchers and support confirmatory studies [71,72]. This approach 
would ensure that evidence of robustness comes from independent re-
searchers using data that truly represents the real challenges predictive 
models will face when (and if) they are implemented to deliver the 
promised benefits to users and patients.

One final note: The position expressed in this critical review is not in-
tended as an end point, but rather as a reflection of what we believe to be 
an unprecedented phase of interest in a specific class of applications—
classification-oriented decision support—and development techniques, 
including ML and deep learning, among healthcare professionals and 
practitioners. Rather, we see it as a necessary step in the continuous evo-
lution of the medical informatics scientific community and all stakehold-
ers. This involves raising awareness among study authors and readers 
about the need to base any conclusions regarding the value of a decision 
support system on robust evidence, collected empirically and evaluated 
using appropriate statistical techniques. Raising the bar will be a crucial 
step for more applications to achieve higher levels of maturity, such as 
advanced Technology Readiness Levels, and, once integrated into sys-
tems certified as medical devices, to provide tangible support to more 
physicians and patients. This will help us move closer to the ideal of a 
discipline grounded in solid and reliable evidence [73].

9 https://zenodo.org/record/6451243.

5. Conclusions

This study provides a critical analysis of the state of external valida-
tion and uncertainty quantification in medical AI, addressing a signif-
icant gap in the current literature. While previous reviews in medical 
AI and health informatics have analyzed external validation [74,28] 
or uncertainty quantification [21,75] individually, to the best of our 
knowledge, no existing review has critically examined both dimensions 
together. By integrating these two crucial aspects, our work offers a 
unique contribution, bridging the divide between methodological rigor 
and clinical utility.

Our review highlights key limitations in prior research, particularly 
the lack of studies incorporating robust external validation and uncer-
tainty quantification across diverse healthcare settings and datasets. 
Over the past 13 years, only 3.7% of studies published in leading medical 
informatics journals include external validation. More strikingly, a mere 
0.01% of these studies combine external validation with uncertainty 
quantification or management, demonstrating a significant gap in the 
integration of these essential practices. This indicates that most research 
fails to address the variability inherent in real-world healthcare appli-
cations. Furthermore, while uncertainty quantification is widely recog-
nized as crucial for evaluating the reliability of AI predictions, only 0.3% 
of studies explicitly address this aspect, underscoring a pervasive over-
sight in the methodological rigor of the field. These findings highlight 
a pressing need for more comprehensive and integrative approaches to 
validation and uncertainty management in medical AI research.

The contributions of this review are manifold. First, we offer a critical 
examination of the current state of external validation and uncertainty 
quantification in medical AI. Second, we offer practical recommenda-
tions for researchers, emphasizing the need for diverse and represen-
tative datasets, multidimensional evaluation metrics, and iterative val-
idation processes. Third, we debunk prevalent misconceptions, such as 
the notion that external validation is prohibitively expensive or limited 
to large datasets, showcasing alternative approaches that balance rigor 
and feasibility.

By addressing these issues, our work sets a new standard for respon-
sible research in medical AI. It underscores the necessity of aligning 
model development with real-world clinical needs, thereby fostering 
greater trust and utility among healthcare professionals and patients. 
We believe that adopting these practices will not only improve the reli-
ability of AI systems but also pave the way for their broader adoption in 
clinical workflows, ultimately enhancing patient outcomes and safety. 
At the same time, we argue that external validation and uncertainty 
quantification are not merely methodological refinements but consti-
tute epistemological and ethical imperatives. They contribute to the 
epistemic sustainability of clinical knowledge and are essential for main-
taining trust in AI-enabled decision-making.

Future studies should build upon these insights by exploring innova-
tive methods for uncertainty quantification and validating AI systems in 
increasingly complex and dynamic healthcare environments. By raising 
the bar for evaluation standards, we aim to contribute to a more robust, 
transparent, and impactful body of research in medical informatics.

Summary Table

What was already known on the topic

• External validation involves testing ML models with data from dif-
ferent settings to ensure generalizability and robustness.

• Uncertainty quantification in AI models helps in understanding the 
reliability of predictions, crucial for clinical decision-making.

• The reproducibility crisis in medical AI highlighted the need for 
external validation and uncertainty management in developing re-
liable ML models.

• Few studies in medical informatics perform external validation or 
incorporate uncertainty quantification, leading to concerns about 
the reliability of reported results.

https://zenodo.org/record/6451243
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What this study added to our knowledge

• This review provides a detailed analysis of the current state of 
external validation and uncertainty quantification in medical AI, 
highlighting significant gaps and areas for improvement.

• It debunks common myths about external validation and uncer-
tainty quantification, clarifying misconceptions and emphasizing 
their importance in developing robust AI models.

