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Abstract

Large language models (LLMs) excel at mathematical reasoning and logical
problem-solving. The current popular training paradigms primarily use super-
vised fine-tuning (SFT) and reinforcement learning (RL) to enhance the models’
reasoning abilities. However, when using SFT or RL alone, there are respective
challenges: SFT may suffer from overfitting, while RL is prone to mode collapse.
The state-of-the-art methods have proposed hybrid training schemes. However,
static switching faces challenges such as poor generalization across different tasks
and high dependence on data quality. In response to these challenges, inspired
by the curriculum learning-quiz mechanism in human reasoning cultivation, We
propose SASR, a step-wise adaptive hybrid training framework that theoretically
unifies SFT and RL and dynamically balances the two throughout optimization.
SASR uses SFT for initial warm-up to establish basic reasoning skills, and then
uses an adaptive dynamic adjustment algorithm based on gradient norm and di-
vergence relative to the original distribution to seamlessly integrate SFT with the
online RL method GRPO. By monitoring the training status of LLMs and adjust-
ing the training process in sequence, SASR ensures a smooth transition between
training schemes, maintaining core reasoning abilities while exploring different
paths. Experimental results demonstrate that SASR outperforms SFT, RL, and
static hybrid training methods.

1 Introduction

Large language models (LLMs) have demonstrated remarkable capabilities in complex reasoning
tasks, including mathematical problem-solving [1, 2], symbolic manipulation [3, 4], and multi-step
logical inference [5–7]. These advancements are largely driven by sophisticated training paradigms
that combine supervised fine-tuning (SFT) with reinforcement learning (RL). SFT provides models
with high-quality, step-by-step reasoning demonstrations, often in the form of chain-of-thought (CoT)
annotations, which help the model learn structured problem-solving strategies. Meanwhile, RL further
refines these capabilities through reward-driven optimization, aligning model outputs with human
preferences or task-specific objectives. This hybrid approach has become a cornerstone for state-
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of-the-art (SOTA) models like GPT-4 [8], DeepSeek [9], and Claude [10], achieving unprecedented
performance on benchmarks.

However, as the demand for training LLMs on specific tasks increases, where such tasks often
lack large-scale, high-quality datasets but still require strong reasoning capabilities, the currently
employed training paradigms face the following challenges. For primitive training paradigms (e.g.,
SFT and RL), SFT heavily relies on carefully crafted chain-of-thought (CoT) annotations and verified
gold-standard answers, making it susceptible to overfitting [11–13]. In contrast, RL suffers from
issues such as reward hacking [14] and mode collapse [15], which may cause LLMs to lose their
reasoning capability during training. In response to above challenges, researchers have proposed
Entropy bonus [16], Curriculum Learning [17], PTX Loss [18], etc. However, these methods act
as auxiliary enhancements, addressing surface-level symptoms without structurally rethinking the
underlying training paradigms. Thus, recent studies have begun to explore hybrid training paradigms
that integrate supervised and reinforcement learning. For instance, the emerging DeepSeek model
demonstrates strong reasoning capabilities through a training scheme that combines SFT and RL.
However, the effectiveness of such two-stage frameworks remains uncertain in the absence of high-
quality, carefully curated datasets. Moreover, their generalization across different training tasks has
not been well established.

In this study, to address the above challenges, we propose an effective hybrid training method, SASR,
inspired by the way human reasoning abilities are developed through structured learning followed by
practice. In our framework, SFT plays the role of guided learning using reference materials, while
RL serves as a form of quiz-like reinforcement that enhances generalization. SASR unifies these
two stages and adaptively adjusts their proportions based on the model’s training dynamics. Just
as students need to study sufficient reference materials, such as worked examples with solutions,
before developing independent reasoning skills, SASR begins with a warm-up phase using SFT to
establish basic reasoning capabilities. Following this phase, SASR continues training by combining
SFT and reinforcement learning through GRPO. This stage mirrors how students, after reviewing
worked examples, engage in solving new problems to enhance their generalization ability. However,
removing reference materials entirely after the warm-up phase may cause the model to drift away
from sound reasoning patterns. To prevent this, SASR dynamically adjusts the proportion of SFT and
GRPO throughout training, guided by the model’s evolving state. Specifically, the ratio is updated at
each training step by comparing the current gradient norms with those recorded during the warm-up
phase.

