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AI-based large-scale screening of gastric 
cancer from noncontrast CT imaging

 

Early detection through screening is critical for reducing gastric  
cancer (GC) mortality. However, in most high-prevalence regions, 
large-scale screening remains challenging due to limited resources, 
low compliance and suboptimal detection rate of upper endoscopic 
screening. Therefore, there is an urgent need for more efficient screening 
protocols. Noncontrast computed tomography (CT), routinely performed 
for clinical purposes, presents a promising avenue for large-scale 
designed or opportunistic screening. Here we developed the Gastric 
Cancer Risk Assessment Procedure with Artificial Intelligence (GRAPE), 
leveraging noncontrast CT and deep learning to identify GC. Our study 
comprised three phases. First, we developed GRAPE using a cohort from 
2 centers in China (3,470 GC and 3,250 non-GC cases) and validated 
its performance on an internal validation set (1,298 cases, area under 
curve = 0.970) and an independent external cohort from 16 centers 
(18,160 cases, area under curve = 0.927). Subgroup analysis showed that 
the detection rate of GRAPE increased with advancing T stage but was 
independent of tumor location. Next, we compared the interpretations 
of GRAPE with those of radiologists and assessed its potential in assisting 
diagnostic interpretation. Reader studies demonstrated that GRAPE 
significantly outperformed radiologists, improving sensitivity by 
21.8% and specificity by 14.0%, particularly in early-stage GC. Finally, 
we evaluated GRAPE in real-world opportunistic screening using 78,593 
consecutive noncontrast CT scans from a comprehensive cancer center 
and 2 independent regional hospitals. GRAPE identified persons at high 
risk with GC detection rates of 24.5% and 17.7% in 2 regional hospitals, with 
23.2% and 26.8% of detected cases in T1/T2 stage. Additionally, GRAPE 
detected GC cases that radiologists had initially missed, enabling earlier 
diagnosis of GC during follow-up for other diseases. In conclusion, GRAPE 
demonstrates strong potential for large-scale GC screening, offering a 
feasible and effective approach for early detection. ClinicalTrials.gov 
registration: NCT06614179.
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noncontrast CT from one comprehensive cancer center and two inde-
pendent regional hospitals. We aim to validate the ability of GRAPE in 
incidental GC detection in opportunistic screening on routine patients 
included from various scenarios (physical examination, emergency, 
inpatient and outpatient department) in the first real-world cohort 
and on patients treated or being followed up for other cancer in the 
second real-world cohort (Fig. 1).

Results
The GRAPE model
The GRAPE model is a deep-learning framework designed to analyze 
three-dimensional (3D) noncontrast CT scans for GC detection and seg-
mentation. GRAPE was trained on the internal training cohort, including 
3,470 GC cases and 3,250 NGC cases (Extended Data Table 1). It gener-
ates two outputs: a pixel-level segmentation mask of the stomach and 
tumors, and a classification score distinguishing GC patients from NGC. 
The model follows a two-stage approach (Extended Data Fig. 1a). In 
the first stage, a segmentation network is used to locate the stomach 
within the full CT scan, generating a segmentation mask that is then 
used to crop and isolate the stomach region. This cropped region is fed 
into the second stage, where a joint classification and segmentation 
network with dual branches is employed. The segmentation branch 
detects tumors within the identified stomach region, whereas the clas-
sification branch integrates multilevel features to classify the patient 
as either GC-positive or NGC. Detailed description, the architecture 
and the interpretability analysis of GRAPE are illustrated in Methods 
and Extended Data Fig. 1.

Internal and external evaluation
GRAPE achieved an area under the receiver operating characteristic 
(ROC) curve (AUC) of 0.970 (95% confidence interval (CI) 0.962–0.978), 
sensitivity of 0.851 (95% CI 0.825–0.877) and specificity of 0.968 (95% 
CI 0.953–0.980) in the internal validation cohort (Fig. 2a,d), whereas 
external validation confirmed stable performance with an AUC of 0.927 
(95% CI 0.922–0.931), sensitivity 0.817 (95% CI 0.807–0.827), specificity 
0.905 (95% CI 0.900–0.910) (Fig. 2c,d and Extended Data Table 2). No 
statistically significant differences emerged between Zhejiang Cancer 
Center (ZJCC) and Ningbo Second Hospital (NBSH) cohorts (Fig. 2b 
and Extended Data Table 2). Multicenter analysis (n ≥ 100 per center) 
showed a consistent AUC range of 0.902–0.995 (Extended Data Figs. 2 
and 3a and Extended Data Table 2).

