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Abstract

In today’s world, banks use artificial intelligence to optimize diverse
business processes, aiming to improve customer experience. Most of the
customer-related tasks can be categorized into two groups: 1) local ones,
which focus on a client’s current state, such as transaction forecasting, and
2) global ones, which consider the general customer behaviour, e.g., predict-
ing successful loan repayment. Unfortunately, maintaining separate models
for each task is costly. Therefore, to better facilitate information manage-
ment, we compared eight state-of-the-art unsupervised methods on 11 tasks
in search for a one-size-fits-all solution. Contrastive self-supervised learning
methods were demonstrated to excel at global problems, while generative
techniques were superior at local tasks. We also introduced a novel ap-
proach, which enriches the client’s representation by incorporating external
information gathered from other clients. Our method outperforms classical
models, boosting accuracy by up to 20%.
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1. Introduction

The banking industry must keep up with current trends to remain com-
petitive. Technological advancements such as Artificial Intelligence (AI) have
significantly transformed how banks process and analyze data, allowing them
to extract valuable insights for more informed decision-making and effectively
address complex challenges [1, 2].

Among various types of data collected and managed by banks, AI-based
analysis of financial transactions appears to be the most promising for vari-
ous operational and strategic purposes [3, 4]. Such solutions already play a
crucial role in risk assessment, improving the accuracy of credit scoring, ad-
vanced bankruptcy prediction, and financial distress identification [5]. They
also help to automate fraud detection, identify transaction anomalies, and
protect both banks and their customers [6]. Moreover, AI-driven customer
segmentation and personalized marketing strategies allow banks to tailor ser-
vices to individual customer needs, enhancing customer satisfaction and loy-
alty [3]. While these approaches enable banks to optimize operations, reduce
costs, and manage risks, they often depend on task-specific methodologies,
large labeled datasets, and expert-defined features, limiting their usage.

All these challenges may be addressed by representation learning via neu-
ral networks, a powerful solution that benefits from the vast amounts of trans-
action history sequences stored by modern banks. It focuses on extracting
hidden patterns from data, capturing intrinsic features into low-dimensional
embeddings. These representations can further be utilized in various down-
stream tasks, offering a more scalable and adaptable approach to employing
data for business-oriented goals [7, 8, 9, 10, 11]. This general pipeline of SSL
applications in the banking industry is further discussed in Section 3.

From a business perspective, representations of the customers’ transaction
sequences are supposed to reflect data properties at both global and local lev-
els. We define global properties as a characteristic of a customer’s transaction
history as a whole. In this case, high-quality global representations should
be helpful when comparing and classifying the sequences as entities [8, 12].
In contrast, the state of a customer at a specific point in time is described by
local properties. Local representations are used for tasks associated with mo-
mentary customer behavior, such as next-event prediction [13] or credit card
fraud detection [14]. Moreover, local information should reflect the dynamics
of clients’ lives and be useful for change point detection [15, 16]. However, the
methods in the literature typically focus on either global or local embedding
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properties, completely ignoring representation dynamics.
Another drawback of existing models is that they do not consider the ex-

ternal context when creating an embedding for each customer. While choos-
ing macroeconomic indicators requires expert knowledge, such information
may be represented by the common characteristics of the other customers’
transactions, which were shown to be strongly correlated [17, 18]. Thus, a
reasonable approach is to use different aggregations of the representations
of all customers to form the external context vector. Previous works ig-
nored this concept or designed very narrow methods, significantly increasing
the number of the model parameters size [19]. However, accounting for this
information may potentially boost the quality of the models [15].

To conclude, this work develops a representation learning method that
considers local and global data patterns in transactional data. Additionally,
the paper explores ways of incorporating the external context into the ob-
tained representations. To solve these tasks, we extend existing strategies
of working with sequential data and adopt the most promising techniques.
More particular, the main contributions of the paper are the following:

1. We propose several techniques based on generative self-supervised learn-
ing to obtain transactional data representations with strong local and
global properties. Our methods offer a good trade-off between these
properties across various scenarios, providing the most versatile repre-
sentations for transaction data at the moment;

2. We suggest an efficient procedure that utilizes the attention mechanism
to involve the external context when constructing data representations,
further enhancing the model quality for most applied problems;

3. We provide an extensive pipeline for evaluating the informativeness of
data representations in terms of domain-specific properties that suit
various needs. Our pipeline includes four diverse, open datasets, four
downstream problems for them, and one common task. We also validate
the models on an industrial-scale private dataset. The source code to
run our benchmark and reproduce all experiments is publicly available2.

The rest of the article is organized as follows. The next section discusses
related research on representation learning in the transactional data domain.
Section 3 describes the proposed methods and the datasets used. In Sections

2https://github.com/romanenkova95/transactions_gen_models
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4 and 5, we present the results of our experiments, which evaluated the
global and local properties of the data. Section 6 contains our approach to
considering the external context. Sections 6 and 7 are dedicated to discussing
our results and conclusions.

2. Related works

This section briefly describes the existing self-supervised representation
learning methods for transactional data. Generally, there are two SSL pa-
radigms: contrastive and generative. Below, we describe the most relevant
models among these two approaches. We start the section by mentioning
the supervised models relevant to the banking domain. Finally, we accom-
pany the review with the Temporal Point Process (TPP) modeling methods
explicitly designed for the analysis of event sequences — the type of data
transaction histories belong to.

2.1. Supervised methods for representation learning

Solutions in banking often lean towards traditional paradigms incorpo-
rating expert domain knowledge [3]. In credit scoring, researchers prefer the
classical machine learning methods [20] since they tend to outperform deep
learning approaches on top of manually constructed features [21, 22, 23, 24].
Credit card fraud detection methods analysis provides similar insights [25, 6,
26, 27].

On the other hand, recent papers support applying supervised deep learn-
ing methods to raw transactional data, modifying approaches to account for
the particularities of the target domain. Thus, when working with sequential
data, modern works consider recurrent neural networks (RNNs) and Trans-
formers [15, 28, 29, 30]. Other notable solutions include adjusting for the
time since the last transaction [31] and working with small subsequences to
curb the vanishing gradients problem [32].

2.2. Self-Supervised Learning Paradigm

Lately, there has been a surge in attention to self-supervised methods
(SSL). Such methods try to extract information from unlabeled data. This
allows researchers to skip the costly gathering of expert annotations, leverag-
ing the large bodies of low-cost raw data. The SSL methods can be roughly
divided into contrastive and generative approaches [33].
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Contrastive approaches have been gaining popularity in financial trans-
actions [7, 9, 34]. All contrastive methods aim to yield close representations
of “similar” objects and distant representations of “dissimilar” ones. The
way one measures similarity may be very simple, such as the one in the pa-
pers [7, 35, 11], which contrasts between slices from different sequences. More
complex options include combining distance and angle-based metrics [34] and
training with hierarchical losses [36].

Generative models use various training approaches to learn the hidden
data distribution. The resulting knowledge may then be utilized to pro-
duce plausible-looking data. These approaches often originate from Neural
Language Processing (NLP) [37, 38]. Autoencoder is a very popular gener-
ative method due to its simplicity and efficiency in different modalities [39].
The article [10] employs the variational autoencoder to learn bank customer
representations, which is useful for downstream tasks [5]. Masked language
models (MLMs) take the autoencoder idea one step further. Such models are
trained via restoring randomly changed tokens and perform well on diverse
benchmarks [37, 40].

According to the latest research, generative methods outperform con-
trastive ones at missing value prediction, among other tasks [12]. This fact
may be indicative of better local properties. On the other hand, while sup-
posedly good locally, generative models are known to be less efficient at global
tasks. Here, contrastive models, like CoLES [7], come into play because they
typically consider a sequence of events as a whole, enforcing the embeddings’
global properties. As no evident leader exists, we explore both approaches
for transactional data, testing the resulting representations for the desired
properties.

2.3. Temporal Point Process Models

Financial transactional data can be treated as event sequences, differing
from conventional time series and natural language data in some key aspects:

• Observations in time series appear uniformly in time, which is not valid
for transactional sequences [35]. In turn, text is not tied to time at all.

• In contrast to time series datasets, the sequences in a transactional
dataset may be of different lengths.
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• Transactions have heterogeneous features, e.g., MCC codes are cate-
gorical, and transaction amounts are continuous. Generally, neither
the time series nor the NLP data exhibit this peculiarity.

