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Summary
Background As humans age at different rates, physical appearance can yield insights into biological age and physio-
logical health more reliably than chronological age. In medicine, however, appearance is incorporated into medical
judgements in a subjective and non-standardised way. In this study, we aimed to develop and validate FaceAge, a deep
learning system to estimate biological age from easily obtainable and low-cost face photographs.

Methods FaceAge was trained on data from 58 851 presumed healthy individuals aged 60 years or older:
56 304 individuals from the IMDb–Wiki dataset (training) and 2547 from the UTKFace dataset (initial validation).
Clinical utility was evaluated on data from 6196 patients with cancer diagnoses from two institutions in the
Netherlands and the USA: the MAASTRO, Harvard Thoracic, and Harvard Palliative cohorts FaceAge estimates in
these cancer cohorts were compared with a non-cancerous reference cohort of 535 individuals. To assess the
prognostic relevance of FaceAge, we performed Kaplan–Meier survival analysis and Cox modelling, adjusting for
several clinical covariates. We also assessed the performance of FaceAge in patients with metastatic cancer
receiving palliative treatment at the end of life by incorporating FaceAge into clinical prediction models. To
evaluate whether FaceAge has the potential to be a biomarker for molecular ageing, we performed a gene-based
analysis to assess its association with senescence genes.

Findings FaceAge showed significant independent prognostic performance in various cancer types and stages. Looking
older was correlated with worse overall survival (after adjusting for covariates per-decade hazard ratio [HR] 1⋅151,
p=0⋅013 in a pan-cancer cohort of n=4906; 1⋅148, p=0⋅011 in a thoracic cohort of n=573; and 1⋅117, p=0⋅021 in a
palliative cohort of n=717). We found that, on average, patients with cancer looked older than their chronological
age (mean increase of 4⋅79 years with respect to non-cancerous reference cohort, p<0⋅0001). We found that
FaceAge can improve physicians’ survival predictions in patients with incurable cancer receiving palliative
treatments (from area under the curve 0⋅74 [95% CI 0⋅70–0⋅78] to 0⋅8 [0⋅76–0⋅83]; p<0⋅0001), highlighting the
clinical use of the algorithm to support end-of-life decision making. FaceAge was also significantly associated with
molecular mechanisms of senescence through gene analysis, whereas age was not.

Interpretation Our results suggest that a deep learning model can estimate biological age from face photographs and
thereby enhance survival prediction in patients with cancer. Further research, including validation in larger cohorts, is
needed to verify these findings in patients with cancer and to establish whether the findings extend to patients with
other diseases. Subject to further testing and validation, approaches such as FaceAge could be used to translate a
patient’s visual appearance into objective, quantitative, and clinically valuable measures.
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Introduction
Emerging evidence suggests that people age at different
rates. Interpersonal differences in genetic and lifestyle fac-
tors such as diet, stress, smoking, and alcohol use have been
shown to influence the ageing process and affect DNA
methylation status,1–3 telomere length,4–6 and gene and
protein expression patterns.7–9 There is no single clock that
measures biological age directly, but establishing bio-
markers that correlate with survival time (ie, time until
www.thelancet.com/digital-health Vol ▪ ▪ 2025
death) couldhave clinically relevant applications. Finding an
appropriate surrogate of a person’s biological age could
provide a better predictor of their physiological health and
life expectancy than chronological age. This is especially
important in medicine, in which both diseases and treat-
ments can cause cellular damage and accelerate the ageing
process, and an accurate estimation of biological age could
support treatment decisions and allow better quantification
of the relative risk–benefit ratio of proposed treatments. For
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Research in context

Evidence before this study
On July 1, 2024, we searched PubMed using the following search
terms: “(face pictures OR facial image) AND (artificial intelligence
ORdeep learningOR analysis) AND (agingOR cancer)”.We focused
on articles published from Jan 1, 2014, to Dec 20, 2023. No
language restrictions were applied. Our search, which identified
1729 articles, yielded several studies in which artificial intelligence
was used to estimate apparent age from face pictures, but no
relevant studies in which the application of this technology to
predict clinical outcomes was investigated.

Added value of this study
To our knowledge, this is the first study to validate a deep learning
pipeline for the estimation of biological age from face pictures
(FaceAge) and to explore the association of estimated age with
clinical outcomes. We assessed the prognostic relevance of
FaceAge through survival analysis and prediction modelling in
various cancer types and stages, taking several confounders into
account. As a proof of concept, we tested the pipeline in a clinical
context by incorporating the predictions into a validated clinical
model and running a survey among physicians to assess its use in

clinical decision making. Finally, we performed a gene-based
analysis to measure the association between FaceAge and
senescence genes to evaluate whether it could potentially be a
biomarker for molecular ageing.

Implications of all the available evidence
Our study builds on previous investigations of facial age as a
potential marker of biological age. Our results suggest that the
facial characteristics visible in a photograph hold information
about a person’s age that deep learning algorithms can use to
enhance the accuracy of survival forecasts for patients with cancer.
On average, the facial age of patients with cancer was
approximately 5 years older than their chronological age.
Moreover, patients with cancer had significantly older facial age
than healthy controls and patients without cancer treated for
conditions that are benign or precancerous. Further research is
needed to explore the possibility of using the pipeline, which relies
on easily obtainable face photographs, to improve on the current
standard of subjective visual assessment routinely used in the
clinic.
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example, a fit 75-year-old whose biological age is 10 years
younger than their chronological age might tolerate
and respond to treatment better and live longer than a
60-year-old whose biological age is 10 years older than their
chronological age.
In current clinical practice, a physician’s overall impres-

