
ar
X

iv
:2

50
5.

11
71

1v
1

 [
cs

.L
G

]
 1

6
M

ay
 2

02
5

Reinforcement Learning Finetunes Small Subnetworks
in Large Language Models

Sagnik Mukherjee Lifan Yuan Dilek Hakkani-Tur Hao Peng
University of Illinois Urbana-Champaign

{sagnikm3,lifan4,dilek,haopeng}@illinois.edu

Abstract

Reinforcement learning (RL) yields substantial improvements in large language
models’ (LLMs) downstream task performance and alignment with human val-
ues. Surprisingly, such large gains result from updating only a small subnetwork
comprising just 5%-30% of the parameters, with the rest effectively unchanged.
We refer to this phenomenon as parameter update sparsity induced by RL. It is
observed across all 7 widely-used RL algorithms (e.g., PPO, GRPO, DPO) and
all 10 LLMs from different families in our experiments. This sparsity is intrinsic
and occurs without any explicit sparsity-promoting regularizations or architectural
constraints. Finetuning the subnetwork alone recovers the test accuracy, and, re-
markably, produces a model nearly identical to the one obtained via full finetuning.
The subnetworks from different random seeds, training data, and even RL algo-
rithms show substantially greater overlap than expected by chance. Our analysis
suggests that this sparsity is not due to updating only a subset of layers; instead,
nearly all parameter matrices receive similarly sparse updates. Moreover, the up-
dates to almost all parameter matrices are nearly full-rank, suggesting RL updates
a small subset of parameters that nevertheless span almost the full subspaces that
the parameter matrices can represent. We conjecture that the this update sparsity
can be primarily attributed to training on data that is near the policy distribution;
techniques that encourage the policy to remain close to the pretrained model, such
as the KL regularization and gradient clipping, have limited impact.

1 Introduction

Reinforcement learning (RL) (Sutton et al., 1998; Ouyang et al., 2022; Ziegler et al., 2020; Rama-
murthy et al., 2023; Sun et al., 2024; Zhou et al., 2025) is an important post-pretraining stage for
adapting large language models (LLMs) to solving complex reasoning problems (Lightman et al.,
2023; Wang et al., 2025a,c; Cui et al., 2025), alignment with human values (Ouyang et al., 2022;
Bai et al., 2022; Dai et al., 2023), and adherence to safety protocols (Mu et al., 2024; Huang et al.,
2024; Zhang et al., 2024; Duan et al., 2024). Since these desired behaviors often differ significantly
from those of the pretrained model (Ouyang et al., 2022; Bai et al., 2022; OpenAI, 2024), it is often
assumed that achieving them requires substantial changes to the model’s parameters and therefore full
finetuning is widely applied during RL (Cui et al., 2025; HuggingFace, 2025; Liu et al., 2025; Pan
et al., 2025; Zeng et al., 2025). While RL with full finetuning is allowed to update all parameters, does
it actually do so? This paper presents surprising findings and answers this question in the negative.

Finding 1

RL-induced parameter update sparsity in LLMs: RL updates only a small subnetwork of a
pretrained large language model, leaving the rest of the parameters effectively unchanged.

Preprint. Under review.

https://arxiv.org/abs/2505.11711v1

Tulu 3 8B (DPO)
Tulu 3 70B (DPO)

Eurus 2 7B (PPO)

Deepseek 7B (GRPO)

Llama 3 8B (KTO)

Llama 3 8B (SimPO)0

20

40

60

80

Sp
ar

sit
y

(%
)

6.82

15.31

10.33
13.36

10.07 10.07

76.04

87.54

75.00

68.14

75.01
79.41

Sparsity Comparison: SFT vs RL
SFT
RL

Figure 1: Comparison in accumulated gradients in the SFT stage vs RL stage for popular released
checkpoints. SFT stage has accumulated much denser updates, while RL is mostly sparse.

Finding 1 is observed in all 7 widely-used RL algorithms studied, namely PPO (Schulman et al.,
2017b), GRPO (Shao et al., 2024), ORPO (Hong et al., 2024), KTO (Ethayarajh et al., 2024), DPO
(Rafailov et al., 2023), SimPO (Meng et al., 2024) and PRIME (Cui et al., 2025), as well as supervised
finetuning with rejection sampling (Xiong et al., 2025), and 10 models in our experiments, with the
subnetworks consisting of as little as 5% of the model parameters in some cases (§3). It emerges
intrinsically from RL finetuning, without any explicit sparsity-promoting regularization, architectural
constraint, or use of parameter-efficient training or pruning methods. Moreover, we observe a strong
consistency among the subnetworks emerged under different random seeds, training data and its
order, and even different RL algorithms, suggesting that the pretrained model contains a partially
transferable structure that is consistent across varied training conditions (§5).

Interestingly, our experiments with PRIME suggest that approximately 20% of the parameters are
consistently updated and make up the subnetwork. An additional 8% receive non-zero gradients
during training that cancel out, while the remaining ∼70% parameters remain untouched throughout
the entire training process. This observation motivates us to articulate the following conjecture:

Untouched
72%

Effective Subnetwork
20%

Cancelled-out Updates
8%

Figure 2: In PRIME, 72% parameters
are never updated, 8% have gradients
canceling each other out, and 20% con-
stitute the subnetwork that is consistently
updated (§6)

Conjecture 1

Fine-tuning only the subnetwork identified at the end of
RL training, with all other parameters frozen, produces
a model that is nearly identical to the original model
that has undergone full finetuning, both in test accuracy
and in parameter values.

More formally, let θfull denote the parameters after full
RL finetuning from the initial model θinit. Define a binary
mask m ∈ {0, 1}|θinit| where mi = 1 if (θinit − θfull)i ̸= 0
and 0 otherwise. We finetune a second model from θinit on
the same data with the same hyperparameters and number
of gradient updates, but, at each step, mask the gradients
as m⊙∇θL(θ) right before the parameter update, so that
only the identified subnetwork receives non-zero gradients.
Let θsub denote the resulting parameters of this subnetwork finetuning process. Conjecture 1 states
that θsub ≈ θfull. We provide supporting evidence for the conjecture on PRIME and DPO in §4.

We find that the updates of RL finetuning do not concentrate in specific layers or components of
the transformer. Instead, nearly all parameter matrices receive similarly sparse updates (§3). An
exception is the layer normalization layers, which receives little to no updates. Moreover, despite the
sparsity in the updates, they are almost always full-rank. This suggests that, instead of forcing the
updates to reside in a low-rank subspace as in LoRA (Hu et al., 2022), RL full finetuning updates
a small subset of parameters that nevertheless span almost the full subspaces that the parameter
matrices can represent.