Event sequence problems are commonly solved using TPP models. Fol-
lowing this approach, one generally aims to reconstruct conditional event
intensity, determining the type and frequency of future events based on the
history of earlier observations [41, 42]. Standard objectives include likelihood
maximization, time-to-next-event (return time) estimation, and next-event-
type prediction [43, 13].

Modern research incorporates neural networks for the intensity function
parametrization. For example, the Neural Hawkes Process (NHP) [43] ap-
plies the ideas of the classic Hawkes Process [41] to RNN-generated latent
embeddings. The methods from papers [44, 33, 45] are based on the same idea
but stick to the architectures with the attention mechanism [46]. Another
class of neural TPP models includes recently proposed continuous convolu-
tional networks (CCNNs) [47, 48]. This architecture successfully handles the
irregularity of event sequences in many cases. For example, the COTIC [13]
approach uses a deep CCNN backbone model and two multilayer perceptron
heads on top of it for return time and event type prediction.

Note that TPP models are not typically studied in terms of their em-
bedding quality, which is the goal of this research. However, the models’
natural problem statement [43, 13] may enhance highly efficient representa-
tions of event sequences regarding their local properties. Consequently, we
add several TPP models to our benchmarking.

3. Methodology

The general pipeline for incorporating self-supervised learning in the
banking industry is illustrated by Figure 1. The general idea is to pre-
train an encoder model on large open corpuses of unlabelled data, producing
informative embeddings for transactional sequences. These representations
can then be used for solving downstream tasks. Further information on the
specific approaches to learning such embeddings can be found in Section 4.
In the remainder of this section, we describe our approach to evaluating the
resulting representations.

As outlined in Section 1, different business tasks in banking often rely on
different aspects of embeddings. In this work, we study the trade-off between
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Figure 1: The general flow of the application of self-supervised learning to industrial tasks
in banking.

local and global properties of transactional data representations obtained
using various models. Global properties characterize the client’s behaviour
throughout the entire history of his/her transactions. In contrast, local prop-
erties show the nature of the client’s current state and its evolution through
time.

3.1. Global properties’ validation methods

To assess the quality of the obtained representations regarding their global
properties, we follow the paper [7], which proposed the CoLES method. More
precisely, following the approach illustrated in Figure 1, we evaluate the ob-
tained embeddings on several downstream tasks. This requires each dataset
used in this work to have a classification problem behind it. For example,
the Churn dataset contains binary targets: for each bank customer, we aim
to identify whether he left the bank (see Section 5 for complete information
about considered data).

To sum up, the global evaluation pipeline consists of three steps:

1. For an initial sequence of transactions of length Ti related to the i-th
user, we obtain the global representation H i ∈ Rd, which characterizes
the transaction history as a whole. In the case of sequence-to-sequence
encoder architectures, a pooling operation is applied to the encoded
sequence to create a single representation of an entire series.

2. Given representation H i, we predict the target label yi ∈ {0, 1, . . . , C}
using gradient boosting. We stick to the LightGBM [49] model applied

7



in the paper [7]. It works fast enough for large data samples and
provides sufficiently high-quality results. The hyperparameters of the
boosting model are fixed and do not vary across all the base models
under study.

3. Classification results are evaluated using a standard set of metrics de-
scribed in 3.4.

3.2. Local properties validation methods

We suggest using a set of techniques to evaluate the quality of the ob-
tained representations in terms of their local properties.

Local downstream targets. By analogy with the global downstream tasks
discussed above, business problems frequently require local clients’ informa-
tion to solve them. We propose considering such local downstream classifi-
cation tasks for the Churn, Default, and HSBC datasets (see Section 5).

In the Churn dataset, original target labels indicate clients who eventu-
ally stopped using the bank’s services. It is reasonable to assume that the
behaviour of customers who are about to leave a bank begins to change in
advance. For example, they make fewer transactions and stop topping up
their card balances. Given this, all transactions by the ”churn” user i within
a month before his/her departure are tagged with cij = 1, while the others
are marked with cij = 0. We select an ”early outflow” horizon of one month
for empirical reasons.

The Default dataset also follows a similar logic. Here, we create local
binary labels that reflect the client’s transition to the ”pre-default” state,
noting that the default of a client typically corresponds to three missing
monthly instalment payments.

HSBC initially contains local binary labels for each transaction record,
indicating whether it is malicious. In the case of this dataset, we do the
opposite and add global targets that show if a client has ever been a victim
of bank fraud.

As a result, we propose to evaluate the quality of local representations by
predicting a local binary target cij. The corresponding classification tasks are
solved using a two-layer perceptron. The better local embedding describes
the client’s current behaviour, the better a simple classifier model can solve
applied problems.
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Next transaction MCC prediction. Next-event-type prediction is a com-
mon objective in TPP modelling [43, 44, 13]. Formally, it implies solving the
multiclass classification problem: given a ”frozen” local representation hi

tj
, a

separate model predicts the following MCC (event type) for the i-th client.
To achieve this, we train an additional, simple two-layer perceptron.

It is important to consider that there are a lot of rare MCCs in the
datasets. From a business perspective, such categories are often less mean-
ingful. Therefore, to simplify the task, we kept only the transactions with
the top-100 most popular codes.

Challenge in inferring local representations. Generally, not all the
studied models are efficient in a sequence-to-sequence mode. That is, they
may be unable to produce representations for a specific timestamp in a given
sequence. Thus, we use a sliding window of size w to obtain the local repre-
sentations in all cases.

In particular, for the i-th user at time tj ∈ [tw, Ti], we consider the sub-
sequence Si

j−w:j. Here, Ti denotes the length of transactional history for this

client. Next, the interval Si
j−w:j is passed through the encoder model to ob-

tain a local representation hi
tj
∈ Rd. This approach is illustrated in Figure 2.

Time... ...Transaction 

level

Encoder

...
Local embedding


level
Time

Validation

tasks

Figure 2: Scheme of the sliding window approach for local validation.

On the one hand, this technique helps us create local embeddings for any
given model. Moreover, it enhances local representation properties, as we do
not consider out-of-date information. On the other hand, a tiny window size
may be insufficient to capture the broader patterns of a customer at a given
time step. Additionally, the process does not permit obtaining local embed-
dings for times t ≤ tw. However, this issue should be relatively insignificant
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in the case of long transaction sequences. Therefore, w becomes an additional
hyperparameter that must be tuned to balance the above trade-off.

3.3. Strategy for validation of embeddings dynamism

An alternative approach for assessing the quality of the local representa-
tions is to evaluate their dynamic properties, i.e., the ability to reflect changes
in the raw data. In this regard, we considered the change point detection
(CPD) task [50, 51, 52] posed in the space of local representations.

Change points are time moments with an abrupt shift in sequential data
distribution that may indicate transitions between states in the underlying
process. If we consider the behaviour of bank customers as such a process,
an example of a change point could be taking a loan or getting a new job.
The task of change point detection is to identify the moments of such shifts
accurately.

Let H = {htj}Nj=1 ⊂ H ⊂ Rd be the sequence of the client’s local repre-
sentations htj , where tj is the timestamp of j-th transaction, t1 ≤ · · · ≤ tN .
It is natural to assume that if there is a change point in a time series at a
particular moment τ , then, for any ti < tj < τ < tk, the following holds with
high probability:

d(hti ,htj) < d(hti ,htk),

where d(·, ·) is a metric assigned to H. Following [16, 51], we select the
cosine similarity as our distance measure d. This metric is used in a series of
experiments to illustrate how the representations evolve in the vicinity of a
change point. To identify the change points in the embedding sequences, we
employ the standard Dynp [52] method from the ruptures package3.

3.4. Validation metrics

We utilize a set of classical metrics in our benchmark. As mentioned
above, our validation techniques involve binary and multiclass classification
problems, as well as change point detection tasks.

Classification metrics. For classification problems, we utilize the stan-
dard metrics: Accuracy, ROC-AUC, and PR-AUC [22, 23, 11]. For these
three metrics, a better model produces higher values.

3https://centre-borelli.github.io/ruptures-docs/
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Accuracy is defined as the ratio of correct predictions to all predictions
made:

Accuracy =
TP + TN

TP + TN + FP + FN
, (1)

where TP — true positive, TN — true negative, FP — false positive, and
FN — false negative predictions.

