
Claude Code

Claude Code is a command line tool for agentic coding. This post covers tips and tricks that have
proven effective for using Claude Code across various codebases, languages, and environments.

Research article available for access at: https://www.anthropic.com/engineering/claude-code-best-practices.

Best practices for
agentic coding

 Preface1.

 Customize Your Setup2.

 Give Claude More Tools3.

Try Common Workflows4.

 Optimize Your Workflow5.

 Use Headless Mode to Automate Your Infra6.

 Uplevel with Multi-Claude Workflows7.

 Acknowledgements8.

Table of Content

We recently released Claude Code, a command line tool for
agentic coding. Developed as a research project, Claude Code
gives Anthropic engineers and researchers a more native way
to integrate Claude into their coding workflows.

Claude Code is intentionally low-level and unopinionated,
providing close to raw model access without forcing specific
workflows. This design philosophy creates a flexible,
customizable, scriptable, and safe power tool. While powerful,
this flexibility presents a learning curve for engineers new to
agentic coding tools—at least until they develop their own
best practices.

This article outlines general patterns that have proven
effective, both for Anthropic's internal teams and for external
engineers using Claude Code across various codebases,
languages, and environments. Nothing in this list is set in
stone nor universally applicable; consider these suggestions
as starting points. We encourage you to experiment and find
what works best for you!

Looking for more detailed information? Our comprehensive
documentation at claude.ai/code covers all the features
mentioned in this post and provides additional examples,
implementation details, and advanced techniques.

Preface

https://www.anthropic.com/news/claude-3-7-sonnet
https://claude.ai/code

Claude Code is an agentic coding assistant that
automatically pulls context into prompts. This context
gathering consumes time and tokens, but you can optimize it
through environment tuning.

a. Create CLAUDE.md files

CLAUDE.md is a special file that Claude automatically pulls
into context when starting a conversation. This makes it an
ideal place for documenting:

Common bash commands
Core files and utility functions
Code style guidelines
Testing instructions
Repository etiquette (e.g., branch naming, merge vs.
rebase, etc.)
Developer environment setup (e.g., pyenv use, which
compilers work)
Any unexpected behaviors or warnings particular to the
project
Other information you want Claude to remember

There’s no required format for CLAUDE.md files. We
recommend keeping them concise and human-readable. For
example:

1. Customize your setup

Bash commands
- npm run build: Build the project
- npm run typecheck: Run the typechecker

Code style
- Use ES modules (import/export) syntax, not CommonJS (require)
- Destructure imports when possible (eg. import { foo } from 'bar')

Workflow
- Be sure to typecheck when you’re done making a series of code changes
- Prefer running single tests, and not the whole test suite, for performance

You can place `CLAUDE.md` files in several locations:

- Repo Root or Run Directory: Name it `CLAUDE.md` and check
into git for sharing, or `CLAUDE.local.md` and `.gitignore` it.

- Parent Directories: Useful for monorepos, with `CLAUDE.md`
files in parent directories.

- Child Directories: `CLAUDE.md` files in child directories are
pulled on demand.

- Home Folder: Place in `~/.claude/CLAUDE.md` for all
sessions.

When you run the /init command, Claude will automatically
generate a CLAUDE.md for you.

b. Tune your CLAUDE.md files

Your CLAUDE.md files become part of Claude’s prompts.

A common mistake is adding extensive content without
iterating on its effectiveness.

Add content to `CLAUDE.md` manually or press `#` to auto-
incorporate instructions. Engineers use `#` to document
commands and guidelines, committing changes to
`CLAUDE.md` for team use.

At Anthropic, we occasionally run CLAUDE.md files through
the prompt improver and often tune instructions (e.g. adding
emphasis with "IMPORTANT" or "YOU MUST") to improve
adherence.

https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/prompt-improver

By default, Claude Code requests permission for any action
that might modify your system: file writes, many bash
commands, MCP tools, etc.

We designed Claude Code with this deliberately conservative
approach to prioritize safety. You can customize the allowlist
to permit additional tools that you know are safe, or to allow
potentially unsafe tools that are easy to undo (e.g., file
editing, git commit).