2

To better understand the potential reasons for this phenomenon, we conduct a series of experiments
in §6. The results indicate that a primary factor is training on data that is near the policy distribution
through, e.g., on-policy RL or performing supervised finetuning (SFT) on the same data before RL
(Wang et al., 2024a; Cui et al., 2025). Intuitively, it requires less change to the policy distribution
when the model learns on a sequence sampled from a distribution close to itself. In contrast, SFT often
involves distribution shifts (Zhang et al., 2025) and densely updates the models in our experiments
(§3). Other factors like KL-divergence regularization towards the reference model, gradient clipping
(as used in PPO, GRPO, and PRIME), online vs. offline RL, all have limited impact on the sparsity
of accumulated updates.

Our findings have profound implications on RL finetuning of LLMs. They suggest that RL con-
centrates optimization entirely on a small and consistently active subnetwork, while the remaining
parameters remain effectively inert. Conjecture 1 goes beyond the lottery ticket hypothesis (LTH)
(Frankle and Carbin, 2019): not only can the subnetwork, finetuned in isolation, match the perfor-
mance of the full model in performance as posited by LTH, we show that it also converges to an
effectively identical model. These results offer fresh evidence supporting recent findings that RL
better preserves the pretrained capabilities compared to SFT (Chu et al., 2025; Setlur et al., 2025),
potentially by updating substantially fewer parameters. They also open up new possibilities for more
efficient RL training methods that explicitly leverage this update sparsity (Chen et al., 2022).

2 Related work and Background

2.1 Related Work

The Lottery Ticket Hypothesis (LTH; Frankle and Carbin, 2019) posited that dense neural networks
contain sparse subnetworks capable of matching the performance of the full model when trained
in isolation. Subsequent extensions to LLMs identified task-specific subnetworks that mitigate
catastrophic forgetting without retraining entire models (Panda et al., 2024; Panigrahi et al., 2023;
Yadav et al., 2023). Related efforts further discovered sparse subnetworks in pretrained language
models crucial for encoding specific knowledge (Marks et al., 2025; Bayazit et al., 2024; Liu et al.,
2022). Recent works have also explored exploiting the winning lotteries to improve training efficiency
(Chen et al., 2022). While our observation is closely related to LTH, it differs in three core dimensions:
(1) LTH identifies winning tickets by pruning, while we study subnetwork that naturally emerge; (2)
LTH showed that the final model’s performance can be reproduced, we show that, in addition to the
performance, the exact same model can almost be recovered; (3) LTH focuses on models trained
from scratch, while we focus on finetuning from pretrained LLMs.

Sparse training methods exhibit notable benefits in RL efficiency (Graesser et al., 2022; Sidahmed
et al., 2024; Sokar et al., 2022; Tan et al., 2023; Davelouis et al., 2025). Recent studies also employ
Low-Rank Adaptation (LoRA) (Hu et al., 2022) in RL and have achieved competitive performance
alongside significantly reduced computational overhead (Sidahmed et al., 2024; Wang et al., 2025b).
In contrast to approaches like LoRA that explicitly constrain updates to a small number of parameters,
we find that fine-tuning the naturally emerging subnetwork can match or even surpass the performance
of full-model finetuning. Moreover, despite its sparsity, the updates are nearly full-rank.

2.2 Background

We briefly introduce key concepts and notations to be used in onward discussion.

The sparsity of parameter updates. Let θ0, θ1 ∈ Rn denote the model parameters before and after
finetuning, respectively. We define the update sparsity as sparsity(θ0, θ1) := 1−

∥∥θ1 − θ0
∥∥
0
/n,

where ∥·∥0 counts the number of non-zero elements. It is important to clarify that even the update
θ1 − θ0 is sparse, it does not imply that the finetuned model θ1 is sparse. Since no sparsity is assumed
for θ0, a sparse update can still result in a dense θ1 if θ0 is dense.

Unless otherwise specified, we follow standard practice and consider two bfloat16 values as equal
when their absolute difference does not exceed 10−5, to account for numerical precision limits.1 All
models in our experiments are in the bfloat16 data type. Sparsity with different tolerance values
can be found in Table 6 in the Appendices.

1E.g., PyTorch uses 10−5 as the default tolerance for gradient checking.

3

https://docs.pytorch.org/docs/stable/generated/torch.autograd.gradcheck.gradcheck.html

Table 1: Parameter update sparsity across different RL algorithms. We report sparsity for a suite of
open models from Hugging Face. For all models, at least 68.5%—and often much more—of the
parameters remain unchanged after RL.
Algo. Init Model RL Model Update Sparsity On-Policy KL Online

DPO Llama-3.1-Tulu-3-8B-SFT Llama-3.1-Tulu-3-8B-DPO 81.4 ✗ ✓ ✗
Llama-3.1-Tulu-3-70B-SFT Llama-3.1-Tulu-3-70B-DPO 95.2 ✗ ✓ ✗

GRPO deepseek-math-7b-instruct deepseek-math-7b-rl 68.5 ✓ ✓ ✓
DeepSeek v3 base DeepSeek-R1-Zero 86.0 ✓ ✓ ✓

ORPO mistral-7B-v0.1 mistral-orpo-beta 76.9 ✗ ✗ ✗

KTO Eurus-7b-sft Eurus-7b-kto 96.0 ✗ ✓ ✗
Llama-3-Base-8B-SFT Llama-3-Base-8B-SFT-KTO 81.2 ✗ ✓ ✗

PPO mistral-7b-sft math-shepherd-mistral-7b-rl 80.8 ✓ ✓ ✓

SimPO Meta-Llama-3-8B-Instruct Llama-3-Instruct-8B-SimPO 86.5 ✗ ✗ ✗

PRIME Eurus-2-7b-sft Eurus-2-7B-PRIME 77.0 ✓ ✗ ✓

Learning from in-distribution data. We use “in-distribution” to refer to training on data drawn from
a distribution that closely matches the current policy. An example is on-policy RL with, e.g., PPO,
GRPO, and PRIME, which sample data online from the evolving policy during training. Another way
to achieve in-distribution RL is to perform SFT on the same data used for subsequent RL, so that the
policy adapts to the data distribution before RL. This is a common practice in off-policy methods like
DPO and KTO. On-policy methods inherently train on in-distribution data, and off-policy methods
can also do so when the training data closely matches the policy distribution. As we will show later
in §6, training on in-distribution data is a primary reason for the update sparsity in RL.