ROC-AUC, or the area under the Receiver Operating Characteristic (ROC)
curve, represents the relationship between true positive rate (TPR or Recall)
and false positive rate (FPR) for different thresholds. Similarly, the PR-AUC
is the area under the Precision-Recall curve, which describes the connection
between Precision and Recall (TPR). Formally,

TPR =
TP

TP + FN
, FPR =

FP

TP + FN
, Precision =

TP

TP + FP
. (2)

To generalize to multiple classes, we use micro-averaging for Accuracy
and weighted averaging for ROC-AUC and PR-AUC. This means that the
contribution of each class to the overall result is proportional to the number of
its representatives. Consequently, the result is insensitive to class imbalance.

Change point detection quality. We also evaluate the dynamics of the
obtained embeddings via change point detection methods. Sticking to this
field’s best practices, we use the following CPD quality metrics: average
detection delay (DD) [51] and detection accuracy [50] with different values
of the margin parameter m.

DD is the average difference between the estimated and actual change
points:

DD =
1

T

T∑
i=1

(τ̂i − τi)I[τ̂i ≥ τi], (3)

where τi is the true change point, τ̂i is the predicted one, T is the total
number of disorders and I[·] is the indicator function.

We assume that there is only one disruption per sequence. The detection
accuracy Am determines how often the detected change falls within the m-the
neighbourhood of the true change point:

Am =
1

T

T∑
i=1

I[|τ̂i − τi| ≤ m]. (4)

An efficient change point detector has low detection delay and high de-
tection accuracy for different margins m.
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4. Models

Below, we describe specific encoder models and their modifications: su-
pervised baselines in subsection 4.1, contrastive methods CoLES and TS2Vec
in subsection 4.2, generative models such as autoencoders and autoregressive
model in subsection 4.3, and TPP models in subsection 4.4. Finally, subsec-
tion 4.5 concludes with a description of our novel methods for obtaining and
using the external context.

4.1. Supervised baselines

Obtaining an accurate markup for a real-world dataset is expensive and
time-consuming. Nevertheless, supervised methods remain popular first-step
solutions for representation learning problems [20, 6, 27]. We, in turn, fo-
cus on self-supervised methods in our work, renowned for their capacity to
uncover latent data patterns from unlabeled data. To provide a deep under-
standing of the possible gap between embeddings from these approaches, we
train several baseline models that adopt convolutional and recurrent neural
network architectures.

In the experiments, we show the results for the model with the best
performance on downstream tasks (see Section 3). The selected architecture
consists of a single-layer Gated Recurrent Unit (GRU) [53] as the backbone,
complemented by a multilayer perceptron (MLP) serving as the classification
head. The architecture resembles the ET-RNN model and CoLES encoder [7,
28]. The aggregated hidden states of the backbone are used as inputs for
the classification head during the training phase and as embeddings in the
validation tasks. As an objective function, we employ the cross-entropy loss.

4.2. Contrastive models for transaction sequences

CoLES method. As a starting point in our study of SSL methods, we chose
CoLES [7], a representation learning method for discrete event sequences.
Below is a brief overview of this approach; see the original paper for more
details.

As all contrastive SSL approaches [54], the CoLES model requires sets of
positive and negative pairs for training. The authors of the method studied
various ways to obtain such pairs. Eventually, they opted for the split strat-
egy that considers two transaction subsequences from the same client to be a
positive pair and from different clients — to be a negative one. This strategy
does not disrupt the transactions’ order, preserving their temporal structure.
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Representations of the subsequences were obtained via a Long Short-Term
Memory network [55] (LSTM) as an encoder model, which was trained using
a contrastive loss [56]. In this work, we follow the same training pipeline as
the original article.

TS2Vec model. The contrastive model TS2Vec [36] has emerged as one of
the leading approaches for obtaining representations of classical multivariate
time series data. TS2Vec stands out for its distinct positive and negative
sample selection strategy and hierarchical aggregation to facilitate represen-
tation learning at different scales.

The authors have introduced contextual consistency, a novel approach
for generating positive pairs. This approach designates representations at
the same timestamp within two augmented contexts as positive pairs. Con-
cerning negative samples, selection occurs in both instance-wise and temporal
dimensions, complementing each other.

In the initial step, the described contrastive approach is employed on
timestamp-level representations. Following this, max pooling is executed
along the temporal axis. Subsequently, the contrastive loss is applied to
the acquired representations, and this entire process iteratively continues for
each level until instance-level representations are attained. This mechanism
proficiently empowers the model to systematically capture contextual infor-
mation at diverse resolutions within temporal data. In our study, we rely on
the original implementation of this method (with several modifications for
transactional data type).

Limitations of the considered contrastive approaches. The methods
outlined above are only partially suited for modeling event sequences and thus
have limitations.

The split strategy employed in CoLES explicitly encourages the model to
build representations describing the user as a whole rather than capturing his
local state at a specific moment. Moreover, the original paper only evaluated
the global properties of the obtained embeddings since the users’ classification
was the primary downstream task.

TS2Vec, in turn, was primarily designed for standard time series samples
with a uniform step. Therefore, it might be unfit for transactional data
featuring irregular time intervals between observations [57]. In our work,
we explore the adaptability of TS2Vec to transaction history representation
learning and incorporate it as a baseline model for comparative analysis.
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4.3. Our approaches to generative modeling for transaction sequences

Classic autoencoder model. The autoencoder (AE) [39] is a popular
choice for generative models. Following this approach, the sequence is first
encoded into a low-dimensional representation and then restored from it. The
overall process is depicted in Figure 3. Both the encoder and the decoder
networks are represented by LSTMs [55], so the backbone model architecture
is identical to CoLES. We add two linear heads to the decoder for amounts
and MCC prediction.

Figure 3: Scemes of the Autoencoder (AE) and Autoregressive (AR) methods.

Since transactional records contain both categorical (MCCs) and continu-
ous (amounts) information, the reconstruction loss is divided into two parts.
We use cross-entropy for the categorical features and mean squared error for
the continuous features. The final loss function is a weighted sum of the two
intermediate ones, with the weights being hyperparameters.

We found that the preprocessing of transaction amounts defined below is
essential for the model to train successfully:

f(a) = sign(a) ln (1 + |a|). (5)
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On the one hand, this transformation allows us to balance out the loss func-
tions for amounts and MCCs without assigning them drastically different
weights. On the other, it better reflects the nature of human perception: we
tend to focus on the order of magnitude, ignoring the precise value.

For self-supervised approaches, it is very important to select the optimal
complexity for the training objective [37, 40]. In our case, it turns out that
the prediction of rare MCC codes is an unbearable problem. So, to simplify
the training objective, the number of unique MCC codes is reduced to 100
for all datasets by clipping all less frequent MCC codes.

Masked language model. Diving deeper into generative methods, we also
explore the masked language model (MLM), closely related to transform-
ers [37, 58, 46]. The main components of transformers are self-attention and
feed-forward blocks.

An MLM works by reconstructing randomly masked tokens. The method
is depicted in Figure 4. Before feeding the sequence to our model, we ran-
domly select 10% of the incoming tokens and preprocess them similarly
to [37]. In particular, out of these 10%, we:

• mask 80%, swapping out the MCC code for a special token and zeroing
out the transaction amount;

• swap 10% for another random transaction;

• and keep as is the remaining 10%.

Like in the AE model, we use multiple linear layers to acquire the predic-
tions from the encoder embeddings. The loss function is also a combination
of cross-entropy and mean-squared error, but here, it is calculated only for
the 10% subset we sampled above. We also clip our MCC codes to 100 ones
and preprocess the amounts like for the AE model.

It should also be noted that all transformer embeddings have equal re-
ceptive fields, each covering the whole sequence (which is not correct for
RNN embeddings we use in other methods). This implies that, in essence,
any of these representations can be used in the downstream and validation
tasks as representations of all the given tokens. Following previous work on
transformers, we choose the first token’s embedding since that is traditionally
where the CLS token is.
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Figure 4: Scheme of the Masked Language Model (MLM) method.

Autoregressive approach. Autoregressive (AR) modeling is extensively
used in CV [59, 60, 61, 62], as well as in sequential domains like NLP [63,
64, 65] and Audio [66, 67]. Such models aim to predict the next item in a
sequence. In contrast to token embeddings in autoencoders, those in autore-
gressive models do not use information regarding future tokens. This charac-
teristic empowers autoregressive models to capture more intricate patterns,
as demonstrated by their superior performance in text generation tasks [68].

In our experiments, we employ a recurrent neural network similar to the
CoLES model. We utilize the model’s last hidden state to represent the trans-
action sequence since it encapsulates complete information about the entire
sequence. The model is trained to predict the next transaction, encompass-
ing the MCC code and transaction amount, as illustrated in Figure 3. In
terms of transaction preprocessing and the loss function, they resemble the
techniques employed in autoencoders, outlined in Section 4.3.