There are four ways to manage allowed tools:

Select "Always allow" when prompted during a session.
Use the /allowed-tools command after starting Claude
Code to add or remove tools from the allowlist. For
example, you can add Edit to always allow file edits,
Bash(git commit:*) to allow git commits, or
mcp__puppeteer__puppeteer_navigate to allow
navigating with the Puppeteer MCP server.
Manually edit your .claude/settings.json or ~/.claude.json
(we recommend checking the former into source control to
share with your team).
Use the --allowedTools CLI flag for session-specific
permissions.

d. If using GitHub, install the gh CLI

Claude knows how to use the gh CLI to interact with GitHub for
creating issues, opening pull requests, reading comments,
and more. Without gh installed, Claude can still use the
GitHub API or MCP server if you have those installed.

Claude has access to your shell environment, where you can
build up sets of convenience scripts and functions for it just
like you would for yourself. It can also leverage more complex
tools through MCP and REST APIs.

a. Use Claude with bash tools

Claude Code inherits your bash environment, giving it access
to all your tools. While Claude knows common utilities like
unix tools and gh, it won't know about your custom bash tools
without instructions:

Tell Claude the tool name with usage examples1.
Tell Claude to run --help to see tool documentation2.
Document frequently used tools in CLAUDE.md3.

b. Use Claude with MCP

Claude Code functions as both an MCP server and client. As a
client, it can connect to any number of MCP servers to access
their tools in three ways:

In project config (available when running Claude Code in
that directory)
In global config (available in all projects)
In a checked-in .mcp.json file. For example, Add Puppeteer
and Sentry servers to a checked-in `.mcp.json` file for all
engineers to use.

2. Give Claude More Tools

Please analyze and fix the GitHub issue: $ARGUMENTS.

Follow these steps:

1. Use `gh issue view` to get the issue details
2. Understand the problem described in the issue
3. Search the codebase for relevant files
4. Implement the necessary changes to fix the issue
5. Write and run tests to verify the fix
6. Ensure code passes linting and type checking
7. Create a descriptive commit message
8. Push and create a PR

Remember to use the GitHub CLI (`gh`) for all GitHub-related tasks.

Putting the above content into .claude/commands/fix-
github-issue.md makes it available as the /project:fix-github-
issue command in Claude Code.

You could then for example use /project:fix-github-issue 1234
to have Claude fix issue #1234.

Similarly, you can add your own personal commands to the
~/.claude/commands folder for commands you want
available in all of your sessions.

Claude Code offers flexible usage without imposing a specific
workflow. Successful usage patterns have emerged within the
user community.

a. Explore, plan, code, commit

This versatile workflow suits many problems:

Ask Claude to read relevant files, images, or URLs,
providing either general pointers ("read the file that
handles logging") or specific filenames ("read
logging.py"), but explicitly tell it not to write any code just
yet.

1.

In this part, use subagents for complex problems to
verify details and preserve context, especially early in
a conversation or task, without losing efficiency.

a.

Ask Claude to make a plan for how to approach a specific
problem. We recommend using the word "think" to trigger
extended thinking mode, which gives Claude additional
computation time to evaluate alternatives more
thoroughly. These specific phrases are mapped directly to
increasing levels of thinking budget in the system: "think"
< "think hard" < "think harder" < "ultrathink." Each level
allocates progressively more thinking budget for Claude to
use.

2.

If the results seem reasonable, have Claude create a
document or GitHub issue with its plan. This allows you
to reset if the implementation isn't what you want.

a.

3. Try Common Wrokflows

 3. Ask Claude to implement its solution in code. This is also a
good place to ask it to explicitly verify the reasonableness of
its solution as it implements pieces of the solution.
 4. Ask Claude to commit the result and create a pull
request. If relevant, this is also a good time to have Claude
update any READMEs or changelogs with an explanation of
what it just did.

