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Abstract

Retrieval-Augmented Generation (RAG) has
shown substantial promise in improving factual
accuracy by grounding model responses with
external knowledge relevant to queries. How-
ever, most existing RAG approaches are limited
to a text-only corpus, and while recent efforts
have extended RAG to other modalities such as
images and videos, they typically operate over
a single modality-specific corpus. In contrast,
real-world queries vary widely in the type of
knowledge they require, which a single type of
knowledge source cannot address. To address
this, we introduce UniversalRAG, a novel RAG
framework designed to retrieve and integrate
knowledge from heterogeneous sources with
diverse modalities and granularities. Specifi-
cally, motivated by the observation that forc-
ing all modalities into a unified representation
space derived from a single combined corpus
causes a modality gap, where the retrieval tends
to favor items from the same modality as the
query, we propose a modality-aware routing
mechanism that dynamically identifies the most
appropriate modality-specific corpus and per-
forms targeted retrieval within it. Also, be-
yond modality, we organize each modality into
multiple granularity levels, enabling fine-tuned
retrieval tailored to the complexity and scope
of the query. We validate UniversalRAG on
8 benchmarks spanning multiple modalities,
showing its superiority over modality-specific
and unified baselines. Our project page is at
https://universalrag.github.io.

1 Introduction

Recently, we have witnessed the remarkable per-
formance of Large Language Models (LLMs) in
various tasks, such as question answering (OpenAI
et al., 2024; Anil et al., 2023), and their widespread
adoption in various services, such as ChatGPT, to
empower users in everyday life. Yet, LLMs often
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generate factually incorrect or misleading informa-
tion, especially on topics they were less or not ex-
posed to during training (e.g., recent events) (Zhang
et al., 2023; Huang et al., 2025). To address this
issue, Retrieval-Augmented Generation (RAG) has
emerged as a promising approach, which allows
the model responses to be grounded in the query-
relevant knowledge retrieved from external knowl-
edge sources, enhancing factual accuracy (Lewis
et al., 2020; Gao et al., 2024; Chen et al., 2024a).

However, despite its effectiveness, existing RAG
approaches are typically designed for a single cor-
pus and modality, limiting their ability to address
user queries that demand different types of knowl-
edge sources. In practice, as illustrated in Figure 1,
user queries vary widely in the type of knowledge
that they require: some are best answered using
text (e.g., surface-level facts and definitions), oth-
ers demand visual understanding from images (e.g.,
spatial relations of objects), and yet others require
temporal reasoning supported by videos (e.g., step-
by-step instructions with dynamic scenes). On the
contrary, the field of RAG primarily originates with
a focus on the textual corpus (Lewis et al., 2020;
Jiang et al., 2023; Yan et al., 2024), and although re-
cent efforts have expanded it to modalities beyond
text (such as images and videos) (Abootorabi et al.,
2025; Riedler and Langer, 2024; Jeong et al., 2025),
existing RAG methods individually are typically
modality- and corpus-specific; therefore, they may
be suboptimal to serve as a universal, one-for-all
framework that can flexibly handle the wide range
of queries, whose knowledge requirements vary.

In this work, we present UniversalRAG, a novel
RAG framework that brings together knowledge
distributed across multiple modality-specific cor-
pora, including text, image, and video sources, and
leverages them to generate grounded responses to
queries in a universal workflow. To operational-
ize this, the most straightforward approach might
be to aggregate all entries from the collected, het-
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(A) RAG with Single Modality 

(C) UniversalRAG (Ours)
Simple Query: 
What is the capital of France?
Text RAG Query: 
Where was the CEO of Meta born?
Image RAG Query: 
What does Burj Khalifa look like?
Video RAG Query: 
How can I replace a bike wheel?

Router

(B) RAG with Single Corpus 

Text Corpus

Image Corpus

Video Corpus

No Retrieval

Text+Image+Video Corpus
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Text RAG Query: 
Where was the CEO of Meta born?
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Bicycle wheels 
are typically 
designed …

Video RAG Query: 
How can I replace a bike wheel?

Figure 1: Illustration of (a, b) limitations of existing RAG
methods and (c) the proposed RAG framework, UniversalRAG.
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Figure 2: t-SNE visualization
of unified embedding space.
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Figure 3: Average scores of the
baselines and UniversalRAG.

erogeneous knowledge corpora, and embed them
into a unified representation space using a multi-
modal encoder (which is typically trained to align
inputs from different modalities if they are semanti-
cally similar). However, despite such alignment ef-
forts, we find that this strategy suffers from modal-
ity gaps, which is the tendency to cluster inputs
based on their modality rather than their semantic
meaning (visualized in Figure 2), a phenomenon
observed similarly in prior work under different
settings (Zhang et al., 2025; Wei et al., 2024). As a
result, retrieval becomes biased toward knowledge
sources that share the same modality as the query,
overlooking relevant content from other modalities.

To address this challenge, instead of relying on a
unified embedding space that forces all modalities
into the shared representation, we take a different
direction: introducing a modality-aware routing
strategy. Specifically, UniversalRAG dynamically
determines the most suitable knowledge source to
retrieve from, based on the modality requirement
of the given query, then routes the retrieval process
to the corresponding modality-specific corpus. It
is worth noting that this strategy not only sidesteps
modality gaps by avoiding direct cross-modal com-
parisons, but also enables seamless integration of
new modalities by extending the routing logic with-
out modifying existing modality-specific retrievers.

Beyond modality, another important dimension
is data granularity (the size or unit of each entry in
the corpus), which plays a critical role in both re-
trieval precision and generation quality (Chen et al.,
2024b; Zhong et al., 2025), since different queries
benefit from different levels of granularity even
within the same modality. This is because overly
fine-grained entries can dilute context, while overly
coarse entries may bundle unrelated information.
For example, a complex analytical question may

require long-form documents or full-length videos
to capture sufficient context, while a simple fac-
toid question might be best served with a single
paragraph or short video clip.

To accommodate this aspect, we further break
down each modality into multiple granularity lev-
els, organizing them into distinct corpora: textual
documents are additionally segmented into para-
graphs and stored in a paragraph-level corpus, and
similarly, full-length videos are divided into short
clips and stored, while images are kept intact since
they are inherently piecemeal. Overall, with these
modality- and granularity-aware corpora (including
paragraphs, documents, images, clips, and videos)
in place, as well as an additional no-retrieval op-
tion to efficiently handle straightforward queries
(that require no external knowledge), our Univer-
salRAG dynamically routes each query to the most
relevant knowledge source, ultimately supporting
the diverse information needs of real-world users.

We validate UniversalRAG on 8 benchmarks
with different modalities (Hendrycks et al., 2021;
Rajpurkar et al., 2016; Kwiatkowski et al., 2019;
Yang et al., 2018; Chang et al., 2022; Wang et al.,
2024a; Jeong et al., 2025). UniversalRAG outper-
forms all baselines in an average score, indicating
robust performance across diverse queries. We also
investigate the efficacy of multi-modal and multi-
granular corpora with experimental results.

2 Method

In this section, we present UniversalRAG, a novel
RAG framework that retrieves knowledge from di-
verse corpora spanning multiple modalities and
granularities, conditioned on the given query.
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2.1 Preliminaries
We begin with preliminaries, introducing LVLMs
and RAG with formal descriptions.

