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Abstract

Stellar flare events are critical observational samples
for astronomical research; however, recorded flare events
remain limited. Stellar flare forecasting can provide ad-
ditional flare event samples to support research efforts.
Despite this potential, no specialized models for stellar
flare forecasting have been proposed to date. In this pa-
per, we present extensive experimental evidence demon-
strating that both stellar physical properties and historical
flare records are valuable inputs for flare forecasting tasks.
We then introduce FLARE (Forecasting Light-curve-based
Astronomical Records via features Ensemble), the first-of-
its-kind large model specifically designed for stellar flare
forecasting. FLARE integrates stellar physical properties
and historical flare records through a novel Soft Prompt
Module and Residual Record Fusion Module. Our exper-
iments on the publicly available Kepler light curve dataset
demonstrate that FLARE achieves superior performance
compared to other methods across all evaluation metrics.
Finally, we validate the forecast capability of our model
through a comprehensive case study.

1. Introduction
Stellar flares are defined as the rapid release of magnetic
field energy stored in a star’s atmosphere, as illustrated in
Figure 1. These phenomena are crucial for understanding
stellar structure, evolution, and magnetic activity, as well as
exploring potentially habitable exoplanets and extraterres-
trial life [38]. Flare records are currently obtained through
continuous scanning of stars using survey telescopes in con-

*Equal contribution.
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Figure 1. Star observations in multiple Extreme Ultraviolet (EUV)
wavelengths before, during, and after a stellar flare.

junction with manual analysis. Despite these efforts, the
quantity of observed flare samples remains limited, ren-
dering them inadequate for comprehensive research needs.
Consequently, forecasting stellar flare timing holds signifi-
cant importance for astronomical studies. However, to date,
there has been no published research addressing this area.

Solar flare prediction has garnered significant research
attention [1, 9, 33], but stellar flare forecasting presents dis-
tinct challenges compared to solar flare prediction. Lever-
aging the solar proximity, researchers can easily obtain so-
lar magnetograms and magnetic field parameters, facilitat-
ing accurate solar flare predictions. In contrast, stellar flare
forecasting predominantly relies on light curves. As de-
picted in Figure 2, a light curve represents the chronolog-
ical variation of a stellar luminosity, measured in flux using
Julian Date as the time axis. This figure illustrates that light
curves often have missing data points. Additionally, two
key characteristics emerge from the analysis: (1) A single
star exhibits varying trend patterns across different time pe-
riods (refer to Figure 2(b)). (2) The variation trends differ
significantly among different stars (see Figure 2(c)). These
complex variations in light curves pose challenges for flare
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Figure 2. Light curves of several stars: (a) The flare region exhibits
greater intensity in flux variations compared to non-flare regions.
(b) The same star at different times displays distinct fluctuation
patterns in its light curve. (c) Different stars during the same ob-
servation period display notable variations in their light curves,
highlighting diversity across stellar systems.

forecasting. Observably, a flare event is characterized by
a rapid flux increase followed by a gradual decline, result-
ing in sharp short-term flux changes. Conversely, non-flare
regions do not display such characteristics (as shown in Fig-
ure 2(a)).

The stellar flare forecasting task focuses on using light
curves to predict whether a specified star will experience
a flare within the next 24 hours. This can be viewed
as a multi-task framework that combines both forecast-
ing and classification objectives. Deep learning meth-
ods [3, 20, 40, 43] have been widely applied to time se-
ries analysis with promising results in prior research. How-
ever, these methods still do not demonstrate superior feature
extraction capabilities compared to pre-trained large multi-
modal models in stellar flare forecasting. The intrinsic char-
acteristics of stars, their varying evolutionary stages, and
external factors such as other celestial bodies and interstel-
lar dust can lead to diverse patterns in light curves. These
external influences make achieving high accuracy in stellar
flare forecasting using only light curves particularly chal-
lenging. As a result, additional data sources are required to
improve the reliability of predictions.

In this paper, we introduce a novel task of forecasting
stellar flare events. To address this challenge, we propose
the FLARE framework (Forecasting Light-curve-based As-
tronomical Records via feature Ensemble). Through em-
pirical analysis, we observe that stellar flares exhibit strong
correlations with various stellar physical properties. Conse-
quently, FLARE incorporates these stellar features as aux-
iliary inputs to enhance light curve feature extraction and
improve forecasting performance. Furthermore, our inves-
tigation reveals that frequent historical flare events are pos-
itively correlated with the likelihood of future flares. To

leverage this temporal dependency, FLARE integrates his-
torical flare records as additional auxiliary features for en-
hanced prediction accuracy. We also introduce two novel
components: the Soft Prompt Module, which combines
stellar physical feature names and values to facilitate star-
specific feature detection, and the Residual Record Fu-
sion Module, designed to integrate light curves with his-
torical flare records for improved model robustness. Fi-
nally, we employ a large multi-modal model fine-tuned us-
ing LoRA [16] to extract features from the outputs of these
modules, thereby enabling accurate stellar flare forecasting.