4.4. Temporal Point Processing models

When working with irregular time series or event sequences, it is crucial
to consider that the records (measurements, indicators) have distinct time
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steps between each other. Such a problem statement is standard for TPP
modeling.

In this work, we choose three state-of-the-art models as baselines of that
type: the Neural Hawkes Process (NHP) [43], the Attentive Neural Hawkes
Process (A-NHP) [44], and the COTIC [13] model. All these approaches
follow a similar logic: they utilize deep neural networks for conditional event
intensity parametrization. The main optimization objective here is the log-
likelihood of the observed event sequences. The models’ architectures and
peculiarities are briefly described below.

Neural Hawkes and Attentive Neural Hawkes Process. The NHP [43]
model originates from the Hawkes Process [41] — one of the classic ways of
event sequence modeling. Its key concept is self-excitation, i.e., past events
temporarily raise the probability of future events. This impact is assumed
to be positive, additive, and exponentially decaying over time. NHP gener-
alizes the assumption by determining the conditional event intensities from
a hidden state of a recurrent neural network. The authors propose a novel
continuous-time LSTM [55] architecture that allows querying event represen-
tations at any time, even if no actual event occurred at that moment.

The A-NHP approach [44] develops the same ideas and suggests replacing
the original recurrent encoder with a simpler parallelizable attention-based
architecture [46]. The paper proves such a solution is more efficient while it
provides comparable or better validation results.

COTIC model. Continuous 1D convolutional neural networks (CCNN)
have also demonstrated their efficiency for TPP modeling [47, 48]. A re-
cently proposed COTIC approach [13] utilizes a deep CCNN to obtain event
sequence representations and parameterize the intensity function of the un-
derlying process. On top of it, COTIC applies two multi-layer perceptron
heads for return time and event type prediction. Notably, these heads are
trained jointly with the core part of the model using task-specific loss func-
tions. This strategy may enforce the desired local properties of the embed-
dings obtained from the encoder. However, using only an encoder from the
COTIC, without additional heads, might lead to a degradation in quality.
We refer interested readers to the paper itself [13] for more details on the
architecture and the losses.
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4.5. Usage of external information based on local representations of transac-
tional data

According to the current research [15, 7], it is beneficial to consider the
macro context around users. We propose to construct an external context
representation vector by properly aggregating the embeddings obtained from
all or some selected users. The procedure is presented in Figure 5 and is
described as follows:

1. We build local representations for all users and each unique transaction
moment.

2. For each client, we select all local embeddings from the dataset close
to the current time point but before it.

3. Obtained vectors are aggregated in the resulting vector of the external
context representation.

Figure 5: General pipeline for obtaining external context vectors.

To validate the ability to improve the representations via external in-
formation, we concatenate each user’s local embeddings with this resulting
vector and follow our general validation pipeline (see Section 3 for details).

In the experiments with the external context aggregation, we use CoLES
as an encoder for building local representations. However, potentially, any
model that transforms a sequence of transactions into a sequence of their
representations fits our pipeline.
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Classical methods of context vector aggregation. Averaging and max-
imization were used as classical aggregation methods. Our motivation comes
from an analogy with applying Mean and Max Pooling operations in con-
volutional neural networks [69]. In the first case, we obtain the external
context vector by component-wise averaging the local vectors for all users in
the stored dataset, and in the second case, we take the maximum value for
each component. Like in convolutional networks, such aggregation methods
are designed to generalize the environment for the current point.

Methods based on the attention mechanism. Following a fruitful idea
from the Recommender Systems domain, we suppose that some bank clients
may behave more similarly than others. Thus, such people determine the
user’s closest environment and help to describe his behavior better. The
aggregation methods described above do not consider the users’ representa-
tion relationships and, as a consequence, their similarity. To overcome this
drawback, we propose applying the attention mechanism. It was initially
designed to account for interword similarities during context aggregation in
the machine translation task [46] that resembles our problem.

In this work, we utilize two variants of the attention mechanism: without
a learnable attention matrix and with it. The corresponding form for the
external context vectors for a given point in time are:

Bt = Xσ(XTht), Bt = Xσ(XTAht), (6)

where ht ∈ Rm is a vector of local representation for the considered client;
X ∈ Rm×n is a matrix, which columns are embeddings of all n users (except
considered) at a given time; A ∈ Rm×m is a trainable matrix; and σ denotes

the softmax function σ(z)i = exp(zi)∑d
j=1 exp (zj)

.

In the first case, the user similarity metric is the softmax of the scalar
product. In the second, vectors of representations from the dataset are addi-
tionally passed through a trained linear layer. We train the attention matrix
via the CoLES model training pipeline (see Section 4.2 for more informa-
tion).

5. Data overview

In this study, we compare our methods using public and private datasets
of transaction records from different banks’ customers. We briefly describe
the data below and provide the main technical characteristics of open datasets
in Table 1.
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Churn. The Churn dataset was initially dedicated to identifying potential
customers about to leave. We also use this problem for our global validation
(Section 3). Due to the nature of such events, the target value distribution
is unbalanced. For the local validation tasks, we assume that clients change
their behavior one month before their last transaction.

Default. Default has a resembling structure to the Churn problem. The
corresponding global downstream task is to classify clients as able to repay
the bank loan. This task is close to the real-world business problem of credit
scoring. Likewise, we mark transactions before the default month as ”pre-
default” for local validation. It is also important to note that this dataset has
a significant class imbalance, which may lead to increased standard deviations
of the metrics.

HSBC. The HSBC competition proposes the fraud identification task. The
original dataset contains local targets indicating if each transaction was made
by the client personally or if it was malicious. We also add client-level global
tags showing that at least one operation in a transaction history sequence
was fake. Obviously, there are far fewer labels indicating that transactions
are fraudulent, so the target variable is highly imbalanced.

Age. The Age dataset implies predicting bank clients’ age group based on
their transactions history. Four groups are in total, creating a relatively
balanced multi-class global downstream task. The Age differs from other
considered datasets. Its samples do not include exact timestamps for each
transaction. Instead, they only have a serial number of the day the transac-
tion is made starting from some base date. In addition, there is no natural
local task for this data (since the global target’s dynamic is negligible in the
considered period), so we skip this local downstream validation step.

Real-world private dataset. A major bank has provided us with a pro-
prietary dataset containing the anonymized data of a subset of real clients.
The total number of unique customers in this data is five million, with a time
range of approximately one year. This dataset includes characteristics such
as each client’s age and gender, which we use for both binary and multi-class
classification during the global validation process. Similarly to Age, we skip
local downstream task validation and evaluate only performance on the MCC
prediction.
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Table 1: Basic statistics of the open datasets used in the experiments.

Churn Default HSBC Age
# of transactions 490K 2M 234K 26M
# of clients 5K 7K 4K 30K
Min transaction length 1 300 1 700
Max transaction length 784 300 3467 1150
Median transaction length 83 300 40 863
# of MCCs 344 309 307 202
# of global classes 2 2 2 4
Class balance yes no no yes

Change point detection datasets. CPD experiments are conducted on
both real and synthetic data. For the real-world scenario, we use a subset
of 35 clients from the Churn dataset containing long transaction sequences
with a currency change serving as the change point. Since the real data with
annotated change points is limited, we also consider synthetic sequences.
For this purpose, we constructed samples by combining subsequences from
different clients.

Data preprocessing. We carry out minimal preprocessing for analyzed
datasets. Our steps include bringing all timestamps to one format, removing
unnecessary columns, and encoding MCCs by frequency. Based on the above
logic (Subsection 3.2), we also add local binary targets for each of the three
datasets: Churn, Default, and HSBC.

To correctly evaluate our models’ performance, we split the data into
three parts: training set (80% of all users), validation set (10%), and test
set (10%). In our pipeline, the encoder models use only the training set for
learning. Regarding validation, additional local classifiers (MLP heads) use
the same training/validation/test split as the encoders. In turn, global val-
idation classifiers (gradient boosting) are trained on training and validation
sets and evaluated on the test set.