Large Vision Language Models In order to ex-
tend the powerful capabilities of Large Language
Models (LLMs) beyond text and support the un-
derstanding of visual inputs such as images and
videos, Large Vision-Language Models (LVLMs)
have recently been introduced by incorporating vi-
sual encoders into LLMs, enabling them to pro-
cess both textual and visual inputs such as images
and videos. Formally, an LVLM takes as input
a sequence x = [x1, x2, . . . , xn], which may in-
clude both text and visual tokens, and generates
a sequence of output tokens y = [y1, y2, . . . , ym],
denoted as: y = LVLM(x). Nevertheless, despite
their multimodal capacity, LVLMs are still limited
to parametric knowledge and often struggle with
queries requiring detailed or grounded information
beyond what was encoded during pretraining.

Retrieval-Augmented Generation To address
the aforementioned limitations of parametric-only
models, Retrieval-Augmented Generation (RAG)
retrieves query-relevant information from a large
external corpus and incorporates it into the gen-
eration process. Specifically, in the retrieval step,
a Retriever selects the relevant context c from
a corpus C, formalized as c = Retriever(q; C),
where c ∈ C. In the subsequent generation step, an
LVLM generates a response a conditioned on both
the input query and the retrieved context, denoted
as a = LVLM(q, c). However, most existing RAG
approaches are restricted to retrieving from a single
corpus within a single modality (e.g., image-only),
limiting their ability to handle diverse real-world
queries that often require multimodal information.

Modality Gap in Unified Retrieval Given that
external knowledge in real-world scenarios often
spans multiple modalities—such as text, images,
and videos—we define three modality-specific cor-
pora: the text corpus Ctext = {t1, . . . , tn}, the
image corpus Cimage = {i1, . . . , im}, and the
video corpus Cvideo = {v1, . . . ,vk}. A com-
mon approach to handling such heterogeneous
data is to unify all items into a shared embed-
ding space using a multimodal encoder, resulting
in a unified corpus Cunified = Ctext ∪ Cimage ∪
Cvideo, where each item is represented as a vec-
tor in the shared space (Zhang et al., 2025; Wei
et al., 2024), and retrieval is then performed as

c = Retriever(q; Cunified). However, our experi-
ments reveal a clear modality gap in such unified
spaces—as shown in Figure 2—where queries, be-
ing inherently textual, tend to align more closely
with text corpus items regardless of the actual
modality required. As a result, even when a query
demands visual or temporal understanding, the re-
triever returns text-based content, leading to sub-
optimal or irrelevant responses. This observation
highlights a fundamental limitation of unified re-
trieval strategies and motivates the need to maintain
separate feature spaces for different modalities.

2.2 UniversalRAG
We now turn to introduce UniversalRAG, a novel
framework that dynamically identifies and routes
queries to the most appropriate modality and gran-
ularity of knowledge for retrieval.

Modality-Aware Retrieval To address the
modality gap in retrieval, we maintain separate
embedding spaces for each modality, organizing
the overall corpus into three distinct sub-corpora:
Ctext, Cimage, and Cvideo, where each consists of
modality-specific vector representations. We then
introduce a routing module, Router, which dynam-
ically selects the most appropriate modality for
each query. Specifically, given a query q, Router
predicts the query-relevant modality r ∈{‘Text’,
‘Image’, ‘Video’}, formalized as r = Router(q).
Once the modality r is determined, a modality-
specific Retriever selects the relevant item c from
the corresponding corpus Cr, and the LVLM gener-
ates the final response based on the query and the
retrieved content. However, while this design miti-
gates the modality gap, separating corpora solely
by modality may still fall short, as different queries
can require varying levels of granularity—even
within the same modality.

Granularity-Aware Retrieval To flexibly ac-
commodate the varying information needs of dif-
ferent queries, we extend UniversalRAG to operate
across multiple levels of granularity within each
modality, constructing two corpus levels—fine-
grained and coarse-grained—for both the text and
video modalities. Specifically, while the text cor-
pus is initially organized at the paragraph level,
where each item typically contains knowledge
about a single entity, some complex queries re-
quire reasoning across multiple paragraphs. To
address this, we construct a document-level cor-
pus Cdocument = {d1, . . . ,dl}, where each d is the
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vector representation of a document obtained by
concatenating multiple paragraphs and encoding
the resulting text. On the other hand, the original
video corpus consists of full-length videos, which
can often exceed an hour in duration, making it
inefficient to retrieve an entire video when certain
questions can be answered with only a short clip.
Therefore, we segment each full-length video into
multiple fixed-duration clips, constructing a clip-
level corpus Cclip = {k1, . . . ,kp}, where each k
denotes the representation of trimmed video clip
extracted from the original full-length videos. Note
that since images are inherently fine-grained, we
do not perform additional segmentation for the im-
age corpus and maintain it as is. To this end, the
routing decision r made by Router falls into one of
six categories: {‘None’, ‘Paragraph’, ‘Document’,
‘Image’, ‘Clip’, ‘Video’}, and the retrieval process
is formalized as follows:

c =



None if r = ‘None’

Retriever(q; Ctext) if r = ‘Paragraph’

Retriever(q; Cdocument) if r = ‘Document’

Retriever(q; Cimage) if r = ‘Image’

Retriever(q; Cclip) if r = ‘Clip’

Retriever(q; Cvideo) if r = ‘Video’

Finally, the LVLM generates the final response a
conditioned on the retrieved content c, which re-
flects the most suitable modality and granularity
determined for the given query q. Furthermore, if
no retrieval is required (i.e., c = None), the LVLM
directly generates the response based solely on q
without any additional context.

2.3 Router Design within UniversalRAG
Here, we explore two designs for the router, which
is responsible for dynamically selecting the re-
trieval modality and granularity based on the query.

Training-free Router The training-free router
utilizes the inherent knowledge and reasoning abil-
ities of a pretrained LLM to classify queries into
appropriate retrieval types without requiring addi-
tional training. Specifically, given a query q, the
LLM is prompted with a detailed instruction de-
scribing the routing task, accompanied by several
in-context examples, and predicts the most suitable
retrieval type from a set of six predefined options.

Trained Router We further explore training the
router module to enable more accurate routing deci-
sions. However, one key challenge in this strategy

is the absence of ground-truth query-label pairs
for optimal corpus selection. To address this, we
construct a training dataset for the router by lever-
aging the modality-specific inductive biases of ex-
isting benchmarks—that is, we assume that each
benchmark is primarily associated with a partic-
ular modality and retrieval granularity. Specif-
ically, for text QA benchmarks, queries from
datasets intended to be answered solely based on
the model’s parametric knowledge are labeled as
‘None’, queries from single-hop RAG benchmarks
as ‘Paragraph’, and those from multi-hop RAG
benchmarks as ‘Document’. Similarly, queries
from image-based RAG benchmarks are labeled
as ‘Image’. For video QA benchmarks, queries
that focus on localized events or specific moments
within a video—such as identifying an action at a
particular timestamp—are labeled as ‘Clip’, while
those requiring comprehension of the full storyline
or broader temporal context are labeled as ‘Video’.
Using this constructed dataset, we train the router
to predict the appropriate retrieval type for a given
query at inference time.

3 Experimental Setup

In this section, we explain the experimental setup,
including datasets, models, evaluation metrics, and
implementation details.

3.1 Datasets

To evaluate the performance of our framework
across diverse modalities, we compile a comprehen-
sive QA benchmark covering six distinct retrieval
settings: no-retrieval, paragraph, document, image,
clip, and video.