The main contributions are as follows: (1) We present
the first attempt at developing a method for stellar flare fore-
casting, addressing a previously unexplored challenge in as-
trophysics. (2) Through rigorous experimental analysis, we
demonstrate that both stellar physical properties and histor-
ical flare records play significant roles in flare forecasting.
Then, we propose a large-scale model called FLARE, which
has shown remarkable effectiveness in enhancing accuracy.
(3) Extensive experimental results validate the superior per-
formance of FLARE compared to other approaches.

2. Literature Review

2.1. Time Series Representation Learning

Time series representation learning methods can be catego-
rized based on the backbone into five groups: MLPs, RNNs,
CNNs, GNNs, and Transformers.

Inspired by the efficient performance of autoregressive
models, MLPs such as DLinear [40] demonstrate excellent
performance. However, these methods often require addi-
tional design to capture time-wise dependency effectively.
RNNs [20, 29] are naturally suitable for modeling sequen-
tial data, while they suffer from issues such as gradient van-
ishing due to recurrent structure and struggle to learn re-
lationships between multivariate variables. CNNs, unlike
RNNs, are less prone to gradient vanishing and excel at
capturing the local patterns in time series. However, they
often require stacking multiple convolutional layers to learn
global futures, as seen in TCN [3], which results in a signifi-
cant training time cost. GNNs [21, 36] abstract variables as
nodes and establish edges between multivariate variables,
learning spatial dependencies through GCN [19]. However,
this approach relies on message passing to capture global
features, and shows less scalable than Transformers. Lever-
aging the self-attention mechanism, Transformers are par-
ticularly adept at learning long-term temporal dependen-
cies and complex multivariate correlations. Transformers
can be categorized into three categories according to dif-
ferent types of tokenization. Point-wise methods [34, 35]
learn correlations between time steps but become compu-
tationally expensive for long sequences. Series-wise meth-
ods [25] pay attention to model multivariate dependencies
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by tokenization, but struggle with complex temporal pat-
terns. Patch-wise methods [28, 42] adjust patch sizes for
flexibility across different time series, making them more
adaptable to different types of time series data. These meth-
ods have demonstrated certain advantages in specific tasks,
and our work also adopts a patch-based approach in light
curve processing.

2.2. Time Series Analysis based on PLMs

Among time series large models, aside from MO-
MENT [14] and Chronos [2] which are trained from scratch
using big time series data, most approaches are adapta-
tions of existing PLMs. According to modification meth-
ods, these approaches can be sorted into three types:

Fine-tuning. Studies like UniTime [24] and OFA [44]
unfreeze a portion of parameters, while others, including
TEMPO [5] and LLM4TS [6] leverage Parameter-Efficient
Fine-Tuning (PEFT) methods, such as LoRA [16], adapt
to new data by increasing trainable parameters without dis-
rupting the existing structure of the large model.

Alignment. PLMs trained on text data need to be aligned
with time series data in the same data space. Based on the
object of modification, these approaches can be divided into
two categories. The first approach fine-tunes PLMs with
time series data to map the model parameters into time se-
ries data space, as seen in LLM4TS [6]. The other approach
maps the time series vector into text space, as demonstrated
in TIME-LLM [17], which employs multi-head attention
mechanisms to achieve mapping.

Prompt-learning. Studies such as UniTime [24] incor-
porate text prompts, while TEST [31] employs the combi-
nation of trainable vectors and textual token embeddings to
improve performance.

Although these methods generally perform well on spe-
cific tasks, they struggle to simultaneously handle multi-
task time series analysis and text feature extraction.

3. Preliminaries
3.1. Problem Definition

The stellar flare forecasting task involves predicting
whether a flare will occur in the future for a given star based
on its light curve observations, physical properties, and his-
torical flare records. For a star i, its physical properties
are represented as Pi = {(kim, vim)|m = 0, 1, . . . ,M},
where kim and vim are the name and the value of the m-
th physical property, respectively. Here, kim is a text,
while vim ∈ R ∪ {∅}, where ∅ indicates a missing value.
The observed flux for star i at timestamp t is denoted as
xi
t ∈ R ∪ {∅}. The historical flare records are repre-

sented by Ri = {(tisn , t
i
en)|n = 0, 1, . . . , N}, where tisn

and tien denote the start and end times of the n-th flare, re-
spectively. A binary indicator variable is defined such that

yit = 1 if a flare occurs at timestamp t, i.e., if there ex-
ists a time t satisfying tisn < t < tien ; otherwise, yit = 0.
Additionally, yi(t0,t1) = 1 indicates that at least one flare
occurred within the interval (t0, t1). Let K and H de-
note the observation window length and forecast horizon,
respectively. The observed light curve is represented as
x⃗i
t = [xi

t−K , . . . , xi
t−1]

⊤ ∈ RK , and the historical flare
records are denoted by y⃗it = [yit−K , . . . , yit−1]

⊤ ∈ RK . The
forecast probability of a flare occurring between timestamps
t and t′ = t+H− 1 is denoted by ŷi(t,t′) ∈ [0, 1]. The fore-
casting task can be formalized as follows:

ŷi(t,t′) = F (x⃗i
t; y⃗

i
t;Pi; Φ), (1)

where Φ represents the model parameters of the model F .