6. Results

Below, we provide the results we achieved during our work. The implica-
tions of each figure and table are discussed meticulously in the corresponding
text. This section concludes with an executive summary, which contains a
ranking of the considered models, as well as a brief analysis of said ranking.
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Within the framework of our project, we compare several classes of trans-
actional data models described in Section 4. Contrastive self-supervised
approaches include CoLES [7] and TS2Vec [36]; generative self-supervised
methods are presented by the classic autoencoder (AE) (Subsection 4.3),
the masked language model (MLM) (Subsection 4.3), and the autoregres-
sive model (AR) (Subsection 4.3); and Temporal Point Process baselines
encompass the NHP [43], the A-NHP [44], and the COTIC [13] models. Ad-
ditionally, we include the results for the best supervised baseline (Best sup.),
which was trained using the global markup. It is important to note that
these models could be superior to the self-supervised ones in many cases, as
they directly use the correct labels.

The details on the models’ architecture, implementation, and hyperpa-
rameters are given in Appendix A. We release the GitHub repository4

containing the reproducible Python code for all the experiments conducted
in this research.

6.1. Analysis of local and global properties of representations

The main results for the four open datasets, emphasizing the trade-off
between local and global properties of the models, are illustrated in Figure 6.
More details are provided in Tables 2.

In these graphs, the x-axis represents the global benchmark, while the
y-axis represents the local one (predicting the next MCC code). Thus, the
closer the dot is to the upper right corner, the better the corresponding
model.

Note that the two datasets under consideration (Default and HSBC) are
highly imbalanced. Consequently, the accuracy is not a relevant classification
metric in this case. Thus, we suggest that the integral metrics (ROC-AUC
and PR-AUC) are the main quality measures in the experiments.

The results (see Tables 5,6,7 for a summary) demonstrate that the gen-
erative models (AE, MLM, and AR) outperform the contrastive methods
(CoLES and TS2Vec) at local validation tasks, aligning with our expecta-
tions and the generally accepted understanding of generative models [12].
Importantly, they also typically keep up with the contrastive methods or
even exceed the state-of-the-art CoLES approach on global tasks.

The more detailed conclusions are the following:

4https://github.com/romanenkova95/transactions_gen_models
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Table 2: Quality metrics for global and local embedding validation results. All metrics in
the Table should be maximized. The results are averaged by three runs and are given in
the format mean± std. The best values are highlighted, and the second best values are
underlined. “Best sup.” stands for the best supervised baseline model. Note that there
are no local binary targets for the Age dataset.

Method
Global validation Local validation: next MCC Local validation: binary target

Accuracy ROC-AUC PR-AUC Accuracy ROC-AUC PR-AUC Accuracy ROC-AUC PR-AUC
Churn

Best sup. 0.67±0.02 0.71±0.02 0.75±0.02 0.25±0.01 0.64±0.01 0.17±0.00 0.73±0.01 0.55±0.01 0.31±0.01

CoLES 0.67±0.02 0.73±0.02 0.77±0.03 0.23±0.00 0.64±0.01 0.16±0.01 0.73±0.00 0.56±0.01 0.32±0.01

TS2Vec 0.65±0.02 0.69±0.01 0.75±0.02 0.16±0.01 0.63±0.01 0.14±0.01 0.65±0.05 0.52±0.03 0.28±0.02

AE 0.69±0.01 0.76±0.01 0.82±0.01 0.27±0.01 0.70±0.00 0.21±0.00 0.73±0.00 0.57±0.00 0.33±0.02

MLM 0.67±0.01 0.75±0.01 0.81±0.02 0.28±0.00 0.72±0.00 0.21±0.01 0.73±0.00 0.57±0.01 0.33±0.01

AR 0.70±0.00 0.75±0.01 0.77±0.01 0.28±0.00 0.73±0.00 0.23±0.00 0.73±0.00 0.58±0.01 0.34±0.01

NHP 0.68±0.02 0.75±0.02 0.77±0.01 0.24±0.00 0.54±0.02 0.13±0.01 0.63±0.00 0.54±0.04 0.40±0.04

A-NHP 0.67±0.02 0.72±0.01 0.75±0.01 0.21±0.01 0.56±0.01 0.13±0.01 0.64±0.00 0.55±0.03 0.41±0.02

COTIC 0.67±0.03 0.73±0.03 0.75±0.02 0.22±0.03 0.51±0.01 0.12±0.00 0.63±0.00 0.49±0.01 0.36±0.01

Default
Best sup. 0.91±0.00 0.53±0.04 0.09±0.03 0.31±0.00 0.66±0.00 0.21±0.01 0.90±0.01 0.50±0.01 0.01±0.00

CoLES 0.86±0.02 0.57±0.01 0.06±0.01 0.34±0.01 0.75±0.00 0.26±0.00 0.93±0.08 0.54±0.04 0.01±0.00

TS2Vec 0.93±0.00 0.55±0.03 0.09±0.02 0.25±0.02 0.66±0.01 0.18±0.01 0.99±0.00 0.61±0.05 0.01±0.00

AE 0.56±0.02 0.49±0.08 0.05±0.01 0.33±0.01 0.73±0.00 0.26±0.00 0.96±0.00 0.53±0.05 0.01±0.00

MLM 0.73±0.02 0.54±0.03 0.06±0.01 0.34±0.00 0.75±0.00 0.26±0.00 0.99±0.00 0.56±0.04 0.01±0.00

AR 0.87±0.01 0.56±0.07 0.08±0.02 0.35±0.00 0.76±0.00 0.28±0.00 0.97±0.02 0.44±0.05 0.01±0.00

NHP 0.92±0.01 0.55±0.01 0.07±0.02 0.30±0.00 0.60±0.02 0.15±0.01 0.99±0.00 0.52±0.04 0.01±0.00

A-NHP 0.72±0.02 0.48±0.05 0.04±0.01 0.29±0.01 0.60±0.01 0.16±0.00 0.98±0.01 0.60±0.06 0.01±0.00

COTIC 0.90±0.01 0.58±0.02 0.08±0.02 0.30±0.00 0.57±0.01 0.14±0.01 0.94±0.07 0.38±0.02 0.00±0.00

HSBC
Best sup. 0.92±0.00 0.67±0.03 0.15±0.01 0.71±0.01 0.87±0.03 0.78±0.04 1.00±0.00 0.37±0.13 0.01±0.00

CoLES 0.92±0.00 0.69±0.04 0.15±0.02 0.69±0.02 0.90±0.01 0.82±0.01 1.00±0.00 0.38±0.09 0.01±0.00

TS2Vec 0.95±0.04 0.45±0.07 0.05±0.04 0.65±0.04 0.78±0.06 0.66±0.04 0.97±0.04 0.54±0.05 0.05±0.07

AE 0.92±0.00 0.66±0.04 0.14±0.03 0.72±0.04 0.91±0.01 0.84±0.02 1.00±0.00 0.44±0.09 0.01±0.00

MLM 0.93±0.00 0.69±0.02 0.15±0.02 0.80±0.01 0.92±0.00 0.85±0.00 1.00±0.00 0.81±0.02 0.02±0.00

AR 0.92±0.00 0.65±0.03 0.15±0.01 0.79±0.02 0.92±0.00 0.85±0.00 1.00±0.00 0.79±0.02 0.02±0.01

NHP 0.92±0.00 0.64±0.04 0.19±0.04 0.66±0.00 0.76±0.01 0.67±0.02 1.00±0.00 0.48±0.02 0.01±0.01

A-NHP 0.93±0.00 0.58±0.02 0.15±0.01 0.66±0.00 0.73±0.00 0.63±0.00 1.00±0.00 0.32±0.06 0.00±0.00

COTIC 0.92±0.00 0.55±0.03 0.10±0.02 0.65±0.01 0.68±0.05 0.64±0.01 0.96±0.02 0.51±0.04 0.01±0.00

Age
Best sup. 0.61±0.00 0.85±0.00 0.65±0.00 0.33±0.00 0.67±0.00 0.22±0.00

CoLES 0.61±0.00 0.85±0.00 0.66±0.00 0.32±0.00 0.71±0.00 0.24±0.00

TS2Vec 0.60±0.01 0.84±0.00 0.64±0.00 0.18±0.02 0.61±0.01 0.17±0.01

AE 0.52±0.02 0.78±0.01 0.54±0.02 0.35±0.00 0.72±0.01 0.26±0.00

MLM 0.59±0.01 0.84±0.01 0.63±0.01 0.33±0.00 0.71±0.00 0.24±0.01 NA
AR 0.59±0.01 0.83±0.00 0.63±0.01 0.37±0.00 0.77±0.00 0.30±0.00

NHP 0.49±0.02 0.76±0.01 0.52±0.02 0.28±0.00 0.65±0.01 0.19±0.01

A-NHP 0.47±0.03 0.73±0.04 0.48±0.04 0.28±0.00 0.64±0.03 0.18±0.01

COTIC 0.43±0.02 0.69±0.03 0.43±0.03 0.28±0.00 0.61±0.02 0.16±0.01

• On the Churn dataset, the AE yields the best results among generative
models for global tasks, but it is outperformed by AR in local tasks.
Contrastive approaches and TPP models are slightly behind in global
quality but drastically underperform in the next MCC prediction.
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Figure 6: Quality of the models regarding their global and local properties. “Best sup.”
stands for the best supervised baseline. The x-axis at each graph corresponds to global
validation ROC-AUC, while the y-axis shows the next MCC prediction ROC-AUC. Thus,
the upper and righter the dot is, the better model it represents.