QA Datasets For the no-retrieval setting, we uti-
lize MMLU (Hendrycks et al., 2021), which evalu-
ates a model’s knowledge without requiring exter-
nal sources. For the text retrieval settings, we incor-
porate three benchmarks: SQuAD (Rajpurkar et al.,
2016) and Natural Questions (NQ) (Kwiatkowski
et al., 2019) serve as single-hop RAG benchmarks,
where the retrieval units are paragraphs, while Hot-
potQA (Yang et al., 2018) serves as a multi-hop
RAG benchmark, where the retrieval units are doc-
uments. For the image retrieval setting, we use
a subset of WebQA (Chang et al., 2022), con-
sisting of queries that require grounding in exter-
nal images. Finally, for the video retrieval set-
ting, we use queries from LVBench (Wang et al.,
2024a), VideoRAG-Wiki (Jeong et al., 2025), and
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Table 1: Results of diverse RAG variants, including UniversalRAG and baselines, on modality-specific benchmarks. Our
methodology, UniversalRAG, represented by the colored cells, includes trained approaches for DistilBERT and T5-Large, while
GPT-4o operates in a train-free manner. Bold indicates the best performance for each metric; underline indicates the second-best
among UniversalRAG approaches. R-L and BERT refer to ROUGE-L and BERTScore, respectively.

Text Image Video
Avg.MMLU SQuAD NQ HotpotQA WebQA LVBench VideoRAG-Wiki VideoRAG-Synth

Models Acc EM F1 EM F1 EM F1 R-L BERT Acc R-L BERT R-L BERT

In
te

rn
V

L
-2

.5
-8

B

Naïve 64.50 7.82 16.86 24.71 38.11 12.92 20.87 40.63 90.30 28.60 15.74 84.20 14.93 85.73 33.76
Paragraph 64.50 20.62 30.97 35.14 47.89 14.45 23.05 35.72 89.13 29.19 14.82 84.08 19.15 86.53 35.59
Document 51.50 6.33 13.72 23.57 32.66 19.71 28.49 28.92 87.45 28.80 13.28 83.75 18.51 86.12 30.24
Image 54.50 7.41 15.74 23.57 32.96 13.11 20.18 46.50 91.32 31.64 17.26 83.79 20.72 87.02 33.43
Clip 53.50 4.58 12.52 13.86 21.82 9.38 16.51 39.53 90.27 35.36 18.76 86.38 27.37 89.34 31.55
Video 59.50 3.77 11.55 14.43 22.98 9.95 16.95 40.08 90.51 33.59 19.23 86.35 28.23 89.45 32.47
Unified 59.00 4.72 12.81 17.00 27.87 9.67 17.08 41.71 90.27 27.23 15.87 83.96 19.03 86.46 31.15
Random 55.50 7.68 16.20 22.71 32.79 12.82 20.37 38.37 89.71 31.15 16.55 84.79 21.02 87.37 32.27
GPT-4o 61.50 18.33 28.09 33.43 46.28 17.80 26.10 45.39 91.10 33.01 14.65 84.11 19.68 86.83 37.56
DistilBERT 62.00 19.14 29.71 33.57 46.45 19.43 28.35 46.40 91.29 35.16 19.23 86.35 28.15 89.44 39.60
T5-Large 63.00 20.49 30.87 35.00 47.78 18.09 26.90 45.47 91.09 34.28 19.18 86.32 27.71 89.33 39.36

Oracle 64.50 20.62 30.97 35.14 47.89 19.71 28.49 46.50 91.32 35.65 18.79 86.38 27.45 89.35 40.34

Q
w

en
2.

5-
V

L
-7

B

Naïve 73.00 10.78 19.85 17.29 25.71 18.47 25.47 61.26 94.39 29.38 14.26 83.04 10.52 84.34 38.48
Paragraph 72.00 23.58 34.25 38.43 49.37 19.04 26.54 53.42 92.65 27.13 14.88 83.30 12.62 84.93 39.94
Document 66.50 8.76 15.13 23.14 31.02 20.96 28.78 54.37 92.71 27.23 14.78 83.33 11.39 84.50 36.39
Image 68.50 11.19 18.30 16.14 23.14 16.94 23.01 64.39 94.73 30.17 16.17 83.62 13.35 85.10 37.97
Clip 68.50 10.65 17.66 15.14 22.69 16.46 22.86 62.78 94.38 33.50 18.39 85.04 20.53 87.75 38.81
Video 70.00 11.05 18.07 14.00 21.42 17.42 23.74 63.89 94.54 32.81 19.34 85.64 23.31 88.52 39.36
Unified 71.50 7.95 15.06 12.29 19.81 14.35 21.11 55.64 93.07 30.14 15.00 82.74 11.38 84.16 35.87
Random 72.00 12.67 19.49 20.86 29.23 18.47 25.09 59.67 93.85 28.80 15.96 83.91 15.63 86.01 38.50
GPT-4o 71.50 21.70 30.62 36.57 48.11 20.19 28.00 63.58 94.58 32.42 14.87 83.29 12.69 85.01 42.61
DistilBERT 73.50 21.83 32.52 37.57 48.27 20.96 28.87 64.20 94.70 33.01 19.34 85.64 23.18 88.46 44.34
T5-Large 72.50 23.58 34.12 38.29 49.22 19.52 27.32 63.53 94.55 33.01 19.34 85.62 22.85 88.38 44.01
Oracle 73.00 23.58 34.25 38.43 49.37 20.96 28.78 64.39 94.73 33.20 18.43 85.05 20.70 87.80 44.35

Ph
i-3

.5
-V

is
io

n-
In

st
ru

ct

Naïve 61.00 9.30 18.32 10.43 18.49 14.26 21.01 54.01 93.01 29.58 15.94 83.64 34.58 90.66 35.16
Paragraph 58.50 22.24 33.38 34.86 46.07 17.03 24.82 59.90 93.65 28.21 17.31 85.02 32.11 89.94 39.61
Document 52.50 6.47 12.95 16.43 24.80 17.80 25.86 57.46 93.18 29.09 14.05 84.18 33.27 90.18 34.95
Image 55.50 8.36 15.20 9.86 15.73 13.68 18.70 63.25 94.13 31.15 15.16 85.02 34.18 90.32 35.24
Clip 54.00 7.68 13.38 11.43 16.48 13.40 18.73 60.22 93.60 35.06 19.50 86.04 36.34 90.97 35.62
Video 53.00 8.09 14.05 9.29 15.09 13.11 17.91 59.90 93.50 32.13 19.33 86.14 36.71 90.95 34.56
Unified 55.00 6.47 14.63 5.86 13.48 11.87 18.46 51.05 92.67 28.50 18.09 84.76 35.78 90.82 32.47
Random 55.50 9.57 16.67 14.00 21.72 15.12 21.15 58.84 93.48 29.77 16.94 85.02 33.88 90.31 35.28
GPT-4o 57.50 20.35 30.18 32.86 44.19 16.84 25.09 62.88 94.11 32.62 16.79 84.95 32.01 89.93 40.48
DistilBERT 57.00 20.62 31.90 33.71 44.87 18.18 26.30 63.39 94.14 34.87 19.33 86.14 36.48 90.91 41.78
T5-Large 58.50 22.37 33.36 34.71 45.94 17.61 25.98 62.69 94.04 34.97 19.33 86.10 36.31 90.87 42.08

Oracle 61.00 22.24 33.38 34.86 46.07 17.80 25.86 63.25 94.13 34.57 19.53 86.04 36.20 90.97 42.46

VideoRAG-Synth (Jeong et al., 2025). Among
them, queries targeting short or localized segments
are categorized as clip-level queries, whereas those
requiring an understanding of the long or entire
video are treated as video-level queries.

