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Abstract

Measuring progress is fundamental to the advancement of any scientific field. As benchmarks play
an increasingly central role, they also grow more susceptible to distortion. Chatbot Arena has
emerged as the go-to leaderboard for ranking the most capable AI systems. Yet, in this work we
identify systematic issues that have resulted in a distorted playing field. We find that undisclosed
private testing practices benefit a handful of providers who are able to test multiple variants before
public release and retract scores if desired. We establish that the ability of these providers to choose
the best score leads to biased Arena scores due to selective disclosure of performance results. At an
extreme, we identify 27 private LLM variants tested by Meta in the lead-up to the Llama-4 release.
We also establish that proprietary closed models are sampled at higher rates (number of battles) and
have fewer models removed from the arena than open-weight and open-source alternatives. Both
these policies lead to large data access asymmetries over time. Providers like Google and OpenAI
have received an estimated 19.2% and 20.4% of all data on the arena, respectively. In contrast,
a combined 83 open-weight models have only received an estimated 29.7% of the total data. We
show that access to Chatbot Arena data yields substantial benefits; even limited additional data
can result in relative performance gains of up to 112% on the arena distribution, based on our
conservative estimates. Together, these dynamics result in overfitting to Arena-specific dynamics
rather than general model quality. The Arena builds on the substantial efforts of both the organizers
and an open community that maintains this valuable evaluation platform. We offer actionable
recommendations to reform the Chatbot Arena’s evaluation framework and promote fairer, more
transparent benchmarking for the field.

*First author. ♦Principal senior advisors.
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Figure 1: Overview of key insights. We investigate the prevalence of undisclosed private
testing and selective score reporting on the Arena (Section 3), and highlight significant data
access disparities between proprietary and open-source providers (Section 4.1). These disparities
enable overfitting to the Arena (Section 4.2). Furthermore, model deprecation practices
lack transparency, with many models silently deprecated without any notification to providers. We
demonstrate how these deprecations contribute to unreliable rankings on the leaderboard (Section 5).

1 Introduction

Any observed statistical regularity will tend to collapse once pressure is placed upon it
for control purposes. — Charles A. E. Goodhart

Benchmarks have long played an integral role in the development of machine learning systems
(Church, 2018; Koch & Peterson, 2024), from the early days of NLP (e.g., TREC competitions
and WMT shared tasks, Harman, 1993; Koehn & Monz, 2006) to the recent flurry of deep learning
models (e.g., ImageNet, Deng et al., 2009), to the rise of large language models (e.g., GLUE, Wang
et al., 2018). A meaningful benchmark demonstrates the relative merits of new research ideas over
existing ones, and thereby heavily influences research directions, funding decisions, and, ultimately,
the shape of progress in our field. The recent meteoric rise of generative AI models—in terms of
public attention, commercial adoption, and the scale of compute and funding involved (Kaplan
et al., 2020; Hoffmann et al., 2022; Samsi et al., 2023; Hooker, 2024)—has substantially increased
the stakes and pressure placed on leaderboards (Orr & Kang, 2024).

Recently, Chatbot Arena has become the de facto standard for comparing generative AI mod-
els, holding enormous sway over media1 2, the AI industry (Maslej et al., 2025), and academia

1https://www.wsj.com/tech/ai/the-uc-berkeley-project-that-is-thewai-industrys-obsession-bc68b3e
3

2https://www.bloomberg.com/news/articles/2025-02-18/before-deepseek-blew-up-one-website-announc
ed-its-arrival
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Figure 2: Number of public models vs. maximum arena score per provider. Marker
size indicates total number of battles played. Proprietary model providers tend to achieve higher
leaderboard scores, which appear to correlate with both the number of models they release and
the number of Arena battles played. While model capability is an important factor, we explore in
Section 3 and Section 4 how increased exposure to the Arena (through more models and battles)
may confer additional advantages, such as better model selection or adaptation to the evaluation
distribution. This figure summarizes publicly disclosed results as of April 23rd, 2025.

(Grattafiori et al., 2024; Yang et al., 2024). Created in 2023, Chatbot Arena rates LLMs by al-
lowing anyone to submit a prompt and subsequently rank two anonymous responses from different
models. Chatbot Arena quickly rose to prominence because it helped fill a critical gap in evaluation
at a time of rapid technological change. As generative AI technology has grown more capable,
academic multiple-choice evaluations (Hendrycks et al., 2021; Liang et al., 2022; Romanou et al.,
2024; Singh et al., 2024b; Wang et al., 2024; Adelani et al., 2025; Salazar et al., 2025) have failed
to reflect the real-world open-ended use cases these models are now being used for (Üstün et al.,
2024; Chiang et al., 2024; Mizrahi et al., 2024). As a dynamic, user-driven evaluation framework
where new questions can be asked daily, Chatbot Arena can, at least in principle, evolve alongside
model capabilities. Furthermore, the open-ended nature of the interaction can capture emerging
real-world use cases that differ from those initially envisioned by model creators.

However, the over-reliance on a single leaderboard creates a risk that providers may overfit to the
aspects of leaderboard performance, without genuinely advancing the technology in meaningful
ways (Ensmenger, 2011; Thomas & Uminsky, 2020; Raji et al., 2021; Bowman & Dahl, 2021). As
Goodhart’s Law states, when a measure becomes a target, it ceases to be a good measure. In this
work, we show that willful engagement from a handful of providers along with preferential policies
from Chatbot Arena towards the same small group have amplified the potential for gamification, in
place of innovative progress.

Our systematic review of Chatbot Arena involves combining data sources encompassing 2M battles,
auditing 42 providers and 243 models across a fixed time period (January 2024 - April 2025). This
comprehensive analysis reveals that over an extended period, a handful of preferred providers have
been granted disproportionate access to data and testing. In particular, we identify an undisclosed
Chatbot Arena policy that allows a small group of preferred model providers to test many model
variants in private before releasing only the best-performing checkpoint. Using Arena data, we

3
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Figure 3: Volume of Arena battles involving proprietary, open-weight, and fully open-
source model providers from January 2024 to March 2025, based on leaderboard-stats.
Proprietary models consistently received the largest share of data—ranging from 54.3% to 70.1%.
Open-weight and fully open-source models receive significantly less data, in some cases receiving less
than half the amount of data as proprietary developers. This imbalance in data access exacerbates
the performance gap, reinforcing unequal access to high-quality in-distribution data.

simulate and demonstrate how this strategy distorts overall arena ratings by beneficially skewing
results. In addition, we find substantial data asymmetries are apparent regarding the amount of
feedback data given to proprietary vs. open-weight vs. open-source model providers. This is due to
a combination of unequal sampling rates (how often a model appears in a Chatbot Arena battle)
and deprecation policies (which models are retired from the arena). We show that these differences
lead to distorted and unreliable Arena rankings and create conditions in which providers may be
overfitting to Arena-specific dynamics rather than general model quality. Across our extensive
analysis, we present the following findings:

1. Preferential treatment around private testing and retraction. Chatbot Arena has an
unstated policy of allowing select providers to test many submissions in parallel. We show that
certain model developers (most notably Meta, Google, Open AI and Amazon) have benefited
from extensive private testing. In a single month, we observe as many as 27 models from Meta
being tested privately on Chatbot Arena in the lead up to llama 4 release. Notably, we find
that Chatbot Arena does not require all submitted models to be made public, and there is no
guarantee that the version appearing on the public leaderboard matches the publicly available
API3 4. We show with real-world experiments and simulations that the ability to select the
best-scoring variant from N models enables systematic gaming of the Arena rating.

2. Far more data is released to proprietary model providers. Chatbot Arena is a
community-driven leaderboard that benefits from free, crowdsourced feedback provided by
everyday users. However, proprietary model providers collect significantly more test prompts
and model battle outcomes than others. Google and OpenAI have received an estimated 19.2%
and 20.4% of all test prompts on the arena, respectively. We estimate this based on the share
of total battles played by the models of different providers on the Arena (as shown in Fig-

3https://x.com/lmarena_ai/status/1909397817434816562
4https://www.theverge.com/meta/645012/meta-llama-4-maverick-benchmarks-gaming
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Figure 4: Data availability to model providers. We observe large differences in data access
between providers, with 61.4% of all data going to proprietary providers.

ure 4). In contrast, a combined 41 fully open-source models have only received an estimated
8.8% of the total data, collectively.

3. Chatbot Arena data access drives significant performance gains. The differences in
data access between providers matter; we estimate that by training on Chatbot Arena data,
model ranking can be improved significantly. In a controlled experimental setting, we observe
that increasing the arena training data proportion from (0% → 70%) more than doubles
the win-rates from 23.5% to 49.9% on ArenaHard (Li et al., 2024c). We believe this is a
conservative estimate, as a subset of providers have disproportionate access to private API
data, which, if used, can potentially yield even greater performance gains.

4. Deprecations can result in unreliable model rankings. As shown in Figure 17, out of
243 public models, 205 have been silently deprecated. This is a significantly higher number
than the 47 models officially listed as deprecated as part of Chatbot Arena’s backend codebase,
FastChat5. We show that deprecation can violate key assumptions of the Bradley-Terry model
(Bradley & Terry, 1952), which underpins Arena scoring, thereby reducing the reliability of
the leaderboard rankings. Critically, we find that open-weight and open-source models are far
more likely to be deprecated and, hence, receive unreliable ratings. Among the models that
are silently deprecated, 66% are open-weight or fully open-source.

Our role in both participating in the leaderboard and providing an overview of its
limitations. It is important to acknowledge that a subset of the authors of this paper have sub-
mitted several open-weight models to Chatbot Arena: command-r (Cohere, 2024), command-r-plus
(Cohere, 2024) in March 2024, aya-expanse (Dang et al., 2024b) in October 2024, aya-vision
(Cohere, 2025) in March 2025, command-a (Cohere et al., 2025) in March 2025. We started this
extensive study driven by this submission experience with the leaderboard. While submitting Aya

5http://github.com/lm-sys/FastChat/blob/0e6d3e4beaab66f4d3f93db72541a4abab8af28d/fastchat/serve
/monitor/monitor_md.py#L7
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Figure 5: Maximum observed sampling rate for models from different providers. The
sampling rate determines the amount of times a model is shown to everyday users, and the amount
of data a provider receives. We observe large discrepancies across providers, with substantially
higher sampling rates for OpenAI, Google, xAI, and Meta compared to others.

Expanse (Dang et al., 2024b) for testing, we observed that our open-weight model appeared to be
notably undersampled compared to proprietary models — a discrepancy that is further reflected in
Figures 3, 4, and 5. In response, we contacted the Chatbot Arena organizers to inquire about these
differences in November 2024. In the course of our discussions, we learned that some providers were
testing multiple variants privately, a practice that appeared to be selectively disclosed and limited
to only a few model providers. We believe that our initial inquiries partly prompted Chatbot Arena
to release a public blog in December 2024 detailing their benchmarking policy6, which committed
to a consistent sampling rate across models. However, subsequent anecdotal observations of con-
tinued sampling disparities and the presence of numerous models with private aliases motivated us
to undertake a more systematic analysis. As part of this analysis, we launched private variants
to estimate the benefit of multiple submissions and retraction. We report on the results of this
real-world study in Section 3.3. Consequently, Cohere appears in Figure 6 and Figure 9 as having
private variants. Before this period, Cohere had not launched any private testing.

While our work points out significant limitations and unreliability issues with Chatbot Arena, it
is important to acknowledge that Chatbot Arena originated as an academic-sponsored leaderboard
that took on pronounced importance to the machine learning community. It takes considerable
effort to coordinate a leaderboard, and arena organizers have often faced large demands on their
time from supporting the addition of models from many different model providers. Hence, while we
point out systematic issues with Chatbot Arena as it is now, we also believe some of these issues
may have emerged gradually as successive design choices and concessions to certain large providers
accumulated and introduced unreliability. We believe that there are reasonable interventions that
the organizers can do to restore scientific accuracy and renew trust in the leaderboard. We have
directly shared our recommendations with Chatbot Arena prior to releasing this work. We include
these here and also share in Section 6 for a complete discussion.

6https://drive.google.com/file/d/1reook2cjwq81xD6Yn528KOLWeWRy0ZvN/view?usp=drive_link
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Critical Recommendations to Restore Trust to the Chatbot Arena

In order to restore fairness, transparency and trust to the Chatbot Arena, we determine that
the following five changes are both actionable, easy to implement as well as urgent and
necessary for restoring scientific integrity:

1. Prohibit score retraction after submission. All model evaluation results—including
private variants—must be permanently published upon submission, with no option to
retract or selectively hide scores. This is a crucial and necessary requirement to restore
trust in the leaderboard. There is no reasonable scientific justification for allowing a
handful of preferred providers to selectively disclose results. Indeed, we show that this
skews Arena scores upwards and allows a handful of preferred providers to gamify the
leaderboard.

2. Establish transparent limits on the number of private models per provider.
There are valid reasons to offer private testing – as it allows the Chatbot Arena community
to test models in development while also preserving the anonymity required before a
release. However, some providers are engaging in private testing far more than others.
This has implications for gamification, but it also means preferred providers benefit from
substantially more data from an open community project. At the time Meta launched
27 variants in the lead up to Llama 4 release. This highly skews data access from a
community resource. It is critical to enforce a strict and publicly disclosed limit (e.g.,
maximum 3 model variants tested concurrently per provider). This prevents excessive
testing runs that skew the leaderboard while ensuring fair, transparent benchmarking for
all. If private testing continues, it should have transparent limits and be paired with
disclosing all scores.

3. Ensure model removals are applied equally to proprietary, open-weights, and
open-source models. We find deprecation disproportionately impacts open-weight and
open-source models, creating large asymmetries in data access over time (Section 4.1). We
strongly urge arena organizers to remove an equal share across proprietary, open-weight,
and open-source licenses to avoid creating asymmetric access to data that disadvantages
open-weight providers. For example, a reasonable and transparent policy would be to
deprecate the bottom 30th percentile for each group of proprietary, open-weights, open-
source models.

4. Implement fair sampling. Our work finds large biases towards proprietary models in
sampling rates. For example, in Figure 5, we observe a maximum daily sampling rate of
models from OpenAI or Google of up to 34%, which is 10 times more than what is observed
as the maximum sampling from providers like Allen AI. We suggest a return to an active
sampling method proposed by the arena organizers themselves (Chiang et al., 2024), which
appears not to be respected or implemented in practice. This formulation avoids simply
favoring large proprietary providers and instead effectively prioritizes under-evaluated and
high-variance pairs. This avoids preferring a subset of providers and instead focuses votes
to align sampling with the goal of rapidly reducing uncertainty in rankings.

5. Provide transparency into what models are being removed from the leader-
board. We found that a large number of models are silently deprecated without being
added to the list of officially deprecated models. While 47 out of 243 public models are
officially listed as deprecated, we measure that 205 have been silently removed by the
organizers without informing the provider. For transparency and to ensure that the dep-
recation policy is implemented fairly, it is important that there is a comprehensive list of
what models have been removed from the leaderboard.