Steps #1-#2 are crucial. Without them, Claude may jump
straight to coding. Researching and planning first improves
performance for complex problems.

b. Write tests, commit; code, iterate, commit

This is an Anthropic-favorite workflow for changes that are
easily verifiable with unit, integration, or end-to-end tests.
Test-driven development (TDD) becomes even more powerful
with agentic coding:

Ask Claude to write tests based on expected input/output
pairs. Specify that you're doing test-driven development
to avoid mock implementations.

1.

Tell Claude to run the tests and confirm they fail. Explicitly
telling it not to write any implementation code at this
stage is often helpful.

2.

Ask Claude to commit the tests when you’re satisfied with
them.

3.

Ask Claude to write code that passes the tests without
modifying them. Instruct it to keep going until all tests
pass, which may take a few iterations.

4.

At this stage, it can help to ask it to verify with
independent subagents that the implementation isn’t
overfitting to the tests

a.

c. Write code, screenshot result, iterate

Similar to the testing workflow, you can provide Claude with
visual targets:

Give Claude a way to take browser screenshots (e.g., with
the Puppeteer MCP server, an iOS simulator MCP server, or
manually copy / paste screenshots into Claude).

1.

Give Claude a visual mock by copying / pasting or drag-
dropping an image, or giving Claude the image file path.

2.

Ask Claude to implement the design in code, take
screenshots of the result, and iterate until its result
matches the mock.

3.

Ask Claude to commit when you're satisfied.4.

Like humans, Claude's outputs tend to improve significantly
with iteration. While the first version might be good, after 2-3
iterations it will typically look much better. Give Claude the
tools to see its outputs for best results.

https://github.com/modelcontextprotocol/servers/tree/c19925b8f0f2815ad72b08d2368f0007c86eb8e6/src/puppeteer
https://github.com/joshuayoes/ios-simulator-mcp

c. Write code, screenshot result, iterate

Similar to the testing workflow, you can provide Claude with
visual targets:

Give Claude a way to take browser screenshots (e.g., with
the Puppeteer MCP server, an iOS simulator MCP server, or
manually copy / paste screenshots into Claude).

1.

Give Claude a visual mock by copying / pasting or drag-
dropping an image, or giving Claude the image file path.

2.

Ask Claude to implement the design in code, take
screenshots of the result, and iterate until its result
matches the mock.

3.

Ask Claude to commit when you're satisfied.4.

Like humans, Claude's outputs tend to improve significantly
with iteration. While the first version might be good, after 2-3
iterations it will typically look much better. Give Claude the
tools to see its outputs for best results.

https://github.com/modelcontextprotocol/servers/tree/c19925b8f0f2815ad72b08d2368f0007c86eb8e6/src/puppeteer
https://github.com/joshuayoes/ios-simulator-mcp

d. Safe YOLO mode

Instead of supervising Claude, you can use claude --
dangerously-skip-permissions to bypass all permission
checks and let Claude work uninterrupted until completion.
This works well for workflows like fixing lint errors or
generating boilerplate code.

Letting Claude run arbitrary commands is risky and can result
in data loss, system corruption, or even data exfiltration (e.g.,
via prompt injection attacks). To minimize these risks, use --
dangerously-skip-permissions in a container without internet
access. You can follow this reference implementation using
Docker Dev Containers.

e. Codebase Q&A

When onboarding to a new codebase, use Claude Code for
learning and exploration. You can ask Claude the same sorts
of questions you would ask another engineer on the project
when pair programming.

Claude can agentically search the codebase to answer
general questions like:

How does logging work?
How do I make a new API endpoint?
What does async move { ... } do on line 134 of foo.rs?
What edge cases does CustomerOnboardingFlowImpl
handle?
Why are we calling foo() instead of bar() on line 333?
What’s the equivalent of line 334 of baz.py in Java?

https://github.com/anthropics/claude-code/tree/main/.devcontainer

At Anthropic, using Claude Code in this way has become our
core onboarding workflow, significantly improving ramp-up
time and reducing load on other engineers. No special
prompting is required! Simply ask questions, and Claude will
explore the code to find answers.