sion of a patient constitutes an integral part of the physical
examination and has a major role in clinical decision
making—in estimating prognosis and in weighing the
benefits and risks of diagnostic procedures and treatment.
However, this is an exceptionally subjective assessment of
functional status or frailty and only a rough estimationof the
biological age of a patient.10 Especially in oncology, in which
the therapeutic window is often narrow and the treatment
itself can worsenmortality rates, a decision to treat requires
accurate estimates of whether the patient would be healthy
enough to tolerate treatment and live long enough to benefit
from it. Moreover, we might expect a greater biological age
for patients with cancer because of the combined effect of
the disease and treatment toxicity. Unfortunately, oncolo-
gists have to make these complex treatment decisions
without knowing the exact biological age of a patient, relying
instead on subjective performance status estimates, which
contribute to a well documented poor ability to predict
outcomes for their patients.11–13 Therefore, there is a com-
pelling need for quantitative methods to improve patient
stratification and support physicians in this complex
decision-making process for appropriate treatment selec-
tion. An objectivemeasure of biological age could also allow
more accurate, objective stratification within trials and
better translation of results to patients in the real world.
Furthermore, this approach could help to decipher the
biological processes associated with premature ageing and
identify individuals who age faster and are at increased risk
of diseases.
In the past few years, the application of deep learning for

age estimation from face images has gained considerable
attention in the academic community, with several pub-
lications presentingmodels capable of accurately predicting
an individual’s age based on face photographs.14,15 With
applications mainly outside of medicine, researchers have
explored various aspects of deep learning to enhance the
accuracy and applicability of age estimation models.16 For
instance, the work of Rothe and colleagues17 not only con-
tributed to methodological advancements, but also shared
important data resources publicly. To the best of our
knowledge, no previouswork has applied this approach in a
clinical context or investigated the prognostic value of age
estimation by deep learning models.
We hypothesised that a person’s biological age is reflected

in their facial characteristics and that deep learning algo-
rithms can capture this information automatically from
easily obtainable photographs. Such an approach could
provide a more precise measure of a patient’s physiological
status than chronological age, providing essential informa-
tion for precision medicine as an actionable clinical bio-
marker and prognostication factor. Early evidence for this
was established in a study by Xia and colleagues,18 in which
perceived age was estimated from the faces of healthy
individuals using a specialised three-dimensional imaging
device and the data were shown to be associated with
molecularmarkers of ageing. In thecurrent study,we aimed
to develop a deep learning system to estimate a person’s
biological age from easily obtainable face photographs, and
www.thelancet.com/digital-health Vol ▪ ▪ 2025
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to assess the clinical value of these age estimates in
predicting survival outcomes in patients with cancer
diagnoses.
See Online for appendix
Methods
Datasets
A detailed description of the datasets used in this study can
be found in the appendix (pp 2–4). We trained our deep
learning pipeline, FaceAge, on a curated subset of the
IMDb–Wiki database,17 a large and publicly available age-
labelled face pictures database. A total of 56 304 images
from the database were selected after applying exclusion
criteria, using randomisation and augmentation with
rebalancing. Although ground truth is available for all
individuals, and since manual curation is a cumbersome
process, we optimised our experimental design for the age
range typical for clinical oncology populations and inspec-
ted and assessed the quality of face photographs only for
individuals aged 60 years or older (appendix pp 21–22).
Patients younger than 60 years represent the minority in
the clinical cohorts (appendix pp 2, 24). After a first valid-
ation on a curated subset of the UTK dataset19 (appendix pp
2, 23), we validated the FaceAge pipeline on four different
clinical cohorts: the MAASTRO cohort, a dataset of patients
with a cancer diagnosis collected at the MAASTRO radi-
ation oncology clinic, Maastricht, the Netherlands
(appendix pp 3, 24); the Harvard Thoracic cohort, consist-
ing of patients with thoracic cancer who received radio-
therapy treatment at the Dana-Farber Cancer Institute and
Brigham and Women’s Hospital in Boston, MA, USA
(appendix pp 3, 25); the Harvard Palliative cohort of
patients with metastatic disease, seen for consideration of
palliative-intent treatment at the Dana-Farber Cancer
Institute and Brigham andWomen’s Hospital (appendix pp
3, 26); and the Harvard non-cancerous cohort, including
patients diagnosed with benign tumour and patients diag-
nosed with ductal carcinoma in situ (appendix p 4). For all
the clinical validation datasets, the face pictures were taken
by clinical staff members at the time of a medical
appointment using different commercially available digital
cameras in a semi-standardised way—ie, no professional
lighting was used and the background, image resolution,
and patient’s expression changed slightly from time to time
(appendix pp 3–4, 6).
This study adheres to the ethical principles for human

research outlined in the Declaration of Helsinki, and the
study and its protocols were approved by the independent
hospital ethics review boards (IRB) at Mass General
Brigham and the Dana-Farber Harvard Cancer Center,
Boston, MA, USA, and Maastricht University, Maastricht,
the Netherlands. All clinical data were handled in compli-
ance with respective institutional research policies.
Specifically, the patients’ data included in the MAASTRO
Biobankwereprospectively collected, and consentwas given
for the data collection. For the Harvard datasets, the data
were collected retrospectively, and the IRB approved a
www.thelancet.com/digital-health Vol ▪ ▪ 2025
waiver of consent (Mass General Brigham IRB protocol
2020P002969 and Dana-Farber Harvard Cancer Center
IRB protocols 13-055 and 17-669). The training cohorts
(IMDb–Wiki and UTKFace) are public datasets that are
made available for non-commercial academic research
purposes. No patient data were used to train the algorithm.