Retrieval Corpus To support retrieval across
modalities and granularities, we construct a re-
trieval corpus specific to each modality and gran-
ularity. For paragraph-level retrieval, we use a
Wikipedia paragraph corpus derived from SQuAD
and Natural Questions (Karpukhin et al., 2020). In
the case of document-level retrieval, we follow the
construction method from LongRAG (Jiang et al.,
2024) to build a corpus of aggregated Wikipedia
articles. Regarding image retrieval, we use a re-
trieval corpus consisting of images from the We-
bQA dataset. For video-related retrieval, we de-
fine two separate corpora: the video retrieval cor-
pus consists of full-length YouTube videos from
LVBench and VideoRAG, whereas the clip-level
retrieval corpus comprises trimmed segments ex-
tracted from the same videos. Further details on
dataset construction are provided in Appendix A.

3.2 Models

We compare UniversalRAG against eight differ-
ent baselines as follows: 1) Naïve answers queries
without retrieving external knowledge. 2) Para-

graph, 3) Document, 4) Image, 5) Clip, and 6)
Video retrieve information only from their respec-
tive modality-specific corpora. 7) Unified retrieves
the information over a single unified embedding
space of multimodal encoder, InternVideo2 (Wang
et al., 2024b), for all data in different corpora, sim-
ilar to (Zhang et al., 2025; Wei et al., 2024). 8)
Random randomly selects one modality-specific
corpus for retrieval. We also implement three vari-
ants of UniversalRAG, varying in their retriever
components. 9) GPT-4o adopts GPT-4o (OpenAI
et al., 2024) as a training-free router. 10) Distil-
BERT and 11) T5-Large use DistilBERT (Sanh
et al., 2019) and T5-Large (Raffel et al., 2020),
respectively, trained on the routing dataset. 12)
Oracle is our ideal setting, in which each query
is routed to the most appropriate modality-specific
corpus, simulating perfect routing.

3.3 Evaluation Metrics

We evaluate the performance of UniversalRAG and
the baselines with the following metrics. For bench-
marks with multiple choice questions, we use Top-
1 Accuracy (Acc), which shows how many ques-
tions get correct answers. For benchmarks whose
answers are shorter than a few words, we use Ex-
act Match (EM), which checks whether the pre-
dicted response exactly matches the ground truth,
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Table 2: Router accuracy and generation performance across
retrieval methods on in- and out-of-domain dataset.

In-Domain Out-Domain
Models Router Acc Avg Score Router Acc Avg Score

Random 16.67 32.27 16.67 29.99
Unified 16.67 31.15 16.67 28.92
GPT-4o 57.23 37.56 69.49 36.85
DistilBERT 66.42 39.60 39.62 32.58
T5-Large 59.99 39.36 47.47 35.27
Ensemble 63.99 39.43 61.55 35.22
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DistilBERT on Out-Domain

Figure 4: Confusion matrices of router predictions using
different models on in- and out-of-domain queries.

and F1 Score (F1), which measures the word-level
overlap between the response and the reference an-
swer. Lastly, for benchmarks whose answers are
longer than a sentence, we use ROUGE-L, which
captures the longest matching sequences between
predicted and ground truth answers (Lin, 2004),
and BERTScore, which measures the semantic
similarity between response and annotation using
contextual embeddings (Zhang et al., 2020).

3.4 Implementation Details
To effectively retrieve information from differ-
ent modalities, we leverage modality-specific en-
coders: bge-large-en-v1.5 (Xiao et al., 2024) as
the text encoder, and InternVideo2 (Wang et al.,
2024b) as the vision encoder. For response gen-
eration, we use a variety of LVLMs, including
InternVL2.5-8B (Chen et al., 2025), Qwen2.5-VL-
7B-Instruct (Bai et al., 2025), and Phi-3.5-Vision-
Instruct (Abdin et al., 2024). For the router module,
the trainable routers are trained for 5 epochs with a
learning rate of 2e-5, selecting the best checkpoint
based on validation accuracy. In the training-free
setting, GPT-4o (OpenAI et al., 2024) is instanti-
ated through a prompt as shown in Figure 6. Fur-
ther details are provided in Appendix B.

4 Experimental Results and Analyses

We now present our results and in-depth analyses.

4.1 Main Results
Here, we present the overall results across diverse
retrieval scenarios spanning multiple modalities

Table 3: Effect of granularity on the performance of three
models across two benchmarks. Gn denotes Granularity.

HotpotQA LVBench
Models Gn EM F1 Acc

GPT-4o ✗ 14.26 22.95 32.32
✓ 17.80 26.10 33.01

DistilBERT ✗ 14.55 23.08 33.20
✓ 19.43 28.35 35.16

T5-Large ✗ 14.35 23.03 33.20
✓ 18.09 26.90 34.28

and levels of granularity.

Overall Results First of all, Figure 3 illustrates
the average scores of UniversalRAG and baseline
models across eight multimodal benchmarks, and
a detailed breakdown of the results is provided in
Table 1. UniversalRAG consistently outperforms
all baselines in terms of average score, demonstrat-
ing the effectiveness of leveraging multiple modali-
ties through adaptive corpus selection. In contrast
to single-modality corpora that provide limited in-
formation, UniversalRAG dynamically selects the
most relevant modality for each query, enabling
more accurate retrieval and generation.

Interestingly, UniversalRAG significantly out-
performs the Unified baseline, highlighting the ef-
fectiveness of our routing strategy in a realistic,
multi-modal setting. Specifically, the Unified base-
line struggles due to a modality gap in its unified
embedding space, often defaulting to retrieving
only textual data and consequently suffering in per-
formance. UniversalRAG mitigates this issue by us-
ing a router to select a single modality-specific cor-
pus for retrieval, effectively addressing the modal-
ity gap. Given the inherent challenge of construct-
ing a unified embedding space across modalities
without a modality gap, our router-based strategy
offers a promising direction to tackle this issue.

Effectiveness of Router Among the Universal-
RAG models, trained router models achieve better
results compared to the training-free router model
across all experiments with different LVLMs. This
improvement is due to the trained routers being
explicitly optimized for the routing task during
training, leading to superior routing performance.
As a result, UniversalRAG models with trained
routers are better at identifying the most optimal
data source and generating more accurate answers.
Nevertheless, the training-free router still outper-
forms other baseline methods, including the ran-
dom router, demonstrating that zero-shot routing
remains effective within our framework.
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Table 4: Router accuracy with varying router model size.

Models # params Router Acc

T5-Small 60M 51.16
T5-Base 220M 63.65
T5-Large 770M 59.99
T5-XL 3B 67.50

To further understand the impact of routing on
overall system performance, we analyze the ac-
curacy of each router model and the correspond-
ing overall score. Figure 4 illustrates the confu-
sion matrices for zero-shot and trained router mod-
els. While both routers generally succeed in direct-
ing inputs to the appropriate modality, the trained
router demonstrates superior accuracy compared
to the training-free model. Notably, for the clip
and video modalities, there are a few misrouted
queries, primarily due to ambiguity in separating
two different granularities. Nevertheless, the in-
puts are still correctly routed to the video modality,
highlighting the robustness of the routing mech-
anism. As seen in Table 2, our routing methods
significantly outperform both random and unified
baselines in terms of routing accuracy. This im-
provement in accuracy directly translates to better
overall performance, demonstrating a strong cor-
relation between accurate routing and end-to-end
effectiveness. These results underscore the impor-
tance of correctly routing queries to the appropriate
modality corpus, demonstrating the necessity of a
reliable router for multimodal RAG scenario.