3.2. Experimental Observations

In Table 1, we present an experimental analysis to inves-
tigate how stellar physical properties and historical flare
records influence the accuracy of flare forecasting using Ke-
pler dataset.

Since stellar physical properties exhibit distinct charac-
teristics compared to light curves, we first map these prop-
erty values into a compatible dimensional space before con-
catenating them with the light curve data to derive forecast
probabilities. For historical flare records, which share simi-
lar temporal characteristics with light curves, y⃗it and x⃗i

t are
concatenated along the flux dimension prior to model input.

The experimental results reveal that both stellar physi-
cal properties and historical flare records contribute mean-
ingfully to forecasting performance. Furthermore, their
combined use yields superior predictive accuracy compared
to using either type of data alone. Interestingly, we ob-
serve that the marginal gain in performance diminishes af-
ter incorporating additional supplementary data. This find-
ing suggests that stellar flare forecasting should not be ap-
proached solely as a time series prediction task based on
light curves. Instead, leveraging both stellar physical prop-
erties and historical flare records represents an effective
strategy for enhancing forecast accuracy and achieving a
more comprehensive understanding of the underlying phe-
nomena.

4. Methodology
In this section, we present our proposed model, FLARE.
The overall architecture of the model is illustrated in Fig-
ure 3, which comprises three key components. First, as
detailed in Subsection 4.1, each light curve is decomposed
into its trend and residual components, with historical flare
records being integrated into the residual through a Resid-
ual Record Fusion Module to enhance robustness. Second,
Subsection 4.2 introduces two prompt patterns based on tab-
ular stellar physical properties and employs P-tuning [23] to
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Light Curve Light Curve + HFRs Light Curve + SPPs Light Curve + HFRs + SPPs

Methods Accuracy F1 score Accuracy F1 score Accuracy F1 score Accuracy F1 score

PatchTST 61.92 69.69 64.52 70.461 64.46 70.01 68.19 72.26
iTransformer 49.99 66.67 64.73 68.46 65.46 71.25 66.86 71.53
Autoformer 50.01 66.67 64.28 67.94 66.10 71.01 66.52 70.99
Crossformer 50.00 66.67 65.33 68.69 65.64 71.21 66.58 71.35
ETSformer 50.00 66.67 65.40 69.03 65.67 71.12 67.19 70.83

Table 1. Performance on the Kepler light curve dataset with and without the use of Historical Flare Records (HFRs) and Stellar Physical
Properties (SPPs) separately, and each number represents the result of a single experimental run. (%)
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Figure 3. The overall framework of FLARE. First, the light curve is decomposed into trend and residual components, which are pro-
cessed separately through patching and the Residual Record Fusion Module integrated with flare records. Timestamp embeddings are
then appended to these processed components. Simultaneously, stellar physical properties are embedded using the Soft Prompt Module,
generating a corresponding vector representation. The resulting vectors from both pathways are concatenated and passed through a large
model. Finally, an MLP head processes the output to predict the probability of flare occurrence or non-flare conditions within the next 24
hours.

distinguish between different stars effectively. Finally, Sub-
section 4.3 describes the fine-tuning of PLM to simultane-
ously process text and light curves.

4.1. Light Curve Embedding

Typically, a flare only exists for a short period and is inde-
pendent of the overall flux variation trend of the light curve.
Furthermore, the periodic occurrence of flares only exists
when the magnetic field of the star is stable. Given this
phenomenon, separately handling the trend and the flare of
the light curve could help eliminate mutual interference and
improve light curve embedding. Even though the effective-
ness of historical flare records has been verified in Subsec-
tion 3.2, fusing them with real flare could help improve ro-
bustness and reduce the misleading effect of false positive

records. However, not all stars exhibit clear periodic lu-
minosity variations. Moreover, their periods vary signifi-
cantly, ranging from shorter than one day to longer than the
observation window. In such cases, real-time embedding
can be beneficial. Based on these considerations, we di-
vide this subsection into three components: (1) normaliza-
tion and decomposition, (2) trend processing and residual
record fusion, and (3) timestamp embedding. As the light
curve embedding process is uniform across stars, in the fol-
lowing text, we omit the superscript and use xt to represent
the flux at timestamp t, and similarly for yt.
Normalization and Decomposition. Due to the inherent
limitations in the precision of the telescope, flux values ex-
hibit substantial variations across different observation pe-
riods. This variation necessitates the normalization of the
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data by dividing the flux values by the median, in order to
effectively mitigate the potential influence of systematic er-
rors. Besides, frequent data omissions in light curves re-
quire us to perform a decomposition that distinguishes the
overall flux trend from local abrupt flux variations, while
minimizing the impact of missing values. Given that the
time steps with missing data are usually non-consecutive,
we employ a moving average to capture the trend of the
light curve’s variations, explicitly excluding the missing
data from the computation to ensure that the trend is not
unduly influenced by data gaps. This process can be repre-
sented as:

x̂j =
xj

median(x⃗t)
, (2)

xT
j =

1

dW

t+⌊ dW
2 ⌋∑

j=t−⌊ dW
2 ⌋

x̂jmj , (3)

mj =

{
0 if x̂j = ∅,

1 otherwise,
(4)

where x̂j is the normalized xj , mj is an indicator for
missing data, dW is the length of the sliding window,
and xT

j represents the trend at timestamp t. x⃗T
t =

[xT
t−K , · · · , xT

t−1] ∈ RK are utilized to represent the trend
of the light curve, with the rest representing the residual
x⃗R
t = [xR

t−K , · · · , xR
t−1] ∈ RK , where xR

j = x̂j − xT
j , j =

t−K, · · · , t− 1.
Trend Processing and Residual Record Fusion. Since
both the trend x⃗T

t and the residual x⃗R
t are univariate time

series, the temporal context at each timestamp plays a cru-
cial role in data embedding. We generate patches for both
the trend and the residual separately to obtain XT

t ∈ RL×P

and XR
t ∈ RL×P , where L =

⌊
K−P

S

⌋
is the number of

patches with length of P , and S is the stride. The XT
t is

passed through the MLP to obtain the X̂T
t ∈ RL×d. For

the residual, the gating mechanism is applied in conjunc-
tion with the flare record y⃗t to process XR

t . This process
can be represented as:

[X̃R
t ; Ỹt] = [XR

t ;Yt]W̃ + b̃, (5)

g =σ(X̃R
t W gR + ỸtW

gY + bg), (6)

X̂R
t =(g ⊙ X̃R

t + (1− g)⊙ Ỹt)W + b, (7)

where W̃ ∈ RP×d, {W gR,W gY ,W} ⊂ Rd×d, b̃ ∈ R2L,
{bg, b} ⊂ RL. Yt is derived from y⃗t by generating patches.
X̂R

t ∈ RL×d is the embedding of the residual. σ denotes
the sigmoid activation function and ⊙ represents Hadamard
product, respectively.
Timestamp Embedding. As stars exist beyond the solar
system, the time formatting used on Earth is not suitable

and is typically represented by Julian Date, which is a con-
tinuous floating-point number. We extract the numerical
values of each digit from the hundredths place to the ten-
thousands place in a decimal manner, derive embeddings
from these values, and use their sum as the timestamp em-
bedding. Since the light curve has been divided into mul-
tiple patches, each patch requires a timestamp embedding.
Given that the time intervals between adjacent time steps
within the same patch are of fixed length, we employ the
average timestamp embedding for the patch, and the collec-
tion of all patches is denoted as ET

t ∈ RL×d.
Following the three steps outlined above, the final time

series embedding is obtained as XTS
t = [ET

t +XT
t ;E

T
t +

XR
t ] ∈ R2L×d.

4.2. Prompt Design

The characteristics of the Stellar are as follows:
the Effective Temperature is between 5322.0 and 5685.0, the Loga-
rithm of Surface Gravity is between 4.40 and 4.62,  the Metallicity is 
between -0.92 and -0.27, the Stellar Radius is between 0.68 and 
0.89,the Stellar Mass is between 0.66 and 0.81,  the Distance to 
Stellar is between 690.58 and 957.03,……, the Rotation Period is 
0.84, the Stellar Age is [MASK], the Logarithm of R'HK is [MASK].

the is between and ,

e(   ) e(    ) e(    ) 

Type1:

the is ,

e(   ) e(   ) 

Type2:

Ex.1: the Effective Temperature is between 5322.0 and 5685.0     , 

e(Effective)e(Temperature) e(5322.0) e(5685.0)

Ex.2: the    Logarithm      of       R'HK    is     [MASK]     .

e(Logarithm) e(of) e(R'HK) e([MASK])

(a)

(b)

Figure 4. (a) A textual description of the star KIC 011924842’s
physical properties. (b) Two replacement pattens and examples.

