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Al-based large-scale screening of gastric
cancer fromnoncontrast CT imaging
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Published online: 24 June 2025 Early detection through screeningis critical for reducing gastric

cancer (GC) mortality. However, in most high-prevalence regions,
large-scale screening remains challenging due to limited resources,

low compliance and suboptimal detection rate of upper endoscopic
screening. Therefore, thereis an urgent need for more efficient screening
protocols. Noncontrast computed tomography (CT), routinely performed
for clinical purposes, presents a promising avenue for large-scale
designed or opportunistic screening. Here we developed the Gastric
Cancer Risk Assessment Procedure with Artificial Intelligence (GRAPE),
leveraging noncontrast CT and deep learning to identify GC. Our study
comprised three phases. First, we developed GRAPE using a cohort from
2 centersin China (3,470 GC and 3,250 non-GC cases) and validated

its performance on an internal validation set (1,298 cases, area under
curve =0.970) and anindependent external cohort from 16 centers
(18,160 cases, area under curve = 0.927). Subgroup analysis showed that
the detectionrate of GRAPE increased with advancing T stage but was
independent of tumor location. Next, we compared the interpretations
of GRAPE with those of radiologists and assessed its potential in assisting
diagnostic interpretation. Reader studies demonstrated that GRAPE
significantly outperformed radiologists, improving sensitivity by

21.8% and specificity by 14.0%, particularly in early-stage GC. Finally,

we evaluated GRAPE in real-world opportunistic screening using 78,593
consecutive noncontrast CT scans from a comprehensive cancer center
and 2 independent regional hospitals. GRAPE identified persons at high
risk with GC detection rates of 24.5% and 17.7% in 2 regional hospitals, with
23.2% and 26.8% of detected casesin T1/T2 stage. Additionally, GRAPE
detected GC cases that radiologists had initially missed, enabling earlier
diagnosis of GC during follow-up for other diseases. In conclusion, GRAPE
demonstrates strong potential for large-scale GC screening, offering a
feasible and effective approach for early detection. ClinicalTrials.gov
registration: NCT06614179.
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Gastric cancer (GC) is the fifth most commonly diagnosed cancer and
the fourth leading cause of cancer-related deaths worldwide', with
nearly 75% of new cases and related deaths occurring in Asian countries,
particularly China, Japan and Korea®*. Effective screeningis crucial to
reduce mortality rate as studies show that the 5-year survival rate for
early-stage, resectable GC (EGC) is 95-99%, compared with less than
30% for advanced stages (AGC)*°. Endoscopy is the standard diagnostic
test for GCbecauseit allows direct visualization of the gastric mucosa
and biopsy sampling for histologic evaluation. Japan and Korea have
implemented national GC screening programs via endoscopy since
1983 and 1999, respectively, leading to higher early diagnosis rates
and reduced mortality, with survival rates significantly higherinJapan
(60.3%) and Korea (68.9%) compared with China (35.9%)°".

However, in most countries with high GC prevalence rates,
large-scale GC screening in the general population via endoscopy is
not feasible or cost-effective, leading to a high mortality rate. Thisis due
mainly to the high cost, suboptimal detection rate (the percentage of
detected GC cases out of the total number of people screened) and the
invasive nature of endoscopy, resulting in low compliance among the
population®. Screening high-risk peopleis preferable, as they are more
likely to undergo endoscopic screening following positive test results.
Currently, serological tests, including Helicobacter pylori serology,
serum pepsinogen levels and gastrin-17 testing, are the methods used
most commonly for identifying people at high risk for GC. However,
the detection rate of GC by gastroscopy after serological screening
and risk stratification was only 1.25%, showing limited improvement
compared with the detection rate of gastroscopy screening in the
general population (1.20%)°. Therefore, there is an urgent need to
develop new noninvasive, low-cost, efficient and reliable screening
techniques to identify people at high risk for GC. Such techniques
could prioritize endoscopic examinations for high-risk populations,
improving cost-effectiveness of large-scale screening programs and
ultimately reducing GC-related mortality™.

Noncontrast computed tomography (CT) is alow-cost and widely
used imaging protocol in physical examination centers and hospitals
(especially in low-resource regions)"?. Low-dose noncontrast chest
CT has become an established diagnostic paradigm for pulmonary
nodulesurveillance in clinical practice™". Noncontrastabdominal CT
isusually indicated for rapid diagnosis of acute conditions, evaluating
traumatic injuries and assessing patients who have contraindications
to contrast agents, which serves as a critical tool for the initial clinical
evaluation of abdominal pathologies. Recent advances in artificial
intelligence (Al) have shown promising results in cancer screening
via noncontrast CT, notably in the detection of pancreatic cancer®.
Currently, contrast-enhanced CT is used to evaluate GC', including
invasion depth, lymph node metastasis and distant metastasis. How-
ever, identifying the primary GClesion, particularly assessing theinva-
siondepth, is ofteninfluenced by stomach filling and gastrointestinal
peristalsis. These limitations have hindered the exploration of therole
of CT scans in GC evaluation. Routine CT imaging, although a valu-
abletool for opportunistic screening”, faces substantial challenges in
detecting GC. The value of routine CT imaging in GC detection, espe-
cially noncontrast CT, has the potential to be explored further by Al.