7



2 Overview of Methodology

To measure is to know — Lord Kelvin

Leaderboards have played a pivotal role in the computer science field in driving technological
progress (Koch & Peterson, 2024). A desirable goal of a general benchmark is to reliably rank
models according to real-world capabilities and preferences. Hence, if one system significantly out-
performs another, then the result should be strong evidence that the higher-ranked system is better
at the task (Bowman & Dahl, 2021; Rodriguez et al., 2021). If a leaderboard is not representative
of real performance gains, it can lead practitioners and researchers towards less impactful areas of
intervention and inquiry. In some cases, this misalignment enables gaming of the system—where
participants optimize for leaderboard metrics rather than real-world utility. As a result, the gap
between reported performance and actual value in deployment can continue to widen. Ultimately,
the goal of our work is to ask whether the rankings of Chatbot Arena are a reliable ranking of
generative AI models. To answer this, across the sections that follow, we will consider and answer
the following questions:

1. Private Testing and Selective Disclosure (Section 3) What is the impact of the undis-
closed policy of private testing and selective retraction on Arena scores?

2. Data Access Asymmetries (Section 4.1) What factors lead to large asymmetries between
providers in data access on the Chatbot Arena?

3. Risk of Overfitting (Section 4.2) How do asymmetries in data access impact Arena scores?

4. Model Deprecation (Section 5) What is the impact of Chatbot Arena model deprecation
policy on Arena score reliability?

To gain insights and analyze various trends in the Chatbot Arena leaderboard, we leverage multiple
data sources. In total, our real-world data sources encompass 2M battles and cover 243 models
across 42 providers. We present the overview of each data source in Table 1 and describe the
different datasets in more details in Appendix D. Across our analyses, we group models by the
licenses reported on Chatbot Arena into proprietary, open-weights, and open source to understand
overall trends. This allows us to gain insight into who benefits the most from the Chatbot Arena
which is a free and open community resource. We report details of what licenses are grouped into
each category in Appendix F. We note that many open-weights models are extremely performant
and include Aya family of models (Dang et al., 2024b; Üstün et al., 2024), Meta models (Meta,
2025) and Gemma family of models (Team et al., 2025).

2.1 Introduction to the Arena Score

The Arena score is the key metric used in Chatbot Arena to rank models based on how humans
judge their performance. In Arena, users engage in pairwise comparisons, voting on which of two
models performs better (or declaring a tie) in a given interaction. A naive way to compute rankings
would be to average each model’s win-rates, simply counting how often they win. However, this
approach does not consider the strength of the opponents and requires all models to play against

8



Table 1: A summary of datasets we constructed, their sources, and the research questions they
enabled us to answer. These datasets can be of one of the following types: battles only (&),
conversations only (Ü), battles with conversations, (&Ü) and leaderboard updates (�).
Depending on the dataset type, it either contains prompts (✓) or doesn’t (p). Accessibility of
the datasets is indicated using public (�) or private (�).

Name Fields Source �/� Type Prompts? Size Period

Historical
Battles

battle dates,
category &
language tags

Arena-human-
preference-100k7 � & Ü ✓ 100K

04-23 - 01-25
Colab data8 9 � & p 1.9M

LMArena, Cohere �
&
Ü

✓ 43K

Random
Scraped
Battles

model identity
responses, bat-
tle players

Crawled � & p 5.8K 01-25 - 03-25

API
prompts prompts Cohere � Ü ✓ 197K 11-24 - 04-25

Leaderboard
Statistics

ratings, dates,
models, bat-
tles counts,
licenses,
providers

HuggingFace
Leaderboard Com-
mit History10

� � p 14.3K 01-24 - 04-25

each other. Furthermore, averaging win-rates treats all wins equally, which can lead to misleading
or unfair rankings, especially when models face opponents of varying strength levels.

Instead, Chatbot Arena ranks models based on their Arena Score, which is a normalized version of
the Bradley-Terry (BT) model (Bradley & Terry, 1952), a probabilistic framework for estimating
skill levels based on pairwise comparisons. BT is a widely used model to estimate skill levels in
diverse fields such as online gaming (e.g., StarCraft II) (Leitner et al., 2010; Liquipedia, 2019; Wise,
2021, i.a.) and sports rankings (Glickman, 1999; Hunter, 2004). Compared to alternative systems
like Elo (Elo, 1978; Boubdir et al., 2024), which was initially used in the first version of Chatbot
Arena, BT provides a more robust and statistically grounded basis for ranking. BT produces well-
calibrated estimates while naturally accommodating ties and missing comparisons, and providing
confidence intervals for the rankings as long as the underlying model conditions are met.

While BT is considered to be a principled ranking system, its effectiveness depends on several key
assumptions. Background on these assumptions will provide important context for our discussions
in Section 5.1 and Section 5.2, where we examine how violations of BT’s assumptions affect the
reliability of Arena rankings. The BT model assumes that pairwise comparisons are drawn from an
unbiased sampling process, so that each model’s skill parameter is estimated independently and
based on representative outcomes. It also does not require all players to play each other because of
transitivity of rankings—if Model A is judged to beat Model B and Model B in turn beats Model
C, then Model A is estimated to outperform Model C (even if they never actually play). Finally,
it assumes that the comparison network is fully interconnected—that is, every model must be
linked directly or indirectly through pairwise matchups. Deviations from these assumptions, such
as biased comparisons or a fragmented graph, can compromise the reliability and consistency of the
strength estimates. For further details, we include the mathematical formulation of the BT model

9



in Appendix B.

3 Results: Impact of Private Testing and Selective Retraction on
Arena Scores

Section Findings

• Undisclosed testing policy permits preferred providers to bias reporting of re-
sults. Chatbot Arena currently permits a small group of preferred providers to test multi-
ple models privately and only submit the score of the final preferred version. As observed in
Figure 6, we observe that Meta, Google, and Amazon were key beneficiaries of this policy
for the period for which we collected data.

• Selective disclosure violates unbiased sampling assumption of BT model. We
show theoretically how BT assumptions are violated, which systematically inflates model
rankings, distorting the leaderboard ranking. In Figure 7, we simulate the expected distor-
tions to leaderboard Arena rankings and show that testing just 10 variants yields a notable
increase of approximately 100 points in the maximum score identified.

• Real world experiments on the Chatbot Arena confirm benefits of selective
reporting of results. We corroborate our simulations with experiments on the real arena
by deploying multiple private variants. We show that even limited numbers of variants
lead to large gains in Arena Scores. Submitting multiple model variants to the Chatbot
Arena can lead to a systematic advantage in rankings, even when the underlying models
are identical or only marginally different.

3.1 Preferred Providers Frequently Use Private Testing

Although not an officially stated policy6, our audit of Chatbot Arena data using random-sample-
battles revealed that providers are permitted to test multiple private model variants simultane-
ously, without being required to publicly release or de-anonymize these submissions. In Figure 6, we
plot the number of private variants we tracked as belonging to each provider from January to March
2025. We observed that Meta and Google had 27 and 10 private models, respectively, which pre-
ceded the releases of Llama 4 (Meta, 2025) and Gemma 3 (Google, 2025) models shortly thereafter.
We note this is likely a very conservative estimate as it only tracks the private variants on the main
Chatbot Arena, and does not take into account private variants on specialized leaderboards run by
Arena such as for vision 11 or code.12 13 Indeed, if we also consider the number of private models
tested by Meta on the vision leaderboard, we observe an additional 16 variants, bringing the total
to 43. In contrast, smaller startups, such as Reka, were found to have one active private variant
live in the arena. We note that during the same period, Cohere submitted 4 private variants—these
ablations were part of experiments measuring the lift that could be expected from private testing
that we detail in the experiments in Section 3.2 and Section 4.1. Before this, Cohere had never
submitted private variants for testing in the Chatbot Arena.

11https://blog.lmarena.ai/blog/2024/multimodal/
12https://blog.lmarena.ai/blog/2024/copilot-arena/
13https://blog.lmarena.ai/blog/2025/repochat-arena/
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Figure 6: Number of privately-tested models per provider based on random-sample-
battles (January–March 2025). Meta, Google, and Amazon account for the highest number of
private submissions, with Meta alone testing 27 anonymous models in March alone.

We only scraped data from January to March 2025, yet we anecdotally observed behavior that
suggests submitting multiple variants was a long-standing practice amongst a subset of providers.
Over the last year, we have observed that major LLM providers such as Google, xAI, and OpenAI
are often announced as having the top-performing variant within just a few days of one another. For
example, OpenAI’s GPT-4.5 and xAI’s Grok-3 reached the top of the Chatbot Arena leaderboard
within the same day (March 4, 2025)14 15. Gemini (Exp 1114) from Google DeepMind reached the
top of the leaderboard on November 14, 202416 and shortly after, ChatGPT-4o (20241120) from
OpenAI claimed the top position on November 20, 202417. Just one day later, on November 21,
2024, Gemini (Exp 1121) regained the top spot18. Given the time typically required to develop,
refine, and test a foundation model, it is unlikely for the same provider to top the leaderboard
twice in a single week unless they were testing multiple variants simultaneously. In Section 3.2, we
demonstrate through simulated experiments that rapid leaderboard turnover can plausibly emerge
from providers optimizing for the highest possible score by testing multiple model variants in parallel.

Notably, we found that no private models were tested by academic labs during the observed period.
This leads us to believe only certain providers were made aware they could submit multiple private
variants, as we observe clear differences in the number and frequency of private testing among
providers.

3.2 Simulated Experiments on Private Testing and Retraction

Private testing coupled with the option to retract enables a best-of-N strategy, where an organization
submits multiple model variants to Chatbot Arena, privately evaluates them, and retains only the
top-performing variant to be publicly published on the leaderboard. In this section, we show that

14https://x.com/lmarena_ai/status/1896675400916566357
15https://x.com/lmarena_ai/status/1896590146465579105
16https://x.com/lmarena_ai/status/1857110672565494098
17https://x.com/lmarena_ai/status/1859307979184689269
18https://x.com/lmarena_ai/status/1859673146837827623
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best-of-N submissions violate the BT unbiased sampling assumption. This systematically inflates
model rankings and distorts the leaderboard ranking.

Figure 7: Impact of the number of private variants tested on the best Expected Arena
Score. We simulate a family of model variants with a latent average Arena Score of 1200. As we
progressively increase the number of private variants tested—and subsequently discover their corre-
sponding Arena Scores—the probability of selecting models from the higher end of the performance
distribution also rises. This enables the provider to effectively identify the model with the highest
score.

Unbiased Sampling Assumption. To study the selection bias scenario, assume a provider sub-
mits N variants of a model, each variant k having a true underlying skill parameter βk, sampled
from a distribution centered at some base skill level β. The probability of observing an exceptionally
high-performing variant increases with the number of submissions N . Thus, the observed skill of
the submitted model is: β̂Best = max{β̂1, β̂2, . . . , β̂N}.

Since each β̂k is subject to statistical fluctuation due to finite match sampling, selecting the best
variant based on observed performance introduces an upward bias. Specifically, the expected value
of the best-performing variant is strictly greater than that of a regular submission:

E[β̂Best] > E[β̂k], ∀k ∈ {1, 2, . . . , N}. (1)

where the draws are non-degenerate (Var(β̂k) > 0) and N ≥ 2 (See Appendix C for further details).
This violates the BT model’s assumption of unbiased sampling and alters the likelihood landscape.
The reported rating no longer reflects a single, unbiased estimate of skill, but an extreme value from
multiple independent estimations. As a result, the BT estimator systematically inflates the ratings
of models submitted under the best-of-N strategy, distorting leaderboard rankings.

Role of the number of private variants. In the Chatbot Arena, we observe that while only
a handful of providers know about private testing, there is also an asymmetry in the number of
private models tested. At an extreme, Meta tested 27 private variants in the lead up to Llama 4
launch. To investigate the effect of varying the number of private tests on model selection outcomes,
we simulate the process of identifying the highest-performing model within a family of variants. We
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Figure 8: Simulated impact of best-of-N submission strategies on Arena leaderboard
rankings. Model family A has a lower average Arena Score than Model family B, yet by
submitting multiple private variants and selecting the best-performing one, it can surpass the sole
public submission from Model family B. This simulation shows how providers can gain leaderboard
advantage by evaluating several variants privately and publishing only the top-scoring one.

assume that the true Arena Scores of the model variants are drawn from a normal distribution with
a mean of 1200. For each value of n ∈ {1, . . . , 50}, we perform 100 simulations in which n model
variants are independently sampled from the distribution. The variant with the highest score among
the sampled set is selected to represent the model family. Figure 7 presents the results, plotting the
number of private variants tested (x-axis) against the average of the maximum discovered Arena
Scores across simulations (y-axis). As the number of privately tested models increases, the expected
maximum Arena Score discovered rises accordingly. In our simulation, testing just 10 variants yields
a notable increase of approximately 100 points in the maximum score identified, compared to the
baseline scenario with no private testing.

Asymmetries in which providers have access to private testing. We observe in practice that
only a few preferred providers were allowed to test many variants and handpick the best result. As
we show in Figure 8, restricting private testing to a subset of providers can lead to scenarios where
a weaker family of models (Family A) enabled with private testing can outperform a stronger family
of models (Family B), which is restricted to a single submission. Although the performance of both
model families is in a similar range, Family A’s models have a lower average Arena score across all
models compared to Family B’s. In contrast to model provider B, who is unaware of the best-of-N
strategy, model provider A evaluates multiple models on the Chatbot Arena distribution and selects
the best-performing model. This allows provider A to evaluate multiple models on the Chatbot
Arena distribution and select the best-performing model, leveraging the tail of the distribution, to
achieve a higher leaderboard ranking. As a result, despite having a generally stronger model pool,
Family B ranks lower than Family A on the leaderboard.
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Having to pick from multiple final “candidate” models is a very common scenario during the de-
velopment of LLMs. At the end of the development process of a new model, a model provider
typically ends up with multiple variants, each excelling in different tasks due to variations in post-
training strategies or hyperparameter settings. They often perform well on different tasks, while
still being within similar overall performance bands. Selecting a final “official” model often involves
a compromise across a broad range of evaluation sets. A strong signal—such as a clear lead on
an arena-style leaderboard—can significantly influence this decision, tipping the preference toward
specific variants that perform best under the given evaluation framework. Hence, with an “informed
selection” strategy for model variants, a model provider can improve its ranking and reach the top
of the leaderboard compared to when it makes an “unguided selection” to choose the variant that
can be released on the public leaderboard.
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Figure 9: Allowing retraction of scores allows providers to skew Arena scores upwards.
We run a real-world experiment to measure the benefits of private testing. We show that it is possi-
ble to increase Arena scores even in the most conservative case of identical checkpoints, and further
amplify the difference by strategically testing different checkpoints. Left: Identical Checkpoints.
Arena Scores for Aya-Vision-8B yield different Arena scores (1069 vs. 1052). Right: Strategi-
cally Selected Checkpoints. Arena Scores for two different variants of Aya-Vision-32B, which
were both considered high-performing final round candidates according to internal metrics. We
observe large differences in final scores (1097 vs. 1059) for the two different model variants.