• The study underscores the importance of diverse and representative 
datasets for external validation to improve the generalizability of 
ML models across different clinical settings.

• The review offers practical recommendations for researchers and 
practitioners to ensure transparency, reproducibility, and practical 
applicability of medical AI systems.
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Appendix A. Justification of recommendations

To ensure that our recommendations are grounded in the findings of our review and relevant literature, we present the detailed justifications in 
the tables below. Each recommendation is supported by key findings or established research, as cited in the main text.

Table A.1

Comprehensive Justification of Recommendations - Part 1. This table presents the rationale behind each recommendation proposed in this study. Each justification 
is grounded in empirical findings from the literature or insights drawn from the review.

Recommendation No. Justification

1 Our review highlights that fewer than 4% of studies use external validation datasets, with most relying solely on internal validation. This is a critical 
shortfall that undermines the reliability of ML models in medical informatics. Studies such as Peng et al. (2020) and Banda et al. (2019) demonstrate 
that testing models on datasets from different institutions, geographic locations, and demographic groups ensures generalizability and external 
validity [34,35]. Without diverse external datasets, ML models risk limited generalizability and potential overfitting to the development environment, 
as emphasized by Dou et al. (2021) [37]. Shashikumar et al. (2021) highlight the necessity of validating models across multiple settings and time 
periods to maintain performance reliability [10].

2 External validation should not focus solely on a single performance metric like accuracy but should cover multiple dimensions. Findings from Dou et 
al. (2021) emphasize the need for multidimensional evaluation strategies [37]. Shashikumar et al. (2021) highlighted that external validation using 
multiple metrics is essential to comprehensively assess the reliability of models in high-stakes applications such as sepsis prediction [10]. Their 
findings highlighted that relying on a single metric would not capture critical dimensions of model performance, including the ability to provide early 
and actionable predictions, reduce false alarms, and maintain high specificity across different datasets and temporal conditions [10]. Buddenkotte et 
al. (2023) further demonstrate that calibrated ensemble models enhance reliability by aggregating predictions from multiple models trained with 
different loss functions [50].

3 External validation is often perceived as expensive and logistically challenging, due to the need for large datasets [76,77]. However, studies suggest 
that meaningful insights can be derived from smaller sample sizes if selected and analyzed correctly. Collins et al. (2015) indicate that a minimum 
effective sample size of around 100 events can be sufficient for external validation [54]. Riley et al. (2021) provide frameworks to optimize sample 
sizes for meaningful validation results [55]. Decentralized training methods, such as federated learning, can further facilitate external validation 
without compromising privacy [56].

Table A.2

Comprehensive Justification of Recommendations - Part 2. This table continues the rationale behind each recommendation. Each justification is grounded in empirical 
findings from the literature or insights drawn from the review.

Recommendation No. Justification

4 Uncertainty quantification in medical AI should be an integral part of validation to assess reliability in diagnoses and treatments [22]. Lue et al. 
(2022) illustrate how conformal prediction can effectively quantify uncertainty in medical imaging [57]. Amir et al. (2024) show that conformal 
prediction improves model trustworthiness by providing actionable insights through mean coverage errors [58].

5 Enhancing model robustness requires selecting predictors directly relevant to the target outcome. Steyerberg et al. (2018) and Sauerbrei et al. (2007) 
emphasize that predictor selection based on clinical relevance and external knowledge ensures validity and generalizability [59,60]. This aligns with 
data minimization principles, ensuring models remain actionable in clinical settings [61,62].

6 Integrating uncertainty quantification and external validation is essential for building robust models. Lambert et al. (2022) highlight that uncertainty 
quantification identifies unreliable predictions during training, reducing risks and preventing errors [21]. Qian et al. (2023) stress the importance of 
iterative external validation to confirm generalizability and address biases [63]. Birkenbihl et al. (2020) emphasize systematic validation in refining 
model development [64].

7 Aligning validation practices with regulatory standards and assessing clinical impact are critical for AI integration into healthcare. Meskó and Topol 
(2023) advocate for robust regulatory oversight to mitigate privacy risks [65]. Nagendran (2020) highlights the need for more prospective and 
real-world studies to assess AI’s clinical impact [66]. Parikh et al. (2019) stress the necessity of meaningful clinical endpoints to demonstrate the 
real-world applicability of AI models [78]. Frameworks such as CLARITY AI provide structured approaches to integrate dimensions like ethical 
governance, data handling, and usability, ensuring AI systems remain scientifically robust, ethically sound, and practically relevant [67].
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Appendix B. Additional information

This appendix provides additional details on key methodological aspects discussed in the main text. It is structured into three sections: (1) 
validation strategies for machine learning, which outlines different approaches to ensure model robustness and generalizability; (2) predictors and 
biases in medical AI, which examines the impact of biases on model performance and reproducibility; and (3) false myths in medical AI, which 
addresses common misconceptions regarding external validation and uncertainty quantification. These supplementary materials serve to enhance 
methodological transparency and support the rigorous evaluation of medical AI models.