Inthis study, we proposed GRAPE (GC risk assessment procedure
with Al), using noncontrast CT and deep learning to identify patients
with GC. The study was conducted in three distinct phases. First, we
developed GRAPE using a cohort from two centers across China,
including 3,470 GC cases and 3,250 non-GC (NGC) cases. Its effec-
tiveness and utility were validated using internal validation cohorts
(1,298 cases) and an independent external validation cohort from
16 centers (18,160 cases). Then, we compared the interpretations of
GRAPE with those of radiologists and explored its potential in assist-
ing radiologists during interpretation. Finally, we validated the per-
formance of GRAPE in opportunistic screening using two real-world
study cohorts comprising 78,593 consecutive participants with

noncontrast CT from one comprehensive cancer center and two inde-
pendent regional hospitals. We aim to validate the ability of GRAPE in
incidental GC detectionin opportunistic screening on routine patients
included from various scenarios (physical examination, emergency,
inpatient and outpatient department) in the first real-world cohort
and on patients treated or being followed up for other cancer in the
second real-world cohort (Fig.1).

Results

The GRAPE model

The GRAPE model is a deep-learning framework designed to analyze
three-dimensional (3D) noncontrast CT scans for GC detection and seg-
mentation. GRAPE was trained ontheinternal training cohort, including
3,470 GC cases and 3,250 NGC cases (Extended Data Table 1). It gener-
ates two outputs: a pixel-level segmentation mask of the stomach and
tumors, and aclassification score distinguishing GC patients from NGC.
The model follows a two-stage approach (Extended Data Fig. 1a). In
the first stage, a segmentation network is used to locate the stomach
within the full CT scan, generating a segmentation mask that is then
used to crop and isolate the stomach region. This cropped region s fed
into the second stage, where a joint classification and segmentation
network with dual branches is employed. The segmentation branch
detects tumors within the identified stomach region, whereas the clas-
sification branchintegrates multilevel features to classify the patient
as either GC-positive or NGC. Detailed description, the architecture
and the interpretability analysis of GRAPE are illustrated in Methods
and Extended Data Fig. 1.

Internal and external evaluation

GRAPE achieved an area under the receiver operating characteristic
(ROC) curve (AUC) 0f 0.970 (95% confidenceinterval (CI) 0.962-0.978),
sensitivity of 0.851 (95% CI1 0.825-0.877) and specificity of 0.968 (95%
C10.953-0.980) in the internal validation cohort (Fig. 2a,d), whereas
external validation confirmed stable performance withan AUC of 0.927
(95%C10.922-0.931), sensitivity 0.817 (95% C10.807-0.827), specificity
0.905 (95% C10.900-0.910) (Fig. 2¢c,d and Extended Data Table 2). No
statistically significant differences emerged between Zhejiang Cancer
Center (ZJCC) and Ningbo Second Hospital (NBSH) cohorts (Fig. 2b
and Extended Data Table 2). Multicenter analysis (n > 100 per center)
showed a consistent AUC range of 0.902-0.995 (Extended Data Figs. 2
and 3a and Extended Data Table 2).

GRAPE score distribution analysis revealed clear differentiation
between GC and NGC groups (Fig. 2e,f and Extended Data Table 1),
with >0.5 scores predominating in GC. T stage progression showed
significant score escalation (Fig. 2g,h), whereas tumor location dem-
onstrated no correlation (Fig. 2g-j). Detection rates increased with T
stage advancementinboth cohorts. Location-specific analysis showed
optimal detection for whole-stomach lesions, withsimilar performance
across different locations (Fig. 2k,1). Sensitivity remained consistent
across locations within identical T stages (Extended Data Fig. 3b-e).
Notably, well-filled stomachs showed 10.72% higher EGC detection
versus poor filling (Extended Data Fig. 3f). Additionally, the detection
rate of GC was associated with TNM stage but showed no correlation
with gender or age (Extended Data Fig. 3g-i).