KL-divergence regularization and gradient clipping in RL. Two widely adopted techniques to
keep the policy from deviating too far from the reference model are KL-divergence regularization and
gradient clipping. KL regularization (Schulman et al., 2017a), formally computed as DKL(πθ∥πref) =

Eπθ

[
log πθ(y|x)

πref(y|x)

]
, constrains policy shifts. Gradient clipping further stabilizes training by bounding

the update norm. Both are widely used in algorithms such as PPO, GRPO, and PRIME. In §6, we
show that, counterintuitively, both have limited impact on the update sparsity.

3 RL Induces Sparse but Full-rank Updates; SFT Induces Dense Ones

This section aims to answer the following research question

RQ1: To what extent does RL induce sparse parameter updates and where in the model do these
updates occur? How does SFT compare?

Setup. To answer this question, we analyze publicly released model checkpoints on Hugging Face
released by the authors. With the exception of models where RL is applied directly to the pretrained
base model (e.g., DeepSeek-R1-Zero), most models follow a conventional three-stage pipeline:
pretraining, supervised fine-tuning (SFT), and RL. We analyze both the RL and SFT stages by
measuring the update sparsity between model checkpoints before and after RL or SFT fine-tuning.
Our experiments cover Tulu 8B/70B (Lambert et al., 2025), Eurus 7B (Yuan et al., 2025; Cui et al.,
2025), DeepSeek Math 7B (Shao et al., 2024), and KTO/SimPO models (Meng et al., 2024).

Results. As shown in Table 1, for all RL-finetuned models, 68.5%–96.0% of parameters remain
unchanged after RL. This trend holds across different RL algorithms and model families. Particularly,
Deepseek-R1-Zero presents a update sparsity of 86.0%, regardless of directly training from the
pretrained base model, namely RL-Zero (DeepSeek-AI et al., 2025), and large-scale training for over
8K steps. Although exact training configurations are not always available, we observe that within the
same model family, larger models tend to show higher sparsity. Importantly, all of these models are
trained using full finetuning without any sparsity-promoting regularization techniques or constraints.
This suggests that the update sparsity is intrinsic to RL training rather than a result of design artifacts.

In contrast, Figure 1 shows that SFT induces dense updates (only 6%-15% sparsity). These results
offer fresh evidence supporting recent findings that RL better preserves the pretrained capabilities
than SFT (Chu et al., 2025; Setlur et al., 2025), possibly by updating substantially fewer parameters.

4

https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT
https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-DPO
https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-SFT
https://huggingface.co/allenai/Llama-3.1-Tulu-3-70B-DPO
https://huggingface.co/deepseek-ai/deepseek-math-7b-instruct
https://huggingface.co/deepseek-ai/deepseek-math-7b-rl
https://huggingface.co/deepseek-ai/DeepSeek-V3-Base
https://huggingface.co/deepseek-ai/DeepSeek-R1-Zero
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/kaist-ai/mistral-orpo-beta
https://huggingface.co/openbmb/Eurus-7b-sft
https://huggingface.co/openbmb/Eurus-7b-kto
https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT
https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO
https://huggingface.co/peiyi9979/mistral-7b-sft
https://huggingface.co/peiyi9979/math-shepherd-mistral-7b-rl
https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
https://huggingface.co/princeton-nlp/Llama-3-Instruct-8B-SimPO
https://huggingface.co/PRIME-RL/Eurus-2-7B-SFT
https://huggingface.co/PRIME-RL/Eurus-2-7B-PRIME

Layerwise Sparsity (DPO) Layerwise Sparsity (PRIME)

Figure 3: Layerwise and per-parameter-matrix update sparsity for DPO (left) and PRIME (right).
All layers are similarly sparsely updated, with the only exception of the layer normalization layers,
which receive little to no updates.

Takeaway 1

RL leads to consistently sparse parameter updates (often >70% sparsity) while SFT produces
dense updates. Sparsity emerges as a characteristic property of RL finetuning in LLMs.

Table 2: Mean ranks of update matrices, as a
percentage of maximum possible rank across
models after RL finetuning.

Model and Algo. Update Rank (%)

Tulu 8B (DPO) 99.8
Eurus 7B (PRIME) 99.5
Llama-3 8B (KTO) 99.2
DeepSeek Math 7B (GRPO) 99.4

Almost all transformer layers receive similarly
sparse updates. We next examine how parameter
updates in RL are distributed across the model lay-
ers and individual parameter matrices (e.g., Q, K, V
projections), based on DPO and PRIME models. If
updates were concentrated in a subset of layers or
modules, one could exploit that structure for enhanc-
ing the efficiency (Pan et al., 2024). Figure 3 shows
layerwise and per-matrix sparsity across the mod-
els. The "Average Sparsity" is over each transformer
layer, while others correspond to specific parameter
matrices. We observe that parameter updates are distributed across different matrices rather than
localized to specific ones. Except for consistently high sparsity in layer normalization layers, most
layers exhibit similar sparsity levels. Our results show that sparsity is relatively even across the model.
This suggests that recovering the behavior of the fully finetuned model requires updating all layers,
albeit with only a subset of parameters in each.

Updates are sparse but full-rank. Given the sparsity of RL-induced updates, a natural question is
whether these updates are also low-rank. This distinction between low-rank and sparse updates is
important: the former would imply that finetuning operates within a subspace, while the latter implies
that a small subset of parameters (that can span the full parameter space) are selected to finetune.
Notably, while the updates are sparse, a closer inspection reveals that they are nearly full rank (Tab
2). To compute rank, we calculate the average rank of individual update matrices across all layers.
We further examine the rank of the update for each layer and parameter matrix, and find that most are
full-rank throughout the model. These findings suggest that RL updates are localized to a subset of
the parameters that almost span the full subspaces that the parameter matrices can represent, instead
of residing in a low-rank subspace.

Takeaway 2

All layers and parameter matrices receive similarly sparse but full-rank updates. While layer
normalization parameters are almost never updated.

4 Finetuning the Subnetwork Alone Can Reproduce the Full-finetuned Model

Since RL primarily fine-tunes a small subnetwork, we investigate two research questions inspired by
but extending beyond the Lottery Ticket Hypothesis (LTH):

5

https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-DPO
https://huggingface.co/PRIME-RL/Eurus-2-7B-PRIME
https://huggingface.co/princeton-nlp/Llama-3-Base-8B-SFT-KTO
https://huggingface.co/deepseek-ai/deepseek-math-7b-rl

RQ2: Can finetuning the subnetwork in isolation recover the performance of the full-finetuned
model?

RQ3: Can subnetwork-only finetuning also recover the exact parameter values produced by full
RL finetuning? This section answers both in the positive.