f. Use Claude to interact with git

Claude can effectively handle many git operations. Many
Anthropic engineers use Claude for 90%+ of our git
interactions:

Searching git history to answer questions like "What
changes made it into v1.2.3?", "Who owns this particular
feature?", or "Why was this API designed this way?" It
helps to explicitly prompt Claude to look through git
history to answer queries like these.
Writing commit messages. Claude will look at your
changes and recent history automatically to compose a
message taking all the relevant context into account
Handling complex git operations like reverting files,
resolving rebase conflicts, and comparing and grafting
patches

g. Use Claude to interact with GitHub

Claude Code can manage many GitHub interactions:

Creating pull requests: Claude understands the shorthand
"pr" and will generate appropriate commit messages
based on the diff and surrounding context.
Implementing one-shot resolutions for simple code review
comments: just tell it to fix comments on your PR
(optionally, give it more specific instructions) and push
back to the PR branch when it's done.
Fixing failing builds or linter warnings
Categorizing and triaging open issues by asking Claude to
loop over open GitHub issues
This eliminates the need to remember gh command line
syntax while automating routine tasks.

f. Use Claude to interact with git

Claude can effectively handle many git operations. Many
Anthropic engineers use Claude for 90%+ of our git
interactions:

Searching git history to answer questions like "What
changes made it into v1.2.3?", "Who owns this particular
feature?", or "Why was this API designed this way?" It
helps to explicitly prompt Claude to look through git
history to answer queries like these.
Writing commit messages. Claude will look at your
changes and recent history automatically to compose a
message taking all the relevant context into account
Handling complex git operations like reverting files,
resolving rebase conflicts, and comparing and grafting
patches

g. Use Claude to interact with GitHub

Claude Code can manage many GitHub interactions:

Creating pull requests: Claude understands the shorthand
"pr" and will generate appropriate commit messages
based on the diff and surrounding context.
Implementing one-shot resolutions for simple code review
comments: just tell it to fix comments on your PR
(optionally, give it more specific instructions) and push
back to the PR branch when it's done.
Fixing failing builds or linter warnings
Categorizing and triaging open issues by asking Claude to
loop over open GitHub issues
This eliminates the need to remember gh command line
syntax while automating routine tasks.

h. Use Claude to work with Jupyter notebooks

Researchers and data scientists at Anthropic use Claude Code
to read and write Jupyter notebooks. Claude can interpret
outputs, including images, providing a fast way to explore and
interact with data. There are no required prompts or
workflows, but a workflow we recommend is to have Claude
Code and a .ipynb file open side-by-side in VS Code.

You can also ask Claude to clean up or make aesthetic
improvements to your Jupyter notebook before you show it to
colleagues. Specifically telling it to make the notebook or its
data visualizations “aesthetically pleasing” tends to help
remind it that it’s optimizing for a human viewing experience.

The suggestions below apply across all workflows:

a. Be specific in your instructions

Claude Code’s success rate improves significantly with more
specific instructions, especially on first attempts. Giving clear
directions upfront reduces the need for course corrections
later.

For example:

Claude can infer intent, but it can't read minds. Specificity
leads to better alignment with expectations.

4. Optimize your workflow

b. Give Claude images

Claude excels with images and diagrams through several
methods:

Paste screenshots (pro tip: hit cmd+ctrl+shift+4 in macOS
to screenshot to clipboard and ctrl+v to paste. Note that
this is not cmd+v like you would usually use to paste on
mac and does not work remotely.)
Drag and drop images directly into the prompt input
Provide file paths for images.

c. Mention files you want Claude to look at or work on

Use tab-completion to quickly reference files or folders
anywhere in your repository, helping Claude find or update the
right resources.

d. Give Claude URLs

Paste specific URLs alongside your prompts for Claude to
fetch and read. To avoid permission prompts for the same
domains (e.g., docs.foo.com), use /allowed-tools to add
domains to your allowlist.

e. Course correct early and often

While auto-accept mode (shift+tab to toggle) lets Claude
work autonomously, you'll typically get better results by being
an active collaborator and guiding Claude's approach. You
can get the best results by thoroughly explaining the task to
Claude at the beginning, but you can also course correct
Claude at any time.