Reader studies

Inamulticenter reader study (n = 13 radiologists) interpreting 297 non-
contrast CT scans, GRAPE surpassed all readers in diagnostic accuracy
(AUC, GRAPE 0.92 versus readers’ range 0.76-0.85), demonstrating
significant performance advantages inboth sensitivity and specificity.
When reassessing cases with Al assistance after a >1-month washout,
radiologists achieved meanimprovements of 6.6% sensitivity and 13.3%
specificity. Notably, while both senior and junior radiologists showed
significant accuracy gains (P < 0.05), their augmented performance
remained below GRAPE’s standalone results (Fig. 3a-c).
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Fig.1| Overview of the development, evaluation and clinical translation

of GRAPE. a, Model development. GRAPE takes noncontrast CT asinput and
outputs the probability and the segmentation mask of possible primary gastric
lesions. GRAPE was trained with noncontrast CT from gastroscope-confirmed
GC patients. The performance of GRAPE was evaluated via GRAPE scores, ROC

curves and so on. b, Overview of the training cohort, internal validation cohort
and external validation cohort. ¢, Overview of reader studies. d, Real-word
study. The performance of GRAPE in realistic hospital opportunistic screening
was validated using two real-world study cohorts, including a regional hospital
cohortand a cancer center cohort.

We then analyzed the proportion of GC detected by GRAPE, radi-
ologists alone and radiologist with GRAPE assistant in EGC and AGC.
GRAPE showed a higher proportion of EGC detected compared with
radiologists alone or with GRAPE assistance (Fig. 3d). We also found
that GRAPE performed significantly better in the middle-third location
compared with radiologists alone or with GRAPE assistance (Fig. 3e),
which may result from the difficulty in identifying GC at this location
with various degrees of stomach filling. Figure 3f shows that repre-
sentative CT scans of T1/T2 stage GC that radiologists failed to identify.

Real-world study of hospital opportunistic screening
We further validated the performance of GRAPE in opportunistic
screening using two real-world study cohorts comprising 78,593

consecutive participants with noncontrast CT between 2018 and 2024
from two independent regional hospitals and one comprehensive
cancer center.

First, we validated the opportunistic screening capacity of GRAPE
inareal-world cohort comprising 41,178 routine patients from diverse
clinical settings (physical examination, emergency, inpatient and
outpatient departments) across regional hospitals. GRAPE identified
11.28% (4,645) as high risk, with distinct proportions across cohorts:
6.2% (1,248 0f 20,097) in Fenghua People’s Hospital (FHPH) versus
16.1% (3,397 of 21,081) in Pinyang People’s Hospital (PYPH) (Fig. 4).
Through comprehensive medical record review and follow-up, we
stratified GRAPE-identified high-risk patients into four clinical trajec-
tories: confirmed GC viagastroscopy, NGC diagnoses, asymptomatic
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Fig. 2| GRAPE performance in internal and external validation cohorts.
a,ROC curve of GRAPE in aninternal validation cohort. b, ROC curve of GRAPE in
ZJCC and NBSH ininternal validation cohort. ¢, ROC curve of GRAPE in external
validation cohort. d, Sensitivity, specificity and AUC of GRAPE ininternal and
external validation cohorts. e,f, Distribution of GRAPE scores of GCand NGC in
theinternal (e) and external (f) validation cohorts. g,h, GRAPE scores in different

Tstagesininternal (g) and external (h) validation cohorts. i,j, GRAPE scoresin
different locations ininternal (i) and external (j) validation cohorts. k, Proportion
of GC detected by GRAPE in different T stages in internal and external validation
cohorts. 1, Proportion of GC detected by GRAPE in different locations of the
stomachininternal and external validation cohorts.

patients with 1-year follow-up and those lacking both gastroscopy
and follow-up documentation. Finally, among the high-risk popula-
tion, gastroscopic and follow-up verification revealed that 289 GC
cases were confirmed in FHPH, while 556 GC in PYPH (Fig. 4a,b and
Extended Data Table 4). The detection rate was 24.49% (289 of 1,180)
and 17.65% (556 of 3,151) in FHPH and PYPH, respectively. Furthermore,
we retrospectively analyzed the patients with confirmed GC in the
‘high-risk’ population and found that 40.48% (117 of 289) and 38.31%
(213 of 556) patients did not have abdominal symptoms in FHPH and
PYPH, respectively. The multidisciplinary team (MDT) searched and
reviewed the available electronical health record of low-risk patients
inthe FHPH and PYPH cohorts, including all existing follow-up infor-
mation, and found 37 and 49 GCs patients, respectively, confirmed by
pathology. Thus, the estimated sensitivity and specificity are 0.887
(95% C10.850-0.920) and 0.951 (95% C1 0.949-0.954) for the FHPH

cohort,and 0.919 (95% C10.899-0.939) and 0.861 (95% C10.857-0.866)
for the PYPH cohort, respectively.