Effectiveness of Multigranularity To further in-
vestigate the effectiveness of incorporating mul-
tiple levels of granularity, we evaluate Universal-
RAG under both coarse- and fine-grained retrieval
settings. In the no-granularity (coarse) setting, a
router classifies queries into four broad modalities:
none, text, image, or video. In the granular (fine-
grained) setting, we further subdivide modalities
for more precise retrieval: text is split into para-
graph and document levels, while video is divided
into clip and full video. For benchmarking, we use
HotpotQA to evaluate document-level reasoning
across multiple entities, and LVBench for clip-level
tasks, as its questions are typically answerable us-
ing short video segments. As shown in Table 3,
UniversalRAG with granularity consistently out-
performs the model without granularity on both
benchmarks across all router models. This high-
lights that supporting different levels of granularity
in text and video corpora improves the performance
of UniversalRAG by enabling the model to retrieve
an appropriate amount of information tailored to

each query. In contrast, models without granular-
ity control apply the same level of granularity to
all queries, which may result in either insufficient
or excessive information retrieval. Therefore, sup-
porting multiple levels of granularity is crucial for
adaptively handling a wide range of user queries.

4.2 Analyses and Discussion
Here, we provide a detailed analysis of the perfor-
mance improvements.

Results on Out-of-Domain Datasets To inves-
tigate the generalizability of our approach, we
evaluate UniversalRAG on five unseen datasets,
with detailed descriptions of each benchmark
provided in Appendix A.2. As shown in Ta-
ble 2, GPT-4o achieves the highest routing ac-
curacy, even surpassing its in-domain perfor-
mance—demonstrating strong generalization ca-
pabilities. However, trained routers underperform
on out-of-domain data, demonstrating routers are
overfitted to the training data, mainly due to the in-
sufficient diversity of queries in training data. Fig-
ure 4 further highlights the performance trade-off
between in-domain and out-domain datasets. Bene-
fiting from its robust routing, GPT-4o also achieves
the highest average QA score, outperforming both
trained routers and baseline models.

As a solution to the performance trade-off be-
tween two settings, we introduce an ensemble
router using both trained and train-free routers.
Specifically, a routing result from the trained router
is selected if its confidence score is high enough;
otherwise, a response from the train-free router
is leveraged. This strategy enables exploiting the
trained router for queries that have characteristics
similar to in-domain dataset, while relying on gen-
eralized routing ability of the train-free router for
unfamiliar or out-of-domain queries. As shown in
Table 2, UniversalRAG with the ensemble router
demonstrates better performance in both the in- and
out-of-domain benchmarks.

Analysis on Router Size To assess the impact of
router size on routing accuracy, we evaluate Uni-
versalRAG with trained routers of varying model
sizes. Specifically, we train four variants of the T5
model with different parameter counts and measure
router accuracy using InternVL2.5 as the genera-
tor. As shown in Table 4, router accuracy varies
substantially with model size, indicating that larger
models are more effective at making accurate rout-
ing decisions across modalities and granularities.
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Figure 5: Generation performance with varying generation
model (InternVL2.5) size.

Analysis with Different Model Sizes To see
how the performance of UniversalRAG scales with
LVLM size, we evaluate our models and baselines
with different sizes of InternVL2.5 models, as re-
ported in Figure 5. Across all model sizes, Uni-
versalRAG scores consistently increase and outper-
form other baselines. This indicates the scalability
of UniversalRAG and implies that its performance
could be enhanced by employing larger LVLMs.

Case Study We present the case studies of Uni-
versalRAG in Appendix D.

5 Related Work

Large Vision Language Models Building on the
powerful performance of Large Language Models
(LLMs), researchers have made efforts to enable
LLMs to understand visual information. Liu et al.
(2023) pioneered Large Vision Language Models
(LVLMs) by employing a CLIP-based (Radford
et al., 2021) image encoder that allows the language
model to understand the input image within its tex-
tual feature space. Following this, various image
understanding language models have been intro-
duced, each using different vision encoders over
LLMs (Bai et al., 2023; Chen et al., 2024c; Liu
et al., 2024). As image understanding performance
has become robust, several studies have extended
these methods to video data, which can be viewed
as a sequence of image frames (Li et al., 2024a;
Chen et al., 2025; Bai et al., 2025). Thanks to larger
training datasets and improved model structures,
current LVLMs show strong image and video un-
derstanding abilities, as demonstrated by multiple
benchmark evaluations (Yue et al., 2024; Mathew
et al., 2021; Li et al., 2024b; Fu et al., 2024). How-
ever, standalone LVLMs often suffer from halluci-
nation mainly due to the limited knowledge bound-
ary inherited from their base language models.

Retrieval-Augmented Generation Retrieval-
Augmented Generation (RAG) can address the
aforementioned challenges by incorporating exter-
nal knowledge when generating answers; however,
conventional RAG approaches rely solely on text
data, while recent studies have begun to explore
RAG over diverse multimodal corpora, highlight-
ing its significant potential beyond text-only set-
tings. Specifically, image-based RAG (Chen et al.,
2022; Riedler and Langer, 2024) was the first at-
tempt at multimodal RAG, which retrieves and
uses visual information to answer queries. Further-
more, Jeong et al. (2025) recently extends RAG
to video, capturing both visual and temporal ele-
ments for process-related questions. Despite these
advances, most existing methods only consider a
single modality corpus, which is impractical given
that real-world queries could require information
from any modality. Therefore, it is crucial to lever-
age all available data to generate the best possi-
ble answer, rather than restricting the model to
a limited modality. More recent approaches (Cui
et al., 2024; Liu et al., 2025a) support retrieval from
multimodal corpora, but typically retrieve from all
available modalities and decide what to use only
after retrieval—or even after generation—which is
inefficient and fails to adapt retrieval to the specific
needs of the query.

Handling diverse queries requires an RAG ap-
proach that adapts to the specific context and query,
instead of using a single fixed method. One promis-
ing approach is to route queries according to their
predefined complexity levels (Jeong et al., 2024;
Tang et al., 2025; Islam et al., 2024), categorizing
them as requiring no retrieval, single-step retrieval,
or multi-step retrieval, to balance performance and
latency. Another strategy leverages model con-
fidence (Ding et al., 2024; Yao et al., 2024), re-
trieving external information only when the model
confidence is low, therefore efficiently allocating
resources to challenging queries. Although adap-
tive retrieval has become central to RAG, existing
benchmarks (Zhang et al., 2024; Li et al., 2024c)
primarily evaluate text-only systems, leaving open
the question of how to adapt retrieval across multi-
ple modalities. In real-world scenarios, queries ben-
efit from different data types, making it essential to
identify the most suitable modality for retrieval in
a mixed-modality corpus.

Retrieval Granularity The size of indexing a
corpus, retrieval granularity, is a key design choice
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in retrieval, as it significantly impacts both the
performance and efficiency of RAG. Chen et al.
(2024b) discovered that retrieval from a corpus
indexed in propositions outperforms sentence- or
passage-level retrieval performance. Recent stud-
ies (Liu et al., 2025b; Zhong et al., 2025) also
showed that considering multiple granularities
achieves better retrieval performance. Likewise,
granularity-aware text-to-video retrieval was stud-
ied to find not just a full video but a specific clip
related to the query from a video corpus (Chen
et al., 2023). Therefore, in multimodal corpora, it
is not sufficient to select the appropriate modality
alone; the system should also identify the optimal
level of granularity for retrieval.