GRAPE score distribution analysis revealed clear differentiation 
between GC and NGC groups (Fig.  2e,f and Extended Data Table 1), 
with >0.5 scores predominating in GC. T stage progression showed 
significant score escalation (Fig. 2g,h), whereas tumor location dem-
onstrated no correlation (Fig. 2g–j). Detection rates increased with T 
stage advancement in both cohorts. Location-specific analysis showed 
optimal detection for whole-stomach lesions, with similar performance 
across different locations (Fig. 2k,l). Sensitivity remained consistent 
across locations within identical T stages (Extended Data Fig. 3b–e). 
Notably, well-filled stomachs showed 10.72% higher EGC detection 
versus poor filling (Extended Data Fig. 3f). Additionally, the detection 
rate of GC was associated with TNM stage but showed no correlation 
with gender or age (Extended Data Fig. 3g–i).

Reader studies
In a multicenter reader study (n = 13 radiologists) interpreting 297 non-
contrast CT scans, GRAPE surpassed all readers in diagnostic accuracy 
(AUC, GRAPE 0.92 versus readers’ range 0.76–0.85), demonstrating 
significant performance advantages in both sensitivity and specificity. 
When reassessing cases with AI assistance after a ≥1-month washout, 
radiologists achieved mean improvements of 6.6% sensitivity and 13.3% 
specificity. Notably, while both senior and junior radiologists showed 
significant accuracy gains (P < 0.05), their augmented performance 
remained below GRAPE’s standalone results (Fig. 3a–c).

Gastric cancer (GC) is the fifth most commonly diagnosed cancer and 
the fourth leading cause of cancer-related deaths worldwide1, with 
nearly 75% of new cases and related deaths occurring in Asian countries, 
particularly China, Japan and Korea2,3. Effective screening is crucial to 
reduce mortality rate as studies show that the 5-year survival rate for 
early-stage, resectable GC (EGC) is 95–99%, compared with less than 
30% for advanced stages (AGC)4,5. Endoscopy is the standard diagnostic 
test for GC because it allows direct visualization of the gastric mucosa 
and biopsy sampling for histologic evaluation. Japan and Korea have 
implemented national GC screening programs via endoscopy since 
1983 and 1999, respectively, leading to higher early diagnosis rates 
and reduced mortality, with survival rates significantly higher in Japan 
(60.3%) and Korea (68.9%) compared with China (35.9%)6,7.

However, in most countries with high GC prevalence rates, 
large-scale GC screening in the general population via endoscopy is 
not feasible or cost-effective, leading to a high mortality rate. This is due 
mainly to the high cost, suboptimal detection rate (the percentage of 
detected GC cases out of the total number of people screened) and the 
invasive nature of endoscopy, resulting in low compliance among the 
population8. Screening high-risk people is preferable, as they are more 
likely to undergo endoscopic screening following positive test results. 
Currently, serological tests, including Helicobacter pylori serology, 
serum pepsinogen levels and gastrin-17 testing, are the methods used 
most commonly for identifying people at high risk for GC. However, 
the detection rate of GC by gastroscopy after serological screening 
and risk stratification was only 1.25%, showing limited improvement 
compared with the detection rate of gastroscopy screening in the 
general population (1.20%)9. Therefore, there is an urgent need to 
develop new noninvasive, low-cost, efficient and reliable screening 
techniques to identify people at high risk for GC. Such techniques 
could prioritize endoscopic examinations for high-risk populations, 
improving cost-effectiveness of large-scale screening programs and 
ultimately reducing GC-related mortality10.

Noncontrast computed tomography (CT) is a low-cost and widely 
used imaging protocol in physical examination centers and hospitals 
(especially in low-resource regions)11,12. Low-dose noncontrast chest 
CT has become an established diagnostic paradigm for pulmonary 
nodule surveillance in clinical practice13,14. Noncontrast abdominal CT 
is usually indicated for rapid diagnosis of acute conditions, evaluating 
traumatic injuries and assessing patients who have contraindications 
to contrast agents, which serves as a critical tool for the initial clinical 
evaluation of abdominal pathologies. Recent advances in artificial 
intelligence (AI) have shown promising results in cancer screening 
via noncontrast CT, notably in the detection of pancreatic cancer15.  
Currently, contrast-enhanced CT is used to evaluate GC16, including 
invasion depth, lymph node metastasis and distant metastasis. How-
ever, identifying the primary GC lesion, particularly assessing the inva-
sion depth, is often influenced by stomach filling and gastrointestinal 
peristalsis. These limitations have hindered the exploration of the role 
of CT scans in GC evaluation. Routine CT imaging, although a valu-
able tool for opportunistic screening11, faces substantial challenges in 
detecting GC. The value of routine CT imaging in GC detection, espe-
cially noncontrast CT, has the potential to be explored further by AI.