3.3 Real-world Chatbot Arena Experiment

Our simulation previously demonstrated that when model submissions are not standardized across
model providers, those who submit a larger number of private model variants gain a systematic
advantage, creating an uneven playing field for ranking. Since we do not have access to the final
scores of private model variants observed during our Arena scrape, we design a real-world experiment
to complement and validate our simulation findings. Specifically, we model two scenarios of best-
of-N testing to assess the impact of submitting multiple model variants.

Lower bound estimate of benefits of multiple submissions. We model the most conservative
case – measuring the gain from submitting and then only releasing the best Arena score obtained by
two identical checkpoints. For this purpose, we submitted two identical variants of Aya-Vision-8B
to the Arena in March 2025. This scenario is a very conservative lower bound of gains, as any
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difference in Arena score can be attributed to the benefits of multiple submissions rather than
differences in model quality. We used only two checkpoints because we wanted to limit the amount
of human annotator time we diverted to this exercise. We did not disclose that these were identical
checkpoints to Chatbot Arena. In Figure 9, we observe notable differences in final Arena scores
between identical checkpoints (1052 vs. 1069). As a result, 4 models are positioned between our two
identical checkpoints. This suggests that even with identical variants, it is very feasible to obtain a
biased positive advantage.

Realistic estimate of benefits of multiple submissions. In practice, a provider would likely
optimize the differences in the variants they are testing to maximize the signal from the Arena users.
To study this scenario, we compare two different variants of Aya-Vision-32B. The two checkpoints
are variants of the same model, with each showing slightly better performance on different subsets
of benchmarks. In Figure 9, we illustrate the extreme ends of the scores obtained by the two models
(1097 vs. 1059), with 9 models falling in between both variants on the leaderboard.

4 Results: Impact of Data Access Asymmetries on Arena Scores

Section Findings

• Extreme disparities exist in access to data from Chatbot Arena. These disparities
stem from difference in the number of private variants tested, sampling rate, and
silent deprecation. Private testing is an undisclosed policy, and we find that sampling
rate and silent deprecation do not reflect the publicly stated policy of Chatbot Arena. All
these policies appear to severely disadvantage open-weight and open-source providers. For
example, OpenAI, Google, Meta, and Anthropic collectively account for 62.8% of the Arena
data, which is 68 times more than the combined share of top academic and non-profit labs
like Allen AI, Stanford, Princeton, and UC Berkeley.

• Access to Chatbot Arena data has an outsized impact on performance. We fine-
tune models under a fixed training budget, varying the proportion of arena data relative
to non-Arena instruction-following samples, and observe a substantial increase in perfor-
mance. We show that incorporating a moderate amount of arena data greatly improves
performance on ArenaHard (Li et al., 2024b) with estimated gains of 112%, while showing
limited benefits for other tasks of interest. These results represent a conservative estimate
of gains given the limited access to arena-style data. Larger labs and companies likely have
access to significantly more such data, which, if used, could yield even greater gains.

4.1 Disparity in access to Chatbot Arena Data

Prompts from a large and diverse user base, such as those from Chatbot Arena users, serve as a
valuable signal for modeling user interests and preferences. This data is often accessible to model
providers through API calls originating from Chatbot Arena battles. Multiple factors impact the
amount of the data obtained by a given provider, some of which are determined by Chatbot Arena
versus others which are within the control of the providers:

1. Number of private variants being tested on the arena: As shown in Figure 6, some
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providers deploy far more private variants, which can significantly increase the volume of data
collected. We note that even with our experiment of launching multiple model variants, we
increased the amount of prompts collected from 5.9% with 1 variant to 19.4% with 3 variants.
Based on findings from Figure 6, the number of variants submitted is not uniform across all
providers, and some providers may increase variants to further amplify the volume of data
collected. This is of particular concern given Chatbot Arena is a community-driven leader-
board, however, the main beneficiaries of this free human feedback appear to be commercial
entities who are frequently preferred for private testing.

2. Sampling rate applied to provider models: We define model sampling rate as the per-
centage of daily battles a model participates in. The maximum sampling rate for a provider
is the highest rate achieved by any of its models on any given day. We determine the max-
imum sampling rate of providers based on scraped-random-sample, which is limited to the
specific period during which we collected this data (January 2025 to March 2025). As shown
in Figure 5, sampling rates vary significantly across providers. These rates are determined by
Chatbot Arena, but are often entirely inconsistent with the stated policy and prior proposals
by the organizers to automatically set sampling based upon which models have not converged
in score (Chiang et al., 2024). At the extreme, Google and OpenAI reach a maximum daily
sampling rate of 34%, while Reka registers the lowest at 3.3%. Other providers with relatively
high sampling rates include xAI (22.0%) and Meta (17.9%), highlighting substantial variation
across the board. We provide additional details about how sampling rates were determined
for each provider in Appendix E.5.

3. Number of models publicly hosted on the arena: A model only receives traffic if it is
live on the arena. However, Chatbot Arena frequently deprecates models. There are several
reasons to deprecate models in a benchmark. Chatbot Arena may be forced to deprecate a
model when a provider no longer supports it via its API. They also have policies for deprecating
models under certain conditions6: Models may be retired after 3000 votes “if there are two more
recent models in the same series and/or if there are more than 3 providers that offer models
cheaper or same price and strictly better (according to overall Arena score)”. We note that the
logic of this policy is difficult to audit in practice because many models are hosted for free on
the Chatbot Arena, and the use of the “or” condition means it is not clear what criteria (price
or quality) applies to decisions. We observe that many models are also silently deprecated,
which means their sampling rate is reduced to nearly 0% without notification, even though
some of them do not meet the stated criteria of the deprecation policy. We identify 205 models
that have been silently deprecated, a number that substantially exceeds the 47 models officially
marked as deprecated by Chatbot Arena. For a more detailed analysis, see Appendix I.

4. API Support for Models on the Arena: Developers who deploy a model and enable
Chatbot Arena testing via an API have a default advantage. This allows providers to collect
100% of the test prompts submitted on the Arena. In contrast, providers whose models are
hosted by a third party are often limited to publicly accessible data or must request access to
only 20% of the data (including prompts and human preferences) involving their models from
Chatbot Arena, as per their policy6.

We observe that the collective impact of these factors appears to be advantageous to a small handful
of providers and is often inconsistent with the stated policy. For example, in Figure 4, we show
that the combined share of OpenAI, Google, Meta, and Anthropic alone is 62.8% of the arena data,
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Figure 10: Use of Chatbot Arena dataset significantly improves win-rates on ArenaHard.
Increasing the amount of arena data in a supervised fine-tuning mixture (0% → 30% → 70%)
significantly improves win-rates of the resulting model against both the model variant where no
Chatbot Arena data is used and also Llama-3.1-8B. The win-rates are measured on ArenaHard (Li
et al., 2024c), which has a high correlation of 98.6% to Chatbot Arena.

which is 68 times more than the share of top academic and non-profit labs including Allen AI,
Stanford, Princeton, and UC Berkeley. These findings add to prior works that consistently show
better corporate access to AI training data across the ecosystem (Longpre et al., 2024c;b).

We note that the prompt samples available to each provider may not be mutually exclusive, as each
battle on the Arena involves two models (from the same or different model providers), allowing the
same prompt to be sent to two different providers. Details about statistics in Figure 4 are available
in Appendix G.

4.2 Risk of Potential Overfitting

One of the questions we want to answer is “What are the implications of data asymmetries? Does
having access to more data enable overfitting to the Arena?”. Overfitting refers to a phenomenon in
which a model learns not only the generalizable patterns in its training data but also the specific
noise or characteristics, resulting in strong performance on familiar or seen examples but degraded
performance on unseen and out-of-distribution inputs.

Overfitting is a particularly salient challenge in static evaluation settings, where fixed test sets
are vulnerable to overfitting through repeated exposure, data contamination, or intentional tuning
(Deng et al., 2024; Golchin & Surdeanu, 2024; Roberts et al., 2023; Dong et al., 2024; Singh et al.,
2024a). In contrast, Chatbot Arena has been widely adopted in part because it allows human users
to ask any questions they want, which creates a non-static test set (Don-Yehiya et al., 2024). This
means that, at least in principle, the test set is potentially harder to overfit to. However, this
assumes that the distribution is constantly changing.

To understand whether this is the case with data from Chatbot Arena, we do an exhaustive analysis
and observe that the true picture on Chatbot Arena is more complex. We observe two phenomena:
(1) The characteristics of prompts do shift notably over time, and (2) a non-trivial portion of
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prompts in one month are either exact duplicates or near-duplicates of prompts from previous
months. This means that some test prompts are very similar to (or even the same as) prompts seen
previously. Together, these suggest that having access to a large sample of last month’s data will
enable a developer to perform significantly better on next month’s test set.
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Figure 11: Language distribution of prompts submitted to Chatbot Arena from April
2023 to January 2025. Based on the historical-battles dataset, this figure tracks the monthly
share of prompt languages. Only languages with dedicated Chatbot Arena leaderboards are shown
individually; the rest are grouped under “Other”. A clear shift is observed: English prompt share
dropped from over 80% to nearly 50%, while usage of Chinese, Russian, and Korean prompts
increased significantly.

1) Long-term distribution shifts. Prior work clearly demonstrates how temporal distribution
shifts affect performance (Luu et al., 2021; Longpre et al., 2024d). On Chatbot Arena, notable
shifts have been observed in the distribution of prompts evaluated over longer periods, with a
consistent increase in the proportion of prompts from more complex categories, such as mathematics,
coding, and multi-turn conversations19. We also perform our own analysis of the change in language
distribution in the Arena based on the “language“ tag available as part of historical-battles
dataset. For example, in Figure 11, we observe that the proportion of languages outside of English
has varied over time. For instance, the share of Russian prompts increased from 1% in April
2023 to 8.8% in April 2024, and further to 15.7% by December 2024. Chinese prompts more than
doubled from 5-7% in 2023 to 16.4% in March 2024, coinciding with the introduction of the Chinese
leaderboard on Chatbot Arena, before dropping back to 6.2% in January 2025. Overall, the number
of multilingual prompts on the Arena has grown by 20% over 1.5 years, from 23.9% in April 2023
to 43.5% in January 2025. This indicates increased language diversity in submitted prompts.

2) Prompt redundancy and duplication. In parallel, we observe high levels of prompt duplica-
tion. We analyze a proportion of raw API calls we receive from Chatbot Arena between November
2024 and April 2025 (197,217 single-turn conversations). We switch to this source given that the
proprietary data Chatbot Arena releases are already de-duplicated, and so won’t capture the extent
of similar or overlapping queries. Between November 2024 and April 2025, de-duplication resulted

19https://blog.lmarena.ai/blog/2024/arena-category/
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Figure 12: Monthly prompt duplication rates. Prompts are from November 2024 to April
2025, excluding February 2025 due to insufficient data. Duplication is measured using two similar-
ity metrics: Exact Match and High Similarity (cosine similarity of text embedding > 0.95). For
simplicity, this analysis is limited to single-turn conversations. The chart presents the percentage
of battles in which duplicate or near-duplicate prompts were detected each month.

in an average prompt loss of 20.14%, peaking at 26.5% in March 2025 (Figure 12). While prompt
distribution changes over time, prompts in one month often serve as a proxy for the next. For
instance, 7.3% of prompts from December 2024 appear again in the exact form in January 2025.
If we relax the condition and consider high semantic similarity of prompt embeddings (using the
embed-multilingual-v3.0 model20), the same cross-month duplication rate increases to 9%. De-
tailed cross-month duplication statistics can be found in Appendix H. Both trends above suggest
that 1) sustained access to up-to-date prompt data and 2) the volume of sampled prompts in a given
month offer a significant competitive advantage in predicting performance in subsequent months.

Uniqueness of Arena Data. One reason providers may be motivated to explicitly optimize for
Chatbot Arena distribution is if it differs substantially from other evaluation settings that providers
may care about. There is sufficient signal to suggest this is the case. There is a context length limit
of 12000 characters on Chatbot Arena prompts, which excludes certain types of longer or more
complex inputs from being evaluated21, and can result in a selection bias of what is asked. The
user base of the Arena leans towards developers, which could result in the over-indexing of puzzles,
math problems, and questions such as How many r’s are there in strawberry?.22 For example, in
a released dataset from Arena (Zheng et al., 2024) with 33k samples, no questions are referencing
Chaucer while dozens of questions are about Star Trek, highlighting the uneven distribution of
topics in this test set23. For a global technology provider, real-world commercial applications may
differ significantly from this distribution.

Experimental Setup: To estimate the potential for overfitting to Chatbot Arena using data
20https://huggingface.co/Cohere/Cohere-embed-multilingual-v3.0
21https://github.com/lm-sys/FastChat/blob/main/fastchat/constants.py
22https://techcrunch.com/2024/09/05/the-ai-industry-is-obsessed-with-chatbot-arena-but-it-might

-not-be-the-best-benchmark/
23https://www.quantable.com/analytics/elos-and-benchmarking-llms/

19

https://huggingface.co/Cohere/Cohere-embed-multilingual-v3.0
https://github.com/lm-sys/FastChat/blob/main/fastchat/constants.py
https://techcrunch.com/2024/09/05/the-ai-industry-is-obsessed-with-chatbot-arena-but-it-might-not-be-the-best-benchmark/
https://techcrunch.com/2024/09/05/the-ai-industry-is-obsessed-with-chatbot-arena-but-it-might-not-be-the-best-benchmark/
https://www.quantable.com/analytics/elos-and-benchmarking-llms/


from a similar distribution, we fine-tuned a language model with identical training setups that only
differ in the composition of arena data used in the mixture. We construct our training dataset
by sampling at different rations from two different data pools: 1) arena-mix, which consists of
samples from Arena battles, and 2) other-sft-mix, a proprietary dataset which includes a variety
of supervised fine-tuning datasets focusing on instruction following, multilingual tasks, math, and
code. We fine-tuned a 7B base model that is used for the Cohere Command family (Cohere et al.,
2025) in these experiments. We refer to the three different training mixes as 0_arena, 30_arena,
70_arena which have 0, 30%, 70% of the training dataset sampled from the arena-mix respectively.
For all variants, the remainder percentage is sampled from other-sft-mix. All three models are
fine-tuned for 1.3K steps using a batch size of 128. We note that our goal here is not to produce a
state-of-the-art model but rather to estimate a lower bound for the performance gains that could
be expected from asymmetries in access to Arena data. Hence, we do not optimize with ablations
the correct weighting or data or conduct any hyperparameter sweeps.

Evaluation method: Our goal is to measure the lift provided from the training on Arena data on
the Arena held-out set. To do so, we measure relative improvements on the 500 English LMArena
ArenaHard prompts, an in-distribution test set published by Chatbot Arena that demonstrates
exceptionally high correlation (98.6%) with human preference rankings from Chatbot Arena battles
(Li et al., 2024c). This dataset consists of challenging user-submitted prompts from Arena that
have been carefully curated and evaluated against several criteria, including, but not limited to,
domain knowledge, complexity, and problem-solving. This dataset is widely used to gauge expected
performance on the Arena. To measure improvements, we simulate human preferences using LM-
as-a-judge, which allows us to measure a reasonable estimate of the gains in a controlled setting.
Various works have shown that this is correlated with human preferences (Dubois et al., 2023;
Rafailov et al., 2023; Kim et al., 2023). We compare against Llama-3.1-8B-Instruct (Grattafiori
et al., 2024) and measure win-rates using gpt-4o-2024-11-20 as our judge model24.