FaceAge deep learning pipeline
The FaceAge deep learning pipeline involves two main
stages: face detection and feature extraction. The first stage
uses a cascaded convolutional neural network20 to locate and
preprocess the face, achieving a test accuracy of 95%. The
second stage uses an Inception-ResNet v1 convolutional
neural network21 to encode the face into a feature vector and
perform age prediction through regression. The model
performance was good for the clinically relevant age range
(ie, 60 years and older) that underwentmanual curation and
quality assurance (mean absolute error 4⋅09 years), onpar or
betterwhen comparedwith state-of-the-artmodelsfine-tuned
on the same data (appendix pp 30–34). More detailed
information on the models’ architecture and pipeline
development can be found in the appendix (pp 18, 27–28).

Statistical and survival analysis
The pipeline’s age estimation performance was validated
on the UTKFace dataset19 and on the aforementioned
clinical datasets by comparing FaceAge predictions for
non-cancerous clinical cohorts with predictions from the
oncology datasets. We conducted all of the statistical
analyses using Python (version 3.7) and R (version 3.6.3)
with overall survival as a clinical endpoint. We used
Kaplan–Meier curves to assess the model stratification
power and the log-rank tests to test for differences between
the stratified groups. Cox regression models were used to
determine the impact of clinical covariates.Weevaluated the
model’s explanatory power using the log-likelihood ratio
test, concordance index, and area under the curve (AUC) of
the receiver operating characteristic curve. In smaller data-
sets, we took different measures to prevent overfitting by
selecting models that minimised the number of covariates
and their SE while maximising concordance. Finally, to test
real-world clinical use, we measured the effectiveness of
FaceAge as a predictive metric against actual age by alter-
nating substituting chronological age with FaceAge in the
TEACHHmodel,22 which is a clinically validated prognostic
model that estimates life expectancy in patients with cancer
undergoing palliative radiotherapy at the end of life.
Additional details regarding the statistical and survival
analyses are provided in the appendix (pp 19–20).

Testing clinical utility to improve physicians’ end-of-life
predictions
To compare FaceAge with human performance to predict
the overall survival of patients with metastatic cancer, we
performed a survey using 100 patients randomly sampled
from the Harvard Palliative cohort. First, we assessed the
performance of humans in estimating 6-month survival
3
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from face photographs alone, without the benefit of add-
itional clinical information, by asking ten medical and
research staff members at Harvard-affiliated hospitals
(five attending staff physicians who were all oncologists or
palliative care physicians, three oncology residents, and two
lay, non-clinical, researchers) to predict whether the patient
would be alive after 6 months (an important endpoint to
guide decision making at the end of life). We evaluated the
performance of the ten survey-takers using the AUC and
tested for statistically significant differences between the
groups using a two-sided Wilcoxon signed-rank test.
Furthermore, to evaluate the complementary value of
FaceAge with other clinical data (ie, primary cancer diag-
nosis, age at treatment, performance status, location of
metastases, number of emergency visits, number of hos-
pital admissions, previous palliative chemotherapy courses,
previous palliative radiotherapy courses, time to first
metastasis, and time to oncology consult), we trained a
FaceAge Risk Model, which combined the clinical factors
with FaceAge to predict survival probability. In successive
survey rounds, we asked the clinical survey-takers to predict
6-month survival based on the face photograph alone, the
face photograph provided together with the patient clinical
chart information, and then with the addition of the
FaceAge Risk Model. Again, we evaluated the performance
of the ten survey-takers using the AUC and tested for
statistically significant differences between the groups
using a two-sided Wilcoxon signed-rank test. More
detailed information on the survey can be found in the
appendix (pp 5, 29).

Genomic analysis
We evaluated the association of single-nucleotide poly-
morphisms (SNPs) with FaceAge or chronological age by
running a gene-based analysis. Lymphocyte DNA from
blood samples was collected, and whole-exome sequencing
was conducted using the Illumina Infinium CoreExome
Bead Chip (Illumina, San Diego, CA, USA). For quality
control of the genotype data, we removed variants that
violated Hardy–Weinberg equilibrium and had a missing
rate of more than 5% and focused on variants with a minor
allele frequency greater than 0⋅05. From the literature
review,23–32 we found the following known senescence
genes: TERT, ATM, CDKN1A, CDKN2B, TP53, IGFBP7,
and MAPK10. To identify a more inclusive network of
senescencegenesusing adata-drivenapproach,we inputted
the known senescence genes into GeneMania,33 a platform
that finds other genes related to those provided, to build a
candidate network of senescence genes. GeneMania found
a network of 27 genes (appendix p 11) and 22 of them had
evaluable SNPs in our genotype dataset. We provide the rs
IDs of these SNPs in the appendix (p 12).We ran the burden
test using the GENESIS package34 in R for the gene-based
analysis. A gene-based analysis considers the aggregate
effect of multiple variants in a test, and we used the burden
test to perform this analysis.35 The burden test collapses
information of variants into a single genetic score,36 and the
association of this score with the outcome of interest,
FaceAge or chronological age, is tested while adjusting for
sex and population structure. To account for population
structure,weapplied aprincipal components analysison the
processed genotype data—ie, 145 283 variants that were
autosomal, common (minor allele frequency >0⋅05),
and linkage disequilibrium pruned (pairwise r2 threshold
of 0⋅5)—using PLINK 1.9, and included the first five prin-
cipal components as covariates in themodel.Weprovide the
effect sizewith 95%CIs and score test p values for the genes.

Role of the funding source
The funders of the study had no role in the study design,
data collection, data analysis, data interpretation, or writing
of the report.