In this study, we proposed GRAPE (GC risk assessment procedure 
with AI), using noncontrast CT and deep learning to identify patients 
with GC. The study was conducted in three distinct phases. First, we 
developed GRAPE using a cohort from two centers across China, 
including 3,470 GC cases and 3,250 non-GC (NGC) cases. Its effec-
tiveness and utility were validated using internal validation cohorts  
(1,298 cases) and an independent external validation cohort from 
16 centers (18,160 cases). Then, we compared the interpretations of 
GRAPE with those of radiologists and explored its potential in assist-
ing radiologists during interpretation. Finally, we validated the per-
formance of GRAPE in opportunistic screening using two real-world  
study cohorts comprising 78,593 consecutive participants with 
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We then analyzed the proportion of GC detected by GRAPE, radi-
ologists alone and radiologist with GRAPE assistant in EGC and AGC. 
GRAPE showed a higher proportion of EGC detected compared with 
radiologists alone or with GRAPE assistance (Fig. 3d). We also found 
that GRAPE performed significantly better in the middle-third location 
compared with radiologists alone or with GRAPE assistance (Fig. 3e), 
which may result from the difficulty in identifying GC at this location 
with various degrees of stomach filling. Figure 3f shows that repre-
sentative CT scans of T1/T2 stage GC that radiologists failed to identify.

Real-world study of hospital opportunistic screening
We further validated the performance of GRAPE in opportunistic 
screening using two real-world study cohorts comprising 78,593 

consecutive participants with noncontrast CT between 2018 and 2024 
from two independent regional hospitals and one comprehensive 
cancer center.

First, we validated the opportunistic screening capacity of GRAPE 
in a real-world cohort comprising 41,178 routine patients from diverse 
clinical settings (physical examination, emergency, inpatient and 
outpatient departments) across regional hospitals. GRAPE identified 
11.28% (4,645) as high risk, with distinct proportions across cohorts: 
6.2% (1,248 of 20,097) in Fenghua Peopleʼs Hospital (FHPH) versus 
16.1% (3,397 of 21,081) in Pinyang Peopleʼs Hospital (PYPH) (Fig. 4). 
Through comprehensive medical record review and follow-up, we 
stratified GRAPE-identified high-risk patients into four clinical trajec-
tories: confirmed GC via gastroscopy, NGC diagnoses, asymptomatic 
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Fig. 1 | Overview of the development, evaluation and clinical translation 
of GRAPE. a, Model development. GRAPE takes noncontrast CT as input and 
outputs the probability and the segmentation mask of possible primary gastric 
lesions. GRAPE was trained with noncontrast CT from gastroscope-confirmed 
GC patients. The performance of GRAPE was evaluated via GRAPE scores, ROC 

curves and so on. b, Overview of the training cohort, internal validation cohort 
and external validation cohort. c, Overview of reader studies. d, Real-word 
study. The performance of GRAPE in realistic hospital opportunistic screening 
was validated using two real-world study cohorts, including a regional hospital 
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http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03785-6

patients with 1-year follow-up and those lacking both gastroscopy 
and follow-up documentation. Finally, among the high-risk popula-
tion, gastroscopic and follow-up verification revealed that 289 GC 
cases were confirmed in FHPH, while 556 GC in PYPH (Fig. 4a,b and 
Extended Data Table 4). The detection rate was 24.49% (289 of 1,180) 
and 17.65% (556 of 3,151) in FHPH and PYPH, respectively. Furthermore, 
we retrospectively analyzed the patients with confirmed GC in the 
‘high-risk’ population and found that 40.48% (117 of 289) and 38.31% 
(213 of 556) patients did not have abdominal symptoms in FHPH and 
PYPH, respectively. The multidisciplinary team (MDT) searched and 
reviewed the available electronical health record of low-risk patients 
in the FHPH and PYPH cohorts, including all existing follow-up infor-
mation, and found 37 and 49 GCs patients, respectively, confirmed by 
pathology. Thus, the estimated sensitivity and specificity are 0.887 
(95% CI 0.850–0.920) and 0.951 (95% CI 0.949–0.954) for the FHPH 

cohort, and 0.919 (95% CI 0.899–0.939) and 0.861 (95% CI 0.857–0.866) 
for the PYPH cohort, respectively.