Through this method, SASR can monitor the gradient characteristics and learning trends during the
model’s learning process to dynamically guide training, while also achieving a smooth transition
between the two training schemes, thus balancing the maintenance of basic reasoning capabilities and
the exploration of multiple reasoning paths. In comparison, current hybrid training methods [9, 19, 20]
use static training schemes and hard switching schemes. Static training schemes set fixed training
steps for each training task and predefine the paradigm for each epoch. Meanwhile, hard-switching
training schemes have no transition phase when switching from one paradigm to another, directly
executing the switch. Such hybrid training schemes have deficiencies in the generalization of multi-
task training, the smoothness of the switching process, and the resolution of the forget-stagnation
problem. We conducted extensive experiments on two base models, DeepSeek and Qwen, across
three standard datasets: GSM8K, MATH, and Knight-and-knives(KK). Our experiments covered
mathematical calculations and logic reasoning-based question answering, demonstrating that SASR
significantly improves performance and generalization ability compared to SFT, RL, and static hybrid
training (For example, on mathematical reasoning specific tasks, the accuracy of SASR is improved
by an average of 12.45% compared to the baseline, and by an average of 15.30% compared to RL. On
complex datasets such as MATH and KK, it is improved by an average of 8.0% compared to static
hybrid methods). Our contributions are as follows:

• We propose a novel adaptive dynamic training method, SASR, which theoretically connects
SFT and RL for the first time and enhances LLM reasoning abilities through adaptive smooth
hybrid training and demonstrating the superiority of dynamic training.

• Inspired by the human curriculum learning-quiz process, we designed a dynamic switching
indicator based on the relationship between the training state during the warm-up phase and
the gradient norm, which helps address the trade-off between forgetting and stagnation in
LLM training.
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Figure 1: Comparison between our proposed SASR and existing training paradigms.

• Additionally, we deployed our method on multiple tasks involving mathematical reasoning
and logical inference solving and conducted extensive experiments, demonstrating the
superiority of SASR.

2 Related Work

2.1 Mathematical Reasoning & Logical Inference Solving

Enhancing the mathematical problem solving and logical reasoning capabilities of LLMs has become
a key focus in recent research. Various methods such as Chain-of-Thought (CoT) prompting [6] with
its variants tree-of-thought [21] and graph-of-thought [22], and self-consistency mechanisms [7],
have demonstrated promising results on tasks like math word problems and arithmetic reasoning
by encouraging coherent intermediate steps. However, these methods also face limitations. For
instance, early-stage LLMs may generate unreliable explanations when performing few-shot textual
reasoning [23]. Additionally, while combining self-supervised learning with reward-model-based
reinforcement learning can guide LLMs in solving mathematical problems [24], concerns remain
regarding reward hacking and the difficulty in capturing fine-grained logical inferences [9].

2.2 Training Paradigms

Supervised Fine-Tuning (SFT) is a foundational technique for adapting pre-trained language models
to downstream tasks by training on high-quality demonstration data. Specifically, LLMs update
their parameters by minimizing the discrepancy between predictions and ground-truth labels via
gradient-based optimization. Due to its high efficiency and low cost, SFT has been widely adopted
for fine-tuning LLMs in specialized areas such as mathematical reasoning [25–28]. However, SFT
alone may struggle with open-ended tasks where optimal responses are less well-defined [29].

In 2022, OpenAI introduce ChatGPT [30], a large language dialogue model that catalyzed the
development and adoption of a Reinforcement Learning from Human Feedback (RLHF) [31], as
a novel training paradigm in the field of LLM training. Advanced Reinforcement Learning (RL)
methods such as Proximal Policy Optimization (PPO) [32], and Group Relative Policy Optimization
(GRPO) [33] have since been integrated into refinement of LLMs. GRPO, which aims to enhance
policy optimization by leveraging group-relative advantages, can notably improve mathematical
reasoning capabilities with less memory consumption [33]. However, it can still encounter challenges
like reward hacking [34] and pattern collapse [33].