• For Default, the outcomes are more nuanced: the best global results are
for CoLES and COTIC, while AR leads among generative approaches.
For the next MCC prediction, the AR model is superior to others,
followed by MLM.

• HSBC and Age results look similar to the Churn ones. However, CoLES
and MLM are the best in terms of global properties. The local tasks
are, again, dominated by the generative models (AR, MLM, and AE).

• In most cases, TPP models do not produce high-quality representa-
tions of event sequences. This issue can be explained as these methods
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generally aim at another task — the intensity function restoration.

• Surprisingly, supervised models do not provide efficient embeddings in
most cases. This could be due to the noise in the markup of the datasets
we used.

Overall, the generative models (AR and MLM, in particular) look prefer-
able regarding the trade-off between the local and the global properties of
their embeddings. However, when selecting a specific solution, one must
balance the models, considering the peculiarities of the downstream task at
hand.

Results on the proprietary data. In Table 3, we provide the results of
the experiments carried out on the industrial-scale private dataset described
in Section 5. Note that standard deviation is absent: due to the size of this
dataset, it is infeasible to collect statistics over several runs.

Table 3: Global and local validation ROC-AUC values on the private industrial-scale
dataset. All metrics in the Table should be maximized. The best values are highlighted
with bold font, and the second best values are underlined.

Method Global validation: age Global validation: gender Local validation: next MCC

CoLES 0.955 0.920 0.750
TS2Vec 0.918 0.839 0.692
AE 0.886 0.753 0.734
MLM 0.939 0.896 0.734
AR 0.946 0.865 0.770
COTIC 0.919 0.840 0.684

The overall conclusion remains the same for this data: the generative
model AR outperforms CoLES in the local task while falling slightly short
of it on global properties. Another generative MLM approach also shows
comparable results on both global and local problems.

6.2. Experiments on the Dynamics of Representations

We adhere to our methodology for investigating the dynamic properties
of representations introduced in Section 3.3. The experiments are conducted
for three models: CoLES, AE, and AR.

25



Dynamics assessment using artificial data. The experiment is de-
signed as follows. We consider 100 pairs of clients. For each pair, we substi-
tute the second half of one client’s transactions with another’s. As a result,
the first client’s history now contains an artificial change point. Then, we
measure the distances between the clients’ local representations: we assume
they are significant before the change point and start to decrease right after
it.

We also perform the opposite experiment (by replacing the first half of
the transactions instead of the second): initially, the synthesized clients’
sequences are similar, but after the change point, their behavior diverges.
The distances are expected to increase accordingly.

The resulting dynamic for setups described above is depicted in Figure 7.
Both AE and AR react to changes faster than CoLES. The figure also demon-
strates a difference in convergence speed: for generative models, it appears
to be exponentially fast, whereas for the contrastive one, it is closer to linear.
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Figure 7: Distances between sequences’ local representations. Left figure: clients’ behavior
diverges; right figure: it converges. Results are averaged over 100 sequences.

Dynamics of real-world data embeddings. In this experiment, we use
a small subset of the Churn dataset consisting of 35 clients whose transac-
tion history contains intrinsic change points. As such change moments, we
consider changes in the transaction currency.

We build local representations of the above data via pre-trained models
and run a Change Point Detection (CPD) procedure on top of them. The
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detection accuracy and detection delay (two important metrics in the CPD
domain) are shown in Figure 8.
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Figure 8: Dependency of CPD accuracy on the margin m. Mean detection
delays for each model are provided in the legend. We want to maximize

detection accuracy and minimize detection delay.

AE and AR provide higher detection accuracy than CoLES for small
margins. Moreover, the use of AR embeddings results in the lowest detection
delays. It can be concluded that generative models are more sensitive to local
pattern changes than contrastive ones.

6.3. Result on improving embeddings via external information

In this section, we describe the results of experiments aimed at obtaining
an external context representation and using it to improve existing models.

The context vector is built on embeddings from a pre-trained CoLES
encoder. To this end, we investigate various types of representation aggrega-
tions: averaging (Mean), maximization (Max ), and an attention mechanism,
with or without a trainable matrix (Learnable attention and Attention). The
results are compared with a conventional CoLES encoder without adding ex-
ternal information (No pooling).

As in previous experiments, we demonstrate our results in two ways.
Quantitative metrics are presented in Table 4, while qualitative trade-offs
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between global and local tasks are shown in Figure 9. All results are averaged
across five different pre-trained encoder models.
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Figure 9: Quality of the various types of aggregation regarding their global and local
properties. The x-axis at each graph corresponds to global validation ROC-AUC, while
the y-axis shows the next MCC prediction ROC-AUC. Thus, the upper and righter the
dot is, the better model it represents.

The experimental results indicate that using external context generally
leads to improved performance. This is especially evident in the case of the
balanced Churn dataset, where improvements can be noticed in all testing
scenarios.

The Attention and Learnable attention approaches are often among the
most effective, or at least comparable to the best approaches, especially in
local validation tasks. It meets our expectations as the attention mechanism
is known to assist in identifying local patterns within sequences (see 4.5).
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Table 4: Quality metrics for global and local embedding validation results for external
information addition. All metrics in the Table should be maximized. The results are
averaged by five runs and are given in the format mean ± std. The best values are
highlighted.

Method
Global validation Local validation: next MCC Local validation: binary target

Accuracy ROC-AUC PR-AUC Accuracy ROC-AUC PR-AUC Accuracy ROC-AUC PR-AUC
Churn

No pooling 0.67±0.02 0.73±0.02 0.77±0.03 0.23±0.00 0.64±0.01 0.16±0.01 0.73±0.00 0.56±0.01 0.32±0.01

Mean 0.71±0.01 0.78±0.00 0.83±0.00 0.26±0.01 0.72±0.00 0.21±0.00 0.73±0.00 0.59±0.01 0.35±0.01

Max 0.71±0.01 0.77±0.01 0.82±0.01 0.26±0.01 0.71±0.00 0.21±0.00 0.73±0.00 0.65±0.03 0.40±0.02

Attention 0.69±0.01 0.75±0.01 0.80±0.01 0.27±0.01 0.71±0.00 0.21±0.00 0.73±0.00 0.60±0.00 0.34±0.01

Learn. attention 0.70±0.01 0.76±0.01 0.82±0.00 0.26±0.01 0.71±0.01 0.21±0.00 0.71±0.00 0.67±0.00 0.43±0.01

Default
No pooling 0.96±0.00 0.57±0.01 0.06±0.01 0.34±0.01 0.75±0.00 0.26± 0.00 0.99±0.00 0.54±0.04 0.01±0.00

Mean 0.96±0.00 0.57±0.01 0.06±0.01 0.34±0.01 0.75±0.00 0.27±0.00 0.99±0.00 0.65±0.06 0.01±0.00

Max 0.96±0.00 0.57±0.01 0.06±0.01 0.34±0.01 0.75±0.00 0.27±0.00 0.99±0.00 0.44±0.11 0.01±0.01

Attention 0.96±0.00 0.56±0.01 0.06±0.01 0.34±0.01 0.75±0.00 0.26±0.00 0.99±0.00 0.61±0.06 0.01±0.00

Learn. attention 0.96±0.00 0.57±0.01 0.06±0.01 0.34±0.01 0.75±0.00 0.27±0.00 0.99±0.00 0.64±0.09 0.01±0.00

HSBC
No pooling 0.92±0.00 0.69±0.04 0.15±0.02 0.69±0.02 0.90±0.01 0.82±0.01 1.00±0.00 0.38±0.09 0.01±0.00

Mean 0.92±0.00 0.71±0.01 0.25±0.01 0.69±0.02 0.90±0.00 0.83±0.01 1.00±0.00 0.39±0.21 0.01±0.01