These four tools help with course correction:
Ask Claude to make a plan before coding. Explicitly tell it
not to code until you’ve confirmed its plan looks good.
Press Escape to interrupt Claude during any phase
(thinking, tool calls, file edits), preserving context so you
can redirect or expand instructions.
Double-tap Escape to jump back in history, edit a previous
prompt, and explore a different direction. You can edit the
prompt and repeat until you get the result you're looking
for.
Ask Claude to undo changes, often in conjunction with
option #2 to take a different approach.

Though Claude Code occasionally solves problems perfectly
on the first attempt, using these correction tools generally
produces better solutions faster.

f. Use /clear to keep context focused

During long sessions, Claude's context window can fill with
irrelevant conversation, file contents, and commands. This
can reduce performance and sometimes distract Claude. Use
the /clear command frequently between tasks to reset the
context window.

g. Use checklists and scratchpads for complex workflows

For large tasks with multiple steps or requiring exhaustive
solutions—like code migrations, fixing numerous lint errors, or
running complex build scripts—improve performance by
having Claude use a Markdown file (or even a GitHub issue!)
as a checklist and working scratchpad:

For example, to fix a large number of lint issues, you can do
the following:

Tell Claude to run the lint command and write all resulting
errors (with filenames and line numbers) to a Markdown
checklist

1.

Instruct Claude to address each issue one by one, fixing
and verifying before checking it off and moving to the next

2.

h. Pass data into Claude

Several methods exist for providing data to Claude:

Copy and paste directly into your prompt (most common
approach)
Pipe into Claude Code (e.g., cat foo.txt | claude),
particularly useful for logs, CSVs, and large data
Tell Claude to pull data via bash commands, MCP tools, or
custom slash commands
Ask Claude to read files or fetch URLs (works for images
too)

Most sessions involve a combination of these approaches. For
example, you can pipe in a log file, then tell Claude to use a
tool to pull in additional context to debug the logs.

g. Use checklists and scratchpads for complex workflows

For large tasks with multiple steps or requiring exhaustive
solutions—like code migrations, fixing numerous lint errors, or
running complex build scripts—improve performance by
having Claude use a Markdown file (or even a GitHub issue!)
as a checklist and working scratchpad:

For example, to fix a large number of lint issues, you can do
the following:

Tell Claude to run the lint command and write all resulting
errors (with filenames and line numbers) to a Markdown
checklist

1.

Instruct Claude to address each issue one by one, fixing
and verifying before checking it off and moving to the next

2.

h. Pass data into Claude

Several methods exist for providing data to Claude:

Copy and paste directly into your prompt (most common
approach)
Pipe into Claude Code (e.g., cat foo.txt | claude),
particularly useful for logs, CSVs, and large data
Tell Claude to pull data via bash commands, MCP tools, or
custom slash commands
Ask Claude to read files or fetch URLs (works for images
too)

Most sessions involve a combination of these approaches. For
example, you can pipe in a log file, then tell Claude to use a
tool to pull in additional context to debug the logs.

Claude Code includes headless mode for non-interactive
contexts like CI, pre-commit hooks, build scripts, and
automation. Use the -p flag with a prompt to enable headless
mode, and --output-format stream-json for streaming JSON
output.

Note that headless mode does not persist between sessions.
You have to trigger it each session.

a. Use Claude for issue triage

Headless mode can power automations triggered by GitHub
events, such as when a new issue is created in your repository.
For example, the public Claude Code repository uses Claude
to inspect new issues as they come in and assign appropriate
labels.

b. Use Claude as a linter

Claude Code can provide subjective code reviews beyond
what traditional linting tools detect, identifying issues like
typos, stale comments, misleading function or variable
names, and more.