Motivation. Stellar flares are a prominent manifestation of
stellar activity. As summarized in Yong [38]’s study, factors
such as stellar age, rotation speed, and stellar mass are cor-
related with flare frequency, which further supports the use
of stellar physical properties for flare forecast task. Stel-
lar physical properties often exhibit frequent missing values
and inconsistent numerical ranges. While interpolation and
standardization can be used to address these issues sepa-
rately, they may also introduce biases and lead to the loss
of valuable physical information. Given that the physical
properties of stars are presented as tabular data, and that
Hegselmann [15] has experimentally shown that combin-
ing column names with values leads to better performance
than using only values, we organize the physical property
values of stars along with their corresponding names into a
textual structure. Furthermore, inspired by P-tuning [23],
we design the Soft Prompt Module to learn stellar physical
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properties for distinguishing stars.

Soft Prompt Module. The textual description of stellar
physical properties is shown in Figure 4(a), where any phys-
ical property is represented as a range of values or an ex-
act value. Inspired by P-tuning, which optimizes a small
number of prompt embeddings and demonstrates good scal-
ability while saving computational resources, we propose
replacing part of the word vectors in the text with train-
able parameters, as shown in Figure 4(b). We design cor-
responding replacement patterns based on the types of the
physical property. In both pattens, two vectors (h0, h1) are
retained to represent the start and end of a the physical prop-
erty description, with a vector h1 separating the physical
name from the value. Depending on the type of the physical
property, an additional feature separator vector h2 will be
inserted. All words except the replaced ones are embedded
by the text encoder. Additionally, trainable embedding is
utilized to represent the ID of the star. Through this prompt
design, the meaning of physical property names, as well as
the physical significance of their numerical value ranges,
are both preserved. Finally, we use Xi

p ∈ RS×d to rep-
resent the embedding of the physical properties of the star
i, and S is the number of tokens in the segmented textual
descriptions.

4.3. Pre-Trained Large Model Fine-tuning

Zhou [44] provides experimental evidence that training
PLMs from scratch often hurts performance. However,
freezing most of the parameters and only training a small
subset can preserve the representational learning capability
of PLMs. We freeze the majority of the parameters, partic-
ularly those in the multi-head attention mechanism and the
feed forward layers, allowing the large model to fine-tune
only the LayerNorm layers. To adapt to cross-modal in-
puts, we employ Low-Rank Adaptation (LoRA) [16] to in-
troduce trainable low-rank matrices to the multi-head mech-
anism, which allows effective learning of the correlation
between the physical property text vectors Xi

p ∈ RS×d

and the light curve patches XTS
t while introducing only a

small number of trainable parameters. The final embedding
Zi
t = PLM(Xi

p;X
TS
t ) ∈ R2L×d is obtained at the end of

this process.

4.4. Loss Function

Since a portion of the samples are false positives, label
smoothing is applied. After computing the forecast flare
probabilities with the MLP, we utilize the cross-entropy loss
function incorporating label smoothing, which can be rep-

resented as:

ŷi(t,t′) =POOLING(Zi
t)W

c + bc, (8)

Li
t =− [(1− ϵ)yi(t,t′)log(ŷ

i
(t,t′))

+ ϵ(1− yi(t,t′))log(1− ŷi(t,t′))], (9)

L =
1∑Ns

i=1 Ni

Ns∑
i=1

Ni∑
t=1

Li
t, (10)

where ϵ is the smoothing coefficient of the label, Ns denotes
the number of stars, Ni represents the number of samples
for star i, W c ∈ R1×2, bc ∈ R1, and POOLING refers to
the operation of dimensionally reduction of Zi

t .

5. Experiments
In this section, extensive experiments are conducted to eval-
uate the effectiveness of FLARE and the indispensability of
each module, and an analysis of several flare forecasting
cases is presented.

5.1. Experimental Setup

Datasets. Kepler mission [4] monitored the luminosity
variations of over 150,000 stars from 2009 to 2018. For our
study, we select high-precision light curves of 7,160 stars
with flare events from 2009 to 2013, sampled every half-
hour intervals, forming the Kepler light curve dataset. Each
observation window consists of 512 data points, and the ob-
ject is to forecast whether a flare event will occur within the
next 24 hours, corresponding to 48 data points. The light
curves of each star are split into training and test sets in a
4:1 ratio based on chronological order, and the flare rate of
the test set is controlled at 50% through random sampling.
Baselines. We compare the proposed method with five
type baselines: (1) PLMs (MOMENT [14], Chronos [2],
OFA [44], and UniTime [24]) (2) MLPs (Dlinear [40],
TiDE [8], and FreTS [37]), (2) RNNs (GRU [11] and
LSTNet [20]), (3) CNNs (MICN [32], TCN [3], and
SCINet [22]), (4) Transformers (PatchTST [28], iTrans-
former [25], Autoformer [35], Crossformer [42], ETS-
former [34], and Informer [43]).
Evaluation Metrics. To evaluate our forecasting model, we
employ five evaluation metrics: AUC, Accuracy, Recall, F1
score and Precision. We prioritize high Recall and Accuracy
while keeping adequate Precision for accurate forecasting.
Experiment Settings. We use AdamW [26] with a learning
rate of 1e-5 as the optimizer, train for 200 epochs, and apply
early stopping with a patience of 15. The PLMs, LSTNet,
and TCN use publicly available code from their original pa-
pers, while the MLPs, Transformers, MICN, and SCINet
use the code provided by TSLib1. Both the text encoder
and the PLM are BERT [10].