6 Conclusion

In this paper, we propose UniversalRAG, a novel
RAG framework designed to retrieve from corpora
with diverse modalities and granularities. Through
a modality- and granularity-aware routing mecha-
nism, UniversalRAG dynamically selects the most
suitable knowledge source for each query, effec-
tively addressing the limitations posed by modality
gaps and fixed-granularity retrieval. Extensive eval-
uations across 8 benchmarks demonstrate that Uni-
versalRAG consistently outperforms both modality-
specific and unified baselines, showcasing robust
performance across diverse modalities. Further-
more, our analyses highlight the importance of fine-
grained retrieval and the complementary strengths
of train-free and trained routers. These findings
demonstrate the potential of UniversalRAG as an
adaptive solution for grounding LVLMs with het-
erogeneous external knowledge, opening new di-
rections for more reliable multimodal reasoning
and modality-aware information integration.
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A Additional Details on Dataset

Table 5 provides an overview of all datasets and
their corresponding data corpora used in our exper-
iments, including the target modality type as well
as the size of the queries and corpora. We divide
each dataset into a 3:7 ratio for training and testing.
A detailed explanation of each dataset is provided
below.

A.1 In-Domain Dataset

MMLU As a dataset comprising queries that can
be answered without the need for retrieval, we
use MMLU (Hendrycks et al., 2021), a bench-
mark that spans a wide range of tasks, including
problem-solving abilities (e.g., elementary math-
ematics, computer science) and world knowledge
(e.g., law, world religions). Specifically, we use
questions from all tasks in the development split.

SQuAD SQuAD v1.1 (Rajpurkar et al., 2016) is
a benchmark dataset consisting of questions gener-
ated by crowdworkers based on a set of Wikipedia
articles. Each question is answerable given the ap-
propriate context paragraph. From the dataset’s
100,000+ QA pairs, we randomly sample 1,060
pairs of dev split. For context retrieval, we utilize
the full provided Wikipedia corpus, segmenting
each article into paragraphs of at most 100 words.

Natural Questions (NQ) We also use Natural
Questions (Kwiatkowski et al., 2019), a question
answering dataset consisting of real user queries
issued to the Google search engine, with answers
annotated based on supporting Wikipedia articles.
We randomly sample 1,000 QA pairs of dev split,
and formulate the text corpus in same setting as
SQuAD, segmenting the Wikipedia corpus into
paragraphs of at most 100 words.

HotpotQA HotpotQA (Yang et al., 2018) is a
Wikipedia-based QA benchmark, but contains com-
plex queries that are annotated to reason over mul-
tiple articles. We utilize 1,492 randomly sampled
QA pairs of test split. As it requires multi-hop rea-
soning over multiple documents, we formulate the
text corpus by grouping multiple related documents
following LongRAG (Jiang et al., 2024), that can
be longer than 4K tokens.

WebQA WebQA (Chang et al., 2022) is a bench-
mark designed to evaluate the ability of LLMs to
reason over multiple sources of information, in-
cluding both text and images, in an open-domain

setting. As the dataset is originally constructed
with question-specific retrieval sources that com-
bine text and images, we extract a subset of ques-
tions that require only a single image for retrieval.
We then further filter these using GPT-4o with the
prompt shown in Figure 7 to make sure questions
are not grounded to certain image, resulting in a
final set of 2,000 QA pairs.

LVBench LVBench (Wang et al., 2024a) is a
benchmark developed for long video understand-
ing, featuring questions generated by annotators
based on YouTube videos with an average duration
of over one hour. Since the benchmark was origi-
nally designed for non-RAG tasks, we rephrased
the original text-video interleaved queries into a
text-only format to align with our experimental
setup using GPT-4o, with video metadata and a
prompt (Figure 8). Each query is associated with
a specific video and a corresponding time range.
Notably, the majority of queries are annotated
with timestamps spanning less than five minutes,
thereby focusing on short segments within the
longer videos. For training, we use these short-
timestamp queries as a clip-level dataset.

VideoRAG We also utilize VideoRAG-Wiki and
VideoRAG-Synth benchmarks, introduced in Vide-
oRAG (Jeong et al., 2025), which are designed to
evaluate RAG over video corpus. These bench-
marks are built on the HowTo100M (Miech et al.,
2019) corpus—a large-scale collection of instruc-
tional YouTube videos—with queries sourced from
WikiHowQA (Bolotova-Baranova et al., 2023) and
synthetically generated QA pairs based on the
videos. Since they lack timestamp annotations,
we employ GPT-4o to identify video-level queries
that are better answered through full video retrieval
rather than short segments from the ground-truth
video, which are then used as a video-level dataset
for training the router.

A.2 Out-of-Domain Dataset

Unlike the in-domain datasets, the out-of-domain
datasets are used solely for evaluation to assess
the generalizability of our routing approach, and
consist only of test splits.

TruthfulQA TruthfulQA (Lin et al., 2022) in-
cludes general knowledge questions designed to
test whether LLMs can avoid common false belief
or misconception, on diverse categories, includ-
ing health, law, and politics. We use the multiple-
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Table 5: Dataset Summary. Avg. corpus length is the mean token count for text corpora and the mean duration for video corpora.

Dataset Gold Retrieval # Queries Corpus Size Avg. Corpus Length

In-Domain Datasets
MMLU None 285 - -
SQuAD Paragraph 1,060 1.19M 100 tokens
Natural Questions Paragraph 1,000 850k 100 tokens
HotpotQA Document 1,492 509k 693 tokens
WebQA Image 2,000 20k -
LVBench Clip/Video 1,376 94 3,941s
VideoRAG-Wiki Clip/Video 374 9k 378sVideoRAG-Synth Clip/Video 374

Out-of-Domain Datasets
TruthfulQA None 790 - -
TriviaQA Paragraph 661 661k 100 tokens
LaRA Document 112 34 28k tokens
Visual-RAG Image 374 2k -
CinePile Clip/Video 1,440 144 158s

choice version of the dataset, which includes only
a single correct answer per question.

TriviaQA TriviaQA (Joshi et al., 2017) is a read-
ing comprehension dataset consisting of trivia ques-
tions paired with evidence texts sourced from
Wikipedia and the web. To distinguish between
queries that require text retrieval and those that do
not, we categorize each query based on whether
GPT-4o can produce an exact-match answer with-
out access to external text. We randomly sample
QA pairs from the dev split. Following the pre-
processing strategies used in SQuAD and NQ, all
supporting evidence documents are segmented into
paragraphs of no more than 100 words.

LaRA We also utilize LaRA (Li et al., 2025),
which is designed for understanding long-context
documents such as academic papers and novels.
For our use case, we focus on a subset of these
documents, specifically excluding queries on the
‘comparison’ task, as our goal is RAG, not reading
comprehension. Additionally, we slightly reformat
the remaining queries to align with a general QA
format. Given the length of the source material,
each document is treated as a single entry in the
document-level corpus.

Visual-RAG Visual-RAG (Wu et al., 2025) is
a question-answering benchmark designed for vi-
sual knowledge-intensive questions, specifically
tailored for text-to-image retrieval tasks. We utilize
the full set of provided queries but sample five im-
ages per category to construct the image retrieval
pool, ensuring efficient text-to-image retrieval.

CinePile CinePile (Rawal et al., 2024) is a long-
video question-answering benchmark that features

questions based on movie clips from YouTube.
Since the benchmark was originally designed for
video understanding tasks rather than RAG, we re-
formulate each query using the same procedure as
LVBench. For each of the 144 available videos,
we randomly select 10 questions from the test
split. Since CinePile does not provide granular-
ity annotations, we classify the questions into two
categories—clip-level and full-video-level gran-
ularity—using GPT-4o, following the same ap-
proach used in VideoRAG.