Setup. We follow the procedure described in §1 to obtain two models: one with full finetuning
θfull, and another finetuned on the same data and hyperparameters but updating only the subnet-
work θsub. We experiment on two very different algorithms DPO, an off-policy algorithm using
implicit outcome rewards, and PRIME, an on-policy one with process reward models, to ensure
that our conclusion can generalize. We implement DPO with Open-Instruct and PRIME with
verl. The exact hyperparameter choices for both can be found in Appendix B. For evaluation,
we choose a subset of tasks reported in the original papers for both. For DPO we choose the
LSAT (Wang et al., 2022), LogiQA (Liu et al., 2021) splits from AGIEval (Zhong et al., 2024),
Math split of MMLU Pro (Wang et al., 2024b). For PRIME, we report results on the MATH500
(Hendrycks et al., 2021) benchmark across difficulty levels. For evaluation in DPO we use olmes.2

Figure 4: Training loss for training DPO with subnetwork
finetuning and full finetuning. Training the subnetwork in
isolation consistently causes train loss to be lower.

Results. In DPO, 94.0% weights
are same between θfull and θsub; it is
90.5% for PRIME. Notably, for both
DPO and PRIME, θfull and θsub are
100% identical when using a toler-
ance of 10−4 instead of the default
10−5, indicating that the two models
converge to nearly identical param-
eter values. As shown in Tables 3a
and 3b, θsub matches or outperforms
θfull on all tasks across both algo-
rithms. These results suggest that
the parameters outside the subnetwork
play little role in the optimization pro-
cess, and freezing them has a negligi-
ble or even beneficial impact on the model’s performance. We further observe that the training loss
is consistently lower in the subnetwork finetuning setting than full finetuning (Fig. 4). They also
provide supporting evidence for our Conjecture 1 in §1. This finding opens up new possibilities for
more efficient RL training methods that explicitly leverage this update sparsity (Chen et al., 2022).

Table 3: Test set performance of θfull and θsub trained with DPO and PRIME. Training only the
subnetwork (θsub) can achieve better performance than full finetuning (θfull). Lvl. indicates the
difficulty levels of MATH500.

(a) DPO

Task θfull θsub ∆

AGIEval LSAT-AR 21.3 24.8 +3.5
AGIEval LSAT-LR 53.1 54.7 +1.6
AIGEval LogiQA-en 43.5 45.5 +2.0
GPQA 32.8 32.8 +0.0
MMLU Pro Math 50.8 51.6 +0.8

Avg 40.3 41.9 +1.6

(b) PRIME

Lvl. θfull θsub ∆

1 93.0 93.0 +0.0
2 85.6 85.6 +0.0
3 82.9 83.8 +0.9
4 71.1 74.2 +3.1
5 40.3 45.5 +5.2

Overall 69.8 72.2 +2.4

5 Consistency of Subnetworks Across Seeds, Data, and Algorithms

This section aims to answer the following research question:

RQ4: How consistent is the RL-updated subnetwork under varying training conditions such as
random seed, training data, RL algorithm, and even all of them?

2Open-Instruct: https://github.com/allenai/open-instruct; verl: https://github.com/
volcengine/verl/; olmes: https://github.com/allenai/olmes/

6

https://github.com/allenai/open-instruct
https://github.com/volcengine/verl/
https://github.com/volcengine/verl/
https://github.com/allenai/olmes/

Table 4: Subnetwork overlap varying random seeds, training data, and RL algorithms. Despite these
changes, subnetworks show non-trivial overlap compared to random-guessing baselines.

Variation Axis Setting Random RL Subnetwork Sparsity

Seed I1: 42 o1: 36.7 o1: 60.5 63.3
I2: 123 o2: 36.7 o2: 60.6 63.3

Data I1: Tulu Data o1: 14.6 o1: 26.7 63.3
I2: PRIME Data o2: 36.7 o2: 67.1 85.4

Seed + Data + Algo. I1: DPO o1: 23.0 o1: 59.1 87.1
I2: PRIME o2: 12.9 o2: 33.2 77.0

If the subnetwork remains largely consistent across these variations, it would suggest that the
identified subnetwork is not merely an artifact of specific training configuration but a generalizable
and transferable structure of the pretrained model.

Setup. To quantify the similarity between two subnetworks, we define an overlap metric. Let s1
and s2 denote the sparsity levels of two models, and let I1 and I2 be the sets of indices of the
updated parameters. The size of the common subnetwork is given by |I1 ∩ I2|. One-sided overlap
is then o1 = |I1 ∩ I2|/|I1| = |I1 ∩ I2|/(1 − s1), which quantifies the proportion of I1 that is
covered by the subnetwork I2, i.e., how well I2 captures the parameters updated in I1. Similarly,
o2 = |I1∩I2|/(1−s2) quantifies how well I1 captures the parameters updated in I2. We compare the
observed overlaps o1 and o2 against a random guessing baseline, where a subnetwork is constructed
by uniformly selecting the same number of parameters as identified by RL (Appendix E).

We evaluate three settings: (1) varying the random seed alone, (2) varying the training data alone,
and (3) changing the seed, data, and the RL algorithm altogether as a stress test. We conduct
controlled experiments and all factors not under investigation are the same. Unless otherwise
mentioned, all ablations were done with a batch size of 32, trained for one epoch with the base
model Tulu-3-8B-SFT. When varying the training data, we switch between the Tulu preference
dataset3 and the PRIME rollout dataset4. To adapt the rollout dataset to DPO format, we select
only positive samples, and pair it with a randomly sampled negative one. When varying the RL
algorithm, we train a DPO model initialized from PRIME-RL/Eurus-2-7B-SFT and compare it to
the PRIME-RL/Eurus-2-7B-PRIME model.

Results. Table 4 reports our observed overlap. Despite changes in initialization, the resulting
subnetworks show substantial overlap—well above the random baseline. For instance, varying the
random seed yields overlaps of o1 = 60.5% and o2 = 60.6%. Similar consistency is observed when
the training dataset is varied. Even under a stress test, where the data, seed, and RL algorithm are all
changed, we still observe notable overlaps of 59.1% and 33.2%. These findings indicate the presence
of a subnetwork that is at least partially transferrable to other different settings.

Takeaway 3

For a given base model, we observe substantially higher subnetwork overlap than random guessing
across different seeds, training data, and RL algorithms. This suggests the potential of a consistent
and at least partially transferrable subnetwork structure across these different training settings.

While the observed subnetwork overlap across seeds, datasets, and training algorithms falls short of
100%, it suggests that partial subnetwork reuse may still offer practical utility. In particular, partial
subnetwork reuse could reduce redundant computation across repeated RL runs, such as those in
hyperparameter sweeps or ablation studies, by partially reusing the subnetworks. In addition, one
might be able to reuse part of the subnetwork identified by a cheaper algorithm like DPO and reuse it
in more expensive ones like PPO, greatly reducing the training cost without sacrificing performance.