B.1. Validation strategies for machine learning

Machine learning (ML) model validation is a crucial step in assessing robustness and generalizability, particularly in medical AI applications. 
Table B.1 outlines the four primary validation strategies: hyperparameter selection, internal validation with hold-out test data, external validation 
with test data from other facilities, and external validation with data coming from the same facility at different times.

While hyperparameter selection and internal validation are necessary steps in model development, they are not sufficient to guarantee the 
model’s generalizability and reliability in practical, real-world settings. External validation is the gold standard for confirming a model’s robustness 
and applicability across different contexts. Without external validation, there is a significant risk that a model may fail to generalize to new, 
unseen environments, thereby undermining its clinical effectiveness and safety. Therefore, external validation is indispensable for certifying an ML 
model’s reliability and robustness in diverse clinical settings, ensuring it meets the high standards required for health technology assessment and 
medical device certification. Temporal external validation evaluates stability over time rather than across locations, providing a more comprehensive 
understanding of model reliability in dynamic healthcare environments.

Understanding the importance of internal and external validation requires recognizing their specific meanings and implementations within the 
ML and health informatics communities, as outlined in Table B.2.

By comparing these perspectives, we observe that while the principles of internal and external validation are similar, health informatics places 
greater emphasis on clinical utility, regulatory requirements, and real-world applicability. This distinction reflects the high stakes and critical im-
portance of deploying ML models in healthcare settings.

B.2. Predictors and bias in medical AI

Developing robust and reliable ML models for medical AI requires careful selection of relevant predictors and consideration of associated biases. 
The biases inherent in the predictors used for making predictions have significant implications for data uncertainty, robustness assessment, and 
reproducibility. Robustness depends not only on data quantity but also on the selection of domain-specific predictors that are closely related to the 
target outcomes. For example, incorporating unrelated factors such as religion or education level into a predictive model for cancer could compromise 
its robustness. Therefore, enhancing robustness involves selecting predictors that are directly relevant to the medical condition being predicted, 
ensuring that the model remains reliable and valid across different settings. Table B.3 outlines the key types of biases and their characteristics, 
Tables B.4 and B.5 detail the impacts of these biases on robustness assessment and reproducibility, respectively, and Table B.6 presents strategies 
for effectively mitigating these biases.

Biases in predictors pose significant challenges in developing reliable and robust ML models for medical AI. Addressing these biases through careful 
predictor selection, comprehensive bias mitigation strategies, and continuous monitoring is essential. By implementing these practices, researchers 
and practitioners can enhance the robustness, fairness, and reproducibility of AI systems in healthcare, leading to more trustworthy and effective 
clinical applications.

Table B.1

Validation Strategies in Machine Learning.

Strategy Concepts

Hyperparameter Selection Involves tuning parameters that govern the training process of the model, typically using techniques like cross-validation. It prevents 
overfitting by ensuring the model is not excessively tailored to specific patterns within the training set.

Internal Validation Involves splitting the dataset into separate training and hold-out test sets. The hold-out set is used exclusively for evaluating the model’s 
performance after training, providing an unbiased assessment of the model’s generalizability.

External Validation Testing the model on data from entirely different facilities. This demonstrates the model’s robustness and generalizability across different 
populations, clinical settings, and data collection processes.

Temporal External Validation Testing models on data collected from the same facility but at different times, assessing robustness to temporal changes in data distribution.

Table B.2

Differences Between Machine Learning and Health Informatics Communities.

Aspect Machine Learning Community Health Informatics Community

Internal Validation Focuses on model evaluation, hyperparameter tuning, and overfitting 
prevention within a single dataset.

Emphasizes clinical utility assessment, data integrity, and preliminary 
efficacy within a specific clinical dataset.

External Validation Aims at testing generalizability, robustness, and bias identification 
using independent datasets.

Focuses on inter-institutional generalization, regulatory compliance, 
clinical impact, and reproducibility across diverse clinical 
environments.
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Table B.3

Types of Biases and Their Characteristics.

Type of Bias Characteristics

Selection Bias Occurs when the training data is not representative of the target population, leading to poor generalization to broader populations.

Measurement Bias Arises from inaccuracies in data collection processes, such as inconsistencies in how different hospitals record patient data, leading to biased 
predictions.

Confounding Bias Occurs when an extraneous variable influences both the predictor and the outcome, resulting in spurious associations.

Sampling Bias Involves the over- or under-representation of certain subpopulations within the training dataset, skewing the model’s predictions towards 
overrepresented groups.