Max 0.92±0.00 0.71±0.02 0.21±0.02 0.70±0.02 0.90±0.00 0.83±0.01 1.00±0.00 0.41±0.19 0.01±0.00

Attention 0.92±0.00 0.70±0.02 0.18±0.01 0.74±0.02 0.90±0.00 0.83±0.01 1.00±0.00 0.47±0.20 0.01±0.00

Learn. attention 0.92±0.00 0.70±0.02 0.22±0.02 0.70±0.02 0.90±0.00 0.83±0.01 1.00±0.00 0.38±0.14 0.01±0.00

Age
No pooling 0.61±0.00 0.85±0.00 0.66±0.00 0.32±0.00 0.71±0.00 0.24±0.00

Mean 0.64±0.03 0.85±0.00 0.63±0.02 0.33±0.00 0.71±0.00 0.24±0.00

Max 0.64±0.03 0.85±0.00 0.63±0.02 0.33±0.00 0.71±0.00 0.24±0.00 NA
Attention 0.64±0.03 0.85±0.00 0.63±0.02 0.33±0.00 0.71±0.00 0.24±0.00

Learn. attention 0.61±0.01 0.85±0.00 0.65±0.00 0.33±0.00 0.71±0.00 0.24±0.00

The Mean and Max methods are often the top-1 and top-2 performers
in global validation tasks, respectively. This behavior is also explainable,
as both approaches smooth local patterns while aggregating representations.
While this may be beneficial for global properties, it negatively affects the
quality of local ones.

6.4. Ranking and Discussion

In this research, we compare several classes of transactional data models
in terms of their embeddings’ global and local properties. This section at-
tempts to summarize these findings by in-depth analysis and supplementary
ranking with respect to ROC-AUC values for each task.

The rankings compare all the models from Table 2, as well as ”CoLES
ext.” – the CoLES model, modified by the mean external information inclu-
sion procedure, which is a reasonable compromise judging by Table 4. This
is more illustrative than the specific metric values from Table 2 since here
we equate the statistically indistinguishable results. We increase the rank if
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the p-value is less than 0.1 for a one-sided T-test, i.e. only if the increment
is large enough compared to the corresponding variances.

6.4.1. Event type.

The resulting per-dataset ranks for the local event type task are presented
in Table 5. As stated above, the autoregressive model is a clear winner here:
this indicates a robustly superior ability to capture local patterns and use
them for forecasting.

The MLM approach makes a close second, dropping to third place only
on the Age dataset, where it also gives in to the AE model. This can be
explained by a greater dependence on the order in which transactions are
made: the Transformer model used in MLM is known for ignoring positional
information (see e.g. [70]), while the RNN used in AE takes it into account.

Next, interestingly enough, CoLES with external information slightly out-
performs the AE model on average. It seems that the external information
gives the edge necessary for the advanced CoLES method to sometimes beat
a simple but specialized autoencoder on local tasks, providing statistics on
how other clients differ from each other at a specific moment in time. Overall,
as we stated previously, generative methods outperform vanilla contrastive
methods, with the latter performing on-par with supervised baselines.

The ranking concludes with the temporal point process baselines. This
agrees with prior research: authors of [71] state that TPP methods require
long sequences to operate successfully, which is not the case for the local
task.

6.4.2. Local binary.

The ranks for the local binary task are presented in Table 6. Overall, con-
trary to the previously considered event-type prediction task, the generative
methods now lag behind the modified CoLES method regarding the mean
model rank. Specifically, the generative methods show poor performance on
the Default dataset. This can be explained by the label’s more global nature:
after all, it was deduced from a sequence-wise, global label via cropping, and
the probability of loan repayment likely changes slowly with time. Moreover,
the highly-local AR model comes in fourth here, which further supports this
claim. Another very important factor here is class imbalance. Remember,
the Default dataset is highly imbalanced by itself; our local label extraction
procedure only makes matters worse. It can be concluded, that contrastive
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Table 5: Model ranking for the local event type prediction task. Equal ranks correspond to
indistinguishable performance. Models are colour-coded with superscripts for monochrome
versions: blue§ for generative, green† for contrastive and fuchsia‡ for TPP.

Age Churn Default HSBC Mean
AR§ 1 1 1 1 1.00
MLM§ 3 1 2 1 1.75
CoLES ext.† 3 2 2 3 2.50
AE§ 2 3 4 2 2.75
CoLES† 3 4 3 3 3.25
Best baseline 4 4 5 3 4.00
TS2Vec† 6 4 5 4 4.75
A-NHP‡ 5 5 6 4 5.00
NHP‡ 5 5 6 4 5.00
COTIC‡ 6 6 7 5 6.00

and TPP models handle such extreme class asymmetry better, able to ex-
tract rare patterns, while generative models focus mostly on statistically
likely ones.

The Churn dataset does not distinguish much between generative meth-
ods and ”CoLES ext.”: the label here seems to require both local and global
properties. Lastly, the HSBC dataset, which initially had a local label (in-
dicating specifically which transactions are fraudulent), favours generative
models, which is in line with our reasoning.

Finally, it can be observed that COTIC and TS2Vec perform surprisingly
well on HSBC. Both of these models use convolutions. Good performance
may be due to the fact that they are able to meticulously analyse short, fixed-
length sequences, paying attention (via max pooling) to the most suspicious
transaction.

6.4.3. Global.

The ranks for the global task are presented in Table 7. It comes without
surprise that the CoLES variations take the lead here, with the external
information model showing more stable performance than the vanilla option.
Specifically, the plain CoLES lags behind on the Churn task. The final
dynamics right before a client leaves the bank are presumably very important
here, making Churn somewhat local, and, as mentioned previously, adding
external information improves CoLES’s performance on local tasks. This
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Table 6: Model ranking for the local binary label prediction task. Equal ranks corre-
spond to indistinguishable performance. Models are colour-coded with superscripts for
monochrome versions: blue§ for generative, green† for contrastive and fuchsia‡ for TPP.

Churn Default HSBC Mean
CoLES ext.† 1 1 3 1.67
MLM§ 2 2 1 1.67
AR§ 1 4 1 2.00
AE§ 2 2 3 2.33
TS2Vec† 4 1 2 2.33
A-NHP‡ 3 1 4 2.67
NHP‡ 3 2 3 2.67
CoLES† 3 2 4 3.00
Best baseline 3 3 4 3.33
COTIC‡ 4 5 2 3.67

point is supported by the fact that the contrastive TS2Vec method also
performs poorly on the Churn task, while the local generative methods show
good results here. A more interesting observation is that TPP methods rise
up to a respectable second place on Churn: a client’s transactions grow less
frequent before he leaves the bank, which makes this task very well suited
for these time-sensitive models.

Next come the generative models, which mostly show good results here.
A notable exception is provided by our best event type model, AR: it loses
to MLM, AE, and even the supervised baseline for the HSBC task. It seems
that its autoregressive nature renders it too local. It has a very narrow view
of only the few last transactions, making it forget fraudulent ones that may
have appeared early on in the sequence.

The ranking concludes with TPP methods, showing highly unstable per-
formance between datasets. All these models take into the account the tem-
poral structure of the sequence, which appears to be a dead weight for the
global task, only hindering their learning.

This table presents several anomalies. For one, the supervised baseline is
ranked first for the Age task. As mentioned above, the best way to handle
Age is to look for certain locally ordered patterns within the sequence, which
is exactly what a simple RNN does. Since the sequences are long, their
lengths vary little (in a narrow range from 700 to a little over 1k elements)
and there is plenty of labelled data, the baseline is able to accumulate enough
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information to tune a good, specialized classifier.
Next, the NHP model achieves high performance on the Churn task. As

we have concluded from the local binary label, churning may be predictable
based on the time intervals closer to the end of the sequence. NHP appears to
capture these dynamics well, without introducing restrictive complex modi-
fications.

Finally, COTIC performs on par with the external information CoLES on
Default. This supports our hypothesis that the continuous-time convolutions
work well on highly regular sequence sizes (all sequences from default are of
length 300), extracting local and global patterns from fixed positions in the
sequence and combining them into highly informative representations.

Table 7: Model ranking for the global label prediction task. Equal ranks correspond to
indistinguishable performance. Models are colour-coded with superscripts for monochrome
versions: blue§ for generative, green† for contrastive and fuchsia‡ for TPP.