Results
To assess the clinical relevance of FaceAge estimates in
patients with a cancer diagnosis, we performed detailed
experiments in three separate clinical cohorts from two
institutions (figure 1). We first assessed the prognostic
relevance of FaceAge predictions by their association with
survival. TheMAASTROcohort included4906patientswith
a variety of non-metastatic cancer types and a wide range of
prognoses (median age 66⋅0 years [range 22⋅0–94⋅0];
table 1). Kaplan–Meier survival analysis revealed good
stratification of increasing mortality risk with increasing
FaceAge risk groups (figure 2). All FaceAge risk groups
showed significantly worse survival than the youngest-
looking FaceAge risk group. This difference remained
significant after adjusting for age, sex, and tumourgroup for
the two oldest-looking risk groups (FaceAge>75 to 85 years
and FaceAge >85 years) compared with the youngest-
looking group (FaceAge ≤65 years). We observed similar
results when assessing FaceAge as a continuous parameter,
which showed significant prognostic performance
(p=0⋅0013) after adjusting for age, sex, and tumour site in
the whole cohort (figure 2; appendix p 14). Analysing spe-
cific cancer types, we found that FaceAge was significantly
predictive in all cancer sites and remained significant after
correcting for age and sex of patients with breast cancer,
genitourinary cancer, and gastrointestinal cancer (figure 2;
appendix p 14). In the MAASTRO cohort, adjusting for
ethnicity was not possible, as this information was not
collected in the electronic health record.
Next, we evaluated FaceAge in the Harvard Thoracic

cohort, a site-specific dataset with thoracic malignancies
(n=573; median age 69⋅0 years [range 33⋅3–93⋅2]; median
actuarial overall survival 16⋅9months; table 2), of which the
majority were patients with non-small-cell lung cancer
(n=450, 78⋅5%). Granular clinical data were available for
these patients, allowing further investigation into the inde-
pendent performance of FaceAge. Therefore, we inves-
tigated key clinical factors known to affect survival in lung
cancer, including clinical stage, Eastern Cooperative
Oncology Group (ECOG) performance status, smoking
history, sex, histology, and treatment intent. In
www.thelancet.com/digital-health Vol ▪ ▪ 2025
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Figure 1: Overview of the study method
(A)The FaceAge algorithmuses a single photographof the face as input. First, a convolutional neural network localises the facewithin the photograph.Next, a second convolutional neural network quantifies
face features and uses these to predict the FaceAge of the person. (B) Overview of the datasets used in this study. The FaceAge algorithmwas developed using a training dataset of 56 304 presumed healthy
individuals (particularly politicians, actors, andotherwell knownpeople).We assume that the people included in this cohort are of average health (ie,with a chronological age close to their biological age). This
datasetwasmanually curated for individuals aged 60years andolder to enhance the dataset quality for the age range of the clinical oncology population. Three independent cohorts covering a large spectrum
of patientswith cancerwere used to assess the clinical relevance of the algorithm. All patients had a face photograph acquired before radiation treatment as part of the routine clinical workflow. (C) Overview
of the clinical experiments performed in this study to assess the clinical utility of FaceAge. Credits (face picture): RDNE Stock project from Pexels.
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multivariable analysis, the association of FaceAge with
overall survival was statistically significant after adjusting
for these clinical factors (per decade hazard ratio [HR]
1⋅15 [95% CI 1⋅03–1⋅28]; p=0⋅011; appendix p 15).
Comparing these results with those for age, we found that
chronological age was not significantly associated with
survival either on univariable analysis or after adjusting for
www.thelancet.com/digital-health Vol ▪ ▪ 2025
multivariable clinical factors (1⋅08 [0⋅97–1⋅21]; p=0⋅16).
Furthermore, we observed a significant increase in model
explanatory powerwhen adding FaceAge to themultivariate
model (log-likelihood ratio test, χ2 statistic, 1 degree of
freedom 6⋅501; p=0⋅0108), whereas this was not observed
when adding chronological age (1⋅965; p=0⋅16). These
results show that FaceAge consistently improves
5
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Patients (N=4906)

Sex

Male 2596 (52⋅9%)
Female 2310 (47⋅1%)

Age at treatment, years 66⋅0 (22⋅0–94⋅0)
Main cancer group

Breast 1337 (27⋅3%)
Gastrointestinal 1003 (20⋅4%)
Genitourinary 843 (17⋅2%)
Lung 737 (15⋅0%)
Head and neck 456 (9⋅3%)
Other types of cancer 530 (10⋅8%)

Smoking history (patients for whom
these data are available)

1302 (26⋅5%)

BMI (patients for whom these data
are available)

1297 (26⋅4%)

ECOG performance status (patients for
whom these data are available)

1170 (23⋅8%)

Data are n (%) or median (range). Ethnicity data were not collected for this dataset.
ECOG=Eastern Cooperative Oncology Group.

Table 1: Clinical characteristics of patients in the MAASTRO cohort
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prognostication whereas age does not, and that FaceAge
contains prognostic information that is not captured by
other investigated clinical parameters.
As a direct and relevant clinical application of FaceAge,we