Next, we aimed to validate the ability of GRAPE in GC detection 
on a comprehensive cancer center, where most patients were diag-
nosed with or suspected of having tumors. We consecutively collected 
the abdominal noncontrast CT between January 2022 and June 2024 
from ZJCC. GRAPE identified 8.1% (3,045) as high risk. Comprehensive 
medical review stratified that 311 GC cases were confirmed (Fig. 5a 
and Extended Data Table 4), including 34.41% (107 of 311) patients 
without obvious abdominal symptoms. The overall detection rate 
was 12.1%. Notably, one patient was predicted high risk by GRAPE on 
an abdominal noncontrast CT scan in June 2024. MDT review showed 
that the patient underwent gastroscopy, and was diagnosed as GC in 
August 2024. Surgical pathology confirmed the GC was pT2N0M0 
(AJCC Stage IB) (Fig. 5b).
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We validated the ability of GRAPE in early diagnosis. Among 311 
GC cases in the second real-world cohort (ZJCC), 26 patients were 
under follow-up, being reviewed or under treatment for other cancer, 
whereas the other 285 patients visited the hospital for the first time 
before diagnoses with GC. Among the 26 patients, 11 had prediagnostic 
abdominal noncontrast CT scans taken during the 6 months before 
GC diagnosis. GRAPE was tested on 11 prediagnostic scans and pre-
dicted GC in 63.64% (7 of 11) patients (Fig. 5c). A patient underwent two 
abdominal CT examinations at 14 and 6 months before diagnosis of GC 
due to pulmonary nodules, with no notable abnormalities of stomach 
reported in 2023. Later, this patient was diagnosed with poorly differen-
tiated GC in T4aN1M0 stage via gastroscopy after more than 4 months 

of abdominal discomfort in April 2024. We evaluated the noncontrast 
CT before and at the time of diagnosis and the results showed that the 
GRAPE indicated GC in noncontrast CT 6 months before diagnoses. 
Based on the GRAPE prediction and retrospective review of the image, 
the MDT suspected the patient was in stage T2, which was detected 
successfully by GRAPE 6 months in advance (Fig. 5d).

Discussion
CT provides a comprehensive and objective evaluation of anatomi-
cal structures, irrespective of clinical indications, establishing its sig-
nificance as an effective cancer detection tool17. The emergence of AI 
methods has enabled the automatic segmentation and processing of 
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radiologists alone, radiologists with the assistance of GRAPE and GRAPE alone. 
e, Detection rate of GC in different locations by radiologists alone, radiologists 
with the assistance of GRAPE and GRAPE alone. f, Examples of T1 and T2 GC 
discrimination by GRAPE, which were missed by readers.
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underutilized data through deep learning, facilitating fast, objective 
algorithms for accurate lesion identification18,19. In this study, we pre-
sent GRAPE: an AI model based on routine noncontrast CT scans for 
GC detection. The effectiveness of this model was further validated 
in an independent, external multicenter study. GRAPE demonstrated 
superior detection performance for GC compared with previous 
models based on clinical information and serological diagnostics 
(AUC 0.757–0.79)20–22, and the performance was comparable to liquid 
biopsy23,24, including circular RNAs25, microRNAs26,27, cell-free DNA28 and 
metabolites23 in blood samples, which reported AUC values between 
0.83 and 0.94. The subgroup analysis demonstrated GRAPE sensitivity 
of approximately 50% for EGC, and more than 90% for GC at T3 and 

T4 stages. Although GRAPE demonstrated superior performance in 
advanced GC detection, it may allow GC to be detected at an earlier 
stage, which can also improve the overall survival of GC patients.