1https://github.com/thuml/Time-Series-Library
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Methods Light Curve Methods Light Curve + HFRs + SPPs

Accuracy F1 score Recall Precision Accuracy F1 score Recall Precision

MOMENT 62.65±0.40 70.02±0.04 87.25±0.77 58.48±0.40 MOMENT∗ 68.08±0.05 72.00±0.00 82.09±0.16 64.13±0.09
Chronos 61.26±0.43 69.49±0.45 88.09±1.05 57.34±0.42 Chronos∗ 65.01±0.31 70.88±0.08 85.08±0.82 60.71±0.40
OFA 49.99±0.00 66.66±0.00 99.99±0.00 50.00±0.00 OFA∗ 65.47±0.34 70.24±0.08 81.50±0.76 61.72±0.44
UniTime 61.45±2.07 69.42±0.65 87.44±2.44 57.64±1.89 UniTime∗ 67.43±0.20 71.83±0.15 83.06±0.90 63.28±0.35

DLinear 50.00±0.00 66.66±0.00 99.99±0.00 50.00±0.00 DLinear∗ 66.04±0.22 71.18±0.03 83.87±0.66 61.83±0.31
TiDE 59.43±0.25 68.64±0.04 88.80±0.62 55.95±0.22 TiDE∗ 66.04±0.73 71.14±0.02 83.71±1.72 61.89±0.97
FreTS 49.99±0.00 66.66±0.00 99.99±0.00 49.99±0.00 FreTS∗ 65.64±0.48 70.25±0.04 81.12±1.10 61.96±0.66

MICN 49.99±0.00 66.66±0.00 99.99±0.00 50.00±0.00 MICN∗ 65.58±0.12 70.74±0.02 83.22±0.23 61.52±0.15
TCN OOT OOT OOT OOT TCN∗ OOT OOT OOT OOT
SCINet OOT OOT OOT OOT SCINet∗ 67.38±0.61 71.88±0.12 83.36±1.11 63.19±0.78

GRU 53.23±4.57 67.50±1.17 96.79±4.52 52.00±2.83 GRU∗ 66.54±0.63 71.14±0.04 82.49±1.54 62.57±0.87
LSTNet 60.05±0.58 68.69±0.06 87.67±1.16 56.48±0.51 LSTNet∗ 67.84±0.45 71.55±0.15 80.88±1.52 64.17±0.77

PatchTST 62.09±0.19 69.74±0.04 87.40±0.33 58.02±0.18 PatchTST∗ 68.40±0.29 72.29±0.05 82.48±0.08 64.38±0.46
iTransformer 50.00±0.00 66.66±0.00 99.99±0.00 50.00±0.00 iTransformer∗ 66.30±0.53 70.81±0.09 81.74±1.18 62.47±0.72
Autoformer 49.99±0.00 66.66±0.00 99.99±0.00 50.00±0.00 Autoformer∗ 63.62±0.80 69.72±0.33 83.74±1.41 59.73±0.82
Crossformer 50.00±0.00 66.66±0.00 99.99±0.00 50.00±0.00 Crossformer∗ 66.66±0.46 71.19±0.05 82.37±0.94 62.69±0.61
ETSformer 50.00±0.00 66.66±0.00 99.99±0.00 50.00±0.00 ETSformer∗ 66.46±0.16 70.73±0.25 81.05±1.06 62.75±0.30
Informer 52.93±4.13 67.38±1.00 96.97±4.28 51.78±2.51 Informer∗ 65.42±0.30 70.45±0.03 82.42±0.65 61.51±0.38

- - - - - FLARE 71.65±0.35 74.11±0.02 81.11±1.04 68.22±0.72

Table 2. Performance on the Kepler light curve dataset with and without the use of historical flare records (HFRs) and stellar physical
properties (SPPs). A baseline∗ represents the baseline that combines features learned from the light curve and historical flare records with
stellar physical properties, followed by forecasting through an MLP. OOT denotes that the running time exceeds 15 days. (%)

Method AUC Accuracy F1 score Recall Precision

FLARE w/o Soft Prompt Module 77.47 67.47 71.55 81.79 63.58
FLARE w/o Residual Record Fusion Module 79.22 71.80 74.11 80.73 68.50
FLARE w/o LoRA 79.45 71.37 73.91 81.11 67.89
FLARE 79.89 71.65 74.11 81.11 68.22

Table 3. The ablation analysis of FLARE. Bold indicates the best, and underlining denotes the second-best.