Given the limitations of utilizing only SFT or RL approaches, recent work explores hybrid approaches
that combine both paradigms to enhance both instruction-following and reasoning. DeepSeek-R1 [9]
exemplifies this trend by employing a novel training framework that combines SFT and GRPO.
Similarly, Reinforced Fine-Tuning (ReFT) [19] demonstrates that RL-augmented fine-tuning can
outperform pure SFT. These approaches highlight the potential of combining supervised learning with
RL to unlock advanced reasoning in LLMs. However, the static hard-switching training scheme has
considerable room for improvement in terms of dynamic task adaptation and progressive capability
transfer.
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(a) Visualizations of SASR’s architecture: warm-up in step1,
and the training state is monitored through the condition
function I(t) to adaptively adjust the training paradigm in
step2.
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Figure 2: Visualizations of SASR’s architecture and theoretical analysis.

3 SASR: Step-wise Adaptive Integration of SFT and RL

In this section, we first present an overview of our proposed step-wise adaptive hybrid training
framework, SASR, which is inspired by the development of human reasoning abilities through
structured learning followed by practice. We then theoretically analyze the advantages of SASR over
primitive training paradigms (i.e., SFT and GRPO) and static hybrid approaches, and further validate
our insights through a series of case studies. Finally, we describe how SASR adaptively adjusts the
ratio between SFT and RL based on training dynamics after the warm-up phase (see Algorithm 1).

3.1 Overview of SASR

As illustrated in Figure 2a, SASR consists of two components: a warm-up phase based on SFT, and
a subsequent hybrid training phase that integrates both SFT and GRPO. We formally define these
two phases below. These definitions serve as the foundation for the theoretical analysis in the next
subsection.

Warm-up phase. Since SASR is designed for training LLMs on task-specific scenarios where
high-quality datasets are often unavailable, it begins with SFT on a small-scale dataset consisting
of (question, chain-of-thought) pairs (x, e), where x represents the input question token sequence
and e denotes the corresponding chain-of-thought reasoning path that demonstrates the step-by-step
solution process, in order to establish fundamental reasoning capabilities. The chain-of-thought is
represented as a token sequence e = [a1, ..., aL = <eos>], where each at corresponds to the t-th
reasoning step token in the sequence,where each token is generated autoregressively:

at ∼ πθ(·|st), st+1 = [st, at] (1)

where st represents the state (context) at step t containing all previously generated tokens, and
πθ(·|st) denotes the token generation probability distribution conditioned on st.

During the SFT phase, the optimization process aims to maximize the likelihood of ground-truth
sequences, which is typically achieved by minimizing the negative log-likelihood (NLL) loss:

LSFT(θ) = −E(x,e)∼D

[
L∑

t=1

logπθ(at|st)

]
, (2)

where D represents the training dataset distribution, θ denotes the model parameters, and L is the
length of the target sequence. The expectation is taken over both question and chain-of-thought pairs
sampled from the dataset.

Hybrid training phase. After finishing the warm-up phase, SASR adopts a step-wise adaptive hybrid
training employing both SFT and GRPO. In this phase, GRPO extends policy optimization through
group-wise comparisons. For each input q, we sample G outputs from both current and old policies,
then divide them into high-advantage (G+) and low-advantage (G−) groups based on their relative
merits:

G± = {oi,t|Âi,t ≷ median({Âi,t})}, (3)

where oi,t represents the t-th token of the i-th sampled output, and Âi,t denotes the estimated
advantage value measuring how much better the action is compared to the average at that state. The
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objective combines advantage maximization with KL regularization to prevent excessive deviation:

LGRPO(θ) =
1

G

G∑
i=1

[
min

(
πθ

πθold

Âi,t, clip
(

πθ

πθold

, 1± ϵ

)
Âi,t

)
− βDKL[πθ∥πref]

]
, (4)

where πθold is the previous policy before update, πref represents the reference policy (typically the
initial SFT model), ϵ controls the clipping range for policy updates, and β adjusts the strength of KL
regularization. The ratio πθ

πθold
measures how much the new policy deviates from the old one for each

action.