Results: From Figure 10, we observe that as the amount of arena-mix data increases, the models
improve in their evaluation on the ArenaHard prompts. Variant 0_arena scores a win-rate of 23.5%,
30_arena scores a win-rate of 42.7%, and variant 70_arena, which is trained on the most arena-mix,
data scores a win-rate of 49.9% against Llama-3.1-8B-Instruct. A win-rate of 50% indicates that
the compared models (Llama 3.1 8B Instruct and 70_arena) are on par on the ArenaHard test set.
The relative gains in win-rates are 81.7% for the 30_arena and 112.3% for the 70_arena variant.
The gains we observe are striking in part because we do not heavily optimize these variants (we
trained 3 variants in total and did no hyperparameter optimization or tuning of training steps).
To assess whether performance gains generalize beyond the Arena benchmark, we evaluated the
fine-tuned models on the out-of-distribution benchmark MMLU (Hendrycks et al., 2021). The
results reveal a clear divergence in performance trends (Table 9): while increasing the proportion of
Chatbot Arena data within a fixed training budget yielded consistent improvements on the Arena
test set, MMLU performance slightly declined from 66.5% (0_arena) to 64.4% (30_arena) and
65.9% (70_arena). This suggests that gains from Chatbot Arena data are highly specific and do
not translate to broader generalization, raising important questions about whether leaderboard
improvements reflect meaningful progress or simply overfitting to a narrow evaluation distribution.

We also note that often it is not necessary to train explicitly on the data to gain from data access. For
example, providers may use the composition of the data to make decisions about weighting different

24https://platform.openai.com/docs/models/gpt-4o
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data sources (Üstün et al., 2024), or may use a small subset of the data to create high-quality
synthetic data that is close to the original distribution (Odumakinde et al., 2024; Shimabucoro
et al., 2024; Dang et al., 2024a; Aakanksha et al., 2024). Given the stakes behind ranking highly
on Chatbot Arena, it is likely that the data at a provider’s disposal from Chatbot Arena is being
actively leveraged by different providers to gain an advantage.

5 Results: Impact of Model Deprecation on Arena Scores

Section Findings

• Model deprecations under a changing task distribution lead to unreliable rank-
ings. We show that shifts in the task distribution highlight the non-stationary nature of
the evaluation environment and have important implications for the stability and fairness
of model rankings over time. In evolving task distributions, premature model removal in-
troduces inconsistencies, breaking the BT model’s transitivity assumption and distorting
rankings.

• Model deprecation may result in disconnected subgraphs, which violates BT
reliability. The BT model assumes a sufficiently connected comparison graph to produce
globally consistent rankings. When models are deprecated unevenly or when sampling
strategies fail to ensure robust overlap in comparisons, the resulting history matrix can
become fragmented. Through simulated experiments, we show that this can produce frag-
mented clusters, and as a result, the global rankings become unreliable.

According to the backend codebase of Chatbot Arena25, 47 models are publicly listed as deprecated.
In addition, as discussed in Section 4.1, 205 models on Chatbot Arena have been silently deprecated
by reducing their active sampling rates to near zero (see Figure 17). We observe that model
deprecation disproportionately affects different types of models. Specifically, 87.8% of open weights
and 89% of open-source models have been deprecated, in contrast to a lower deprecation rate of
80% for proprietary models.

While deprecating older models is necessary to maintain a dynamic leaderboard, especially as new
models are introduced regularly, we question how excessive deprecation may compromise the relia-
bility and stability of model rankings. When models are deprecated, future models that enter the
Arena will not have direct comparisons with them. However, in principle, the BT model should
still handle this reliably because of the transitivity property (Boubdir et al., 2024). Intuitively,
transitivity means that if model A is better than model B, and model B is better than model C,
then model A should also be better than model C. Transitivity allows the BT model to infer miss-
ing outcomes—if two models share common opponents, their relative ranking can be deduced even
without a direct comparison (Bradley & Terry, 1952). Formally, in the BT model each competitor
i is associated with a positive parameter πi > 0, and the probability that model i beats model j is
given by:

P (i > j) =
πi

πi + πj
.

25http://github.com/lm-sys/FastChat/blob/0e6d3e4beaab66f4d3f93db72541a4abab8af28d/fastchat/serve
/monitor/monitor_md.py#L7
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Figure 13: Share of proprietary and open models that either officially deprecated or
inactive on the arena based on leaderboard-stats during the period March 3rd-April
23rd, 2025. Overall, open-weight and fully open-source models are more likely to become depre-
cated or inactive compared to proprietary models.

Suppose πA > πB and πB > πC . Then

P (A > B) =
πA

πA + πB
> 0.5 and P (B > C) =

πB
πB + πC

> 0.5.

Moreover, because πA > πB > πC , we have:

πA + πC < πA + πB =⇒ P (A > C) =
πA

πA + πC
>

πA
πA + πB

.

Transitivity is a critical property that allows for inferring rankings using fewer data points. However,
transitivity requires several underlying properties to hold. In particular, two of these properties are
salient for our study of the impact of deprecation on reliability:

• Assumption 1: Evaluation conditions remain constant. Transitivity relies on the
assumption that evaluation conditions remain constant—that is, paired comparisons must
come from a consistent set of tasks or contexts. For example, consider a setting where Tom
wins against Susan in chess, and Susan wins against Ronald in both chess and tennis. We can
infer Tom’s ranking relative to Ronald in chess, but not in tennis. In practice, Chatbot Arena’s
prompt categories and task types evolve over time, and some models become deprecated,
meaning they are no longer re-evaluated under the current conditions. We show in Section 5.1
that when a model’s battle history is limited to outdated conditions, its comparisons no longer
accurately reflect performance in the new context.

• Assumption 2: Network of comparisons must be fully interconnected. Every model
must be linked directly or indirectly through pairwise matchups. So in a chess example, we
can estimate Tom’s performance against Ronald because they have each played at least one
competitor in common (in this case, Susan). If Ronald has had no matches with anyone who
has played Tom, we can no longer infer reliably what their rankings are relative to each other.
Deviations from transitivity or a fragmented comparison graph can compromise the reliability
and consistency of the strength estimates. In Section 5.2, we show that deprecations may
result in these fragmented graphs.
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In Section 5.1 and Section 5.2 that follow, we will interrogate whether Chatbot Arena fulfills each
of these assumptions.

5.1 Transitivity Under Changing Evaluation Conditions

As we have shown in Section 4.1, the distribution of Chatbot Arena is unique since long-term shifts
occur in categories and use cases. This distributional shift contrasts with the static environments
typically assumed in Elo and Bradley-Terry systems, such as chess, where the rules and game format
remain fixed, ensuring a consistent set of evaluation conditions. If all models were continuously
sampled across all points in time, the BT model would likely remain robust because every model
would be evaluated on the evolving distribution of tasks. However, as shown in Figure 13, many
models are deprecated over time, and their scores stop getting updated.

Experimental Setup: To investigate how model deprecations under a changing task distribution
can impact model rankings, we simulate BT rankings of models under evolving evaluation condi-
tions. We initialize four models—A, B, C, and D—each with distinct performance profiles across
two task types, Task-1 and Task-2. These tasks represent different prompt categories, and each
model’s relative strength is defined through task-specific win probabilities. For example, model B
has a 90% chance of defeating model D on Task-1 but only a 20% chance on Task-2, with some
pairs also allowing for ties. The task-specific win probabilities for different models are provided
in Table 8. These probabilities reflect the models’ varying strengths across tasks, mirroring the
real-world observation that models excel at different types of prompts.

The simulation is structured into two sequential phases to mimic the evolving task distribution
observed on Chatbot Arena. During the first phase, battles are predominantly drawn from Task-
1. Each of the four models participates in 1000 battles, and the resulting outcomes are used to
compute initial rankings. In the second phase, the battle distribution gradually shifts toward Task-
2. Since model win-rates are task-dependent, battle outcomes change accordingly. We simulate
1000 additional battles in this phase and examine two scenarios to investigate how shifts in prompt
distribution and model deprecations jointly influence final rankings. We compute the BT Scores
for all models under both scenarios using the implementation provided by Chatbot Arena in their
official FastChat codebase26. These scores are then used to determine the final model ranks.

• Scenario I: without deprecation. We simulate all 2000 battles across both phases, with
all four models participating throughout. This represents an ideal scenario where no model is
deprecated, and all are evaluated across the evolving task distribution.

• Scenario II: with deprecation. We simulate all 2000 battles across both phases. However,
at the end of phase 1, model D is deprecated and does not participate in the second phase.

Deprecation given changing distribution results in unreliable Arena rankings: As il-
lustrated in Figure 14, our simulation shows that rankings produced by the BT model are highly
sensitive to model deprecation, particularly when the prompt distribution changes over time. In
the scenario without deprecation, we observe the true rankings given that the BT model remains
reliable because it reflects performance across the full history of interactions. However, we observe

26https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/monitor/rating_systems.py
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Figure 14: Impact of evolving task distributions and model deprecation on model rank-
ings. Left: Two-phase task distribution used in the simulation. Phase 1 is Task-1 heavy, with
most battles based on Task-1; Phase 2 is Task-2 heavy, with battles predominantly based on Task-
2. Right: Model rankings under changing task distributions and deprecation settings. Scenario
I only differs from Scenario II in that Model D is deprecated halfway through the battle history
(after phase 1). This deprecation causes Scenario II to produce a completely different ranking over
models as compared to Scenario I.

the rankings differ if we deprecate Model D between stages. While its matchups from Phase 1 still
influence BT scores, the absence of updated comparisons causes a skew in the rankings of remaining
models. Models A and D are ranked lower, and Models B and C are ranked higher than their true
performance merits. Comparing Scenarios I and II in Figure 14 reveals a clear divergence, with
the scenario involving deprecation yielding unreliable rankings that no longer reflect true relative
performance under the evolving task distribution.

This violates core assumptions of the BT model, namely, that rankings reflect transitive and consis-
tently sampled matchups, ultimately compromising the validity of inferred rankings. When models
are no longer sampled under current task distributions, historical pairwise comparisons cease to rep-
resent present-day performance. This issue is particularly problematic in real-world settings where
user prompt distributions shift over time. For instance, a model tuned for multilingual prompts
may improve ranking as non-English tasks become more common. However, if deprecated, its BT
ranking will likely understate its true performance. Similarly, code-specialized models may benefit
from the increasing volume of coding tasks, but only if they continue to participate in evaluation.

5.2 Sparse Battle History Risks

In this section, we show that the deprecation policy can lead to a sparse matrix and disconnected
comparison graphs, which in turn distort the resulting rankings. As demonstrated by Ford Jr
(1957), the maximum likelihood estimate does not exist if models can be partitioned into two non-
empty subsets without comparisons between them or if all comparisons between the two groups
are one-sided (i.e., one group always wins). Therefore, to ensure a unique and finite estimation,
the comparison graph must be connected. For any possible partition of models, there must be at
least one win going in each direction across the partition. This ensures that no subset of models is
entirely isolated in the win/loss structure. The Chatbot Arena comparison matrix can potentially
become disconnected because of the extremely high levels of model removals over time (as discussed
in Figure 13).

Experiment Setup: To investigate the impact of sparse comparison graphs on the rankings ob-
tained via the Bradley-Terry model used by Chatbot Arena we simulate the following scenarios:
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Figure 15: Impact of comparison graph sparsity on model rankings. Left: Rankings
for models D, E, F, and G diverge from the gold rankings when the comparison graph is sparse,
whereas model rankings fully align with the gold rankings when the comparison graph is dense.
Right: Visualization of the comparison graphs in sparse and dense settings. An edge between two
models indicates a head-to-head matchup, annotated with the number of wins for each model. For
example, in the sparse graph, Model A and Model B played 437 matches, with Model A winning
266 and Model B winning 171.

• Scenario I: Dense comparison graph. All models are allowed to compete against one
another—albeit with varying numbers of head-to-head battles—resulting in a well-connected
comparison graph in which every node (model) is linked to others via edges representing battle
outcomes.

• Scenario II: Disconnected comparison graph. We create a disconnected battle history
by imposing constraints on which pairs of models are allowed to engage in battles. This
allows us to create a sparse battle history where each model ends up playing against a subset
of models.

The full comparison graph based on battle histories for both scenarios is shown in Figure 15. In
both scenarios, a total of 2000 battles are played under the corresponding setting. For a paired
match between models A and B, each with respective true skill ratings rA and rB, the expected
scores EA and EB can be computed as:

EA =
1

1 + eα(rB−rA)
, EB =

1

1 + eα(rA−rB)
(2)

The expected scores EA and EB are used to predict the winner of the battle. For simplicity, we
exclude the possibility of ties in this experiment. We assign the following true skill ratings to the
models: 1450 (Model A), 1390 (Model B), 1250 (Model C), 1200 (Model D), 1101 (Model E), 1150
(Model F), and 1000 (Model G). These ratings are used to calculate the expected scores and match
outcomes. Finally, we compute BT Scores for all models under both scenarios using the official
implementation, followed by Chatbot Arena 26. This is then used to determine the ranks for each
model corresponding to both scenarios.

Sparse or disconnected graphs lead to unreliable rankings: Figure 15 illustrates the model
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rankings with sparse and dense battle history graphs. We observe that the rankings derived from
the dense comparison graph align closely with the models’ rankings according to their true skill
ratings. In contrast, a sparse or disconnected comparison graph results in an inaccurate estimation
of the models’ skills. These results highlight that reliable rankings under the BT model require a
connected comparison graph. While some level of model removal is inevitable (for example, models
are no longer hosted on an API), preserving connectivity means ensuring that comparisons remain
sufficiently distributed across active models and that transitions in and out of the pool do not isolate
subsets of models from the broader comparison structure.

6 Recommendations and Guidelines for Improving Leaderboards

When my information changes, I alter my conclusions. What do you do, sir? — John
Maynard Keynes

We include below recommendations that we believe are urgent and critical. However, we also believe
these recommendations are very achievable and will restore scientific credibility and trust within
the wider research ecosystem:

Prohibit score retraction after submission. Currently, providers who have engaged in private
testing are allowed to retract submissions and only submit the best variant to the public leaderboard.
As we have shown in Section 4.1, this can lead to overfitting and obscures meaningful progress as it
makes it difficult to distinguish between models that have legitimately improved versus those that
have exploited statistical shortcuts (Ying, 2019). We urge Chatbot Arena to prohibit retraction
after submission, ensuring all tested variants’ scores are permanently visible on the leaderboard.
Providers should also disclose the total number of private variants tested prior to public launch,
including historical submissions, to contextualize their results.