Next, we aimed to validate the ability of GRAPE in GC detection
on a comprehensive cancer center, where most patients were diag-
nosed with or suspected of having tumors. We consecutively collected
the abdominal noncontrast CT between January 2022 and June 2024
fromZJCC. GRAPE identified 8.1% (3,045) as high risk. Comprehensive
medical review stratified that 311 GC cases were confirmed (Fig. 5a
and Extended Data Table 4), including 34.41% (107 of 311) patients
without obvious abdominal symptoms. The overall detection rate
was 12.1%. Notably, one patient was predicted high risk by GRAPE on
an abdominal noncontrast CT scanin June 2024. MDT review showed
that the patient underwent gastroscopy, and was diagnosed as GC in
August 2024. Surgical pathology confirmed the GC was pT2NOMO
(AJCC Stage IB) (Fig. 5b).
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Fig. 3 | Reader study. a, Comparison between GRAPE and 13 readers with 13
radiologists with different levels of expertise on GC. b, Performance in GC
discrimination of the same set of radiologists with the assistance of GRAPE on
noncontrast CT. ¢, Balanced accuracy improvement in radiologists with different
levels of expertise for GC discrimination. d, Detection rate of EGC and AGC by

100%

radiologists alone, radiologists with the assistance of GRAPE and GRAPE alone.
e, Detection rate of GC in different locations by radiologists alone, radiologists
with the assistance of GRAPE and GRAPE alone. f, Examples of T1and T2 GC
discrimination by GRAPE, which were missed by readers.

We validated the ability of GRAPE in early diagnosis. Among 311
GC cases in the second real-world cohort (ZJCC), 26 patients were
under follow-up, being reviewed or under treatment for other cancer,
whereas the other 285 patients visited the hospital for the first time
before diagnoses with GC. Among the 26 patients, 11 had prediagnostic
abdominal noncontrast CT scans taken during the 6 months before
GC diagnosis. GRAPE was tested on 11 prediagnostic scans and pre-
dicted GCin 63.64% (7 of 11) patients (Fig. 5c). A patient underwent two
abdominal CT examinations at 14 and 6 months before diagnosis of GC
dueto pulmonarynodules, with no notable abnormalities of stomach
reported in2023. Later, this patient was diagnosed with poorly differen-
tiated GCin T4aNIMO stage via gastroscopy after more than 4 months

ofabdominal discomfortin April 2024. We evaluated the noncontrast
CTbefore and at the time of diagnosis and the results showed that the
GRAPE indicated GC in noncontrast CT 6 months before diagnoses.
Based onthe GRAPE prediction and retrospective review of theimage,
the MDT suspected the patient was in stage T2, which was detected
successfully by GRAPE 6 months in advance (Fig. 5d).

Discussion

CT provides a comprehensive and objective evaluation of anatomi-
cal structures, irrespective of clinical indications, establishing its sig-
nificance as an effective cancer detection tool”. The emergence of Al
methods has enabled the automatic segmentation and processing of
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performance in FHPH cohort and a case study. b, Overview of GRAPE’s performance in PYPH cohort and a case study.

underutilized data through deep learning, facilitating fast, objective
algorithms for accurate lesion identification’". In this study, we pre-
sent GRAPE: an Al model based on routine noncontrast CT scans for
GC detection. The effectiveness of this model was further validated
inanindependent, external multicenter study. GRAPE demonstrated
superior detection performance for GC compared with previous
models based on clinical information and serological diagnostics
(AUC 0.757-0.79)*°%2, and the performance was comparable to liquid
biopsy**,including circular RNAs*, microRNAs**?, cell-free DNA* and
metabolites” in blood samples, which reported AUC values between
0.83and 0.94. The subgroup analysis demonstrated GRAPE sensitivity
of approximately 50% for EGC, and more than 90% for GC at T3 and

T4 stages. Although GRAPE demonstrated superior performance in
advanced GC detection, it may allow GC to be detected at an earlier
stage, which can also improve the overall survival of GC patients.