Age Churn Default HSBC Mean
CoLES ext.† 1 1 1 1 1.00
CoLES† 1 3 1 1 1.50
MLM§ 2 2 2 2 2.00
Best baseline 1 4 2 2 2.25
AR§ 3 2 1 3 2.25
AE§ 4 2 2 2 2.50
NHP‡ 5 2 2 3 3.00
COTIC‡ 6 3 1 4 3.50
TS2Vec† 2 5 2 5 3.50
A-NHP‡ 5 3 3 4 3.75

6.4.4. Executive Summary

Now, we will briefly summarize the above discussion in a few points.
Overall, the generative methods clearly lead at the event-type task (since
they were effectively trained for it). The local binary and global tasks offer
fine-grained insights, based on the label’s nature.

• The Age dataset has regular, simple, ordered patterns, appearing all
throughout the sequence, indicative of the final label. The event-type
task is thus best solved by ordered generative models (using RNN as
the backbone), and the global one, having enough transactions and
data – by the supervised baseline.
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• The Churn label is largely defined by the time intervals closer to the end
of the sequence. Consequently, this task requires a compromise between
local and global properties, best achieved by CoLES with the inclusion
of extrnal information. The local binary task, although devised from
a global label, also relies greatly on fine-grained dynamics. The AR
performs well here, on par with ”CoLES ext.”.

• The HSBC dataset has a truly local binary label, which makes it well-
suited for generative models. However, the continuous-convolution ap-
proaches are also a great fit for this task: the cropped sequence length
is fixed during testing, so they are able to pay attention to the most
suspicious transactions via max-pooling. On the other hand, the global
task requires broad attention to whole sequences of different lengths,
favouring contrastive approaches over generative and TPP methods.

• The Default dataset has proven to be the hardest for all the considered
models, without any clear winners on downstream tasks. The local
binary label seems to favour contrastive and TPP models: we argue this
is due to the label leaning more on global properties, as well as extreme
class imbalance. Unsurprisingly, both CoLES methods take first place
in the global ranking. However, the victory is shared with continuous
convolution methods: the sequences here are also of fixed size, both
during testing and training, which appears to be the speciality of these
approaches.

7. Conclusions

This paper examines various methods for extracting meaningful repre-
sentations from transaction data, evaluating their effectiveness in capturing
both global and local patterns of transactional sequences. We adapted gener-
ative self-supervised learning methodologies (specifically AE, MLM, and AR
models) to the domain of transaction sequences, resulting in embeddings that
effectively capture local and dynamic features, while reasonably addressing
global patterns inherent in transactional data. These models were rigorously
compared against state-of-the-art domain-specific deep learning techniques,
including contrastive self-supervised learning (such as CoLES and TS2Vec),
temporal point process models (HNP, A-NHP, and COTIC), and conven-
tional supervised learning approaches.
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Our comprehensive benchmark, i.e. one that simultaneously addresses all
desired representation properties, reveals that no single method is universally
superior for all applied problems. Contrastive approaches generally excel in
global classification tasks, making them effective for situations requiring a
broader view of transactional data. In contrast, generative models are better
suited for capturing local patterns, essential for scenarios involving immedi-
ate customer interactions and behavior prediction. Temporal point process
models, which are typically designed for process intensity restoration, tend
to underperform in representation learning contexts. However, their ability
to account for time intervals makes them a great choice for certain scenarios.
Finally, the convolution models (TS2Vec, COTIC) excel at uniform-length
sequences.

Among the classic methods evaluated, the proposed AR model stands
out for its robust performance across various tasks. It slightly gives way
to CoLES, yet it remains comparably effective in global classification while
surpassing all other models in next MCC code prediction tasks, indicating its
ability to effectively balance the recognition of both global and local patterns
within transactional data.

Additionally, we introduced an innovative method for incorporating ex-
ternal contextual information into transactional representations. By lever-
aging the activity of other clients, this method constructs an external con-
text vector, significantly improving model performance, with an increase in
ROC-AUC of up to 20% for local tasks, making it the clear winner in our
downstream benchmarks. The best results were achieved using a trainable
attention mechanism that accounts for embeddings of similar clients, how-
ever the simpler mean aggregation also gives a comparable boost in metrics,
making it a reasonable compromise.

Overall, our research provides a benchmark for evaluating diverse proper-
ties of various representation learning methods applied to financial transac-
tion data. These techniques offer scalable and adaptable solutions that can
be applied across a wide range of banking applications, enhancing decision-
making and customer experience. The contributions made to representation
learning in this paper have significant potential for advancing the banking
industry. By effectively utilizing AI, banks can optimize operations, reduce
risks, and offer more personalized services to their clients. As AI continues to
develop, these findings and methods will drive further innovation in financial
services.
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Appendix A. Implementation details

Main models. In this research, we generally follow the pipeline of the
pytorch-lifestream Python package, which contains the implementation of
the CoLES model. Additionally, we use NHP and A-NHP models from the
EasyTPP [72] library available online. Finally, the COTIC model implemen-
tation was taken from the original GitHub repository and adopted into our
pipeline.

Information about the architectures and hyperparameters of the models
used in our study is given below.

• CoLES is a one-layer recurrent neural network. We use LSTM with a
hidden layer dimension of 1024 for the Churn, Age, and HSBC datasets
and 512 for industrial data. For Default, we select GRU with a hidden
size of 800. The models were trained for 60 epochs with a batch size of
128.

• AE’s encoder and AR have identical architectures for all the public
datasets — LSTM with a hidden layer dimension of 1024. The hidden
size of 512 was used for industrial data. AR was trained for 60 epochs
with a batch size of 128.

• The AE decoder is an LSTM with a hidden layer dimension twice big-
ger than in the encoder, 1024 for industrial data and 2048 for other
datasets. The model was trained for 2000 steps with a batch size of
1024.

• The MLM is a Transformer with six hidden layers with eight heads;
the embedding dimension and the perceptron hidden layer dimension
equals 512 for industrial data and 1024 for other datasets. The training
regimen is similar to that of the AE’s decoder: 2000 steps on batches
of 1024.

• For AR, MLM, and AE models, we use a combination of two losses
described in 4.3. The weights for these losses are set to five and one,
respectively.
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• TS2Vec has ten one-dimensional convolutional blocks with an expanded
kernel size of three, an expansion factor of 2l (where l is the block
number), and the number of output channels equals 512 for private
data and 1024 for other datasets. It was trained for 100 epochs with
batches of 1024.

• The COTIC model has five continuous one-dimensional convolutional
layers with a hidden dimension of 32 and a kernel size of five. Its
kernel is a multi-layer perceptron with hidden layer dimensions eight,
four, and eight, and the prediction head is a two-layer perceptron with
a hidden dimension of 100. The model was trained for 100 epochs
with a batch size of 20. We had to significantly limit the number of
parameters to reduce the memory consumption and the training time
since COTIC is inherently less efficient than other models.

• NHP has a custom continuous-time LSTM architecture with exponen-
tial decay of hidden states as in original work [43]. We mainly adopt
the parameters from the EasyTPP experiment configuration files while
increasing the hidden dimension of the model up to 64 to be compa-
rable with the other TPP models. It was trained for 50 epochs with a
batch size of 128.

• The encoder of the A-NHP model consists of two multi-head attention
blocks with a final embedding dimension of 64. It also uses a temporal
encoding with a time embedding size of four. The model was trained
for 50 epochs with batches of 32.

Input features. Note that all self-supervised approaches (both contrastive
and generative) take two features as input: MCCs and transaction amounts.
As MCC is a categorical variable, we use its embedding of size 24 (for Churn
and HSBC) or 16 (for Age and Default).

In contrast, the considered TPP models (NHP, A-NHP, COTIC) do not
process amounts but take times between events as a part of the input. Here,
we cannot use raw UNIX timestamps due to numeric overflows. Thus, all the
times are normalized to represent the number of days (float) since the first
transaction in the dataset. Furthermore, to foster the quality of next event
type prediction, we clip the rare MCC codes as it is done for the autoencoder
models 4.3.
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Models with external context. A model using external information re-
quires quite a lot of computational resources since it needs to store local
representations of all users from the training set for all available time points
(Subsection 4.5). Due to memory constraints, we store only a random subset
of local representations: for the Churn dataset, the number of clients to train
in all experiments was 500; for the Default dataset — 150; for HSBC — 300;
and for Age — 2000. Additionally, the batch is reduced to eight. Other
hyperparameters for the encoder remain the same as in the experiments with
the regular CoLES model.

Validation model parameters. For the local validation procedure out-
lined in Section 3, we used the following hyperparameter values: window size
is 32, shift step is 16, batch size is 512, and the maximum number of epochs
is ten.
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