3allenai/llama-3.1-tulu-3-8b-preference-mixture
4PRIME-RL/Eurus-2-Rollout. It has model generations for math datasets alongside a label for correctness

7

https://huggingface.co/allenai/Llama-3.1-Tulu-3-8B-SFT

6 Why Do the Subnetworks Emerge?

This section answers investigates the following research question:

RQ5: What factors contribute to the update sparsity observed in RL finetuning?

We investigate the following factors: gradient clipping, KL regularization towards a reference policy,
performing SFT prior to RL, and the number of RL update steps. Our investigation suggests that
the dominating factor is how close the training data distribution is to the policy’s, i.e., whether the
training data is in-distribution. Another important factor is the total number of gradient updates.

0 50 100 150 200 250 300 350
Global Step

20%

40%

60%

80%

100%

(%
)

Sparsity (%)
MATH 500 (%)
AIME 2024 (%)

Figure 5: Update sparsity of intermediate check-
points of a training run of PRIME. We observe that
with more training the sparsity slowly decays.

Gradient clipping and KL regularization. As
discussed in §2.2, gradient clipping and KL reg-
ularization are commonly used to keep the pol-
icy from deviating too far away from a refer-
ence model. Since both mechanisms explicitly
suppress large parameter updates, they are nat-
ural candidates for contributing factors to the
observed update sparsity. To test their impact,
we train a GRPO variant using Qwen-2.5-7B-
Instruct, comparing models with and without
these regularization terms. We find that both
configurations exhibit comparable sparsity lev-
els, suggesting that neither gradient clipping nor
KL regularization is a primary driver of the up-
date sparsity. In our experiments, the GRPO
variant trained with KL regularization achieved
a sparsity of 69.8%, while the variant trained without KL regularization reached 68.8%. Further,
SimPO removes the KL term by dropping the base policy normalization in DPO, and as reported in 1
SimPO also produces sparse updates, providing further negative evidence for KL.

Performing SFT before RL. A common design choice is to perform SFT on the same data as the
subsequent RL Ouyang et al. (2022). However, as shown in Table 1, our findings extend to models
such as DeepSeek-R1-Zero, which forgoes SFT entirely yet still exhibit high update sparsity. This
suggests that SFT is not a main contributing factor to the update sparsity in RL finetuning.

Training duration. It is intuitive that with more gradient steps, a model is expected to drift more
from the base model. Figure 5 shows how update sparsity changes during the training of PRIME. As
training progresses, update sparsity gradually decreases but eventually shows signs of convergence
to around 80%. Notably, DeepSeek-R1-Zero undergoes 8K training steps (numbers from Figure 2
in DeepSeek-AI et al. (2025)) using GRPO, over 20× more than PRIME, but shows a comparable
update sparsity (86%). Therefore, we conjecture that training duration’s impact on update sparsity is
more prominent during early training but gradually decreases as training progresses.

0 31 63 95 12
7

15
9

19
1

22
3

25
5

28
7

31
9

Steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

%
 o

ut
sid

e
su

bn
et

Figure 6: Percentage of updated weights that are
outside the final subnetwork across training steps

Figure 6 shows the percentage of updated pa-
rameters (relative to model size) that lie out-
side the final subnetwork. This proportion
increases during the early stages of training
but steadily declines in later stages. This trend
suggests that some parameters outside the final
subnetwork receive non-zero gradient updates
that cancel out. Overall, about 8.5% of param-
eters that are ever updated during training fall
outside the final subnetwork.

While it is possible, though less likely,
that all models we study, including
DeepSeek-R1-Zero (86.0% update sparsity
after 8K steps), are severely undertrained,
and that the observed update sparsity would
diminish with substantially more training.

8

Nonetheless, we question the practicality of this hypothesis since it runs counter to the RL literature
arguing against overtraining to prevent overfitting and improve generalization Fu et al. (2019).

Training on in-distribution data. Intuitively, when gradients are computed on sequences that the pol-
icy already assigns high probabilities to, little update to the parameters would be needed. We evaluated
two scenarios: (1) rejection sampling, and (2) DPO on out-of-distribution data by not performing SFT
pridor to RL. Since we’ve already learned from §3 that DPO with in-distribution data induces sparse
updates while SFT (with out-of-distribution data) induces dense ones, this additional experiment can
serve as a control group to isolate the factor of training on in- vs. out-of-distribution data.

As shown in Table 5, Our experiments reveal that SFT on in-distribution data produces sparse updates,
while DPO with out-of-distribution data produces dense ones. Specifically, performing SFT with
Qwen/Qwen2.5-Math-7B on rejection sampled in-distribution data yields around 90.0% update
sparsity. This is reinforced by the examination of a previous work: RAFT++ (Xiong et al., 2024),
which performs supervised finetuning with iterative rejection sampling, yields an update sparsity of
69.4%. In contrast, DPO on out-of-distribution data produces dense updates in zephyr-7b-beta
models, with a 6.8% update sparsity. These findings suggest that training on in-distribution data is a
major driver of update sparsity in not only RL, but also SFT.

Takeaway 4

Training on in-distribution data is a primary reason of update sparsity; KL-divergence regulariza-
tion and gradient clipping have limited impact.

Table 5: RFT indicates rejection-sampling fine-tuning (Touvron et al., 2023; Dong et al., 2023), and
RAFT++ is iterative RFT A comparative analysis across SFT and DPO as well as in- vs out-of-
distribution training shows that in-distribution consistently produces sparse updates.

Model Method Sparsity (%) SFT/RL In-Dist

Qwen2.5-Math-7B RFT 91.2 SFT ✓

Qwen2.5-Math-7B RAFT++ 69.4 SFT ✓

Llama-3.1-8B-SFT SFT 6.8 SFT ✗

Llama-3.1-8B-SFT DPO 6.8 RL ✗

Zephyr-7b-Beta DPO 7.7 RL ✗

Llama-3.1-8B-DPO DPO 81.4 RL ✓

7 Limitations and Future Work

Because RL is computationally demanding, we choose to vary one factor at a time; yet the observed
sparsity may actually result from complex interactions among many, an avenue future work should ex-
amine. Further, fully controlled experiments are computationally prohibitive, and we thus sometimes
resort to resort to public checkpoints. While our experiments focus on language models, it would be
interesting to explore the same questions for multimodal and diffusion models. Subsequent research
could investigate methods for early identification of the sparse subnetwork and ways to leverage
its structure for more efficient learning. Finally, our empirical findings invite a deeper theoretical
analysis, with the goal of uncovering theoretical explanations for the update sparsity in RL.