To validate the value of GRAPE in realistic hospital opportun-
istic screening, we conducted two real-world studies comprising
78,593 consecutive participants. GRAPE achieved high detection
rates, significantly surpassing the 0.9% detection rate of all GC from
questionnaire-based methods”. GRAPE also showed good performance
on prediagnosis scans performed inthe 6 months before GC diagnosis.
Despite its advantage, GRAPE is not intended to replace endoscopic
evaluation. We believe it provides a valuable alternative for sympto-
matic patients hesitant to undergo initial endoscopic screening.
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\ GRAPE low risk (n = 34,370)
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Emergency 8.1%
Physical exam
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Exclusion:
(1) Patients diagnosed with GC before the CT examination

Inclusion:

(1) Patients treated for other cancer
(2) Patients without clear diagnosis
(3) Patients with last noncontrast CT between January 2022 and June 2024

14 April 2017 6 June 2024

Abdominal CT examination during follow-up after
radiotherapy for lung cancer
No obvious symptoms

GRAPE: 0.3312

radiotherapy for lung cancer
No obvious symptoms

GRAPE: 0.6049

c

Abdominal CT examination during follow-up after

I All noncontrast CT during therapy or follow-up in ZJCC I

Participates with high risk were followed up

U

Detection rate
311 were detected as GC by routine 12.09%
gastroscopy or retrospective review - °
after CT examination

355 were confirmed as NGC by routine
gastroscopy after CT examination

(1) 26 patients with other cancer
before diagnosing GC.

(2) 285 patients with GC for the
first time.

—

1,906 were followed up for 1 year
without no symptoms after CT
examination

473 who did not receive gastroscopy
were not followed up for 1 year after
CT examination

——— Under follow-up

6 August 2024

2 months

Diagnosed with GC via gastroscopy during follow-up
pT2NOMO

6 months before diagnosis of GC

|
|

Time diagnosed with
other cancer

26 patients were followed up o

for other cancer before
being diagnosed with GC

4=

February 2023

8 months

Abdominal CT examination due to pulmonary nodules
operation
No obvious symptoms

GRAPE: 0.0889

Fig. 5| Performance of GRAPE in realistic hospital opportunistic screening

in cancer center validated using areal-world study cohort. a, Overview of
GRAPE’s performance in the ZJCC cohort. b, lllustration of GC patient diagnosed
after detection using GRAPE. This patient was being followed up for lung

cancer treatment in June 2024 but was detected by GRAPE. MDT review showed
that the patient underwent gastroscopy and was diagnosed with moderately
differentiated to well-differentiated GC in August 2024. ¢, Data collection process
of prediagnosis CT scans. Among 26 patients under follow-up for other cancers,
11 had prediagnostic CT scans taken in the 6 months before GC diagnosis. GRAPE
suggested GCin 63.64% (7 of 11) patients in the 6 months before their diagnosis.

GRAPE evaluation

Abdominal CT examination during postoperative
follow-up of pulmonary nodules
No obvious symptoms

GRAPE: 0.6794

11 patients had CT scans Time diagnosed with GC

—

7 patients were classified as
GRAPE high risk

April 2024

6 months

AmsEaEa

Diagnosed with gastric cancer via gastroscopy following
more than 4 months of abdominal discomfort
pT4aNIMO

GRAPE: 0.9949
d, A patient underwent 2 abdominal CT examinations at 14 and 6 months before
diagnosis of GC due to pulmonary nodules, with no notable abnormalities
of stomach reported in 2023. Later, this patient was diagnosed with poorly
differentiated GC in T4aN1IMO stage via gastroscopy after more than 4 months of
abdominal discomfort in April 2024. We evaluated the noncontrast CT before and
atthe time of diagnosis, and the results showed that the GRAPE indicated GC in
noncontrast CT 6 months before diagnoses. Based on the GRAPE prediction and
retrospective review of the image, the MDT suspected the patient was in stage T2,
which was detected successfully by GRAPE 6 months inadvance.

Currently, no other new GC screening methods have beenimple-
mented inlarge-scale screening cohorts, although similar studies have
been conducted for other malignancies. The National Lung Screening
Trial in the United States reported a lung cancer detection rate of
2.4-5.2% using low-dose helical CT*°. The detection rate of ovarian
and fallopian tube cancers was 5.5% using transvaginal ultrasound™. In
liquid screening, the detection rate of nasopharyngeal carcinomawas
11.0% using Epstein-Barr virus DNA levels in plasma samples®, and the

detection rate of colorectal cancer was 3.2% via cell-free DNA detection
in plasma in the theoretical ECLIPSE study population®. As a highly
accurate high-riskidentification tool, GRAPE has the potential to enable
large-scale screening programs by boosting the detection rate for
the secondary endoscopy examinations, thus reducing GC mortality.