assessed the performance of FaceAge in patients at the end
of life with metastatic cancer who received palliative treat-
ment. In these patients, clinical prediction models can help
to improve physicians’ decisionmaking as towhether or not
to administer treatment, aswell as theappropriate treatment
intensity, both of which are largely a function of a physi-
cian’s impression of overall prognosis, performance status,
and frailty. We assessed the independent prognostic
performance of FaceAge in the Harvard Palliative dataset
(n=717; median age 65⋅2 years [range 19⋅6−97⋅6]; median
actuarial overall survival 8⋅2months; table 2).Covariates that
are known to be related to survival in palliative patients with
cancer,22,37 such as performance status, number of hospital
admissions and emergency room visits in the past
3 months, sites of metastatic disease, and the primary can-
cer type, were analysed. FaceAge was found to be signifi-
cantly associatedwith or a significant predictor of survival in
both univariable and multivariable analysis (univariable
per decade HR 1⋅10 [95% CI 1⋅01–1⋅21]; p=0⋅035; multi-
variable per decade HR 1⋅12 [1⋅02–1⋅23]; p=0⋅021), whereas
chronological age was not significant in either univariate
or multivariate analysis (appendix pp 16–17). We also
observed a significant increase in explanatory power by
adding FaceAge to the multivariate model (log-likelihood
ratio test, χ2 statistic, 1 degree of freedom 5⋅439; p=0⋅020),
which was not observed when adding chronological age
(2⋅548; p=0⋅11).
Next,weevaluated the additive performanceofFaceAge in

the TEACHH model,22 a clinically validated risk-scoring
model for patients receiving palliative care. In the Harvard
Palliative cohort, this model showed good performance in
stratifying patients in different risk groups (appendix p 7).
When substituting chronological age with FaceAge, we
noticed a trend of increased log-likelihood ratio when
comparing the three risk categories of the TEACHHmodel
against the baseline hazard for FaceAge (log-likelihood ratio
test, χ2 statistic, 2 degrees of freedom 75⋅1; p<0⋅0001)
comparedwith age (63⋅3; p<0⋅0001). Thiswas also reflected
in better separation of risk groups by survival, as substitut-
ing FaceAge lowered themedian survival and increased the
HR of the highest-risk group (FaceAge high-risk group
median survival 0⋅21 years, HR 2⋅75; p<0⋅0001; chrono-
logical age high-risk group median survival 0⋅24 years,
HR 2⋅43; p<0⋅0001), and raised median survival and
decreased HR of the group at the lowest risk (2⋅2 years,
HR 0⋅22; p<0⋅0001; 1⋅9 years, HR 0⋅28; p<0⋅0001).
Attendingphysicians performed thebest overall, although

there was a notable performance difference between indi-
viduals within each group (figure 3A). This was also shown
by Kaplan–Meier analysis, in which the best-performing
physician predicting 6-month survival was able to stratify
patients into high-risk and low-risk groups that showed
significant survival differences (median survival high-risk
group 4⋅8 months vs low-risk group 13⋅2 months;
p=0⋅0003), whereas the worst-performing physician did not
(7⋅7 months vs 13⋅2 months; p=0⋅49; figure 3B).
Humanperformance significantly improved (p=0⋅0002) if

we provided face photographs combined with clinical chart
information (AUC 0⋅74 [95%CI 0⋅70–0⋅78]) compared with
a face photograph only (0⋅61 [0⋅57–0⋅64]). However, human
performance was improved even further (p<0⋅0001)
when the FaceAge Risk Model was made available to clini-
cians in addition to chart information (AUC 0⋅80 [95% CI
0⋅76–0⋅83]), with the best performance of physicians not
being statistically different (p=0⋅55) from the FaceAge risk
model alone (0⋅81 [0⋅71–0⋅91]; figure 3C). Similar results
were found for overall survival as quantified by the con-
cordance index. We provide several case examples from the
survey cohort to compare the 6-month survival predictions
made by clinicians using different clinical aids with those of
the TEACHH and FaceAge risk models (appendix p 10).
To evaluate whether FaceAge has the potential to be a

biomarker for molecular ageing, we performed a gene-
based analysis to measure its association with senescence
genes in comparison with chronological age. The analysis
was conducted on 146 individuals from the Harvard
Thoracic Cohort who were diagnosed with non-small-cell
lung cancer and profiled using whole-exome sequencing.
We evaluated 22 genes known to be associated with senes-
cence (appendix p 11), and we found that FaceAge was
significantly associated with CDK6 after adjusting for
multiple comparisons (false discovery rate of 0⋅25;
figure 3D). CDK6 has an important role in regulating the
G1/S checkpoint of the cell cycle through phosphorylation
and activation of the Rb (retinoblastoma) tumour suppres-
sor protein by complexing with CDK4 and cyclin D.
By contrast, no genes showed a significant association with
chronological age after adjusting for multiple comparisons.
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Figure 2: Prognostic performance of FaceAge in several cancer cohorts
(A) Kaplan–Meier survival analysis of FaceAge estimation with only a face photograph as input. Shaded areas are 95% CIs. (B) Forest plots of FaceAge risk groups. (C) Forest plots of FaceAge estimates as a
continuousparameter for all patients aswell as the four largest tumour sites. FaceAge is significant in all tumour sites in univariate analysis and remains significant in breast, gastrointestinal, and genitourinary
cancer after correction for age and sex. All analyses are performed in the MAASTRO Cohort. HR=hazard ratio. *p<0⋅01. †p<0⋅001.
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To evaluate the influence of cancer type and lifestyle
factors onFaceAge predictions, we compared the difference
betweenFaceAge and chronological age across cancer types,
smoking history, BMI, and ECOG performance status
(figure 4). We found that patients with cancer had a sig-
nificantly higher FaceAge than chronological age (n=6367;
mean increase of 4⋅79 years; paired two-sided t test p<0⋅001;
figure 4A). This was consistent across cancer types and
contrasted with the results in the presumed healthy pop-
ulations. Firstly, in the UTK validation dataset with pre-
sumed healthy individuals, we found a significantly smaller
difference between FaceAge and chronological age (mean
www.thelancet.com/digital-health Vol ▪ ▪ 2025
increase of 0⋅35 years) compared with cancer cohorts
(unpaired two-sided t test p<0⋅0001), indicating that indi-
viduals in the general population look more similar to their
chronological age, as expected.Additionally,weanalysed the
faces of patients treated for benign conditions, as well as
patients with ductal carcinoma in-situ. The non-cancerous
cohorts had a smaller FaceAge-to-chronological age gap
than the cohorts of patients with cancer (median difference
3⋅41 years vs 4⋅55 years for patients with cancer; p<0⋅0001),
with the benign patients having a FaceAge closest to their
chronological age (median difference 1⋅95 years compared
with patients with cancer; p<0⋅0001), and patients with
7
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Patients