8 Conclusion

Our study reveals that RL finetuning in LLMs updates only a sparse subnetwork constituting approxi-
mately 5%-30% of total parameters, leaving the rest unchanged. This sparsity emerges intrinsically,
without explicit spasity promoting techniques such as regularization or structural constraints. Cru-
cially, finetuning just this subnetwork in isolation reproduces the full model’s performance, aligning
closely with original parameter values. For a given base model across different seeds, datasets and
learning algorithms, a non-trivial portion of the subnetwork remains the same. Our findings highlight
that learning from in-distribution samples while training is a key driver of this phenomenon, pointing
towards more efficient and effective training strategies in RL-based finetuning of LLMs.

9

https://huggingface.co/HuggingFaceH4/zephyr-7b-beta

References
Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,

Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson,
Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson,
Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile
Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado,
Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec,
Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom
Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and Jared Kaplan. Constitutional ai: Harmlessness
from ai feedback, 2022. URL https://arxiv.org/abs/2212.08073.

Deniz Bayazit, Negar Foroutan, Zeming Chen, Gail Weiss, and Antoine Bosselut. Discovering
knowledge-critical subnetworks in pretrained language models, 2024. URL https://arxiv.
org/abs/2310.03084.

Tianlong Chen, Xuxi Chen, Xiaolong Ma, Yanzhi Wang, and Zhangyang Wang. Coarsening the
granularity: Towards structurally sparse lottery tickets, 2022. URL https://arxiv.org/abs/
2202.04736.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
model post-training, 2025. URL https://arxiv.org/abs/2501.17161.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu Yu,
Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan Yao,
Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning Ding. Process
reinforcement through implicit rewards, 2025. URL https://arxiv.org/abs/2502.01456.

Josef Dai, Xuehai Pan, Ruiyang Sun, Jiaming Ji, Xinbo Xu, Mickel Liu, Yizhou Wang, and Yaodong
Yang. Safe rlhf: Safe reinforcement learning from human feedback, 2023. URL https://arxiv.
org/abs/2310.12773.

Fatima Davelouis, John D. Martin, and Michael Bowling. On the interplay between sparsity and
training in deep reinforcement learning, 2025. URL https://arxiv.org/abs/2501.16729.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,

10

https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2310.03084
https://arxiv.org/abs/2310.03084
https://arxiv.org/abs/2202.04736
https://arxiv.org/abs/2202.04736
https://arxiv.org/abs/2501.17161
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2310.12773
https://arxiv.org/abs/2310.12773
https://arxiv.org/abs/2501.16729

Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment, 2023. URL https://arxiv.org/abs/2304.06767.

Shitong Duan, Xiaoyuan Yi, Peng Zhang, Tun Lu, Xing Xie, and Ning Gu. Negating negatives:
Alignment without human positive samples via distributional dispreference optimization. CoRR,
abs/2403.03419, 2024. URL https://doi.org/10.48550/arXiv.2403.03419.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization, 2024. URL https://arxiv.org/abs/2402.
01306.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJl-b3RcF7.

Justin Fu, Aviral Kumar, Matthew Soh, and Sergey Levine. Diagnosing bottlenecks in deep q-
learning algorithms. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 2021–2030. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/fu19a.html.

Laura Graesser, Utku Evci, Erich Elsen, and Pablo Samuel Castro. The state of sparse training in
deep reinforcement learning, 2022. URL https://arxiv.org/abs/2206.10369.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model, 2024. URL https://arxiv.org/abs/2403.07691.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=
nZeVKeeFYf9.

Xinmeng Huang, Shuo Li, Edgar Dobriban, Osbert Bastani, Hamed Hassani, and Dongsheng Ding.
One-shot safety alignment for large language models via optimal dualization. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https://
openreview.net/forum?id=dA7hUm4css.

HuggingFace. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria
Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca
Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tulu 3:
Pushing frontiers in open language model post-training, 2025. URL https://arxiv.org/abs/
2411.15124.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023. URL
https://arxiv.org/abs/2305.20050.

11

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2304.06767
https://doi.org/10.48550/arXiv.2403.03419
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.mlr.press/v97/fu19a.html
https://proceedings.mlr.press/v97/fu19a.html
https://arxiv.org/abs/2206.10369
https://openreview.net/forum?id=7Bywt2mQsCe
https://arxiv.org/abs/2403.07691
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=dA7hUm4css
https://openreview.net/forum?id=dA7hUm4css
https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2305.20050

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: a
challenge dataset for machine reading comprehension with logical reasoning. In Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI’20, 2021. ISBN
9780999241165.

Yuanxin Liu, Fandong Meng, Zheng Lin, Jiangnan Li, Peng Fu, Yanan Cao, Weiping Wang, and
Jie Zhou. A win-win deal: Towards sparse and robust pre-trained language models, 2022. URL
https://arxiv.org/abs/2210.05211.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Samuel Marks, Can Rager, Eric J. Michaud, Yonatan Belinkov, David Bau, and Aaron Mueller.
Sparse feature circuits: Discovering and editing interpretable causal graphs in language models,
2025. URL https://arxiv.org/abs/2403.19647.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
free reward, 2024. URL https://arxiv.org/abs/2405.14734.

Tong Mu, Alec Helyar, Johannes Heidecke, Joshua Achiam, Andrea Vallone, Ian Kivlichan, Molly
Lin, Alex Beutel, John Schulman, and Lilian Weng. Rule based rewards for language model safety,
2024. URL https://arxiv.org/abs/2411.01111.

OpenAI. Openai o1 system card. 2024.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback, 2022. URL
https://arxiv.org/abs/2203.02155.

Jiayi Pan, Junjie Zhang, Xingyao Wang, Lifan Yuan, Hao Peng, and Alane Suhr. Tinyzero.
https://github.com/Jiayi-Pan/TinyZero, 2025. Accessed: 2025-01-24.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. LISA:
Layerwise importance sampling for memory-efficient large language model fine-tuning. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=L8ifDX5XNq.

Ashwinee Panda, Berivan Isik, Xiangyu Qi, Sanmi Koyejo, Tsachy Weissman, and Prateek Mittal.
Lottery ticket adaptation: Mitigating destructive interference in llms, 2024. URL https://arxiv.
org/abs/2406.16797.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization
in fine-tuned language models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research,
pages 27011–27033. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
panigrahi23a.html.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In
Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL https://
openreview.net/forum?id=HPuSIXJaa9.

Rajkumar Ramamurthy, Prithviraj Ammanabrolu, Kianté Brantley, Jack Hessel, Rafet Sifa, Christian
Bauckhage, Hannaneh Hajishirzi, and Yejin Choi. Is reinforcement learning (not) for natural
language processing: Benchmarks, baselines, and building blocks for natural language policy
optimization. In The Eleventh International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=8aHzds2uUyB.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization, 2017a. URL https://arxiv.org/abs/1502.05477.