The GRAPE model adopts a simple yet effective architecture to
the detection of GC on noncontrast CT scans by integrating both clas-
sification and segmentation into a single deep-learning framework.
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Traditional methods often fall short by focusing solely on segmen-
tation, which limits the ability to provide patient-level probability
assessments, or by relying exclusively on classification approaches
applied directly to organ regions of interest (ROIs), thereby reducing
the interpretability of predictions. In contrast, our joint model lever-
ages the advantages of both strategies, allowing us to benefit from
detailed local textural pattern recognition of tumors while maintaining
a comprehensive understanding of the stomach’s overall shape and
structure. By adapting the nnUNet backbone—a proven architecture
known for its robust and high-performance visual feature extraction
capabilities—our model achieved enhanced capacity to handle the
complexvisual characteristics presentin medical images specificto GC.
GRAPE’s overall design not only ensures efficient feature learning but
also offersimproved generalization across diverse datasets. Moreover,
interms of interpretability, GRAPE combined segmentation and clas-
sification pipeline, providing clinicians with detailed images where
tumor segmentation masks are explicitly delineated while simultane-
ously offering decisive classification outputs. We also visually analyzed
interpretability through Grad-CAM and found the coarse heatmap
corresponded well with the tumor region. Although noncontrast CT
isnotaroutine modality for GC diagnosis, the performance of radiolo-
gists can be improved significantly via the assistance of GRAPE. This
improvement could be attributed to GRAPE’s tumor segmentation
output, whichis easy for radiologists to interpret.

Despite GRAPE’s promising results, further research is required
to address key aspects of its applicability. First, a large prospective
screening cohort is necessary to validate GRAPE’s effectiveness in
GC screening more robustly. We are implementing large-scale pro-
spective validation of GRAPE’s performance through anationwide GC
screening program. Due to scenario difference, for example, high-risk
versus opportunistic screening, the optimal cutoff value is expected
tobeselected to balance the sensitivity and specificity during clinical
implementation. Second, enhancing the sensitivity of the model for
early-stage GC remains a priority. We will amplify the training dataset
of GRAPE with more EGC, thereby improving model sensitivity. We
will also utilize more information from endoscopic and pathology
reportsasadditional supervision to train the GRAPE model to further
improve sensitivity, for example, the description of shape, texture, size
and degree of invasion of the tumor. As mentioned before, patients
with better gastric filling had higher sensitivity in early GC detection.
As aresult, we would recommend distension of the stomach before
noncontrast CT imaging in our prospective trial. Third, although the
prevalence of non-GC tumors such as gastrointestinal stromal tumors
and gut-associated lymphoid tissue tumors are relatively low, GRAPE
couldbe expanded to detect and diagnose these rare tumors, making
itamore comprehensive screeningtool. Finally, to address generaliza-
tion challenges, future direction would be the incorporation of train-
ing data from more centers. From the technical aspect, the test-time
adaptation®* technique is a recent machine-learning approach for
better model generalizability and has the potential to boost external
validation performance for GRAPE. Overall, GRAPE represents a new
approach for mass GC screening, demonstrating high sensitivity, speci-
ficity and detectionrates, thus enhancing both the cost-effectiveness
and compliance of GC screening efforts.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butionsand competinginterests; and statements of dataand code avail-
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Methods

Trial design and population

This study employed a phase design and included three independent
cohorts (Fig. 1). The study was approved by the centralized institu-
tional review board (IRB) covering 20 participating centers (IRB-
2024-279, Clinicaltrials.gov registration NCT06614179). The training
cohortwas enrolled between September 2006 and June 2024 across
2 centersin China, comprising 3,470 participants with GC and 3,250
participants with NGC, aged 18-99 years. The internal validation
cohortwasenrolled between December 2006 and April 2024 across 2
centersin China, comprising 650 participants with GC and 648 partici-
pants with NGC, aged 20-94 years. Moreover, betweenJanuary 2011
and August 2024, we conducted an independent external validation
cohort, enrolled 18,160 participants from 16 centers who underwent
gastroscopic examination, aged 18-80 years. The inclusion criteria
for the GC group required participants to have a diagnosis of GC con-
firmed by gastroscopic pathological biopsy and to have undergone
anoncontrast CT examination before receiving any treatment at the
time of diagnosis. Participants were excluded if they underwent the
noncontrast CT examination after receiving treatment. For the NGC
group, inclusion criteria required participants to be confirmed as
not having GC by gastroscopy and to have undergone a noncontrast
CT examination within 6 months of the gastroscopy. Alternatively,
NGC participants were included if they underwent a noncontrast
CT examination and were confirmed without GC based on a 1-year
follow-up. We conducted a comprehensive review of the medical
records for all enrolled patients, including age, sex, T stage, location
andsoon. Full details of the internal and external cohorts, including
patients’ clinical information and CT acquisition parameters, are
shownin Extended Data Table 1.