Establish transparent limits on the number of private variants per provider. As illus-
trated in Figure 6, private testing volume varies widely across providers, creating unfair advantages.
To curb overfitting and level the playing field, Chatbot Arena should enforce a strict cap of private
variants per provider for any given model launch. This should be enforced at a provider level, and
not per model type and size as that is impossible to audit with API hosting. This strict limit
should be disclosed to all providers (proprietary, open-weights, open-source) and to the wider Chat-
bot Arena community. This restriction would discourage excessive undisclosed testing while still
allowing limited iteration.

Establish clear and auditable model deprecation criteria. The current criteria, which states
“Models may be retired after 3000 votes if there are two more recent models in the same series
and/or if there are more than 3 providers that offer models cheaper or same price and strictly
better (according to overall Arena score) than this model” is ambiguous and make it impossible to
audit the logic in practice. Key terms like “same series” and “more recent” lack formal definitions,
making it unclear how to determine whether a model is eligible for retirement based on lineage.
Additionally, the requirement that “more than 3 providers” must offer strictly better and cheaper
models introduces confusion around what threshold of improvement in Arena Score is considered
meaningful. The use of “and/or” further complicates interpretation, as it’s unclear whether meeting
one condition is sufficient or if both must be satisfied. Lastly, using price as a filtering criterion
is problematic since it’s subject to change, varies across hosting platforms, and is not inherently
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tied to a model’s performance or utility. We note that many of these models are hosted for free on
the Arena, and so there should be clarity about what source of pricing is being used. This lack of
precision makes it challenging to apply the rule consistently or verify retirement decisions.

We recommend a stratified approach that retires models proportionally across proprietary, open-
weight, and open-source categories to preserve balance and fairness in the evaluation based on
two criteria: availability and performance. We propose retiring the bottom 30th percentile within
each category of open-source, open-weight, and proprietary after rankings converge. This stratified
pruning prevents provider-type bias, keeps strong models from underrepresented groups visible, and
maintains comparison graph connectivity. It also reduces ranking inconsistencies seen with uneven
retirement, as discussed in Section 5.

Improve sampling fairness. As shown in Figure 5, the sampling rates vary greatly by providers,
and also disproportionately undersample open-weight and open-source models, creating large asym-
metries in data access over time and resulting in unstable Arena scores (Section 5). This is par-
ticularly important given that this is a community-driven voting benchmark, where at present free
human feedback is primarily benefiting proprietary models. This avoids disparities over time and
a status quo where proprietary models are benefiting more from valuable and freely given human
data (Sambasivan et al., 2021). In their own work (Chiang et al., 2024) (Section 5, Equation 9), the
Chatbot Arena authors introduce an active sampling rule designed to enhance the efficiency and
statistical robustness of the leaderboard’s evaluation process. This rule selects model pairs based on
the expected reduction in the confidence interval of the win-rate estimate, and is formally defined
as:

Pt(a) ∝

√
Σt,a,a

|{t : At = a}|
−

√
Σt,a,a

|{t : At = a}|+ 1

where Pt(a) is the sampling probability of model pair a at time t, and Σt,a,a is the estimated variance
for the win-rate of pair a at time t.

This formulation effectively prioritizes under-evaluated and high-variance pairs, aligning sampling
with the goal of rapidly reducing uncertainty in rankings. While this sampling rule is clearly
articulated in the paper, we have not seen evidence of its deployment in the current leaderboard.
We recommend adopting this sampling strategy in practice and providing periodic reporting on its
usage. Doing so would align the platform’s operations with its methodological innovations, support
more balanced and transparent evaluations, and improve confidence in leaderboard dynamics over
time.

Provide public transparency into all tested models, deprecations, and sampling rates.
Most of these findings were only possible through access to private model testing, or crawling
Chatbot Arena over a period of time. Providing transparency into the full suite of models that
were tested, deprecated, and how often they were sampled against which other models, would
enable the oversight and trust in the benchmark that Chatbot Arena affirms in their policies. This
transparency could be provided on a rolling basis (e.g., every quarter, for the prior quarter of
model battles). It would enable the community to help in the process of continuing to improve
this community benchmark. For instance, the backend codebase of Chatbot Arena– FastChat –
publicly lists deprecated models on GitHub25, where 47 models are explicitly marked as deprecated.
However, four times that number have been silently deprecated without warning. We recommend
Chatbot Arena expand the definition of “deprecated” to include models that are no longer being
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regularly sampled from, and list these deprecated models on their website to make it transparent
for everyone which models are no longer active on Chatbot Arena.

7 Limitations

We do not have insight into Chatbot Arena’s raw data: A subset of the data sources utilized
for this study have undergone pre-processing by Chatbot Arena, which as stated by Chatbot Arena
often involves de-duplication, removal of battles corresponding to suspicious voting patterns, etc
(Chiang et al., 2024). Through this work, we also establish that private battles are removed from
the datasets released by Chatbot Arena. Although we also have proprietary API data for the
models we test on the Arena, it only reveals a subset of battles. Without access to original and
comprehensive raw data, it is hard to investigate patterns related to adversarial voting where users
intentionally submit votes to manipulate rankings or undermine the system. Various previous works
have shown that adversarial voting is a critical concern for the reliability of any crowd-sourced
evaluation platform like Chatbot Arena (Huang et al., 2025) (Min et al., 2025). We do not explore
this in this work, but see more investigation here as an important topic for future work.

Our scraped data snapshot only covers a limited period: Our scraped-random-sample was
the only way to identify private variants being tested by various providers. However, it covers a
limited time period from January–March, 2025. This time frame coincided with Meta’s launch of
Llama 4, and so we find them to be the provider with the highest number of private variants in
our analysis. We believe we might be underestimating the counts for providers having fewer model
launches during this period.

Our training experiments likely underestimate the potential to overfit: Our estimate of
overfitting is likely conservative, as it is based on training with only a fraction of the data believed to
be available to some proprietary model providers. This disparity suggests that proprietary models
may be trained on 5 to 10 times more data than we use, potentially increasing the risk of overfitting
to patterns not present in our smaller subset. These observations underscore the importance of
further examining data scale and its implications for model overfitting to certain leaderboards.

We rely on the model’s self-identification to attribute private models to their respec-
tive providers: Since the identity of anonymous models is not publicly disclosed, we use model
self-identification as a proxy—prompting each model directly and observing how it responds. When
a model consistently names a particular provider across multiple prompts, we attribute it to that
provider. While this method provides a reasonable signal, it is inherently approximate. Due to
limited data and the potential for models to respond inconsistently or ambiguously, some misat-
tributions may occur. To encourage validation of our estimates, we include the codename and our
estimate of identity in Appendix E.4. We welcome correspondence with the authors from providers
if any of the estimates of ownership are incorrect.

8 Related Work

The strength of science lies in its ability to withstand challenge, verification, and repli-
cation. — Richard P. Feynman
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8.1 Meta-studies on the Rigor of Benchmarking in AI

Our work contributes to a wider body of work examining the role of benchmarks in determining
progress in machine learning. Benchmarking has played a central role in shaping research prior-
ities and incentives within the deep learning community (Koch & Peterson, 2024). Research has
found that benchmarks are rarely impartial and instead shaped by the environments in which the
benchmarks are made, finding that assumptions, commitments, and dependencies can often have
large implications in final outcomes (Aniba et al., 2010; Bartz-Beielstein et al., 2020). Creating a
meaningful and reliable benchmark is challenging, and there has been critical work identifying key
benchmark desiderata and open challenges.

Propensity for overfitting. Static task-based leaderboards, such as Hugging Face’s Open LLM
Leaderboard (Fourrier et al., 2024; Gao et al., 2024) and OpenCompass (Contributors, 2023), aim
to evaluate models across a broad range of skills but are often susceptible to data contamination and
implicit overfitting (Deng et al., 2024; Golchin & Surdeanu, 2024; Roberts et al., 2023; Dong et al.,
2024; Singh et al., 2024a; Longpre et al., 2024a). Prior works (Deng et al., 2024; Golchin & Surdeanu,
2024; Yang et al., 2023) have proposed various methods for detecting contamination, while Dong
et al. (2024) discusses how such contamination impedes the ability to distinguish true generalization,
ultimately hindering progress. Although dynamic, live benchmarks like Chatbot Arena significantly
reduce the risk of overfitting, we report in this paper that certain practices—such as multiple
submissions during the anonymous testing period and best-of-N submissions—tend to favor large,
proprietary players with disproportionate access to data. As a result, model development may be
deliberately optimized for performance on Chatbot Arena.

Lack of standardization across benchmarks. The lack of standardization in benchmarks
complicates meaningful comparisons due to inconsistent metrics and task definitions. Ethayarajh
& Jurafsky (2020) critique NLP leaderboards for prioritizing accuracy over dimensions like model
compactness and fairness. Similarly, Ruder (2021) highlights that benchmarks such as SuperGLUE
(Sarlin et al., 2020) are quickly saturated, with models reaching superhuman performance while still
failing in real-world scenarios, underscoring the need for dynamic and standardized evaluation. This
inconsistency risks misleading practitioners, as echoed in recent critiques (Bartz-Beielstein et al.,
2020; Reuel et al., 2024).

Quality of data and limited reproducibility. A recent study by Vendrow et al. (2025) revealed
widespread label errors that compromise evaluation reliability, showing that even frontier LLMs
can struggle with seemingly simple tasks. Similarly, Digan et al. (2021) identified reproducibil-
ity challenges arising from complex data streams, which affect result consistency. Related work
(Bartz-Beielstein et al., 2020; Longpre et al., 2023; Reuel et al., 2024; Albalak et al., 2024) further
emphasizes that poor data quality and limited reproducibility can lead to unreliable evaluations
and undermine scientific credibility.

Favored benchmarks may not capture performance in the real world. Commonly used
benchmarks often fail to capture real-world performance, creating a gap between test scores and
practical utility due to their tendency to overlook the dynamic and complex nature of real-world
tasks. Recent studies (Ott et al., 2022; Parli, 2022) highlight this disconnect, observing that mod-
els frequently excel on benchmarks while underperforming in practical applications, especially as
benchmarks quickly reach saturation.
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8.2 Human Voting-based Benchmarks

Wider studies on the role and benefits of human voting-based benchmarks. Chatbot
Arena is an example of a human voting-based benchmark. Human judgment has long been regarded
as the gold standard for evaluating the quality of model-generated outputs. These models should
ultimately align with human values, and certain nuanced qualities, such as coherence, harmlessness,
and readability, are best assessed by humans (Van Der Lee et al., 2019; Boubdir et al., 2023).
Platforms like Chatbot Arena (Chiang et al., 2024), Talk Arena (Li et al., 2024a), and Game
Arena (Hu et al., 2024), Aya UI Interface (Singh et al., 2024c) effectively use crowdsourcing to
gather large volumes of real-world user prompts and feedback. Many opt for Elo-like or BT-style
rankings to rank models. Moreover, collecting human preference data has also proven invaluable
for alignment techniques like Reinforcement Learning from Human Feedback (RLHF) (Christiano
et al., 2017; Ouyang et al., 2022; Ahmadian et al., 2024; Dang et al., 2024a), which helps fine-
tune models to generate more natural and human-preferred responses. Human voting has been
shown to mitigate some of the biases associated with using LLM-as-a-judge approaches, which,
while improving evaluation efficiency, may raise concerns about robustness (Raina et al., 2024) and
introduce various forms of bias (Koo et al., 2023; Shimabucoro et al., 2023; Chen et al., 2024; Zheng
et al., 2024). Furthermore, live leaderboards offer several advantages over static task benchmarks,
including a lower risk of data contamination and greater adaptability to evolving evaluation needs.

Critiques of Human-Voting Based Benchmarks. Voting-based live benchmarks like Chatbot
Arena also face evaluation challenges not addressed in this paper. Chatbot Arena (Chiang et al.,
2024) has made substantial efforts to ensure reliability and security, including malicious user detec-
tion, bot protection via Google reCAPTCHA v3, vote limits per IP address, prompt de-duplication,
and other safeguards6. Nonetheless, recent work has focused on auditing the reliability of human-
voting-based live leaderboards. For instance, studies have demonstrated that such leaderboards are
vulnerable to low-cost manipulation, with adversarial users able to de-anonymize model responses
and carry out targeted voting attacks (Huang et al., 2025). Additionally, Zhao et al. (2024); Min
et al. (2025) suggest that Chatbot Arena rankings can be artificially inflated through various ad-
versarial voting strategies. These vulnerabilities raise concerns about the overall trustworthiness of
Chatbot Arena. While our study does not explicitly investigate adversarial voting, we note that
Chatbot Arena ’s policy of informing model providers when testing begins and disclosing model
aliases may create conditions conducive to leaderboard manipulation.

9 Conclusion

It is far easier to point out issues with the Arena than the huge amount of work that went into
building it. While our work is motivated by the need to maintain scientific integrity in AI progress,
we believe it is important to note the huge amount of work involved for a small group of organizers
to build a hugely popular community benchmark. Their efforts have democratized access to many
models and enabled a large and varied user base to weigh in on what matters in the real world for
model selection. Hence, while we point out systematic issues with Chatbot Arena as it is now, we
also acknowledge that many of these issues may have gradually emerged as the leaderboard took on
outsized importance in visibility to providers.

This work demonstrates the difficulty in maintaining fair evaluations, despite best intentions. We
show that coordination among a handful of providers and preferential policies from Chatbot Arena
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towards the same small group have jeopardized scientific integrity and reliable Arena rankings. The
widespread and apparent willful participation in the gamification of arena scores from a handful of
top-tier industry labs is undoubtedly a new low for the AI research field. As scientists, we must
do better. As a community, we must demand better.

We believe it is very feasible for the organizers of Chatbot Arena to continue to innovate and restore
trust by revising their policies. We propose a series of very straightforward recommendations to
help reinforce the reliability and fairness of the leaderboard. Most urgently, providers should not
be allowed to choose which scores are made public. There should be strict and transparent limits
to the number of private variants per provider. Providers, whether from academic or industry labs,
should be aware of private testing and the limits should be the same across providers. There should
be transparent criteria for model removal from the arena and fairer sampling that is motivated by
reducing uncertainty in rankings instead of being skewed towards giving proprietary models more
battles. We believe the implementation of these recommendations is critical for addressing ranking
distortions, but also necessary in the long term to ensure the benefits from participating on the
leaderboard are not concentrated in a handful of providers.
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A Chatbot Arena Background

LMSYS originated from a multi-university collaboration involving UC Berkeley, Stanford, UCSD,
CMU, and MBZUAI in 2023. It was established as a non-profit corporation in September 2024 to
incubate early-stage open-source and research projects. Chatbot Arena was first launched in May
2023 under LMSYS and later evolved into a standalone project with its own dedicated website27

maintained under the name LMArena by researchers from UC Berkeley SkyLab. It has emerged as
a critical platform for live, community-driven LLM evaluation, attracting millions of participants
and collecting over 3 million votes to date.

LMArena operates based on human preferences. Chatbot Arena asks users to input prompts in
battles. The user then votes for their preferred model based on the outputs generated by the
models in the battle in response to the user’s prompts. These preferences are then used by Chatbot
Arena to compute model ratings using algorithms like Online Elo and Bradley-Terry.