12

https://arxiv.org/abs/2210.05211
https://arxiv.org/abs/2403.19647
https://arxiv.org/abs/2405.14734
https://arxiv.org/abs/2411.01111
https://arxiv.org/abs/2203.02155
https://openreview.net/forum?id=L8ifDX5XNq
https://openreview.net/forum?id=L8ifDX5XNq
https://arxiv.org/abs/2406.16797
https://arxiv.org/abs/2406.16797
https://proceedings.mlr.press/v202/panigrahi23a.html
https://proceedings.mlr.press/v202/panigrahi23a.html
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=8aHzds2uUyB
https://arxiv.org/abs/1502.05477

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017b. URL https://arxiv.org/abs/1707.06347.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or rl is suboptimal, 2025. URL https://arxiv.org/abs/2502.12118.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.03300.

Hakim Sidahmed, Samrat Phatale, Alex Hutcheson, Zhuonan Lin, Zhang Chen, Zac Yu, Jarvis Jin,
Simral Chaudhary, Roman Komarytsia, Christiane Ahlheim, Yonghao Zhu, Bowen Li, Saravanan
Ganesh, Bill Byrne, Jessica Hoffmann, Hassan Mansoor, Wei Li, Abhinav Rastogi, and Lucas
Dixon. Parameter efficient reinforcement learning from human feedback, 2024. URL https:
//arxiv.org/abs/2403.10704.

Ghada Sokar, Elena Mocanu, Decebal Constantin Mocanu, Mykola Pechenizkiy, and Peter Stone.
Dynamic sparse training for deep reinforcement learning, 2022. URL https://arxiv.org/abs/
2106.04217.

Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan,
Liangyan Gui, Yu-Xiong Wang, Yiming Yang, Kurt Keutzer, and Trevor Darrell. Aligning large
multimodal models with factually augmented RLHF. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar, editors, Findings of the Association for Computational Linguistics: ACL 2024, pages
13088–13110, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.findings-acl.775. URL https://aclanthology.org/2024.findings-acl.
775/.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Yiqin Tan, Pihe Hu, Ling Pan, Jiatai Huang, and Longbo Huang. Rlx2: Training a sparse deep
reinforcement learning model from scratch, 2023. URL https://arxiv.org/abs/2205.15043.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023. URL https://arxiv.org/abs/2307.09288.

Hongru Wang, Cheng Qian, Wanjun Zhong, Xiusi Chen, Jiahao Qiu, Shijue Huang, Bowen Jin,
Mengdi Wang, Kam-Fai Wong, and Heng Ji. Otc: Optimal tool calls via reinforcement learning,
2025a. URL https://arxiv.org/abs/2504.14870.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations, 2024a.
URL https://arxiv.org/abs/2312.08935.

Shangshang Wang, Julian Asilis, Ömer Faruk Akgül, Enes Burak Bilgin, Ollie Liu, and Willie
Neiswanger. Tina: Tiny reasoning models via lora, 2025b. URL https://arxiv.org/abs/
2504.15777.

Siyuan Wang, Zhongkun Liu, Wanjun Zhong, Ming Zhou, Zhongyu Wei, Zhumin Chen, and Nan
Duan. From lsat: The progress and challenges of complex reasoning. IEEE/ACM Trans. Audio,
Speech and Lang. Proc., 30:2201–2216, April 2022. ISSN 2329-9290. doi: 10.1109/TASLP.2022.
3164218. URL https://doi.org/10.1109/TASLP.2022.3164218.

13

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2502.12118
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2403.10704
https://arxiv.org/abs/2403.10704
https://arxiv.org/abs/2106.04217
https://arxiv.org/abs/2106.04217
https://aclanthology.org/2024.findings-acl.775/
https://aclanthology.org/2024.findings-acl.775/
https://arxiv.org/abs/2205.15043
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2504.14870
https://arxiv.org/abs/2312.08935
https://arxiv.org/abs/2504.15777
https://arxiv.org/abs/2504.15777
https://doi.org/10.1109/TASLP.2022.3164218

Yiping Wang, Qing Yang, Zhiyuan Zeng, Liliang Ren, Lucas Liu, Baolin Peng, Hao Cheng, Xuehai
He, Kuan Wang, Jianfeng Gao, Weizhu Chen, Shuohang Wang, Simon Shaolei Du, and Yelong
Shen. Reinforcement learning for reasoning in large language models with one training example,
2025c. URL https://arxiv.org/abs/2504.20571.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi
Fan, Xiang Yue, and Wenhu Chen. MMLU-pro: A more robust and challenging multi-task language
understanding benchmark. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024b. URL https://openreview.net/forum?id=
y10DM6R2r3.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for RLHF
under KL-constraint. In Forty-first International Conference on Machine Learning, 2024. URL
https://openreview.net/forum?id=c1AKcA6ry1.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, and Hanze Dong. A minimalist approach to llm reasoning: from rejection
sampling to reinforce, 2025. URL https://arxiv.org/abs/2504.11343.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Ties-merging:
Resolving interference when merging models, 2023. URL https://arxiv.org/abs/2306.
01708.

Lifan Yuan, Ganqu Cui, Hanbin Wang, Ning Ding, Xingyao Wang, Jia Deng, Boji Shan, Huimin Chen,
Ruobing Xie, Yankai Lin, Zhenghao Liu, Bowen Zhou, Hao Peng, Zhiyuan Liu, and Maosong Sun.
Advancing llm reasoning generalists with preference trees. In ICLR, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
URL https://arxiv.org/abs/2503.18892.

Dylan Zhang, Qirun Dai, and Hao Peng. The best instruction-tuning data are those that fit, 2025.
URL https://arxiv.org/abs/2502.04194.

Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
collapse to effective unlearning. In First Conference on Language Modeling, 2024.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. AGIEval: A human-centric benchmark for evaluating foundation
models. In Kevin Duh, Helena Gomez, and Steven Bethard, editors, Findings of the Association
for Computational Linguistics: NAACL 2024, pages 2299–2314, Mexico City, Mexico, June 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-naacl.149. URL
https://aclanthology.org/2024.findings-naacl.149/.

Guanghao Zhou, Panjia Qiu, Cen Chen, Jie Wang, Zheming Yang, Jian Xu, and Minghui Qiu.
Reinforced mllm: A survey on rl-based reasoning in multimodal large language models, 2025.
URL https://arxiv.org/abs/2504.21277.

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences, 2020.
URL https://arxiv.org/abs/1909.08593.