Harvard Thoracic cohort (N=573)

Sex

Male 270 (47⋅1%)
Female 303 (52⋅9%)

Age at treatment, years 69⋅0 (33⋅3–93⋅2)
Median overall survival, months

Crude 14⋅4
Actuarial 16⋅9

Diagnosis

Non-small-cell lung cancer 450 (78⋅5%)
Small-cell lung cancer 49 (8⋅6%)
Other types of cancer 74 (12⋅9%)

Treatment intent

Curative non-stereotactic body radiation therapy 433 (75⋅6%)
Curative stereotactic body radiation therapy 106 (18⋅5%)
Palliative treatment 34 (5⋅9%)

Clinical stage

I 145 (25⋅3%)
II 70 (12⋅2%)
III 279 (48⋅7%)
IV 70 (12⋅2%)
Not specified 9 (1⋅6%)

Tumour grade ≥2 322 (56⋅2%)
Ethnicity

White 493 (86⋅0%)
African American 35 (6⋅1%)
Hispanic 16 (2⋅8%)
Asian 13 (2⋅3%)
Other 5 (0⋅9%)
Not available 11 (1⋅9%)

Smoking history (patients for whom these
data are available)

509 (88⋅8%)

BMI (patients for whom these data are available) 106 (18⋅5%)
ECOG performance status ≥2 109 (19⋅0%)
Harvard Palliative cohort (N=717)

Sex

Male 333 (46⋅4%)
Female 384 (53⋅6%)

Ethnicity

White 605 (84⋅4%)
Black 42 (5⋅9%)
Asian 28 (3⋅9%)
Latino 5 (0⋅7%)
Other 13 (1⋅8%)
Not available 24 (3⋅3%)

Age at treatment, years 65⋅2 (19⋅6−97⋅6)
Median overall survival, months

Crude 4⋅5
Actuarial 8⋅2

Time from diagnosis to metastasis, months 1⋅0 (0−26⋅8)
Time from metastasis to radiotherapy consultation,
months

4⋅5 (0−33⋅0)

Primary cancer diagnosis

Lung 201 (28⋅0%)
Breast 118 (16⋅5%)

(Table 2 continues in next column)

Patients

(Continued from previous page)

Prostate 58 (8⋅1%)
Colorectal 44 (6⋅1%)
Gynaecological 43 (6⋅0%)
Melanoma 38 (5⋅3%)
Oesophagus 24 (3⋅3%)
Renal 24 (3⋅3%)
Sarcoma 24 (3⋅3%)
Unknown primary 20 (2⋅8%)
Bladder 19 (2⋅6%)
Head and neck 10 (1⋅4%)
Pancreas 18 (2⋅5%)
Neuroendocrine 12 (1⋅7%)
Cholangiocarcinoma 9 (1⋅3%)
Hepatocellular 8 (1⋅1%)
Non-melanoma skin 8 (1⋅1%)
Stomach 8 (1⋅1%)
Genitourinary (non-bladder or testicular) 6 (0⋅8%)
Mesothelioma 5 (0⋅7%)
Testicular 4 (0⋅6%)
Small bowel 3 (0⋅4%)
Other 6 (0⋅8%)

Metastases

Bone 344 (48⋅0%)
Brain 265 (37⋅0%)
Spine 256 (35⋅7%)
Lung 223 (31⋅1%)
Liver 222 (31⋅0%)
Lymph 219 (30⋅5%)
Adrenal 65 (9⋅1%)
Other 153 (21⋅3%)

ECOG performance status

0−1 309 (43⋅1%)
2 135 (18⋅8%)
3 110 (15⋅3%)
4 11 (1⋅5%)

Previous palliative radiotherapy, courses

0 627 (87⋅4%)
1 72 (10⋅0%)
≥2 14 (2⋅0%)

Previous palliative chemotherapy, courses

0 280 (39⋅1%)
1 197 (27⋅5%)
≥2 237 (33⋅1%)

Hospital admissions

0 370 (51⋅6%)
1 291 (40⋅6%)
≥2 55 (7⋅7%)

Emergency room visits

0 421 (58⋅7%)
1 233 (32⋅5%)
≥2 62 (8⋅6%)

Data are n (%) or median (range). ECOG=Eastern Cooperative Oncology Group.