Finally, we validated the performance of GRAPE in realistic hospi-
tal opportunistic screening using 2 real-world study cohorts, including
acohortcomprising 41,178 consecutive participants with noncontrast
CT between 2018 and 2024 from 2 regional hospitals and a cohort
comprising 37,415 participants with last noncontrast CT between
2022 and 2024 from a cancer center. In total, 45.19% (9,083 0f 20,097)
patients came from the outpatient and emergency departments and
physical examination center, while 54.80% (11,014 0f 20,097) patients
came from department of inpatientin FHPH; 41.56% (8,761 0f 21,081)
patients came from the outpatient and emergency departments
and physical examination center, whereas 58.44% (12,320 of 21,081)
patients came from the inpatient department in PYPH. In ZJCC, we
additionally excluded 4,573 patients diagnosed with GC before routine
CT examination. Intotal, 30.66% (11,472 of 37,415) patients came from
the outpatient and emergency departments and physical examina-
tion center, while 39.34% (25,943 of 37,415) patients came from the
inpatient department.

Image acquisition and processing

CTimagesinthe training cohort, internal validation cohortand exter-
nalvalidation cohort were collected before gastroscopy. Stomach seg-
mentation was obtained via a semi-supervised self-training approach
using a combination of publicly available dataset® with manually
annotated masks and our internal training set. Tumor segmentation
was performed meticulously by two proficient radiologists using
ITK-SNAP software (v.3.8, available at http://www.itksnap.org)*. As
GC can be distinguished readily from normal gastric tissues in portal
venous-phase CTimages, we delineated two-dimensional sections con-
taining tumors to effectively outline tumor boundaries in venous-phase
CTimages. In cases where marked discrepancies in the delineation of
the ROl arose between the two radiologists, resolution was achieved
through constructive discussion, resulting in a consensus. To obtain
tumor annotations on noncontrastimages, we employed the DEEDS*”
registration algorithmtoalign venous-phase images with noncontrast
images. The resulting deformation fields were then applied to the

annotations on the venous phase, thereby generating the transformed
tumor annotations for the noncontrast phase. Finally, the transferred
tumor annotations onthe noncontrast phase were again delineated and
confirmed via the same procedure as on the venous phase.

Al model: GRAPE

GRAPE model was developed to analyze 3D noncontrast CT scans aimed
atthe detectionand segmentation of GC. The model yields two outputs:
a pixel-level segmentation mask outlining the stomach and potential
tumors, and aclassification score that categorizes patientsinto those
with GC and normal controls. The model employs a two-stage strategy.
The first stage involves the localization of the stomach region within
the entire CT scan. This stage is implemented using a segmentation
network, nnUNet*, with the configuration for 3D full resolution. The
output stomach segmentation maskis used to generate a3D bounding
box of the stomach region, which is cropped and served as input for
the second stage. This cropping enhances the efficiency and simplifi-
cation of the subsequent stage by focusing the tumor segmentation
specifically on the area of interest. In the second stage, a joint classi-
fication and segmentation network with dual branches is employed.
The segmentation branch focuses on segmenting tumorsin thisiden-
tified stomach region. Meanwhile, the classification branch, which
integrates multilevel feature maps from the segmentation branch,
is designed to classify the patients as either having GC or as normal
controls. Whereas noncontrast CT has inherent resolution limita-
tions (-0.5-1 mm), GRAPE detects early GCs not through directlesion
visualization but by integrating subtle 3D morphometric patterns (for
example, local wall thickening, mucosal heterogeneity) and contextual
radiological features (for example, perigastric fat stranding, lymph
node microcalcifications).

To address variations in CT imaging parameters across several
centers, we adopted a robust preprocessing pipeline as follows. First,
all scans were resampled to the median voxel spacing of the training
dataset, specifically 0.717 mm x 0.717 mm x 5.0 mm, to harmonize
differencesinslice thickness and spatial resolution. Next, allintensity
values were normalized using the mean and s.d. calculated from the
training dataset to minimize interscanner intensity discrepancies.
Duringtraining, fixed-size 3D patches with a size of 256 x 256 x 28 were
extracted randomly from the resampled volumes, and random Gauss-
ian noise was injected before feeding into the deep network toincrease
model robustness. At test time, predictions were generated using a
sliding window strategy across the entire resampled volume, ensur-
ing consistent performance regardless of original scan dimensions.

The training procedure involved a fivefold cross-validation
approach by dividing the training setinto five folds. Five models were
trained individually using four folds, with validation on the one remain-
ing fold, following the standard nnUNet cross-validation protocol. In
the testing phase, ensemble learning was applied, averaging classifica-
tion probabilities across five models to determine the classification
score, and using pixel-level voting to determine segmentation output.
The class with the higher probability between the two categories was
chosen as the final classification for each test case. In addition, dif-
ferent status of stomach filling is challenging for the recognition of
GC. GRAPE inherently addresses stomach filling variability through
comprehensive training on a wide range of gastric volumes (fasting,
<100 cm’to over-distended, >800 cm?).