14

https://arxiv.org/abs/2504.20571
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=y10DM6R2r3
https://openreview.net/forum?id=c1AKcA6ry1
https://arxiv.org/abs/2504.11343
https://arxiv.org/abs/2306.01708
https://arxiv.org/abs/2306.01708
https://arxiv.org/abs/2503.18892
https://arxiv.org/abs/2502.04194
https://aclanthology.org/2024.findings-naacl.149/
https://arxiv.org/abs/2504.21277
https://arxiv.org/abs/1909.08593

A Appendix

Algorithm Model (RL Checkpoint) Tol = 1e-8 Tol = 1e-7 Tol = 1e-6 Tol = 1e-5

DPO allenai/Llama-3.1-Tulu-3-8B-DPO 76.04 76.04 76.14 81.38
DPO allenai/Llama-3.1-Tulu-3-70B-DPO 87.58 87.59 87.79 95.24
GRPO deepseek-ai/deepseek-math-7b-rl 68.14 68.14 68.14 68.53
ORPO kaist-ai/mistral-orpo-beta 73.16 73.18 73.23 76.94
ORPO kaist-ai/mistral-orpo-alpha 50.40 50.41 50.48 53.23
KTO openbmb/Eurus-7b-kto 71.78 71.79 73.14 95.98
PPO peiyi9979/math-shepherd-mistral-7b-rl 52.45 52.47 53.21 80.77
PPO PRIME-RL/Eurus-2-7B-PRIME 75.26 75.27 75.36 77.04
SimPO Llama-3-Instruct-8B-SimPO 71.00 71.00 71.10 76.42
SimPO Llama-3-Base-8B-SFT-SimPO 79.47 79.47 79.60 86.52
SimPO Mistral-7B-Instruct-SimPO 59.37 59.40 60.31 89.07
SimPO Mistral-7B-Base-SFT-SimPO 62.58 62.60 63.56 91.44

Table 6: Sparsity (%) of parameter updates under different thresholds across RL algorithms and RL
checkpoints.

B Hyperparameter choices for Gradient Masking experiments

DPO: For DPO, we fine-tuned the LLaMA-3.1-Tulu-3-8B model using Direct Preference Opti-
mization (DPO) with bfloat16 mixed-precision and DeepSpeed Stage 3 for memory and compute
efficiency across 8 processes. Training uses a sequence length of 2048 tokens with an effective
batch size of 128, achieved by setting the per-device batch size to 1 with 16 gradient accumu-
lation steps. A linear learning rate schedule is applied with a peak learning rate of 5 × 10−7

and a warmup ratio of 0.1, without weight decay. The model is trained for one epoch on the
allenai/llama-3.1-tulu-3-8b-preference-mixture dataset.

PRIME: For PRIME, We fine-tune Qwen2.5-Math-7B using on a mixture of GSM8K and MATH
datasets. The training batch size is set to 64. The actor is optimized with a learning rate of 5× 10−7

while the reward model is trained with a learning rate of 1× 10−6. We performed four rollouts are
performed per sample. We use gradient clipping of 10.0, and a temperature β of 0.05. Training is
conducted on for 15 epochs.

C Model Checkpoints: SFT vs RL sparsity comparison

SFT Checkpoints. We compare the following base and SFT checkpoints:

• meta-llama/Llama-3.1-8B vs. allenai/Llama-3.1-Tulu-3-8B-SFT

• meta-llama/Llama-3.1-70B vs. allenai/Llama-3.1-Tulu-3-70B-SFT

• Qwen/Qwen2.5-Math-7B vs. PRIME-RL/Eurus-2-7B-SFT

RL Checkpoints. We compare the following SFT and RL-finetuned checkpoints:

• allenai/Llama-3.1-Tulu-3-8B-SFT vs. allenai/Llama-3.1-Tulu-3-8B-DPO

• allenai/Llama-3.1-Tulu-3-70B-SFT vs. allenai/Llama-3.1-Tulu-3-70B-DPO

• PRIME-RL/Eurus-2-7B-SFT vs. PRIME-RL/Eurus-2-7B-PRIME

D Training Dynamics

We analyzed intermediate checkpoints of the PRIME model. Notably, our goal is to observe the
convergence of the sparsity with training time. Does the sparsity decay with gradient steps ? Does it
asymptotically reach a sparsity level of zero or is the convergence to a non-zero point ?

15

Experimental setup We analyze 21 intermediate checkpoints from a training run of the PRIME
model. Let the model parameters at these checkpoints be denoted by θ1, θ2, . . . , θ21, and let θinit
denote the parameters of the corresponding base model (i.e., PRIME-RL/Eurus-7b-sft). We define
the sparsity between the base model to checkpoint k as sparsityk = sparsity(θk, θinit), and the
sparsity between two checkpoints i and j as sparsityij = sparsity(θj , θi).

Key Findings Our analysis begins by examining how the sparsityk evolve with training progress,
offering insight into the update patterns.

0 50 100 150 200 250 300 350
Global Step

20%

40%

60%

80%

100%

(%
)

Sparsity (%)
MATH 500 (%)
AIME 2024 (%)

(a)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Step

96.50%

97.00%

97.50%

98.00%

98.50%

(%
)

Sparsity

(b)

Figure 7: Sparsity Analysis of intermediate checkpoints of PRIME (a) shows the sparsity

Figure 7(a) illustrates the sparsity of intermediate checkpoints alongside their accuracy on the
MATH500 and AIME2024 tasks. The plot clearly demonstrates that all intermediate checkpoints
exhibit non-trivial sparsity. Furthermore, as training progresses, the sparsity converges to a numeri-
cally significant asymptote, suggesting that a substantial proportion of weights remain unaffected
even after prolonged period of training. In Figure 7(b), we report the sparsity of the sparsityij for
all consecutive checkpoint pairs, i.e., where j = i+ 1. Notably, in each successive step, on average,
only 7% of the weights receive a non-zero gradient update.

E Random Guessing baseline

If model 1 has sparsity s1 and model 2 has sparsity s2, the expected overlap is given by: (1−s1)·(1−s2)
100 .

Normalizing like earlier, we get O1,random = (1−s2)
100 and O2,random = (1−s1)

100 . i.e. for random
guessing the overlap for model 1 is the density of model 2.

16

	Introduction
	Related work and Background
	Related Work
	Background

	RL Induces Sparse but Full-rank Updates; SFT Induces Dense Ones
	Finetuning the Subnetwork Alone Can Reproduce the Full-finetuned Model
	Consistency of Subnetworks Across Seeds, Data, and Algorithms
	Why Do the Subnetworks Emerge?
	Limitations and Future Work
	Conclusion
	Appendix
	Hyperparameter choices for Gradient Masking experiments
	Model Checkpoints: SFT vs RL sparsity comparison
	Training Dynamics
	Random Guessing baseline