Table 2: Clinical characteristics of patients in the Harvard cohorts
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Figure 3: Comparison of human and FaceAge performance predicting survival
(A) AUC of the receiver operating characteristic for 6-month survival predicted by ten survey-takers, grouped by experience level: attending physicians (oncologists or palliative care physicians), oncology
residents, and lay researchers (non-clinical). CIs are shown for average AUCs. (B) Kaplan–Meier analysis of overall survival of patients predicted to be either alive or not at 6months, comparing the lowest (top
graph) and highest (bottom graph) performers of the attending physicians. (C) 6-month survival prediction (left graph) and overall survival time (right graph) for physicians (both attending and residents)
aided with only a picture, a picture and clinical chart information, and a risk model including clinical data and FaceAge. The survey included 100 patients receiving palliative care whowere randomly selected
fromtheHarvardPalliative cohort. (D)Results of the burden test for the association of the senescencegeneswith FaceAgeor chronological age. After adjusting formultiple comparisons using a false discovery
rate (q) of 0⋅25, only CDK6 was statistically significant for FaceAge, while none of the other genes were statistically significant for either FaceAge or chronological age. AUC=area under the curve. *AUC
significantly different from random. †p<0⋅01. ‡Not significant. §p<0⋅05.
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Figure 4: Application of FaceAge in patients with cancer
(A) Difference between FaceAge and age across cancer types and datasets to investigate whether individuals look older or younger than their chronological age. (B) Difference between FaceAge and age for
current, former, and never smokers included in the MAASTRO cohort. (C) Scatterplot assessing the association of FaceAge with BMI in the MAASTRO cohort. (D) Association of FaceAge with Eastern
Cooperative Oncology Group performance status was quantified for a subset of patients in theMAASTRO cohort. In the boxplots, the box shows the IQR, with the line at the centre of the box indicating the
mean; the top (bottom)whisker extends fromthebox to the largest (smallest) valuewithin 1⋅5 IQR.Anunpaired, two-sided t testwas used in all cases. ECOG=EasternCooperativeOncologyGroup. *p<0⋅001.
†Not significant.
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ductal carcinoma in situ having intermediate FaceAge val-
ues (median difference 3⋅86 years compared with patients
with cancer; p=0⋅019; appendix p 8).
To assess the effect of lifestyle factors, we compared the

difference between FaceAge and chronological age in cur-
rent, former, and never smokers in the MAASTRO cohort.
We found that current smokers look significantly older
(mean increase 33⋅24 months; unpaired two-sided t test
t=4⋅78 [95%CI 1⋅63–3⋅91]; p<0⋅001) than former and never
smokers (figure 4B), which was consistent across cancer
types (appendix p 9). In an assessment of the effect of BMI
on the difference between FaceAge and chronological age
(figure 4C; appendix p 9), we observed a statistically sig-
nificant association (n=1295; r −0⋅0999; p<0⋅0001), but the
www.thelancet.com/digital-health Vol ▪ ▪ 2025
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effect size was minimal, indicating a weak relationship
between FaceAge and BMI. Since the ECOG performance
status is used for clinical stratification, we compared the
association of ECOG groups with the difference between
FaceAge and chronological age (figure 4D; appendix p 9). In
both the MAASTRO and Harvard cohorts, we found no
statistically significant differences (unpaired two-sided t-test
p>0⋅092) between the groups, indicating that FaceAge
quantifies biological information that differs from the
performance status of a patient.

Discussion
In this study, we showed that facial features captured on
easily obtainable face photographs contain prognostic
information related to the apparent age of a person. Our
method, which relies on deep learning to automatically
extract these facial features, was used to develop a new
biomarker, FaceAge, that was able to stratify a broad spec-
trum of patients with cancer according to survival risk.
FaceAge was found to be more predictive than actual
(chronological) age in independent, heterogeneous datasets
and to improve on the standard of subjective visual assess-
ment by clinicians.We focused our work on patients treated
with radiotherapy since they are closely followed regarding
their survival outcomes, and their disease processes and
treatments can substantially affect their biological ageing.
Furthermore, unlike other patients, patients with cancer
routinely have their face photographs taken as part of the
treatment registration process.
We found that, on average, patients with cancer look

approximately 5 years older than their chronological age and
have a statistically higher FaceAge compared with clinical
cohorts of patients without cancer who are treated for con-
ditions that are benign or precancerous. FaceAge out-
performed age in univariate and multivariate analyses
across several cancer sites and clinical subgroups, even after
adjusting for known clinical risk factors, and provided
additional explanatory power. Notably, FaceAge performed
well in patients treated for curative intent, with life expect-
ancies of several years, and in patients at the end of life with
an expected survival of weeks to months. To test how clini-
cians might use FaceAge, we also showed that FaceAge
significantly improved the performance of a validated
clinical risk-scoring model27 for estimating survival in
patients at the end of life who received palliative radiation
treatment, a patient population for which improvements in
treatment decision making using such models are critical.
We showed that survival prediction performance of clini-
cians improved when FaceAge risk model predictions were
made available, especially among physicians with lower
baseline performance. Lastly, we provided evidence from
SNPgeneanalysis that FaceAge is correlatedwithmolecular
processes of cell-cycle regulation and cellular senescence,
supporting the hypothesis that FaceAge is a biomarker that
relates to biological ageing, consistentwith its interpretation
as a modifier of survival time in a diseased population.
Multiple publications have discussed evidence of theCDK6
www.thelancet.com/digital-health Vol ▪ ▪ 2025
gene delaying senescence,38,39 which agrees with the inverse
association that we observed between CDK6 and FaceAge.
However, since our genomic analysis was on 146 patients
with non-small-cell lung cancer from the Harvard Thoracic
cohort, our results could also be attributed to the involve-
ment of theCDK6 gene in cancer. For this study, we did not
have access to a healthy cohort to quantify such a relation. In
future investigations, having a healthy control group could
help to confirm that the correlation we observed is not
entirely related to cancer. Nevertheless, although limited in
scope to only a small set of preselected genes to conserve
statistical power, our analysis shows the potential of using
FaceAge to discover associations with genes related to
biological ageing,which are different fromandmight not be
detected by chronological age.
Our pipeline was entirely trained on large, publicly