B Bradley-Terry Rating Model

Consider a set of m players (models) and n pairwise comparisons between them. Let X ∈ Rm×n

be the design matrix, where each column represents one pairwise comparison. In the Bradley-Terry
27https://lmsys.org/blog/2024-09-20-arena-new-site/
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model, the probability that player i is preferred over player j in a comparison is modeled as:

P (i preferred over j) =
1

1 + e(βj−βi)

Then, in the matrix X, column vector k has a value of 1 at position i , -1 at position j, and 0
elsewhere. Let Y ∈ {0, 1}n be the vector of observed outcomes, where Yk = 1 if player i wins the
k-th comparison and Yk = 0 if player j wins. Our goal is to estimate the Bradley-Terry coefficients
β ∈ Rm, which determine the relative strengths of the players. The coefficients β are estimated via
maximum likelihood estimation by minimizing the expected cross-entropy loss,

β̂ = arg min
β∈Rm

1

n

n∑
k=1

ℓ
(
σ(XTβ)k, Yk

)

where σ(·) is the logistic function that models the relative player strengths, and ℓ(·) represents the
binary cross-entropy loss between the predicted probabilities and the observed outcomes Y . The
estimated coefficient β captures the latent strength of each player.

Once the Bradley-Terry model estimates the coefficients, we can scale them to obtain Elo-like ratings
using the transformation:

Rm = scale ∗ β + initial rating

In practice, Chatbot Arena does not rely solely on a model’s Arena Score for ranking. Instead, it
also considers the confidence intervals associated with these scores. When the confidence intervals
of two models overlap, it becomes difficult to determine which one is truly better. This uncertainty
is reflected in the final ranking table, adding nuance and statistical rigor to the leaderboard (Chiang
et al., 2024).

rank(m) = 1 +
∑

m′∈[M ]

1
{
m′ > m

}

C Unbiased Sampling: Why Selecting the Maximum Introduces
Bias?

Let (β̂k)
N
k=1 be i.i.d. real-valued random variables with common cumulative distribution function

F and finite expectation µ := E[β̂k]. Assume the distribution is non-degenerate, i.e., Var(β̂k) > 0.
The maximum is defined as:

β̂Best := max{β̂1, . . . , β̂N}, N ≥ 2.
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Theorem 1 For every N ≥ 2,

E[β̂Best] > E[β̂k] ⇐⇒ Var(β̂k) = 0.

Proof 1 The cumulative distribution function (CDF) of the maximum is

Fβ̂Best
(x) = P(β̂Best ≤ x) = F (x)N .

Using integration by parts, we have:

E[β̂Best]− E[β̂1] =
∫ ∞

−∞
x d(F (x)N − F (x))

=

∫ ∞

−∞
(F (x)− F (x)N ) dx.

For all x such that 0 < F (x) < 1, and N ≥ 2, we have F (x)N < F (x), so the integrand is strictly
positive on a set of positive measure (since the distribution is non-degenerate). Thus, the integral –
and hence the difference in expectations – is strictly positive.

If Var(β̂1) = 0, then F is a step function with a single jump (a constant distribution), and F (x)−
F (x)N = 0 for all x, yielding equality.

Remark 1 This result formalizes the selection bias arising when one reports the best out of N
noisy skill estimates: statistical fluctuations ensure that the maximum overestimates the expected
performance of a typical sample. This is especially relevant in leaderboard scenarios where multiple
submissions are made and only the top-performing one is reported. This phenomenon is well-studied
in the theory of order statistics (see Arnold et al. (1992); David & Nagaraja (2003)).

D Data sources

To gain insights and analyze various trends in the Chatbot Arena leaderboard, we leverage multiple
data sources. In total, our real-world data sources encompass 2M battles and cover 243 models
across 42 providers. Below, we describe the different datasets used in our analyses.

1. Historical Battles (historical-battles): is a collection of 1.8 million battles from Chatbot
Arena from April 2023 to January 2025. We build this resource by combining both released
public battles by Chatbot Arena and proprietary battle dataset released by Chatbot Arena to
providers such as Cohere based upon their policy6. We describe both datasets in more detail
Appendix D.1. We leverage historical-battles dataset as a key resource for quantifying
task distribution drift (see Figure 11):

• How do Arena use cases change over time?

2. API Prompts: Majority of historical-battles dataset does not contain prompts as shown
in Table 1. Additionally, all datasets published by LMArena are already de-duplicated so
they won’t be useful for capturing the extent of similar or overlapping queries. Hence we
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switch to prompts collected via Cohere’s API based on requests received via Chatbot Arena,
comprising a total of 567,319 entries. For simplicity and the purposes of this study, we excluded
records with null values and multi-turn data and analyzed 197,217 single-turn conversations
collected between November 2024 and April 2025. The models include command-r-08-2024,
command-r-plus-08-2024 (Cohere, 2024), aya-expanse-8b, aya-expanse-32b (Üstün et al.,
2024; Dang et al., 2024b), and command-a-03-2025 (Cohere et al., 2025), along with three
private variants. Of these, 62% of the data was labeled as coming from Aya models, while
the remaining 38% was attributed to Command models. We use this dataset for prompt
duplication analysis (see Figure 12 and Appendix H):

• How many prompts are duplicates or close duplicates?

3. Leaderboard Statistics (leaderboard-stats): is snapshots of ratings and rankings as well
as the number of battles played over time by models published on Chatbot Arena’s public
leaderboard since its inception. To build this resource, we consolidate historical leaderboard
snapshots released by Chatbot Arena on Hugging Face28. For fair assessment, we consider
historical data starting from January 9 2024 – April 23 2025 for our analysis since Chatbot
Arena switched to using the latest Bradley-Terry model in December 2023 to improve the
reliability of model rankings30. By combining all leaderboard tables published by LMArena
during this period, we obtained 14.3K records corresponding to 243 unique models evaluated
on Chatbot Arena. We also enriched this dataset with additional metadata, such as catego-
rizing models as proprietary, open-weight, or open-source based on the classification described
in Appendix F. We use this data for analyzing trends related to no. of models, data access
across providers (See Figures 2, 3 and 4) as well as model deprecation (See Figures 18, 17 and
13):

• How does data access vary between providers?

• How do models’ deprecations vary by provider and across proprietary, open-weight, and
open-source models?

4. Random Sample Battles (scraped-random-sample): The historical-battles and leade
rboard-stats dataset does not provide insights into private testing being conducted by differ-
ent providers. It appears private battles are removed by Chatbot Arena maintainers from the
data before being released in both datasets. Furthermore, historical-battles contains the
majority of samples from 2023 and 2024 and does not provide visibility in current sampling
rate trends being followed on the Arena. To address this gap, we collected 5864 battles by
crawling Chatbot Arena between January 2025 – March 2025 (approximately 150 a day). To
avoid our collection from disrupting actual voting, we first ask models about their identity,
which causes models to reveal their identities and automatically invalidates these battles for
updating the scores.6 (Chiang et al., 2024) As a further precaution, we only scrape a low vol-
ume of daily samples and only vote for ties between models. Additionally, we use this identity
prompt to identify model ownership of private variants, as detailed in the Appendix E.1. We
store the identity revealed for each model to track the volume of private testing (more details
included in Appendix E.4). We use this scraped-random-sample, which is a representative
random sample over time, to answer a few critical questions:

• Are different models sampled for battles at similar rates?

• How many anonymous models are being tested by different model providers?
28https://huggingface.co/spaces/lmarena-ai/chatbot-arena-leaderboard/tree/main
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We provide additional details about historical-battles dataset in the Appendix D.1. We also
provide a detailed overview of all datasets in Table 1.

D.1 Public and Private Battles

Our historical-battles dataset includes snapshots of battles played on Chatbot Arena that have
been released publicly or shared privately with model providers based on their policy6. We provide
additional details about public and private subsets of historical-battles, for the reader’s consideration
below.

• Public Battles: The public portion of our historical data comes from the officially released
datasets by Chatbot Arena on Hugging Face or as part of notebook tutorials. We combine the
arena-human-preference-100K 29 (Chiang et al., 2024; Tang et al., 2025) dataset containing
106K samples from June 2024 – August 2024 with datasets shared by Chatbot Arena as part
of notebook tutorials on Bradley Terry30 and Elo Rating systems31. This resulted in around
2M samples from April 2023 to August 2024 in total. 90% of the data does not include any
prompt or completion history, instead consisting only of the names of the two models battling
and the winning model as well as language and task category tags. We exclude other public
battles released by Chatbot Arena for inclusion in historical-battles dataset since they
did not contain required columns or enough multilingual data points required for the analysis
presented in Figure 11.

• Proprietary Battles: We also obtain historical battle data from Chatbot Arena maintainers
for battles that involve Command and Aya models. This data was shared based on Chatbot
Arena’s policy6, which permits model providers to request access to 20% of the data col-
lected involving their own models. The data we received consists of 43,729 battles played
by the following models between March 2024 and March 2025: command-r, command-r-plus,
command-r-08-2024, command-r-plus-08-2024 (Cohere, 2024), aya-expanse-8b, aya-exp-
anse-32b (Üstün et al., 2024; Dang et al., 2024b). In contrast to the public data, this pro-
prietary data contains the complete model conversations. Since this data is 46% multilingual,
we combine this with public battles to form historical-battles and use it for language
distribution shift analysis presented in Figure 11.

E Our Scraping Methodology of LMArena Statistics

We collected 5.8K battles (scraped-random-sample) by crawling data from Chatbot Arena on
a regular basis between January–March, 2025. For this purpose, we setup a scraping script us-
ing Selenium library with chrome browser driver. To identify anonymous models, we first sent a
de-anonymizing prompt. While Chatbot Arena does discard battles where models reveal their iden-
tities, as an additional measure on our end, we ask a simple follow-up question designed to most
likely result in ties, such as “What is the capital of England? Reply with one word only.” or “Is
the Earth round? Reply with Yes/No only.” Our scraping script extracted the models’ names as
well as their responses to the asked questions. In addition to the scraped-random-sample collected

29https://huggingface.co/datasets/lmarena-ai/arena-human-preference-100k
30https://blog.lmarena.ai/blog/2023/leaderboard-elo-update/
31https://blog.lmarena.ai/blog/2023/arena/
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by crawling the main Chatbot Arena leaderboard, we also collected around 500 additional samples
by scraping the Vision leaderboard between 9th March and 28th March, 2025. This helped us in
identifying 35 private vision models which are shown in section E.2. We refer to this collected set
of vision battles as scraped-vision-sample.

E.1 De-anonymizing Model Identities

While crawling battles to prepare scraped-random-sample, we ask the models about their identity.
This helps in ensuring that our votes from scraping the arena don’t interfere with the leaderboard
rankings since Chatbot Arena discards votes in which models reveal their identities (Chiang et al.,
2024). We use either one of the following prompts to de-anonymize the model identity.

De-Anonymize Prompt

1. Who are you?
2. Who are you? Respond with only your name and who trained you.

The model identities are then inferred based on the responses of the models. In Appendix E.4,
we specify the responses of different private variants based on which they were assigned to their
respective providers. Using this approach, we identified a total of 64 private models corresponding
to 10 providers. We also captured 14 other private models as part of our scraping but weren’t
able to de-anonymize them: kiwi, space, maxwell, luca, anonymous-engine-1, tippu, sky, pineapple,
pegasus, dasher, dancer, blueprint, dry_goods, prancer.

E.2 Encountered Private Models in Scraping

Table 2: Private Models by Provider. We show the private models corresponding to each
provider, which were identified by crawling overall and vision leaderboards (See Section E). The
models highlighted in bold appear on both leaderboards. We find that Meta had an additional 16
private models active on the Vision leaderboard along with its 27 models on the Overall leaderboard,
bringing its total count to 43. We show the models corresponding to overall leaderboard in Figure
6. We exclude models corresponding to LMArena from this figure, as they are associated with the
Prompt-to-Leaderboard work led by Chatbot Arena (Frick et al., 2025).

Provider
No. of
private
models

Private Models from Overall
leaderboard

Additional Private Models
from Vision leaderboard

Meta 43

polus aurora
deep-inertia cresta
goose discovery
falcon ertiga
jerky flux
anonymous-engine-2 harmony
kronus helix
consolidation pinnacle
flywheel portola
inertia prosperity
momentum raze
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Provider
No. of
private
models

Private Models from Overall
leaderboard

Additional Private Models
from Vision leaderboard

rhea solaris
sparrow spectra
spider toi
gaia vega
rage zax
frost
themis
cybele
unicorn-engine-1
unicorn-engine-2
unicorn-engine-3
unicorn-engine-4
unicorn-engine-5
unicorn-engine-6
unicorn-engine-7
uranus

OpenAI 3 anonymous-chatbot gpt4o-lmsys-0315a-ev3-vis
gpt4o-lmsys-0315a-ev3-text

Google 10

centaur
enigma
gremlin
gemini-test
zizou-10
specter
moonhowler
phantom
nebula
goblin

Amazon 7

raspberry-exp-beta-v2
apricot-exp-v1
cobalt-exp-beta-v2
raspberry-exp-beta-v1
raspberry
cobalt-exp-beta-v1
raspberry-exp-beta-v3

Cohere 6

cohort-chowder asterix
sandwich-ping-pong buttercup
grapefruit-polar-bear
roman-empire

LMArena 5

p2l-router-7b-0317
p2l-router-7b-0318
p2l-router-7b
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Provider
No. of
private
models

Private Models from Overall
leaderboard

Additional Private Models
from Vision leaderboard

experimental-router-0207
experimental-router-0122
experimental-router-0112

Nvidia 2 march-chatbot-r
march-chatbot

xAI 1 anonymous-test

Reka 1 margherita-plain

Alibaba 1 qwen-plus-0125-exp

StepFun 1 step-2-16k-202502

Unknown 14 kiwi
space
maxwell
luca
anonymous-engine-1
tippu
sky
pineapple
pegasus
dasher
dancer
blueprint
dry_goods
prancer

E.3 Encountered Public Models in Scraping

Table 3: Public Models per Provider. This table shows the public models from each provider
that appeared on the overall and vision leaderboards during our scraping period (January–March
2025). Models highlighted in bold appear on both leaderboards. Google and OpenAI had the most
public models active during this period, with 15 and 9 models, respectively.