To formally define the dynamic adaptive training algorithm, this paper introduces I(t) as the state
function, which returns the training paradigm decision variable I(t) based on the current model’s
training state t. Compared with traditional hybrid methods that use a fixed training paradigm within
an epoch, SASR adopts a finer-grained training step s as a training unit, enabling more flexible
adaptive adjustments. Finally, we define the overall loss function L(θ) of the dynamic training swicth
framework in Equation 5.

L(θ) = 1

S

S∑
s=1

[(1− I(t)) · LSFT(θ) + I(t) · LGRPO(θ)] (5)

3.2 Theoretical Analysis of SASR and Empirical Validation via Case Studies

In this subsection, to theoretically examine the advantages of SASR over existing training paradigms,
we first establish the relationship between the gradient norm of the SFT loss and the Kullback–Leibler
(KL) divergence. We then investigate how this relationship influences the reinforcement learning
process. Specifically, we analyze the KL divergence between the model policy πθ and the data
distribution πdata, and how this divergence impacts the gradient norm of SFT.

Initially, we define the SFT loss function as the cross-entropy loss:

LSFT = −E(x,y∗)∼D log πθ(y
∗ | x), (6)

where D represents the distribution of training data pairs (x, y∗) consisting of input questions x
and their corresponding optimal reasoning paths y∗. The gradient of this loss with respect to model
parameters θ is:

∇θLSFT = −E(x,y∗)∇θ log πθ(y
∗ | x). (7)

The KL divergence between the current policy πθ and the data distribution πdata, which measures how
much the model’s behavior deviates from the original demonstrations, is given by:

DKL(πθ∥πdata) = E(x,y∗) log
πθ(y

∗ | x)
πdata(y∗ | x)

. (8)

When πdata(y
∗ | x) remains fixed during training (as is typical with human demonstrations), its

gradient simplifies to:

∇θDKL = E(x,y∗)∇θ log πθ(y
∗ | x) = −∇θLSFT. (9)

establishing the fundamental relationship shown in Equation 10:

∥∇θLSFT∥ ∝ DKL(πθ∥πdata). (10)

This relationship indicates that the gradient norm of SFT is proportional to the KL divergence between
the model policy and the data distribution. This implies that by minimizing the SFT loss, we are
effectively reducing the discrepancy between the model policy and the data distribution, thereby
aligning the model policy more closely with the data distribution. In GRPO, the KL divergence
is applied to reduce the difference from the reference model, thereby avoiding mode collapse.
However, recent works (such as DAPO) have demonstrated that when training long reasoning chain
(CoT) models, the model distribution may significantly deviate from the initial model, rendering the
constraint of the KL penalty term unnecessary. For small models, removing the KL loss can reduce
the learning tax during training, enabling the model to more efficiently perform distribution migration
and thus achieving better performance on specific tasks. However, reinforcement learning without
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constraints is more prone to catastrophic forgetting during policy updates. To this end, we are the
first to combine KL divergence (SFT) with GRPO, and by finely monitoring the training status, we
ensure that the model can dynamically balance between free exploration and stable constraints during
the GRPO training process, while fully utilizing the training data. In below, we analyze why SASR
outperforms existing training paradigms as shown in Figure 2b.

Avoiding SFT-induced overfitting. Current research proved that pure SFT suffers from overfitting to
limited CoT demonstrations [19]. GRPO’s exploration of diverse reasoning paths (G samples per
input) breaks this limitation.

Mitigating model collapse caused by RL. Standard RL tends toward mode collapse and reward
hacking. For cases where the LLM has a large gap from the original data distribution, our theory
proves that SFT can help the model regressed to the data distribution required for training. Hybrid
approach maintains proximity to the data distribution through the KL constraint:

DKL(πθ∥πdata) ≤
1

β
LSFT(θ0) (11)

This prevents degenerate solutions while allowing reward-guided exploration beyond SFT’s capability.
In reinforcement learning, this relationship is particularly significant. The non-negativity of KL
divergence ensures that the model policy does not deviate too far from the data distribution, thus
preventing mode collapse during policy updates.

Overcoming the suboptimality of static hybrid training. Our gradient-based adaptation:

pt =

(
∥∇Lt

SFT∥
∥∇Lt

SFT∥+ γ∥∇L0
SFT∥

)
(12)

where σ is the sigmoid function, provides smooth transitions between:

• Exploration-dominant phase (pt → 1): ∥∇LSFT∥ is relatively large, meaning that LLM is
currently far from the original distribution of the data and requires enhanced supervised
learning.