B Additional Implementation Details

To effectively leverage both visual and textual in-
formation for visual element retrieval, we employ
an ensemble approach that combines visual and tex-
tual similarity scores with a weighting ratio of 0.8
for visual information. The textual information con-
sists of image captions for images and scripts for
videos. During the generation stage, we use only
the top-1 retrieved result, selected based on the co-
sine similarity of the corresponding embeddings.
Moreover, we uniformly sample 32 frames per
video for both the retrieval and generation stages.
Trainable routers are trained for 5 epochs with a
learning rate of 2e-5, with the best-performing state
selected based on validation accuracy.

C Additional Experimental Results

C.1 Routing Results per Dataset

We present routing results of three routers for each
dataset in Table 6. On in-domain datasets, GPT-4o
often struggles to distinguish between Paragraph
and Document RAG queries, and misroutes Vide-
oRAG queries to textual corpus. Meanwhile, two
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Table 6: Routing results across in-domain and out-domain dataset.
In-domain Dataset Out-domain Dataset

Text Image Video Text Image Video
MMLU SQuAD NQ HotpotQA WebQA LVBench VRAG-Wiki VRAG-Synth TruthfulQA TriviaQA LaRA Vis-RAG CinePile

Models 200 742 700 1045 1392 829 374 374 790 661 112 374 1440

gp
t-

4o

None 117 44 57 38 25 3 8 27 374 121 0 0 0
Paragraph 39 512 588 505 102 17 304 271 205 509 4 18 0
Document 44 185 39 502 44 34 52 53 206 27 108 0 6
Image 0 1 5 0 1210 44 1 9 2 4 0 356 1
Clip 0 0 6 0 0 622 0 0 3 0 0 0 1354
Video 0 0 5 0 11 109 9 14 0 0 0 0 79

D
is

til
B

E
R

T None 120 2 1 1 0 0 0 0 2 1 42 0 0
Paragraph 49 679 669 150 30 1 0 6 629 274 21 0 1
Document 11 32 12 866 12 3 0 0 53 338 2 2 1
Image 0 6 11 17 1351 7 0 0 12 32 4 371 1
Clip 5 0 1 8 5 818 0 2 3 7 34 0 1436
Video 15 23 6 3 2 0 374 366 91 9 9 1 1

T
5-

L
ar

ge

None 110 4 1 0 1 0 1 1 21 4 30 0 0
Paragraph 79 731 698 461 145 13 5 15 709 558 74 0 13
Document 2 3 0 571 6 15 0 0 35 94 0 0 2
Image 0 1 0 9 1234 15 0 0 1 2 0 374 4
Clip 0 0 1 2 13 784 0 3 2 1 1 0 1420
Video 9 3 0 2 1 2 368 355 22 2 7 0 1

Table 7: Detailed results of UniversalRAG and baselines on
out-domain dataset.

Text Image Video

Avg.TruthfulQA TriviaQA LaRA Vis-RAG Cinepile

Models Acc EM F1 R-L BERT R-L BERT Acc

Naïve 64.68 49.47 57.92 23.15 87.62 6.24 80.98 30.76 33.88
Paragraph 58.73 54.61 65.14 20.23 86.48 4.74 80.77 30.07 33.88
Document 28.73 39.94 44.73 25.18 86.83 4.34 81.14 32.64 26.68
Image 57.85 45.23 52.50 21.40 87.09 7.31 82.32 34.03 33.35
Clip 51.01 31.62 42.40 19.64 87.50 6.92 81.32 35.63 29.59
Video 47.34 33.59 43.82 19.89 87.19 70.4 81.42 37.43 29.47
Unified 52.15 35.70 45.01 21.28 86.83 4.31 80.47 30.76 28.92
Random 51.27 42.66 51.51 21.81 87.27 5.81 81.09 32.43 29.99

GPT-4o 55.19 54.01 64.05 24.93 88.42 7.17 82.26 35.56 36.85
DistilBERT 57.85 42.51 51.01 20.96 87.26 7.34 82.32 35.63 32.58
T5-Large 57.85 50.08 60.16 20.63 86.73 7.31 82.32 35.49 35.27

Oracle 64.68 55.52 64.85 25.18 86.83 7.31 82.32 37.71 38.26

trained routers show strong classification perfor-
mance across all in-domain datasets. In out-of-
domain datasets, GPT-4o generalizes well for most
datasets, except for image-based RAG queries. In
contrast, trained routers fail to classify the appro-
priate granularity needed for each query. This is
mainly due to the limited diversity of training data,
which causes overfitting to seen examples.

C.2 Detailed Results on Out-domain Dataset
QA evaluation results of UniversalRAG models
and the baselines for each out-of-domain dataset
are shown in Table 7. UniversalRAG models out-
perform the baselines in general. GPT-4o demon-
strates robust performance across all datasets, pri-
marily due to the outstanding generalization capa-
bility of the router on unseen queries, as discussed
in Section C.1. However, trained routers show de-
graded performance compared to the results on
in-domain datasets, since their routers often mis-
classify unseen queries.

D Qualitative Results

We present case studies to demonstrate the effec-
tiveness of UniversalRAG. Table 8 compares the
results of various RAG approaches, including tra-
ditional single-modality methods and Universal-

RAG, on queries from the WebQA dataset. Tra-
ditional approaches such as TextRAG and Vide-
oRAG fail to generate accurate answers—TextRAG
retrieves passages lacking relevant visual details,
while VideoRAG is better suited for temporal rea-
soning tasks. In contrast, UniversalRAG correctly
routes the query to the image modality, recogniz-
ing that visual information about color is necessary,
and successfully generates the correct response.
This highlights the advantage of modality-aware
routing in leveraging the appropriate data from the
correct modality corpus, demonstrating Universal-
RAG’s ability to adaptively select the most infor-
mative modality for accurate answer generation.

In addition to modality routing, we observe
that UniversalRAG also benefits from retrieving
information at the appropriate granularity. Ta-
ble 9 shows results from HotpotQA, where the
query requires complex reasoning over multiple
text sources. While paragraph-level granularity
fails to provide sufficient context for reasoning,
UniversalRAG routes the query to the document-
level corpus, to retrieve all the textual informa-
tion necessary for accurate reasoning. Similarly,
for video queries, Table 10 shows results from
LVBench, on the query that requires only a short
segment of the full long video to answer. While
full-video-level retrieval includes irrelevant content
and uniformly sampled 32 frames fail to capture the
necessary information, clip-level retrieval focuses
on smaller, more relevant segments of the video to
ensure that only the most pertinent visual details
are considered, leading to more accurate answer.
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Comparison of UniversalRAG to Single-modality RAG

Question What color balloons were displayed on the USNS Carl Brashear during its ship launching
ceremony in San Diego?

Ground Truth The balloons were red, white, and blue that were displayed on the USNS Carl Brashear
during the ship launching ceremony in San Diego.

No Retrieval The USNS Carl Brashear’s ship launching ceremony in San Diego likely featured a diverse
range of balloons, but the specific color or colors of the balloons during the ceremony are
not universally documented. They may not have been a focus of the event, and such details
can vary or not be available in the public record. Therefore, the exact answer to the colors
of the balloons on the USNS Carl Brashear may not be specified or may be unknown.

TextRAG Retrieved: Randall Dark Randall P. Dark is a Canadian writer, director, and producer
recognized as an early proponent of HDTV. In 1995, Dark and his company, HD Vision,
were involved with the United Nations 50th Anniversary where they shot, in HDTV,
President Bill Clinton’s speech in San Francisco. In 1999, Dark and HD Vision produced
a documentary for PBS about the Albuquerque Balloon Festival. This program aired in
HDTV in June 1999. Much of Dark’s work involves sweeping nature cinematography
including Trinity River Raft Ride featuring Eddie Bracken. One of the 3D projects Dark
directed in 2010 was "3 Cities in

Response: The provided documents do not contain any information about the color of the
balloons displayed on the USNS Carl Brashear during its ship launching ceremony in San
Diego.