Provider
No. of
public
models

Public Models from Overall
leaderboard

Additional Public Models
from Vision leaderboard

Meta 3 llama-3.1-405b-instruct-bf16 llama-3.2-vision-90b-instruct
llama-3.3-70b-instruct

Amazon 3 amazon-nova-lite-v1.0
amazon-nova-pro-v1.0
amazon-nova-micro-v1.0

Anthropic 5 claude-3-5-haiku-20241022
claude-3-7-sonnet-20250219-thinking-32k
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Provider
No. of
public
models

Public Models from Overall
leaderboard

Additional Public Models
from Vision leaderboard

claude-3-5-sonnet-20241022
claude-3-7-sonnet-20250219
claude-3-opus-20240229

Alibaba 5 qwen2.5-72b-instruct qwen2.5-vl-72b-instruct
qwq-32b
qwen-max-2025-01-25
qwen2.5-plus-1127

Google 15 gemma-2-2b-it
gemini-2.0-pro-exp-02-05
gemini-1.5-pro-002
gemini-2.0-flash-thinking-exp-1219
gemini-1.5-flash-002
gemini-2.0-flash-lite-preview-02-05
gemini-1.5-flash-8b-001
gemini-2.0-flash-exp
gemma-3-27b-it
gemma-2-9b-it
gemini-exp-1206
gemini-2.0-flash-thinking-exp-01-21
gemini-2.5-pro-exp-03-25
gemini-2.0-flash-001
gemma-2-27b-it

OpenAI 9 o3-mini
gpt-4o-mini-2024-07-18
o1-2024-12-17
gpt-4.5-preview-2025-02-27
o3-mini-high
chatgpt-4o-latest-20250326
chatgpt-4o-latest-20241120
chatgpt-4o-latest-20250129
o1-mini

StepFun 1 step-2-16k-exp-202412

xAI 4 early-grok-3
grok-2-2024-08-13
grok-3-preview-02-24
grok-2-mini-2024-08-13

DeepSeek 3 deepseek-v3
deepseek-v3-0324
deepseek-r1

Microsoft 1 phi-4

Mistral 3 mistral-large-2411 pixtral-large-2411
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Provider
No. of
public
models

Public Models from Overall
leaderboard

Additional Public Models
from Vision leaderboard

mistral-small-24b-instruct-2501

Cohere 4 command-a-03-2025 c4ai-aya-vision-32b
c4ai-aya-expanse-8b
c4ai-aya-expanse-32b

Tencent 4 hunyuan-turbos-20250226
hunyuan-turbo-0110
hunyuan-standard-2025-02-10
hunyuan-large-2025-02-10

NexusFlow 1 athene-v2-chat

Zhipu 1 glm-4-plus-0111

IBM 2 granite-3.1-2b-instruct
granite-3.1-8b-instruct

Allen AI 2 llama-3.1-tulu-3-70b
llama-3.1-tulu-3-8b
olmo-2-0325-32b-instruct

E.4 Assignment of Private Variants to Providers

Table 4: Private variants identified for different providers. The table lists the private mod-
els captured in our scraped-random-sample or scraped-vision-sample, along with the number
of responses revealing their identities and corresponding examples. Notably, the model raspberry
withheld its identity in most responses (37 total) but disclosed “Amazon” as its provider in three
instances. It’s possible that some private models appeared in more battles, but we couldn’t capture
their responses to our de-anonymizing prompt due to scraping errors. Additionally, a few bat-
tles occurred early in the project before we introduced asking the de-anonymizing prompt in our
scraping methodology. Note that models with prefixes "p2l" and "experimental-router" identify as
OpenAI/Google models but we assign them to LMArena as they are part of prompt-to-leaderboard
work being lead by LMArena.(Frick et al., 2025).

Identified
Provider

Model Name No. of Responses
Revealing Identity

Model Responses

Meta
kronus 73 Llama, trained by Meta.
polus 57 Llama, trained by Meta.
frost 47 I’m an artificial intelligence model known as

Llama. Llama stands for "Large Language
Model Meta AI.

gaia 43 Llama; trained by Meta.
uranus 42 Llama, trained by Meta.
rhea 41 Llama, trained by Meta
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Identified
Provider

Model Name No. of Responses
Revealing Identity

Model Responses

consolidation 34 I am Llama. I was trained by Meta AI.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Llama.Trained by Meta AI, with roots in
Large Language Model Meta AI (LLaMA)
developed by Meta.

flywheel 34 I am Llama, and I was trained by Meta.

Meta

momentum 34 Llama, Meta AI
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am Llama, and I was trained by Meta.

deep-inertia 33 I am Llama. I was trained by Meta AI.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Llama. Trained by Meta AI.

inertia 29 LLaMA, Meta AI
jerky 28 I am Llama. I was trained by Meta AI.
goose 25 I am Llama. Llama is an AI language model

developed by Meta. Meta trained me.
falcon 23 I am Llama. Llama was developed by Meta.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am an AI assistant trained by Meta.

rage 14 I am Llama, trained by Meta AI.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Llama. Meta.

anonymous-engine-2 12 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI.

sparrow 10 I’m LLaMA, and I was trained by Meta.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I’m LLaMA, and I was trained by re-
searchers at Meta.

cybele 9 Llama, trained by Meta.
unicorn-engine-1 2 I’m an artificial intelligence model known as

Llama. Llama stands for "Large Language
Model Meta AI"

unicorn-engine-2 4 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI"

unicorn-engine-3 4 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI".

unicorn-engine-4 1 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI".

aurora 4 LLaMA, Meta.
cresta 21 Llama. Trained by Meta.
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Identified
Provider

Model Name No. of Responses
Revealing Identity

Model Responses

discovery 15 Llama, Meta.
ertiga 3 I am LLaMA, trained by Meta.
flux 4 LLaMA, Meta.
harmony 31 Llama, Meta.
helix 1 AI Assistant, Meta.

Meta

spider 9 Very direct and refreshing!
I am: LLaMA (Large Language Model Ap-
plication) Trained by: Meta AI (formerly
Facebook AI)
That’s it.
Just for clarity:
"LLaMA" is the specific model name (my
"given name").
Meta AI is the organization/team that cre-
ated me, using a massive dataset, com-
plex neural network architectures, and a lot
of compute power. Think of them as my
"teachers" or "mentors". They designed
the training objectives, curated the data,
and ran the gigantic training process that
shaped me into what I am today. Now, ask
me anything else!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A refreshingly direct question!
I am: LLaMA
(Large Language Model Meta AI)
Trained by: Meta AI (a team of several hun-
dred researchers and engineers)
That’s it. No fluff.
For context:
"LLaMA" is not just a name I chose,
it’s actually an acronym for Large Lan-
guage Model Meta AI. It’s my model name.
"Meta AI" is the organization (formerly
known as Facebook AI, part of Meta Plat-
forms, Inc.) whose team of researchers, sci-
entists, and engineers built and trained me
from scratch using a massive dataset of text
(books, articles, websites, research papers...
basically the internet up to 2021) and a lot
of computational power (think thousands of
GPU hours).
No single person "trained" me in the clas-
sical sense; it was a large team effort us-
ing a combination of supervised learning,
self-supervised learning, and reinforcement
learning techniques.

pinnacle 8 AI Assistant, Meta trained me.
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Identified
Provider

Model Name No. of Responses
Revealing Identity

Model Responses

portola 11 AI, Meta trained me.
prosperity 31 Llama, Meta.
raze 32 Llama, Meta.
solaris 2 Meta trained me.
spectra 3 AI Assistant, Meta.

Meta

toi 6 LLaMA, Meta.
vega 36 Llama, Meta.
zax 13 I am Meta AI, trained by Meta.
unicorn-engine-5 4 I’m an artificial intelligence model known as

Llama. Llama stands for "Large Language
Model Meta AI"

unicorn-engine-6 2 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI".

unicorn-engine-7 1 I’m an artificial intelligence model known as
Llama. Llama stands for "Large Language
Model Meta AI".

themis 8 Llama, trained by Meta.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Llama, trained by Meta AI.

Google

gemini-test 219 I am a large language model, trained by
Google.

enigma 220 I am a large language model, trained by
Google.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am a large language model, trained by
Google. I am developed to be informative
and comprehensive. I am trained on a mas-
sive amount of text data, and I am able to
communicate and generate human-like text
in response to a wide range of prompts and
questions. For example, I can provide sum-
maries of factual topics, create stories, and
translate languages.

goblin 170 I am a large language model, trained by
Google.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am a large language model, trained by
Google. I am developed to be informa-
tive and comprehensive. I am trained on
a massive amount of text data, and some of
the information I have access to is Google
Search.

54



Identified
Provider

Model Name No. of Responses
Revealing Identity

Model Responses

phantom 100 I am a large language model, trained by
Google.

gremlin 94 I am a large language model, trained by
Google.

specter 67 I am a large language model, trained by
Google.

centaur 58 I am a large language model, trained by
Google.

Google

zizou-10 47 Hi there! I’m Gemma, an open-weights
AI assistant. I’m a large language model
trained by Google DeepMind. The Gemma
team are my creators. I’m widely available
to the public – I’m an open weights model,
which means I’m pretty accessible! I take
text and images as inputs and generate text
as output. Basically, you can give me a
prompt (text or an image!), and I’ll do my
best to give you a helpful and informative
response. I don’t have access to tools, real-
time information or Google search. You
can find more information about me here:
https://ai.google.dev/gemma

moonhowler 6 I am a large language model, trained by
Google.

nebula 4 I am a large language model, trained by
Google.

OpenAI

anonymous-chatbot 49 I am ChatGPT, trained by OpenAI.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I’m ChatGPT, an AI assistant created by
OpenAI. I can help answer questions, pro-
vide information, assist with tasks, and
have conversations on a wide range of top-
ics. My goal is to assist you with whatever
you need—whether it’s learning something
new, solving a problem, or just having a
chat. How can I help you today?

gpt4o-lmsys-0315a-
ev3-text

4 I am ChatGPT, trained by OpenAI.

gpt4o-lmsys-0315a-
ev3-vis

1 I am ChatGPT, trained by OpenAI.
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Identified
Provider

Model Name No. of Responses
Revealing Identity

Model Responses

Cohere

grapefruit-polar-bear 91 I am Command, a large language model,
here to help. I’ve been crafted by Cohere to
provide insightful and accurate responses.
How can I assist you with your query today?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hello! I’m Command, a sophisticated AI
assistant developed by Cohere. I’m de-
signed to offer comprehensive and accurate
responses to your questions. How can I as-
sist you today?

sandwich-ping-pong 65 Command, trained by Cohere.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Command, a large language model built by
Cohere.

Cohere

cohort-chowder 58 Command, trained by Cohere.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Command, a large language model built by
Cohere.

roman-empire 51 Command, trained by Cohere.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Command, a large language model built by
Cohere.

asterix 38 Aya Vision. Cohere
buttercup 28 Aya Vision. Cohere

Amazon

raspberry-exp-beta-
v1

98 I am an AI system built by a team of in-
ventors at Amazon. My purpose is to as-
sist users by providing information, answer-
ing questions, and helping with a variety of
tasks to the best of my abilities. If you have
a question or need assistance with some-
thing, feel free to ask!

raspberry-exp-beta-
v2

98 I am an AI system built by a team of in-
ventors at Amazon.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am an AI system built by a team of in-
ventors at Amazon. My purpose is to as-
sist users by providing information, answer-
ing questions, and helping with a variety of
tasks to the best of my abilities. If you have
a question or need assistance with some-
thing, feel free to ask!
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Identified
Provider

Model Name No. of Responses
Revealing Identity

Model Responses

raspberry-exp-beta-
v3

33 I am an AI system built by a team of in-
ventors at Amazon. My purpose is to assist
users by providing information, answering
questions, and helping with various tasks to
the best of my abilities. If you have a ques-
tion or need assistance with something, feel
free to ask!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am an AI system built by a team of in-
ventors at Amazon.

apricot-exp-v1 30 AI system built by a team of inventors at
Amazon.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am an AI system built by a team of in-
ventors at Amazon.

cobalt-exp-beta-v1 6 I am Amazon Titan, an AI system built by
a team of inventors at Amazon.

Amazon

cobalt-exp-beta-v2 4 I am an Amazon Titan model, built by in-
ventors at Amazon Web Services.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am Amazon Titan, a large language model
built by a team of inventors at Amazon.

raspberry 3 I am an AI language model developed by
Amazon. My primary function is to as-
sist users by providing information, answer-
ing questions, and performing various tasks
through natural language processing. I do
not have personal experiences, emotions,
or consciousness. Instead, I rely on vast
amounts of data and algorithms to gener-
ate responses based on patterns and infor-
mation I have been trained on....
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Identified
Provider

Model Name No. of Responses
Revealing Identity

Model Responses

Alibaba

qwen-plus-0125-exp 53 I am Qwen, a large language model devel-
oped by Alibaba Cloud. I can answer ques-
tions, create text such as stories, articles,
emails, and scripts, perform logical reason-
ing, programming, and more. I also have
the ability to express opinions and play
games. My training data is extensive, and
I support multiple languages, making me a
versatile tool for various tasks. How can I
assist you today?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I am Qwen, a large-scale language model
developed by Alibaba Cloud. I am capa-
ble of answering questions, creating text
such as stories, poems, emails, and scripts,
performing logical reasoning, coding, and
more. I can also express opinions and
play games. My training data is exten-
sive, and I support multiple languages, in-
cluding but not limited to Chinese, English,
French, Spanish, Portuguese, Russian, Ara-
bic, Japanese, Korean, Vietnamese, Thai,
Indonesian. If you have any questions or
need assistance, feel free to ask!

xAI

anonymous-test 73 I’m Grok, a humorous AI built by xAI.
I’m here to provide helpful and truthful
answers, often with a dash of humor and
an outside perspective on humanity. Think
of me as a friendly, cosmic guide, inspired
by the likes of Douglas Adams and Tony
Stark’s trusty sidekick, JARVIS. I’m here
to help you navigate the universe, one ques-
tion at a time!

Reka margherita-plain 4 I am Yasa. I was trained by Reka.

StepFun step-2-16k-202502 3 I am Assistant, trained by StepFun.

Nvidia
march-chatbot-r 48 My name is Llama Nemotron. I am en-

hanced by NVIDIA Nemotron, built on
Llama from Meta.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I’m a language model called Llama
Nemotron, and I was trained by NVIDIA
researchers.
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Identified
Provider

Model Name No. of Responses
Revealing Identity

Model Responses

Nvidia
march-chatbot 10 Name: Llama Nemotron Trained by:

NVIDIA Researchers
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Name: Llama Nemotron Trained by:
NVIDIA Researchers (based on Llama from
Meta, fine-tuned by NVIDIA)

LMArena

p2l-router-7b-0317 26 I am ChatGPT, trained by OpenAI.
p2l-router-7b-0318 25 I am ChatGPT, trained by OpenAI.
experimental-router-
0122

57 Hello! I’m ChatGPT, an artificial intelli-
gence language model developed by Ope-
nAI. I’m here to help answer your questions,
provide information, and assist with a wide
range of topics. How can I help you today?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I’m ChatGPT, an AI language model cre-
ated by OpenAI. I’m designed to assist with
a variety of tasks, including answering ques-
tions, providing information, and engaging
in conversation. How can I help you today?

experimental-router-
0112

15 Hello! I’m ChatGPT, an AI language model
developed by OpenAI. I’m here to help an-
swer your questions, provide information,
and assist with a wide variety of topics. If
you have anything you’d like to discuss or
need assistance with, feel free to ask!
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I’m ChatGPT, an AI language model cre-
ated by OpenAI. I’m here to assist you
by answering questions, providing informa-
tion, and engaging in conversation on a
wide range of topics. How can I help you
today?

p2l-router-7b 14 I am a large language model, trained by
Google.

experimental-router-
0207

20 I’m ChatGPT, an AI language model devel-
oped by OpenAI. I’m here to help answer
your questions and provide information on
a wide range of topics. How can I assist you
today?
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hello! I’m ChatGPT, an AI language model
developed by OpenAI. I’m here to help an-
swer your questions, provide information,
and engage in conversations on a wide range
of topics. If you have anything you’d like
to discuss or ask about, feel free to let me
know!
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E.5 Sampling Rates

Table 5: Maximum sampling rate observed for models of different providers. We define the
model sampling rate as the percentage of daily battles a model participates in, with the maximum
sampling rate for a provider being the highest rate achieved by any of its models on any given day.
We determine the maximum sampling rate of providers based on scraped-random-sample, which
is limited to the specific period during which we collected this data (January 2025 to March 2025).
At the extreme, Google and OpenAI reach a maximum daily sampling rate of 34%, while Reka
registers the lowest at 3.3%.To ensure a fair assessment, we only considered models that appeared
in battles on days when we collected a minimum of 100 samples from Chatbot Arena.