To validate the value of GRAPE in realistic hospital opportun-
istic screening, we conducted two real-world studies comprising 
78,593 consecutive participants. GRAPE achieved high detection 
rates, significantly surpassing the 0.9% detection rate of all GC from 
questionnaire-based methods29. GRAPE also showed good performance 
on prediagnosis scans performed in the 6 months before GC diagnosis. 
Despite its advantage, GRAPE is not intended to replace endoscopic 
evaluation. We believe it provides a valuable alternative for sympto-
matic patients hesitant to undergo initial endoscopic screening.
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Currently, no other new GC screening methods have been imple-
mented in large-scale screening cohorts, although similar studies have 
been conducted for other malignancies. The National Lung Screening 
Trial in the United States reported a lung cancer detection rate of 
2.4–5.2% using low-dose helical CT30. The detection rate of ovarian 
and fallopian tube cancers was 5.5% using transvaginal ultrasound31. In 
liquid screening, the detection rate of nasopharyngeal carcinoma was 
11.0% using Epstein–Barr virus DNA levels in plasma samples32, and the 

detection rate of colorectal cancer was 3.2% via cell-free DNA detection 
in plasma in the theoretical ECLIPSE study population33. As a highly 
accurate high-risk identification tool, GRAPE has the potential to enable 
large-scale screening programs by boosting the detection rate for 
the secondary endoscopy examinations, thus reducing GC mortality.

The GRAPE model adopts a simple yet effective architecture to 
the detection of GC on noncontrast CT scans by integrating both clas-
sification and segmentation into a single deep-learning framework. 
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Fig. 5 | Performance of GRAPE in realistic hospital opportunistic screening 
in cancer center validated using a real-world study cohort. a, Overview of 
GRAPE’s performance in the ZJCC cohort. b, Illustration of GC patient diagnosed 
after detection using GRAPE. This patient was being followed up for lung 
cancer treatment in June 2024 but was detected by GRAPE. MDT review showed 
that the patient underwent gastroscopy and was diagnosed with moderately 
differentiated to well-differentiated GC in August 2024. c, Data collection process 
of prediagnosis CT scans. Among 26 patients under follow-up for other cancers, 
11 had prediagnostic CT scans taken in the 6 months before GC diagnosis. GRAPE 
suggested GC in 63.64% (7 of 11) patients in the 6 months before their diagnosis. 

d, A patient underwent 2 abdominal CT examinations at 14 and 6 months before 
diagnosis of GC due to pulmonary nodules, with no notable abnormalities 
of stomach reported in 2023. Later, this patient was diagnosed with poorly 
differentiated GC in T4aN1M0 stage via gastroscopy after more than 4 months of 
abdominal discomfort in April 2024. We evaluated the noncontrast CT before and 
at the time of diagnosis, and the results showed that the GRAPE indicated GC in 
noncontrast CT 6 months before diagnoses. Based on the GRAPE prediction and 
retrospective review of the image, the MDT suspected the patient was in stage T2, 
which was detected successfully by GRAPE 6 months in advance.
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Traditional methods often fall short by focusing solely on segmen-
tation, which limits the ability to provide patient-level probability 
assessments, or by relying exclusively on classification approaches 
applied directly to organ regions of interest (ROIs), thereby reducing 
the interpretability of predictions. In contrast, our joint model lever-
ages the advantages of both strategies, allowing us to benefit from 
detailed local textural pattern recognition of tumors while maintaining 
a comprehensive understanding of the stomach’s overall shape and 
structure. By adapting the nnUNet backbone—a proven architecture 
known for its robust and high-performance visual feature extraction 
capabilities—our model achieved enhanced capacity to handle the 
complex visual characteristics present in medical images specific to GC. 
GRAPE’s overall design not only ensures efficient feature learning but 
also offers improved generalization across diverse datasets. Moreover, 
in terms of interpretability, GRAPE combined segmentation and clas-
sification pipeline, providing clinicians with detailed images where 
tumor segmentation masks are explicitly delineated while simultane-
ously offering decisive classification outputs. We also visually analyzed 
interpretability through Grad-CAM and found the coarse heatmap 
corresponded well with the tumor region. Although noncontrast CT 
is not a routine modality for GC diagnosis, the performance of radiolo-
gists can be improved significantly via the assistance of GRAPE. This 
improvement could be attributed to GRAPE’s tumor segmentation 
output, which is easy for radiologists to interpret.