• Exploitation-dominant phase (pt → 0): ∥∇LSFT∥ is relatively large, meaning that LLM is
currently close to the original distribution of the data and requires enhanced exploration.

Compared with the static switching mixed training paradigm, our SASR has three advantages. First,
SASR based on the process of human cultivation of reasoning abilities, divides mixed training into
multiple steps according to the training state, and carries out supervised learning and exploration
simultaneously to solve the catastrophic forgetting-stagnation trade-off problem, preventing catas-
trophic forgetting while achieving gradual improvement. Meanwhile, compared with some current
attempts at mixed training, we focus on the smoothing of the switching process, reducing the negative
impact of the switching process on training (as shown in Figure 3a). Finally, as shown in Figure 3b,
the probability trend changes differently on different datasets, which reflects that the optimal warm-up
time and switching timing vary across different training tasks. Adopting a static switching training
paradigm would face the problem of generalization.

3.3 Dynamic Ratio Selection

Our training framework combines SFT with GRPO through an adaptive mechanism. The key
innovation is the dynamic balancing between these two approaches based on the model’s current
performance metrics. For the SFT-RL dynamic hybrid training paradigm, how to set the dynamic
switching indicator to effectively enhance model training performance is a key challenge. Apart from
the naive rule-based training schedule, we have conducted experiments on important elements of the
training state in the training process, including grad norm, steps, etc.

SSR: rule-based training schedule. To begin with, we propose a naive training paradigm, namely
Step-wise integration of SFT and Reinforcement learning . For each training step, SSR simply
alternates between SFT and GRPO in the training stage, so that each algorithm shares the same
number of training steps. Although SSR have ensured a equal integration, it lacks a strategy to adjust
the contribution of SFT and GRPO, which would probably cause overfitting or model collapse.
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Figure 3: Visualizations of cases study in theoretical analysis of SASR

Algorithm 1: The training procedure of SASR.
Input: Dtrain = {(x, e,y)}: Tuples of (question, CoT, answer), W : number of warm-up steps,

T : number of total steps, π(0)
θ : Initial policy, G: group size for GRPO

Output: πθ: Final policy
1 πθ = π

(0)
θ

2 // Warm-up stage
3 for i← 1 to W do
4 x, e,y ∼ Dtrain // Sample mini-batch from Dtrain

5 θ = OPTIMIZATION_STEP(LSFT (θ)) // Update policy parameters
6 if i == W then
7 Gwarmup ← ∥∇θLSFT (θ)∥ // Record final gradient norm

8 // Adaptive training stage
9 for t← 1 to T do

10 Compute p = Glast-SFT
Glast-SFT+γGwarmup

, Sample α ∼ Uniform(0, 1) // Compute adaptation probability
11 if α < p then
12 x, e,y ∼ Dtrain // Sample mini-batch
13 θ = OPTIMIZATION_STEP(LSFT (θ)) // Update policy
14 Glast-SFT ← ∥∇θLSFT (θ)∥ // Update gradient norm
15 else
16 x, _,y ∼ Dtrain // Sample question-answer pair
17 Generate {êi}Gi=1 ∼ πθ(x) // Generate G responses
18 {ŷi}Gi=1 ← EXTRACT({êi}) // Extract answers
19 Compute rewards {R(ŷi)}Gi=1
20 Form groups G+,G− based on reward percentiles
21 θ = OPTIMIZATION_STEP(LGRPO(θ)) // Update with GRPO objective

22 return πθ

SSR_cosine: cosine training Schedule. We improved this algorithm by applying a cosine decay
schedule to the probability of switching to a SFT training step. Building upon the curriculum learning-
quiz framework, we set SFT with a higher probability in the early stages of training. After the model
learns the response format and logical reasoning, the model is further encouraged to switch to GRPO.
The key limitation lies in its neglect of training states, which prevents it from responding to variations
in model training states.