5. Use headless mode to
automate your infra

https://docs.anthropic.com/en/docs/agents-and-tools/claude-code/overview#automate-ci-and-infra-workflows
https://github.com/anthropics/claude-code/blob/main/.github/actions/claude-issue-triage-action/action.yml
https://github.com/anthropics/claude-code/blob/main/.github/actions/claude-code-action/action.yml

Beyond standalone usage, some of the most powerful
applications involve running multiple Claude instances in
parallel:

a. Have one Claude write code; use another Claude to verify
A simple but effective approach is to have one Claude write
code while another reviews or tests it. Similar to working with
multiple engineers, sometimes having separate context is
beneficial:

Use Claude to write code1.
Run /clear or start a second Claude in another terminal2.
Have the second Claude review the first Claude's work3.
Start another Claude (or /clear again) to read both the
code and review feedback

4.

Have this Claude edit the code based on the feedback5.
This separation often yields better results than having a single
Claude handle everything.

b. Have multiple checkouts of your repo

Rather than waiting for Claude to complete each step,
something many engineers at Anthropic do is:

Create 3-4 git checkouts in separate folders1.
Open each folder in separate terminal tabs2.
Start Claude in each folder with different tasks3.
Cycle through to check progress and approve/deny
permission requests

4.

6. Uplevel with multi-Claude
workflows

c. Use git worktrees

This approach shines for multiple independent tasks, offering
a lighter-weight alternative to multiple checkouts. Git
worktrees allow you to check out multiple branches from the
same repository into separate directories. Each worktree has
its own working directory with isolated files, while sharing the
same Git history and reflog.

Using git worktrees enables you to run multiple Claude
sessions simultaneously on different parts of your project,
each focused on its own independent task. For instance, you
might have one Claude refactoring your authentication
system while another builds a completely unrelated data
visualization component. Since the tasks don't overlap, each
Claude can work at full speed without waiting for the other's
changes or dealing with merge conflicts:

Create worktrees: git worktree add ../project-feature-a
feature-a

1.

Launch Claude in each worktree: cd ../project-feature-a
&& claude

2.

Create additional worktrees as needed (repeat steps 1-2 in
new terminal tabs)

3.

Some tips:
Use consistent naming conventions
Maintain one terminal tab per worktree
If you’re using iTerm2 on Mac, set up notifications for when
Claude needs attention
Use separate IDE windows for different worktrees
Clean up when finished: git worktree remove ../project-
feature-a

https://docs.anthropic.com/en/docs/agents-and-tools/claude-code/overview#notification-setup

d. Use headless mode with a custom harness

claude -p (headless mode) integrates Claude Code
programmatically into larger workflows while leveraging its
built-in tools and system prompt. There are two primary
patterns for using headless mode:

1. Fanning out handles large migrations or analyses (e.g.,
analyzing sentiment in hundreds of logs or analyzing
thousands of CSVs):

Have Claude write a script to generate a task list. For
example, generate a list of 2k files that need to be
migrated from framework A to framework B.

1.

Loop through tasks, calling Claude programmatically for
each and giving it a task and a set of tools it can use. For
example: claude -p “migrate foo.py from React to Vue.
When you are done, you MUST return the string OK if you
succeeded, or FAIL if the task failed.” --allowedTools Edit
Bash(git commit:*)”

2.

Run the script several times and refine your prompt to get
the desired outcome.

3.

2. Pipelining integrates Claude into existing data/processing
pipelines:

Call claude -p “<your prompt>” --json | your_command,
where your_command is the next step of your processing
pipeline

1.

That’s it! JSON output (optional) can help provide
structure for easier automated processing.

2.

For both of these use cases, it can be helpful to use the --
verbose flag for debugging the Claude invocation. We
generally recommend turning verbose mode off in production
for cleaner output.

Written by Boris Cherny. This work draws upon best practices
from across the broader Claude Code user community, whose
creative approaches and workflows continue to inspire us.
Special thanks also to Daisy Hollman, Ashwin Bhat, Cat Wu,
Sid Bidasaria, Cal Rueb, Nodir Turakulov, Barry Zhang, Drew
Hodun and many other Anthropic engineers whose valuable
insights and practical experience with Claude Code helped
shape these recommendations.

From Anthropic

Acknowledgements