Despite GRAPE’s promising results, further research is required 
to address key aspects of its applicability. First, a large prospective 
screening cohort is necessary to validate GRAPE’s effectiveness in 
GC screening more robustly. We are implementing large-scale pro-
spective validation of GRAPE’s performance through a nationwide GC 
screening program. Due to scenario difference, for example, high-risk 
versus opportunistic screening, the optimal cutoff value is expected 
to be selected to balance the sensitivity and specificity during clinical 
implementation. Second, enhancing the sensitivity of the model for 
early-stage GC remains a priority. We will amplify the training dataset 
of GRAPE with more EGC, thereby improving model sensitivity. We 
will also utilize more information from endoscopic and pathology 
reports as additional supervision to train the GRAPE model to further 
improve sensitivity, for example, the description of shape, texture, size 
and degree of invasion of the tumor. As mentioned before, patients 
with better gastric filling had higher sensitivity in early GC detection. 
As a result, we would recommend distension of the stomach before 
noncontrast CT imaging in our prospective trial. Third, although the 
prevalence of non-GC tumors such as gastrointestinal stromal tumors 
and gut-associated lymphoid tissue tumors are relatively low, GRAPE 
could be expanded to detect and diagnose these rare tumors, making 
it a more comprehensive screening tool. Finally, to address generaliza-
tion challenges, future direction would be the incorporation of train-
ing data from more centers. From the technical aspect, the test-time 
adaptation34 technique is a recent machine-learning approach for 
better model generalizability and has the potential to boost external 
validation performance for GRAPE. Overall, GRAPE represents a new 
approach for mass GC screening, demonstrating high sensitivity, speci-
ficity and detection rates, thus enhancing both the cost-effectiveness 
and compliance of GC screening efforts.
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Methods
Trial design and population
This study employed a phase design and included three independent 
cohorts (Fig. 1). The study was approved by the centralized institu-
tional review board (IRB) covering 20 participating centers (IRB-
2024-279, Clinicaltrials.gov registration NCT06614179). The training 
cohort was enrolled between September 2006 and June 2024 across 
2 centers in China, comprising 3,470 participants with GC and 3,250 
participants with NGC, aged 18–99 years. The internal validation 
cohort was enrolled between December 2006 and April 2024 across 2 
centers in China, comprising 650 participants with GC and 648 partici-
pants with NGC, aged 20–94 years. Moreover, between January 2011 
and August 2024, we conducted an independent external validation 
cohort, enrolled 18,160 participants from 16 centers who underwent 
gastroscopic examination, aged 18–80 years. The inclusion criteria 
for the GC group required participants to have a diagnosis of GC con-
firmed by gastroscopic pathological biopsy and to have undergone 
a noncontrast CT examination before receiving any treatment at the 
time of diagnosis. Participants were excluded if they underwent the 
noncontrast CT examination after receiving treatment. For the NGC 
group, inclusion criteria required participants to be confirmed as 
not having GC by gastroscopy and to have undergone a noncontrast 
CT examination within 6 months of the gastroscopy. Alternatively, 
NGC participants were included if they underwent a noncontrast 
CT examination and were confirmed without GC based on a 1-year 
follow-up. We conducted a comprehensive review of the medical 
records for all enrolled patients, including age, sex, T stage, location 
and so on. Full details of the internal and external cohorts, including 
patients’ clinical information and CT acquisition parameters, are 
shown in Extended Data Table 1.

Finally, we validated the performance of GRAPE in realistic hospi-
tal opportunistic screening using 2 real-world study cohorts, including 
a cohort comprising 41,178 consecutive participants with noncontrast 
CT between 2018 and 2024 from 2 regional hospitals and a cohort 
comprising 37,415 participants with last noncontrast CT between 
2022 and 2024 from a cancer center. In total, 45.19% (9,083 of 20,097) 
patients came from the outpatient and emergency departments and 
physical examination center, while 54.80% (11,014 of 20,097) patients 
came from department of inpatient in FHPH; 41.56% (8,761 of 21,081) 
patients came from the outpatient and emergency departments 
and physical examination center, whereas 58.44% (12,320 of 21,081) 
patients came from the inpatient department in PYPH. In ZJCC, we 
additionally excluded 4,573 patients diagnosed with GC before routine 
CT examination. In total, 30.66% (11,472 of 37,415) patients came from 
the outpatient and emergency departments and physical examina-
tion center, while 39.34% (25,943 of 37,415) patients came from the 
inpatient department.

Image acquisition and processing
CT images in the training cohort, internal validation cohort and exter-
nal validation cohort were collected before gastroscopy. Stomach seg-
mentation was obtained via a semi-supervised self-training approach 
using a combination of publicly available dataset35 with manually 
annotated masks and our internal training set. Tumor segmentation 
was performed meticulously by two proficient radiologists using 
ITK-SNAP software (v.3.8, available at http://www.itksnap.org)36. As 
GC can be distinguished readily from normal gastric tissues in portal 
venous-phase CT images, we delineated two-dimensional sections con-
taining tumors to effectively outline tumor boundaries in venous-phase 
CT images. In cases where marked discrepancies in the delineation of 
the ROI arose between the two radiologists, resolution was achieved 
through constructive discussion, resulting in a consensus. To obtain 
tumor annotations on noncontrast images, we employed the DEEDS37 
registration algorithm to align venous-phase images with noncontrast 
images. The resulting deformation fields were then applied to the 

annotations on the venous phase, thereby generating the transformed 
tumor annotations for the noncontrast phase. Finally, the transferred 
tumor annotations on the noncontrast phase were again delineated and 
confirmed via the same procedure as on the venous phase.