available, non-clinical databases. Although the standard
approach in deep learning is to train themodels on datasets
very similar to the test population, the performance of the
FaceAge model explicitly relies on a presumed difference
between healthy populations and populations with health
conditions, with the hypothesis that the predicted age
differential reflects a component unrelated to model error
but is instead attributable to the intrinsic differencebetween
age andbiological age.The trainingdataweusedmighthave
limitations and possible intrinsic biases. As the online
image databases used for training do not include associated
health information, we made the implicit assumption that
the patients in the training data were of average health for
their age (ie, they have a biological age similar to their
chronological age), although this assumption is clearly not
true in all cases. Moreover, the images contain a substantial
proportion of well known individuals, such as actors and
politicians, which might introduce a systematic biological
age selection bias as such individualsmight have a different
biological age compared with an age-matched cohort of
non-famous peers, due to different lifestyle and socio-
economic factors. For example, actors and other individuals
in the public eye might have cosmetic or other facial alter-
ations that could affect biological age estimations from such
photographs, in addition to more frequent digital image
touch-ups. Although we do not have statistics on howmany
of the photographs included cosmetic alterations of the
physical or digital variety, this is unlikely to represent a
substantial proportion of the whole, as the IMDb–Wiki
database contains many photos of people other than
actors, including writers, philanthropists, educators, scien-
tists, and people from all domains of society. Moreover, the
large size of the heterogeneous dataset tends to average out
potential biasing factors. Notably, in some of the smaller
cancer cohorts, after adjusting for various clinical covariates,
we noticed a weakening of the association of FaceAge with
survival. We hypothesise that the reduced sample sizes and
the residual age imbalancebetween the trainingdata and the
clinical test datasets could have contributed to such a loss
of significance. Further validation in larger cohorts is
warranted to verify our results.
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For the IMDb–Wiki dataset see

https://data.vision.ee.ethz.ch/cvl/

rrothe/imdb-wiki

For the UTK-face dataset see

https://susanqq.github.io/

UTKFace
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The use of facial photographs in our analyses presents
multiple ethical considerations. Outside of health care, we
acknowledge the potential formisuses of amodel trainedon
such data. Examples include the incorporation by health,
disability, and life insurance payors of estimated survival
metrics from face images to determine the insurability of
prospective policy holders, or the promotion by technology
or media companies of health or lifestyle products with
targeted advertising based on client biological age estima-
tion. Strong regulatory oversight would be a first measure
towardsmitigating this problem. Another important ethical
concern is racial or ethnic bias, which has been problematic
for automated face recognition software, especially in legal
and law enforcement applications. In our work, we studied
the potential for racial bias in several ways: first, we quan-
tified the model age predictions across different ethnic
groups drawn from the UTK validation dataset, finding that
the model is affected, although not substantially, by the
patients’ ethnicity (appendix p 13). The UTK is one of the
most ethnically diverse age-labelled face image databases
available publicly and, therefore, appropriate for assessing
model performance in this regard, with non-White indi-
viduals comprising approximately 55% of the database.
Second, ethnicity was treated as a covariate that we adjusted
for in the multivariable analysis of the Harvard clinical
datasets, which revealed again that the FaceAge measure
was minimally affected by ethnicity. This could not be done
in the MAASTRO cohort, since ethnicity data are not rou-
tinely collected at this centre. Our model is configured for
the task of age estimation, which, in our opinion, has less
embedded societal bias than the task of face recognition.
However, further assessments of bias in performance
across different populations will be essential, as differential
treatment decisions as a result of its predictions could
amplify existing health disparities—and more research is
needed on this topic. In particular, the acquisition of new,
more diverse, and representative datasets (in both clinical
and non-clinical settings) will be a key step to better address
bias during training or to study it in more detail during
validation. Institutional and governmental oversight of how
such models are regulated and deployed, with careful pre-
scription of their intended use and educational support for
clinical end-users (including appropriate use case and
model failure modes), will be crucial to ensure that patients
can benefit from their incorporation into clinical care while
minimising the risk of abuse, unintended or otherwise.
Before clinical implementation, further work is needed to
address these technical and ethical concerns, including:
optimisation and standardisation of training datasets to
account for potential technical, health-related, and racial
biases; validation in clinical datasets representative of the
target population for a given clinical use case; and add-
itional correlation with features or molecular markers of
biological ageing.
In conclusion, our results suggest that a deep learning

model can enhance survival prediction in patients with
cancer through the analysis of face photographs and
estimation of patients’ biological age from their facial
features. We have shown that deep learning-based FaceAge
estimates might be prognostic in a wide range of cancer
types and clinical settings, and that integration with existing
clinical chart information and clinical risk-scoring models
might improve clinicians’ prediction performance.
However, further research and development must be car-
ried out before this technology can be effectively deployed in
a real-world clinical setting.
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Data sharing
The following datasets are publicly available and can be downloaded directly
from the respective websites: IMDb–Wiki dataset, a large dataset of face
photographs of individuals included in IMDb andWikipedia that was used
to develop the FaceAge model, and the UTKFace dataset, an independent
dataset that was used for the technical validation of our model. No clinical
www.thelancet.com/digital-health Vol ▪ ▪ 2025

https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki
https://susanqq.github.io/UTKFace
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki
https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki
https://susanqq.github.io/UTKFace
https://susanqq.github.io/UTKFace
http://www.thelancet.com/digital-health


For the output data see

https://aim.hms.harvard.edu/

faceage

For the Github FaceAge

repository see https://github.

com/AIM-Harvard/FaceAge

Articles
datasets can be shared owing to institutional research ethics board protocols
and privacy concerns regarding face photographs of patients. The output
data, including artificial intelligence-predicted ages in the UTK dataset, are
provided online. The code is provided at the Github FaceAge repository.
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