Algorithmic Bias Reflects biases embedded in the algorithms, which can arise from model choices, parameter settings, or optimization criteria, potentially leading to 
unfair outcomes.

Table B.4

Impact of Biases on Robustness Assessment.

Aspect Impact on Robustness Assessment

Generalizability Models trained on biased datasets may fail to generalize to new, unseen data. For example, a model trained in one region may not perform 
well in another with different demographics or conditions.

Fairness Biases can lead to unfair treatment of certain groups. In healthcare, this can result in disparities in the quality of care received by different 
populations. For example, an ML model biased towards younger patients may underpredict the risk of diseases in older adults.

Performance Metrics The evaluation metrics themselves can be biased. A model might show high accuracy in the training environment but fail when applied to a 
more diverse test set.

Table B.5

Impact of Biases on Reproducibility.

Aspect Impact on Reproducibility

Data Heterogeneity Differences in data collection methods, patient demographics, and healthcare practices across institutions can lead to variability in model 
performance. A model trained on one dataset may not reproduce the same results on another due to these differences.

Model Interpretability Biases can obscure the underlying reasons for a model’s predictions, making it harder to interpret and replicate the results in different 
settings.

Validation Protocols BBiases can influence the validation protocols used during model development. For instance, if the validation set is not representative of the 
broader population, the reported performance metrics may not be reproducible in other settings.

Table B.6

Mitigation Strategies for Biases.

Mitigation Strategy Details

Diverse and Representative Data Ensuring that training data covers various demographic groups and clinical conditions to mitigate biases.

Bias Detection and Correction Implementing techniques such as re-weighting samples, fairness-aware algorithms, and subgroup analyses to detect and correct biases in 
data and models.

Transparent Reporting Clearly reporting the characteristics of training and validation datasets, along with performance metrics for different subgroups, to improve 
understanding.

Continuous Monitoring Monitoring model performance post-deployment to identify and address emerging biases over time, ensuring ongoing reliability and fairness.

B.3. False myths

Common misconceptions regarding external validation and uncertainty quantification can hinder the adoption of best practices in medical AI. 
Tables B.7 and B.8 debunk these myths, providing accurate clarifications.

By addressing these misconceptions, we can improve the understanding and implementation of external validation and uncertainty quantification, 
resulting in more reliable, generalizable, and trustworthy ML models in health informatics.
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Table B.7

False myths about external validation.

Misconception Clarification

External validation requires large amounts of 
data, making it expensive

The necessary data size depends on the acceptable level of uncertainty. Even a small sample size, such as 100 cases, can 
provide meaningful insights. Some external validation is always better than none, as it offers critical information about the 
model’s generalizability.

External validation must be performed in 
multiple settings

While validating in various settings can enhance robustness, it is not an absolute requirement. Validation in a single 
independent setting can still provide valuable insights into the model’s performance and generalizability, as long as the 
setting is sufficiently different from the original development environment.

External validation requires prospective data Retrospective data can also be used for external validation, as long as it is independent of the training data. This approach 
still allows for a valid assessment of the model’s generalizability.

External validation focuses solely on accuracy External validation evaluates multiple aspects, including evaluating the model’s compliance with principles of data 
minimization and relevance, ensuring that the model is appropriate and lawful for its intended use.

Strong internal validation is sufficient Internal validation alone does not guarantee generalizability to new, unseen data from different settings. External 
validation is essential for identifying potential biases and ensuring reliable real-world performance.

External validation is only necessary for final 
models

Early and iterative external validation can identify weaknesses and guide improvements throughout the development 
process, resulting in a more robust final model.

External validation does not need to consider 
data heterogeneity

External data should reflect the variability and diversity present in real-world applications to ensure the model’s robustness 
across different subpopulations and clinical practices.

Table B.8

False myths about uncertainty quantification.

Misconception Clarification

Uncertainty quantification is difficult to 
understand and confusing for users.

While some techniques are complex, methods like confidence intervals or conformal prediction sets can be intuitive once 
explained. Educating users about these concepts enhances understanding and supports better decision-making.

Uncertainty quantification is only useful 
when data is highly variable

Uncertainty quantification is valuable regardless of data variability, as it helps assess prediction reliability and sufficiency 
of data.

Uncertainty quantification is redundant if 
model accuracy is high.

Even highly accurate models benefit from uncertainty quantification by identifying cases where predictions may be 
uncertain.

Uncertainty quantification slows down 
decision-making

While it adds a step, uncertainty quantification ultimately supports more informed decisions, reducing the risk of costly 
errors.

Uncertainty quantification is limited to 
predictive models

Uncertainty quantification applies beyond predictive models, including classification, clustering, and regression.

Uncertainty quantification is only for 
advanced practitioners.

Some methods require expertise, but many are accessible with a basic understanding of statistics and ML.
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