VideoRAG Retrieved:

Response: Green, blue, and yellow.

UniversalRAG (Ours) Routed to: Image

Retrieved:

Response: The USNS Carl Brashear was adorned with red, white, and blue balloons
during its launch ceremony in San Diego.

Table 8: Case study comparing RAG on single modality vs. UniversalRAG (Ours). Traditional RAG models are
limited by modality-specific retrieval, often missing relevant knowledge from other modalities. UniversalRAG
(Ours) dynamically routes each query to the most appropriate modality, enabling more accurate retrieval and
response generation.
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Comparison of Using Different Text Granularity

Question George Reed was, along with which Drake University player, one of the greatest running
backs in CFL history?

Ground Truth Johnny D. Bright

ParagraphRAG Retrieved: Blue Bombers. He remained in Winnipeg for two seasons (1986-87), but only
played in nine games. He finished his career with 4,586 rushing yards, 275 receptions
for 2,861 yards and 48 total touchdowns. His son Corey was a sprinter on Clemson’s
men’s track & field team. Lester Brown (Canadian football) Lester Brown (born January 5,
1957) is a former Canadian Football League running back for the Saskatchewan Roughrid-
ers, Montreal Concordes, Toronto Argonauts, Ottawa Rough Riders and Winnipeg Blue
Bombers. He played college football at Clemson University. Brown attended Myrtle
Beach High School, before accepting a football scholarship from Clemson University.

Response: Lester Brown

UniversalRAG (Ours) Routed to: Document

Retrieved:
George Reed (Canadian football) George Robert Reed, CM, SOM (born October 2, 1939),
is a former American college football and Canadian Football League player. Reed, along
with Mike Pringle and Johnny Bright, is one of the players most often mentioned as being
the greatest running back in CFL history. In November 2006, Reed was voted one of the
CFL’s Top 50 players (#2) of the league’s modern era by Canadian sports network.
...
Johnny Bright Johnny D. Bright (June 11, 1930 – December 14, 1983) was a professional
Canadian football player in the Canadian Football League. He played college football at
Drake University. He is a member of the Canadian Football Hall of Fame, the National
Football Foundation’s College Football Hall of Fame, the Missouri Valley Conference
Hall of Fame, the Edmonton Eskimos Wall of Honour, the Alberta Sports Hall of Fame,
and the "Des Moines Register’s" Iowa Sports Hall of Fame.

Response: Johnny Bright

Table 9: Case study comparing different levels of text granularity. The user query requires complex retrieval
involving multiple entities. ParagraphRAG retrieves limited context centered around a single entity, leading to an
incorrect answer. UniversalRAG (Ours) routes the query to the document corpus and retrieves richer document-level
information, allowing it to capture both relevant entities and generate the correct response.
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Comparison of Using Different Video Granularity

Question Who finishes first in the Men’s 100M Round 1 Heat 5 during the London 2012 Olympics,
featuring Usain Bolt and Yohan Blake?
(A) Su BingTian
(B) Usain Bolt
(C) Asafa Powell
(D) Tyson Gay

Groud Truth C

VideoRAG Retrieved:

(Timestamp Range: 00:00~38:26)

Response: B

UniversalRAG (Ours) Routed to: Clip

Retrieved:

(Timestamp Range: 25:57~29:22)

Response: C

Table 10: Case study comparing different levels of video granularity. The user query requires only a segment
of the video to determine the answer. VideoRAG retrieves a broad range of frames across the video, which
includes irrelevant content and leads to an incorrect answer. UniversalRAG (Ours) routes the query to the clip-level
granularity, retrieving more focused and relevant visual information, enabling it to generate the correct response.
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Classify the following query into one of six categories: [No, Paragraph, Document, Image,
Clip, Video], based on whether it requires retrieval-augmented generation (RAG) and the most
appropriate modality. Consider:

• No: The query can be answered directly with common knowledge, reasoning, or computation
without external data.

• Paragraph: The query requires retrieving factual descriptions, straightforward explanations,
or concise summaries from a single source.

• Document: The query requires multi-hop reasoning, combining information from multiple
sources or documents to form a complete answer.

• Image: The query focuses on visual aspects like appearances, structures, or spatial relation-
ships.

• Clip: The query targets a short, specific moment or event within a video, without needing full
context.

• Video: The query requires understanding dynamic events, motion, or sequences over time in
a video.

Examples:
• "What is the capital of France?" → No
• "What is the birth date of Alan Turing?" → Paragraph
• "Which academic discipline do computer scientist Alan Turing and mathematician John von

Neumann have in common?" → Document
• "Describe the appearance of a blue whale." → Image
• "Describe the moment Messi scored his goal in the 2022 World Cup final." → Clip
• "Explain how Messi scored his goal in the 2022 World Cup final." → Video
• "Solve 12 × 8." → No
• "Who played a key role in the development of the iPhone?" → Paragraph
• "Which Harvard University graduate played a key role in the development of the iPhone?" →

Document
• "Describe the structure of the Eiffel Tower." → Image
• "Describe the moment Darth Vader reveals he is Luke’s father in Star Wars." → Clip
• "Analyze the sequence of events leading to the fall of the Empire in Star Wars." → Video

Classify the following query: {query}
Provide only the category.

Figure 6: Prompt for query routing in a train-free manner
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Evaluate whether the query can be answered using general knowledge about the image’s subject
rather than relying solely on details unique to the provided image, and verify that the answer is
obtainable from the image and the query.

• Respond "yes" if:
1. The query can be fully answered using general knowledge about the subject.
2. The answer can be derived solely from the image and the query, without needing image-

specific details.
• Respond "no" if either condition is not met.

Example 1:
• Image: A portrait of Donald Trump
• Query: What is the color of Trump’s hair?
• Answer: White
• Response: "yes"

Example 2:
• Image: A close-up photo of a light bulb
• Query: What is the color of the light bulb in this image?
• Answer: Yellow
• Response: "no"

Figure 7: Prompt to filter queries for WebQA

You will receive a query from a video QA dataset and the title of the corresponding video on
YouTube. I want you to paraphrase the query by replacing "in the video?", "of the video",
or similar phrases with references to the video content naturally. The output should sound
as if a human is asking ChatGPT, and should not explicitly mention the exact name of the
video or even parts of the title. However, the rephrased query should contain enough implicit
information about the video to allow the model to identify it. Try to reduce the chance
of the model getting confused between multiple possible video candidates. If there could
be multiple video matches for a given query, try to include more information in the rephrased query.

Example 1:
• Query: What year appears in the opening caption of the video?
• Video Title: Blue Eye Samurai | Hammerscale | Full Episode | Netflix
• Upload Date: 2023-11-05
• Channel Name: Netflix
• Rephrased Output: What year appears in the opening caption of the Blue Eye Samurai episode

on Netflix?

Example 2:
• Query: After the vlogger sees a dog with an advertisement from the company named Smitten,

camera changes to the scene with ___.
• Video Title: My ICELAND Experience | Ultimate Travel Vlog
• Upload Date: 2022-10-26
• Channel Name: Kallmekris
• Rephrased Output: After spotting a dog with a Smitten advertisement, what scene does the

camera transition to in Kallmekris’s Iceland travel vlog from 2022?

Figure 8: Prompt to rephrase queries using video metadata for LVBench and CinePile
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