5.2. Performance Comparison

We compare FLARE with various baselines, conducting at
least three runs to compute the average performance, as de-
picted in Table 2. Here, FLARE clearly outperforms other
methods and is the only one achieving an accuracy greater
than 70%. The following are three key observations:

(1) Among the five types of baselines, PLMs and RNNs typ-
ically perform well when neither historical flare records
nor stellar physical properties are employed. The high
effectiveness of MOMENT and Chrones can be at-
tributed to the knowledge gleaned from pre-trained large
time-series models. We further analyze the subpar per-
formance of OFA, which results from its simplistic ap-
proach to light curve processing. In contrast, UniTime,
based on the same PLM, performs commendably. Addi-
tionally, the strong performance of RNNs is ascribed to
the temporal characteristics of light curves.

(2) Among MLPs and Transformers, only TiDE and
PatchTST show classification ability when restricted to

using only light curves. An analysis of this phenomenon
is presented. The robust performance of TiDE is cred-
ited to the Residual Block, which bolsters its resilience
and enables it to manage a certain level of noisy samples
in the dataset. Among Transformers, point-wise meth-
ods (e.g., Autoformer and ETSformer) perform poorly,
presumably because flux values lack contextual infor-
mation, rendering them inadequate for effective fea-
ture learning at each time step. Series-wise methods
(e.g., iTransformer) have difficulty capturing complex
temporal dependencies, while patch-wise methods, such
as PatchTST, exhibit excellent performance. Although
Crossformer, also a patch-wise method, shows poor met-
rics, our analysis indicates that this is due to the mis-
match between the univariate light curve and the Cross-
Dimension Attention Mechanism.

(3) The inclusion of historical flare records and stellar physi-
cal properties improves the performance of all baselines,
with only minor metric differences. This result under-
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Text Encoder + PLM Accuracy F1 score Recall Precision

GPT-2 + GPT-2 69.79 72.48 79.58 66.55
BERT + GPT-2 70.58 73.19 80.32 67.23
BERT + BERT (ours) 71.51 74.08 81.42 67.95

Table 4. The ablation analysis of the text encoder and PLM in
FLARE. Bold indicates the best.

scores the significance of historical flare records and stel-
lar physical properties in stellar flare prediction.

5.3. Ablation Study

Effectiveness of Each Module An ablation study is con-
ducted to assess the effectiveness of each module within
FLARE. The results are presented in Table 3, where mod-
ules are either removed or replaced individually. “FLARE
w/o Soft Prompt Module” indicates replacing the vector
generated by the Soft Prompt Module with a vector mapped
from stellar physical property values. “FLARE w/o Resid-
ual Record Fusion Module” means the removal of this mod-
ule, with historical flare records concatenated with the light
curve along the flux dimension. “FLARE w/o LoRA” refers
to the exclusion of LoRA during fine-tuning.

Our evaluation reveals that the absence of any of the
three modules leads to a decline in certain performance met-
rics, while FLARE exhibits robust performance across all
metrics. Notably, the omission of the Soft Prompt Mod-
ule results in a significant performance drop. This find-
ing aligns with the conclusions of Hegselmann [15], which
posits that textual headers contribute to the classification of
tabular-form data. The removal of LoRA causes a slight de-
crease in all five metrics, demonstrating the utility of LoRA
in fine-tuning. Although the performance change before
and after removing the Residual Record Fusion Module is
minimal, retaining it leads to a higher Recall, thereby high-
lighting the effectiveness of this module.

Ablation Studies on Text Encoder and PLM. An ab-
lation study of the text encoder and PLM within FLARE
is presented in Table 4. The analysis reveals that when
both components are GPT-2, the performance deteriorates.
Conversely, upon the introduction of BERT, the perfor-
mance improves. This improvement can be ascribed to the
high-quality text embeddings that BERT provides for stel-
lar physical properties. Employing BERT for both the text
encoder and PLM yields the optimal performance, thereby
highlighting the significance of the text encoder and PLM
in FLARE.

Performance using only Light Curves. A performance
comparison of models using only light curves is presented
in Table 5. The baselines include SolarFlareNet [1],

Methods Accuracy F1 score Recall Precision

SolarFlareNet 50.51 66.79 99.49 50.27
TS2Vec 63.35 68.81 82.72 58.90
CRT 60.08 68.12 85.26 56.72
LPT 57.67 68.55 94.07 54.96
VS-Loss 58.53 68.49 90.12 55.23
HIVECOTEV2 56.43 67.18 92.83 52.64
TARNet 59.29 57.30 59.29 61.42
SAnD 50.00 66.67 1.00 50.00

Table 5. Performance of baselines using only Light Curves.