I(t) = 0.5
(
1 + cos

(
π
s

S

))
(U − L) + L, (13)

where S represents the current step, S represents the maximum number in training process, and U and
L respectively represent the predefined upper and lower bounds parameters.
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The adaptive training schedule ultimately adopted by SASR. Considering the generalization across
different training tasks, the adaptive training algorithm (Algorithm 1) implements our theoretical
framework through gradient norm. At each training step, the training algorithm dynamically monitors
the benchmark gradient norm and the KL divergence of the current policy relative to the original data
distribution at each training step, and uses the calculated training weight to make choices between
SFT and GRPO . When the DKL(πθ∥πdata) is relatively large compared to the benchmark gradient
norm, it indicates that the training process is still in the “learning” phase, and SASR will increase the
weight of SFT to ensure the model’s basic reasoning ability. When the DKL(πθ∥πdata) is relatively
small compared to the benchmark gradient norm, it means that the model has basically mastered the
knowledge of the dataset, and the training process should enter the “quiz” phase. SASR will gradually
increase the weight of GRPO to enhance the model’s thinking and multi-path exploration abilities.
Under the ’quiz’ mode, the algorithm generates G diverse responses through policy sampling. It
then calculates relative advantages through grouped comparisons and updates the policy using the
truncated GRPO objective (Equation 4).

4 Experimental Results

4.1 Experimental settings

Dataset. We gathered three representative datasets for the experiment: GSM8K [35], KK [36] and
MATH [26]. The GSM8K dataset comprises elementary school-level mathematical problems that
primarily require arithmetic computations. A distinctive characteristic of this dataset is that the
final answers are constrained to nonnegative integers, with relatively lenient format requirements for
response presentation. MATH consists of harder problems from math competitions and its answer
contains mathematical formulas. In contrast, KK serves as a logic reasoning benchmark specifically
designed to assess models’ deductive reasoning abilities. Unlike GSM8K and MATH, KK imposes
highly specific output format requirements to ensure unambiguous and complete responses.

Model Selection. We selected the Qwen2.5-1.5B-Instruct model for KK, the Qwen2.5-0.5B-Instruct
model for MATH and the DeepSeek-R1-Distill-Qwen-1.5B model for GSM8K as baseline models,
respectively. Compared with other existing models of same scales, each models demonstrated reason-
able capabilities in chain-of-thought reasoning and instruction following. Subsequent evaluation on
the GSM8K dataset revealed that DeepSeek-R1-Distill-Qwen-1.5B achieved higher accuracy, thus
establishing it as the baseline model for this dataset. For KK and MATH datasets, although both
models exhibited comparable performance, Qwen2.5-Instruct series models demonstrated superior
instruction-following capabilities, particularly in generating responses with better format. Therefore,
is was chosen as the baseline model for the KK dataset. Our evaluation code base refers to the testing
standards of the current mainstream models.

Model Training: Although both the MATH and GSM8K datasets provide solutions with CoT,
evaluation reveals that the model performance declined after SFT. First of all, the pre-trained model
may have already been trained on these datasets which could lead to overfitting. Furthermore, as
Wadhwa et al. [37] found out, the quality of CoT could also affect SFT results. To address these
limitations, we prefer to distill large language models to generete CoT instead of standard solutions.
For GSM8K, we obtain high-quality CoT annotations from the gsm8k_distilled dataset provided by
Camel-AI. For MATH, we distill CoT from the Qwen2.5-Math-1.5B model and filter them according
to the correctness of the answers. Consistent performance improvements are observed when we
replace standard solutions with distilled CoT. Referring to the static hybrid paradigm adopted by the
advanced LLM DeepSeek-R1 [9], in the static hybrid training, we switch training methods (SFT &
RL) on a per-epoch basis, specifically conducting 2 epochs of SFT followed by 1 epoch of GRPO.

4.2 Experimental Results

4.2.1 Performance on Mathematical Reasoning Tasks

We trained models on Mathematical Reasoning Tasks respectively to evaluate our method. The main
results are shown in Table 1. In the commonly used benchmark tests of mathematical reasoning, the
classical training paradigm SFT can enhance the ability of the model, but the improvement is limited.
However, the sole use of RL (GRPO) has caused the degradation of the ability of the base model
due to the problem of pattern collapse. Hybrid training can further enhance the reasoning ability of
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Table 1: Answer accuracy of different models on the task-specific problems.
Model |θ| GSM8K MATH KK Avg.