AI model: GRAPE
GRAPE model was developed to analyze 3D noncontrast CT scans aimed 
at the detection and segmentation of GC. The model yields two outputs: 
a pixel-level segmentation mask outlining the stomach and potential 
tumors, and a classification score that categorizes patients into those 
with GC and normal controls. The model employs a two-stage strategy. 
The first stage involves the localization of the stomach region within 
the entire CT scan. This stage is implemented using a segmentation 
network, nnUNet38, with the configuration for 3D full resolution. The 
output stomach segmentation mask is used to generate a 3D bounding 
box of the stomach region, which is cropped and served as input for 
the second stage. This cropping enhances the efficiency and simplifi-
cation of the subsequent stage by focusing the tumor segmentation 
specifically on the area of interest. In the second stage, a joint classi-
fication and segmentation network with dual branches is employed. 
The segmentation branch focuses on segmenting tumors in this iden-
tified stomach region. Meanwhile, the classification branch, which 
integrates multilevel feature maps from the segmentation branch, 
is designed to classify the patients as either having GC or as normal 
controls. Whereas noncontrast CT has inherent resolution limita-
tions (~0.5–1 mm), GRAPE detects early GCs not through direct lesion 
visualization but by integrating subtle 3D morphometric patterns (for 
example, local wall thickening, mucosal heterogeneity) and contextual 
radiological features (for example, perigastric fat stranding, lymph 
node microcalcifications).

To address variations in CT imaging parameters across several 
centers, we adopted a robust preprocessing pipeline as follows. First, 
all scans were resampled to the median voxel spacing of the training 
dataset, specifically 0.717 mm × 0.717 mm × 5.0 mm, to harmonize 
differences in slice thickness and spatial resolution. Next, all intensity 
values were normalized using the mean and s.d. calculated from the 
training dataset to minimize interscanner intensity discrepancies. 
During training, fixed-size 3D patches with a size of 256 × 256 × 28 were 
extracted randomly from the resampled volumes, and random Gauss-
ian noise was injected before feeding into the deep network to increase 
model robustness. At test time, predictions were generated using a 
sliding window strategy across the entire resampled volume, ensur-
ing consistent performance regardless of original scan dimensions.

The training procedure involved a fivefold cross-validation 
approach by dividing the training set into five folds. Five models were 
trained individually using four folds, with validation on the one remain-
ing fold, following the standard nnUNet cross-validation protocol. In 
the testing phase, ensemble learning was applied, averaging classifica-
tion probabilities across five models to determine the classification 
score, and using pixel-level voting to determine segmentation output. 
The class with the higher probability between the two categories was 
chosen as the final classification for each test case. In addition, dif-
ferent status of stomach filling is challenging for the recognition of 
GC. GRAPE inherently addresses stomach filling variability through 
comprehensive training on a wide range of gastric volumes (fasting, 
<100 cm3 to over-distended, >800 cm3).

An advantage of the GRAPE model is its inherent interpretability. 
Given that it produces both segmentation and classification outputs, 
the segmentation output provides a pixel-level visual map that aids 
in understanding and confirming the classification results. To fur-
ther enhance interpretability, we visualized the heatmap of the con-
volutional feature map in the classification branch using Grad-CAM 
(Gradient-weighted Class Activation Mapping)39, which is a widely 
applicable technique to identify the regions contribute most impor-
tantly to the classification.

http://www.nature.com/naturemedicine
https://clinicaltrials.gov/ct2/show/NCT06614179
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Evaluation metrics
Our main goal is a binary classification task to determine whether a 
patient has GC. A GRAPE score greater than 0.5 is considered as the 
‘high risk’ category for calculating AUC, sensitivity, specificity and 
accuracy. Furthermore, we access the proportion of GC detection 
stratified by T stage, TNM stage, lesion location and stomach filling 
during CT examination.