Methods Data Accuracy F1 score Recall Precision

ViT LC+SPPs 66.00 70.70 82.00 82.00

Chronos-tiny LC 60.93 69.25 87.99 57.09
LC+SPPs 64.67 71.17 87.24 60.11

Chronos-mini LC 60.66 69.15 88.18 56.88
LC+SPPs 65.67 71.19 84.83 61.33

MOMENT-small

LC 59.52 69.09 90.46 55.88
LC+HFRs 63.18 69.82 85.17 59.15
LC+SPPs 67.54 72.09 83.84 63.23

LC+HFRs+SPPs 67.48 71.99 83.60 63.21

MOMENT-large

LC 57.96 68.99 93.55 54.65
LC+HFRs 63.96 69.44 81.90 60.27
LC+SPPs 68.52 72.08 81.27 64.76

LC+HFRs+SPPs 68.32 72.70 84.39 63.86

Table 6. Performance of pre-trained large models.

TS2Vec [39], CRT [41], LPT [12], VS-Loss [18], HIVE-
COTEV2 [27], TARNet [7], and SAnD [30]. The compar-
ison demonstrates the limited effectiveness of these mod-
els when relying solely on light curves. The results fur-
ther highlight the efficacy of FLARE in leveraging histori-
cal flare records and stellar physical properties for forecast-
ing stellar flares.

Ablation Studies on Pre-trained Large Models. A per-
formance comparison of pre-trained large models is pre-
sented in Table 6. The models included are ViT [13],
Chronos [2], and MOMENT [14]. This comparison demon-
strates the impact of stellar physical properties (SPPs) and
historical flare records (HFRs) on the stellar flare forecast-
ing task.

5.4. Case Study

To further elucidate the reasons underlying FLARE’s flare
forecasting capabilities, we conduct a case study to explore
the working mechanism of FLARE. The forecast results of
FLARE for selected samples are visualized in Figure 5. Ev-
idently, FLARE can generate effective forecasts based on
the observation area and can adapt to different stars and di-
verse flux variation patterns. Specifically, Figure 5(g) and
Figure 5(h) demonstrate that FLARE can accurately predict
flares on light curves with distinct flux variation patterns
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Figure 5. FLARE forecasts whether flares will occur in multiple
samples. The purple and green region represent the observation
and the forecast area, and red dots mark the time steps that belong
to the flares. “forecast flare occurrence” and “forecast non-flare
period” are used to represent the forecasting results of FLARE.
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Figure 6. (a) Flare rates in the forecast horizon under different
observation window lengths K. (b) The number of samples with
certain number of time steps belonging to flare.

originating from the same star, thereby highlighting its ro-
bust forecasting ability.

5.5. Statistical Observations

The analysis shown in Figure 6 reveals that a positive corre-
lation exists between the number of flare-related time steps
within the observation region and the flare probability in the
forecast horizon when the number of time steps correspond-
ing to flares is relatively small. However, as the number of
flare-associated time steps continues to increase, the quan-
tity of eligible statistical samples decreases, resulting in a
negligible correlation.

5.6. Robust Analysis

To validate the robustness of the Residual Record Fusion
Module (RRFM), we substitute it with residual features
combined with embedded stellar flare records (FLARE w/o
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Figure 7. Robust analysis of a single case. (a) The light curve is
partitioned into multiple patches, denoted by the green and blue in-
tervals. The red area designates the flare region, which can be cat-
egorized into three types: strong flare, weak flare, and suspected
mislabeling. Clearly, the 3-4th interval corresponds to a strong
flare, the 14-16th and 48-52nd intervals fall within the weak flare
region, while the remaining red areas are suspected of mislabel-
ing. (b) and (c) present PCA visualizations of the features learned
from each patch by FLARE, without and with the Residual Record
Fusion Module (RRFM), respectively. The numbers indicate the
sequential positions of patches, where red numbers signify patches
containing at least one time step associated with a flare.

RRFM) and visualize the feature embeddings of each patch
for both FLARE and FLARE w/o RRFM. As shown in
Figure 7(b), FLARE w/o RRFM can distinguish between
strong flare and non-flare regions. However, it cannot dif-
ferentiate between suspected mislabeling and weak flare re-
gions. In Figure 7(c), the dots, arranged from left to right,
represent non-flare, suspected mislabeling, weak flare, and
strong flare regions. The similarity between the features of
the suspected mislabeling and non-flare regions highlights
the enhanced robustness of FLARE against mislabeling.

6. Conclusion

In this paper, we demonstrate that both stellar physical prop-
erties and historical flare records are beneficial for fore-
casting stellar flares. Motivated by these findings, we pro-
pose the FLARE model, which incorporates two specialized
modules: the Soft Prompt Module and the Residual Record
Fusion Module. The Soft Prompt Module enables the model
to differentiate between various star types, facilitating ef-
fective feature extraction tailored to each star’s character-
istics. Complementing this, the Residual Record Fusion
Module enhances model robustness by integrating historical
flare records with light curve residuals. Our experiments on
the Kepler light curve dataset underscore FLARE’s superior
performance compared to existing models. We expect that
these empirical results will provide valuable insights for fu-
ture advancements in stellar flare forecast research.
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