GPT-4o 200B 0.818 0.620 0.33 0.589
Deepseek-V3 671B 0.908 0.870 0.57 0.783

Baseline 1.5B/ 0.5B 0.638 0.146 0.03 0.271
SFT 1.5B/ 0.5B 0.752 0.212 0.28 0.414
GRPO 1.5B/ 0.5B 0.557 0.170 0.09 0.272
Static hybrid 1.5B/ 0.5B 0.814 0.160 0.33 0.326
SSR 1.5B/ 0.5B 0.779 0.196 0.38 0.452
SSR_cosine 1.5B/ 0.5B 0.795 0.204 0.39 0.463
SASR 1.5B/ 0.5B 0.803 0.230 0.42 0.484

Table 2: Answer accuracy of different models on the Knight-and-Knives problem with various level
of difficulty.

difficulty level

Model 2 ppl 3 ppl 4 ppl 5 ppl 6 ppl 7 ppl 8 ppl Avg.

Deepseek-Math-7B-Instruct 0.12 0.08 0.05 0.02 0.00 0.00 0.00 0.04
NuminaMath-7B-CoT 0.14 0.03 0.02 0.00 0.00 0.00 0.00 0.03
Qwen2.5-Base-7B 0.23 0.11 0.06 0.05 0.02 0.01 0.00 0.07
Qwen2.5-7B-Instruct-1M 0.23 0.25 0.13 0.09 0.03 0.04 0.02 0.11
GPT-4o 0.73 0.46 0.40 0.31 0.19 0.12 0.07 0.33
Deepseek-V3 0.90 0.71 0.68 0.57 0.39 0.37 0.37 0.57

Qwen2.5-1.5B-Instruct 0.13 0.05 0.02 0.00 0.00 0.00 0.00 0.03
SFT 0.65 0.42 0.38 0.24 0.14 0.08 0.07 0.28
GRPO 0.32 0.17 0.07 0.05 0.03 0.01 0.01 0.09
Static hybrid 0.71 0.47 0.37 0.25 0.26 0.10 0.12 0.33
SSR 0.84 0.54 0.47 0.34 0.19 0.15 0.12 0.38
SSR_cosine 0.74 0.60 0.49 0.36 0.22 0.14 0.15 0.39
SASR 0.83 0.68 0.55 0.39 0.19 0.11 0.17 0.42

the model. Among them, the performance of the designed training schedule is superior to that of
direct hybrid (SSR). It is observed that SASR significantly enhanced the DeepSeek-R1-Distill-Qwen-
1.5B model, increasing the accuracy rate from 63.8% to 80.3%, reaching a level close to GPT-4o.
Due to carefully designed CoT distillation, SFT achieved remarkably improvement on the MATH
dataset. The experimental results provide empirical evidence that SASR further exceeds SFT, with a
measurable improvement of 1.8%.

4.2.2 Performance on Logical Inference Tasks

For the KK dataset, the models are trained on 3 to 7-person KK problems and evaluated on 2 to
8-person KK problems. We exclude 2 person and 8 person problems from training datasets to observe
whether the model could generalize to those two cases. We follow the base evaluation method of KK
dataset [36] to decide whether the response of the model is accurate. The results of our methods and
other baseline models are in Table 2. Our experiments suggested that our SASR has achieved better
results compared to SFT, GRPO and static hybrid training paradims. Consequently, SASR has an
average accuracy improvement of 9% compared to GPT-4o.

5 Conclusion and Limitations

In this work, we theoretically connect SFT and GRPO by modeling human reasoning cultivation,
proposing a step-wise adaptive hybrid training framework for task-specific LLMs. SASR outperforms
SFT, RL, and static hybrid methods on GSM8K, MATH, and KK datasets in reasoning tasks. By
monitoring training status and step-level adjustment, SASR ensures smooth transitions between

9



schemes while maintaining core reasoning abilities. Besides, our SASR has certain limitations. The
effectiveness of our method in combination with other reinforcement learning methods (such as PPO,
DAPO) within a hybrid framework remains to be explored. Additionally, further research is needed
in the broader application areas of LLMs (such as question answering).
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