Reader studies
The aim of the reader study was to assess the difference in performance 
between GRAPE and radiologists in detecting GC on noncontrast CT.  
A total of 13 radiologists were enrolled in this study, comprising  
5 senior radiologists and 8 junior radiologists. Details of the radiolo-
gists is shown in Extended Data Table 3. The study comprised two ses-
sions. In the first session, GRAPE’s performance was compared with 
that of radiologists with varying levels of expertise in GC imaging. 
The second session evaluated GRAPE’s potential to assist radiologists 
where we provided the radiologists with GRAPE’s prediction in addition 
to the noncontrast image. A washout period of at least 1 month was 
maintained between the 2 sessions for each radiologist.

Statistical analysis
The performance of the GC and NGC classification was evaluated 
using the AUC, sensitivity, specificity, positive predictive value and 
balanced accuracy. Confidence intervals were calculated based on 
1,000 bootstrap replications of the corresponding data. The signifi-
cance comparisons of sensitivity, specificity and balanced accuracy 
were conducted using permutation tests to calculate two-sided 
P values with 10,000 permutations. The threshold to determine 
statistical significance is P < 0.05. Data analysis was conducted in 
Python using the numpy (v.1.26.2), scipy (v.1.11.4) and scikit-learn 
(v.1.3.2) packages.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets analyzed in this study are not publicly available due to 
restrictions imposed by the respective IRBs. Researchers may request 
access to the anonymized data and supporting clinical documenta-
tion by contacting corresponding author X.C. (chengxd@zjcc.org.
cn). Access will be granted subject to IRB approval, a signed data-use 
agreement and will be for noncommercial academic purposes only. 
Requests will be processed within 6 weeks.

Code availability
The code used for the implementation of GRAPE has dependencies 
on internal tooling and infrastructure and is under patent protec-
tion (CN116188392; the other application number is not currently in 
the public domain), and thus is not able to be publicly released. All 
experiments and implementation details are described in sufficient 
detail in Methods to support replication with nonproprietary libraries. 
Several principal components of GRAPE are available in open-source 
repositories: PyTorch (https://pytorch.org/,v2.2.0) and nnU-NetV1  
(https://github.com/MIC-DKFZ/nnUNet/tree/nnunetv1).
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Extended Data Fig. 1 | The GRAPE model and its interpretability analysis. 
a. Model workflow and architecture. The GRAPE model takes the input of a 
non-contrast CT scan and first segment the stomach with a U-Net to obtain 
the ROI of the stomach region. It then processes the ROI region with a joint 
segmentation and classification network which extracts the multi-level feature 

of a U-Net backbone and perform classification after global pooling (GP) and 
fully connected layers (FC). b. Examples of interpretability analysis and three GC 
cases. The GRAPE model outputs the localization of the detected GC and aligns 
well with its heatmap visualization via the Grad-CAM approach.

http://www.nature.com/naturemedicine
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Extended Data Fig. 2 | ROC curves of individual centers. The ROC curves show the performance of GRAPE in centers with more than 100 participants in the external 
validation cohort.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03785-6

Extended Data Fig. 3 | The performance of GRAPE in the internal and  
external cohorts. a. The sensitivity, specificity and AUC of GRAPE in centers  
with more than 100 participants in the external validation cohort. b-e. The 
sensitivity of GRAPE in GC detection stratified by T stages and tumor locations. 
f. The sensitivity of GRAPE in GC detection in different status of stomach filing. 

g. The sensitivity of GRAPE in GC detection stratified by TNM stage. h. The 
sensitivity of GRAPE in GC detection in patients younger or older than 60. i. The 
sensitivity of GRAPE in GC detection stratified by sex. Subgroups with less than 10 
samples were omitted.
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Extended Data Table 1 | Data characteristics of the GC and non-GC participants in the training cohort, internal validation 
cohort and external validation cohort
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Extended Data Table 2 | The performance of GRAPE models in internal validation cohort and external validation
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Extended Data Table 3 | Reader experience

Readers were stratified into senior vs. junior radiologists endorsed by the National Health Commission’s Physician Title Evaluation Standards (2021 Edition) and the Chinese Medical 
Association Radiology Branch certification guidelines. Senior status required either: (1) attainment of associate chief physician or higher academic rank; or (2) accumulated ≥8 years of 
independent diagnostic reporting experience, as verified through institutional credentialing databases.

http://www.nature.com/naturemedicine
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Extended Data Table 4 | Data characteristics of the GRAPE-high risk group in the real world study

http://www.nature.com/naturemedicine
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