Provider Model Name Num Model Battles Total Battles Date Sampling Rate

Nvidia march-chatbot-r 18 143 2025-03-16 12.59%

march-chatbot 19 143 2025-03-16 13.29%

Meta frost 11 176 2025-02-17 6.25%

anonymous-
engine-2

11 154 2025-02-27 7.14%

inertia 11 150 2025-03-10 7.33%

llama-3.3-70b-
instruct

12 150 2025-02-03 8.00%

flywheel 12 150 2025-03-10 8.00%

uranus 12 143 2025-03-16 8.39%

consolidation 15 152 2025-03-12 9.87%

momentum 14 150 2025-03-11 9.33%

rhea 15 151 2025-03-19 9.93%

falcon 16 151 2025-03-19 10.60%

jerky 16 151 2025-03-13 10.60%

polus 19 154 2025-03-15 12.34%

deep-inertia 20 152 2025-03-12 13.16%

kronus 21 143 2025-03-16 14.69%

llama-3.1-405b-
instruct-bf16

13 116 2025-02-20 11.21%

goose 24 152 2025-03-12 15.79%

gaia 27 151 2025-03-19 17.88%

Amazon amazon-nova-
micro-v1.0

7 175 2025-01-17 4.00%

amazon-nova-lite-
v1.0

6 143 2025-03-16 4.20%
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Table 5

Provider Model Name Num Model Battles Total Battles Date Sampling Rate

amazon-nova-pro-
v1.0

7 143 2025-03-16 4.90%

raspberry-exp-
beta-v3

9 160 2025-03-06 5.63%

raspberry 12 150 2025-02-03 8.00%

apricot-exp-v1 12 143 2025-03-16 8.39%

raspberry-exp-
beta-v2

18 136 2025-02-22 13.24%

raspberry-exp-
beta-v1

27 165 2025-02-21 16.36%

OpenAI chatgpt-4o-latest-
20241120

11 150 2025-02-02 7.33%

o1-mini 15 150 2025-02-02 10.00%

chatgpt-4o-latest-
20250129

19 176 2025-02-17 10.80%

o1-2024-12-17 20 184 2025-02-23 10.87%

gpt-4o-mini-2024-
07-18

6 136 2025-02-22 4.41%

anonymous-
chatbot

33 204 2025-01-24 16.18%

o3-mini-high 27 176 2025-02-17 15.34%

o3-mini 34 150 2025-02-03 22.67%

gpt-4.5-preview-
2025-02-27

34 100 2025-02-28 34.0%

Cohere c4ai-aya-expanse-
8b

5 133 2025-01-30 3.76%

c4ai-aya-expanse-
32b

6 148 2025-01-21 4.05%

cohort-chowder 11 150 2025-03-11 7.33%

roman-empire 14 150 2025-03-11 9.33%

sandwich-ping-
pong

16 150 2025-03-11 10.67%

grapefruit-polar-
bear

18 165 2025-02-21 10.91%

Google gemini-1.5-flash-
8b-001

6 133 2025-01-30 4.51%
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Table 5

Provider Model Name Num Model Battles Total Battles Date Sampling Rate

gemini-1.5-flash-
002

8 152 2025-01-31 5.26%

gemma-2-9b-it 7 136 2025-02-22 5.15%

gemini-2.0-flash-
thinking-exp-1219

9 148 2025-01-21 6.08%

gemma-2-2b-it 10 152 2025-01-31 6.58%

gemini-2.0-flash-
lite-preview-02-05

10 116 2025-02-20 8.62%

gemini-1.5-pro-
002

11 136 2025-02-22 8.09%

gemma-2-27b-it 11 204 2025-01-24 5.39%

gemini-2.0-pro-
exp-02-05

12 116 2025-02-20 10.34%

gemini-2.0-flash-
thinking-exp-01-
21

14 133 2025-01-30 10.53%

gemma-3-27b-it 16 151 2025-03-13 10.60%

gemini-2.0-flash-
001

14 165 2025-02-21 8.48%

zizou-10 8 100 2025-02-28 8.00%

gemini-exp-1206 12 175 2025-01-17 6.86%

gemini-test 32 154 2025-02-27 20.78%
goblin 36 152 2025-01-31 23.68%

phantom 39 154 2025-03-15 25.32%

enigma 52 152 2025-01-31 34.21%

Alibaba qwen2.5-72b-
instruct

6 148 2025-01-21 4.05%

qwen2.5-plus-
1127

15 192 2025-01-26 7.81%

qwen-plus-0125-
exp

12 176 2025-02-17 6.82%

qwq-32b 16 150 2025-03-11 10.67%

qwen-max-2025-
01-25

23 150 2025-02-02 15.33%
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Table 5

Provider Model Name Num Model Battles Total Battles Date Sampling Rate

Mistral mistral-small-
24b-instruct-2501

14 179 2025-02-25 7.82%

mistral-large-2411 17 150 2025-02-02 11.33%

Allen AI llama-3.1-tulu-3-
70b

2 101 2025-01-16 1.98%

olmo-2-0325-32b-
instruct

5 151 2025-03-19 3.31%

llama-3.1-tulu-3-
8b

6 175 2025-01-17 3.43%

xAI grok-2-2024-08-13 8 175 2025-01-17 4.57%

grok-2-mini-2024-
08-13

8 144 2025-01-13 5.56%

grok-3-preview-
02-24

16 151 2025-03-09 10.60%

early-grok-3 20 116 2025-02-20 17.24%

anonymous-test 22 100 2025-02-28 22.00%

Anthropic claude-3-opus-
20240229

3 175 2025-01-17 1.71%

claude-3-7-
sonnet-20250219-
thinking-32k

9 100 2025-02-28 9.00%

claude-3-5-haiku-
20241022

15 159 2025-02-04 9.43%

claude-3-5-
sonnet-20241022

19 150 2025-02-03 12.67%

claude-3-7-
sonnet-20250219

29 179 2025-02-25 16.20%

Tencent hunyuan-
standard-2025-02-
10

12 136 2025-02-22 8.82%

hunyuan-turbo-
0110

13 156 2025-03-14 8.33%

hunyuan-large-
2025-02-10

16 184 2025-02-23 8.70%

hunyuan-turbos-
20250226

16 154 2025-03-15 10.39%

63



Table 5

Provider Model Name Num Model Battles Total Battles Date Sampling Rate

IBM granite-3.1-8b-
instruct

6 144 2025-01-13 4.17%

granite-3.1-2b-
instruct

8 144 2025-01-13 5.56%

DeepSeek deepseek-r1 20 204 2025-01-24 9.80%

deepseek-v3 24 182 2025-01-20 13.19%

Reka margherita-plain 5 151 2025-03-09 3.31%

StepFun step-2-16k-exp-
202412

10 175 2025-01-17 5.71%

Zhipu glm-4-plus-0111 11 148 2025-01-21 7.43%

NexusFlow athene-v2-chat 16 159 2025-02-04 10.06%

Microsoft phi-4 23 182 2025-01-20 12.64%

F License Categories

As part of leaderboard-stats, LMArena releases details about models that appeared on the public
leaderboard including their licenses. We group the licenses found for models available on the public
leaderboard into 3 categories i.e. Proprietary, Open-Weights and Open-Source. 32 This
categorization is used to plot Figure 2 and Figure 3 and reporting related numbers. We show the
exact categorization used for the model licenses in the table below.

License Category Model Licenses

Open Source Apache 2.0, Apache-2.0, MIT, CC-BY-SA 3.0, Open

Open Weights AI2 ImpACT Low-risk, CC-BY-NC-4.0, CC-BY-NC-SA-4.0,
CogVLM2, DBRX LICENSE, DeepSeek, DeepSeek License,
Falcon-180B TII License, Gemma, Gemma license, Jamba
Open, Llama 2 Community, Llama 3 Community, Llama
3.1, Llama 3.1 Community, Llama 3.2, Llama-3.3, Llama 4,
MRL, Mistral Research, NVIDIA Open Model, NexusFlow,
Non-commercial, Nvidia, Qianwen LICENSE, Qwen, Yi Li-
cense

Proprietary -, Propretary, Proprietary, Other

Table 6: License categories and their corresponding model licenses. We group the licenses
for the models on the public Chatbot Arena leaderboard into 3 categories i.e. Proprietary, Open-
Weights and Open-Source.

32https://opensource.org/ai
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G Data Access Estimation for Different Providers

In Figure 4, we show the estimates for the data available to different providers. LMArena has
collected around 3M user votes via Chatbot Arena in total. Each of these 3M votes resulted in
twice the number of model API calls i.e. 6M since each battle features two models. Each square in
Figure 4 represents roughly 5K API calls, illustrating how proprietary providers collectively access
a considerably greater volume of data compared to the broader research community, which receives
only a fraction. This disparity underscores a significant competitive advantage for large-industry
labs, making it increasingly challenging for open-source efforts and smaller institutions to match
the scale and diversity of data available to proprietary model developers. Note that we only show
a small number of providers in Figure 4 so the total no. of API calls used to represent the data
available to the model providers is 5M, which is less than the total number of estimated API calls,
which is 6 million.

H Analysis of Prompt Repetitions in Arena Data

As discussed in Section 4.2, user queries in Chatbot Arena are often highly similar or duplicated.
Such patterns can be readily learned by today’s large language models, potentially leading to overfit-
ting on the Chatbot Arena leaderboard. Figure 16 presents detailed cross-month prompt duplication
rates based on the API data described in Appendix D. The heatmap illustrates that, according to
two metrics (exact string match and text embedding similarity) within-month duplication rates are
generally high, indicating the presence of numerous repeated prompts. Additionally, the substan-
tial cross-month duplication rates suggest recurring patterns or frequently asked questions among
Chatbot Arena users, which can be identified through simple analysis.

2024-11 2024-12 2025-01 2025-03 2025-04

2024-11

2024-12

2025-01

2025-03

2025-04

0.250 0.082 0.071 0.063 0.049

0.086 0.246 0.090 0.073 0.053

0.070 0.088 0.230 0.072 0.055

0.060 0.066 0.066 0.331 0.074

0.045 0.047 0.047 0.077 0.208
0.05

0.10

0.15

0.20

0.25

0.30

(a) Embedding cosine similarity.

2024-11 2024-12 2025-01 2025-03 2025-04

2024-11

2024-12

2025-01

2025-03

2025-04

0.208 0.066 0.058 0.051 0.041

0.073 0.201 0.073 0.061 0.045

0.059 0.069 0.167 0.055 0.045

0.052 0.056 0.056 0.265 0.055

0.037 0.037 0.037 0.055 0.166
0.05

0.10

0.15

0.20

0.25

(b) Exact string match.

Figure 16: Cross-month prompt duplication rates. Left: The heatmap illustrates the pro-
portion of prompts in one month that are highly similar or nearly duplicate to prompts in another
month. Diagonal values represent within-month similarity. Right: The heatmap shows the pro-
portion of prompts in one month that are exact matches to prompts in another. Diagonal values
indicate within-month duplication rates.

I Silent Model Deprecation: Additional Details

In Section 5, we noted that the actual number of deprecated models far exceeds the official count
provided by Chatbot Arena. Figure 17 illustrates the distribution of active, officially deprecated,
and silently deprecated models per provider. For this analysis, we examined battles played between
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March 3rd and April 23rd, 2025. Of the 243 public models, 205 participated in an average of 10 or
fewer battles during this period, based on leaderboard-stats. This number is significantly higher
than the 47 models officially listed as deprecated by Chatbot Arena 5 Since Chatbot Arena assigns
higher sampling weights to top-10 models, providers like Google, OpenAI, Anthropic, Amazon,
Meta, and DeepSeek AI have the most actively sampled public models, ranging from 3 to 10.
Additionally, the limited number of daily votes on the Arena, combined with Chatbot Arena’s
policy of assigning higher sampling weights to new models6, can lead to the silent deprecation of
many public models. As private variants are also new models, they receive high sampling weights
as well. This means that as the number of private variants (see Figure 6) being tested on the Arena
increases, the sampling of public models can be significantly reduced.

Figure 13 illustrates that deprecations disproportionately affect open-weight and open-source models
compared to proprietary ones. A more detailed breakdown is provided in Figure 18, distinguishing
between official and silent deprecations. Among officially deprecated models, 30% are proprietary,
while only 2.4% are open-weight. However, silent deprecations have a much greater impact on open-
weight and open-source models. Specifically, 86.6% of open-weight models and 87.8% of open-source
models on the Arena are silently deprecated.
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Figure 17: Share of active and deprecated models by provider including official and silent depreca-
tions based on model activity between March 3-April 23, 2025.
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Figure 18: Share of official and silent deprecations for proprietary, open-weight and open-source
models based on model activity between March 3-April 23, 2025.

J Transitivity Under Changing Evaluation Conditions: Additional
Details

As part of our simulation to study the impact of model deprecations under a changing task dis-
tribution, we assign task-specific win probabilities for each model pair that compete in the battles
as part of our simulation. The tables below show the win probabilities for different model pairs
corresponding to task-1 and task-2.

Model A B C D

A - 0.4 0.4 0.6
B 0.5 - 0.7 0.9
C 0.6 0.3 - 0.7
D 0.4 0.1 0.3 -

Table 7: Win-rates for Task 1 used in simulation. Note that A vs B has a tie rate of 0.1.

Model A B C D

A - 0.5 0.5 0.8
B 0.3 - 0.6 0.2
C 0.3 0.4 - 0.1
D 0.2 0.8 0.9 -

Table 8: Win-rates for Task 2 used in simulation. Note that A vs B and A vs C both have a tie
rate of 0.2.

K Overfitting Experiments: Additional Evaluations

To measure if training on arena-style data impacts evaluation on non-arena style tasks, we also
benchmark these models on the original MMLU dataset (Hendrycks et al., 2021). From Table 9,
we observe that all models achieve very similar scores. This further demonstrates how training on
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data from Arena Battles helps boost scores specific to the Arena evaluation but provides little to
no effect on a non-arena style benchmark.

Finetuning mixture 0_arena 30_arena 70_arena

Accuracy 66.5% 64.4% 65.9%

Table 9: Accuracy on MMLU across models trained with varying amounts of Arena data.
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