Anadvantage of the GRAPE modelisitsinherentinterpretability.
Giventhatit produces both segmentation and classification outputs,
the segmentation output provides a pixel-level visual map that aids
in understanding and confirming the classification results. To fur-
ther enhance interpretability, we visualized the heatmap of the con-
volutional feature map in the classification branch using Grad-CAM
(Gradient-weighted Class Activation Mapping)*’, which is a widely
applicable technique to identify the regions contribute most impor-
tantly to the classification.
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Evaluation metrics

Our main goal is a binary classification task to determine whether a
patient has GC. A GRAPE score greater than 0.5 is considered as the
‘high risk’ category for calculating AUC, sensitivity, specificity and
accuracy. Furthermore, we access the proportion of GC detection
stratified by T stage, TNM stage, lesion location and stomach filling
during CT examination.

Reader studies

Theaim of thereader study was to assess the difference in performance
between GRAPE and radiologists in detecting GC on noncontrast CT.
A total of 13 radiologists were enrolled in this study, comprising
5 senior radiologists and 8 junior radiologists. Details of the radiolo-
gistsisshownin Extended Data Table 3. The study comprised two ses-
sions. In the first session, GRAPE’s performance was compared with
that of radiologists with varying levels of expertise in GC imaging.
The second session evaluated GRAPE’s potential to assist radiologists
where we provided the radiologists with GRAPE’s prediction in addition
to the noncontrast image. A washout period of at least 1 month was
maintained between the 2 sessions for each radiologist.

Statistical analysis

The performance of the GC and NGC classification was evaluated
using the AUC, sensitivity, specificity, positive predictive value and
balanced accuracy. Confidence intervals were calculated based on
1,000 bootstrap replications of the corresponding data. The signifi-
cance comparisons of sensitivity, specificity and balanced accuracy
were conducted using permutation tests to calculate two-sided
P values with 10,000 permutations. The threshold to determine
statistical significance is P < 0.05. Data analysis was conducted in
Python using the numpy (v.1.26.2), scipy (v.1.11.4) and scikit-learn
(v.1.3.2) packages.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The datasets analyzed in this study are not publicly available due to
restrictionsimposed by the respective IRBs. Researchers may request
access to the anonymized data and supporting clinical documenta-
tion by contacting corresponding author X.C. (chengxd@zjcc.org.
cn). Access will be granted subject to IRB approval, a signed data-use
agreement and will be for noncommercial academic purposes only.
Requests will be processed within 6 weeks.

Code availability

The code used for the implementation of GRAPE has dependencies
on internal tooling and infrastructure and is under patent protec-
tion (CN116188392; the other application number is not currently in
the public domain), and thus is not able to be publicly released. All
experiments and implementation details are described in sufficient
detailin Methods to supportreplication with nonproprietary libraries.
Several principal components of GRAPE are available in open-source
repositories: PyTorch (https://pytorch.org/,v2.2.0) and nnU-NetV1
(https://github.com/MIC-DKFZ/nnUNet/tree/nnunetvl).
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Extended Data Fig. 1| The GRAPE model and its interpretability analysis. ofaU-Net backbone and perform classification after global pooling (GP) and
a.Model workflow and architecture. The GRAPE model takes the input of a fully connected layers (FC). b. Examples of interpretability analysis and three GC
non-contrast CT scan and first segment the stomach with a U-Net to obtain cases. The GRAPE model outputs the localization of the detected GC and aligns
the ROl of the stomach region. It then processes the ROl region with ajoint well withits heatmap visualization via the Grad-CAM approach.

segmentation and classification network which extracts the multi-level feature
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Extended Data Fig. 2| ROC curves of individual centers. The ROC curves show the performance of GRAPE in centers with more than 100 participants in the external
validation cohort.
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f. The sensitivity of GRAPE in GC detection in different status of stomach filing.
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Extended Data Table 1| Data characteristics of the GC and non-GC participants in the training cohort, internal validation
cohort and external validation cohort

Training cohot | Inemal validaton | vl validtion | TFMMECohort | Intemal validation cohor External validation cohort
(=g elmuEEn) | eiEEEE) [ age NBSH zicc NBSH CXPH  YYPH LGPH  FAHZCMU  WZPH T7CC 27TDH  HZPH YZPH SAHZCMU LPPH SAHANMU FICC  QNZPH  INCC FAHWZMU
(1=4753) (0=1967) | (1=844) (n=454) | 0=974) (@=1026) (=105 @=3007) =1867) (=85 @=79) @=12)) (=15 (0=399) (@=464) @=1007) (@=730) (n=424) (m=4634) (n=15%)
Gc 3470 650 5809 712 758 465 185 7 23 5 5 6 7 2 13 3 35 3 30 326 2 3958 901
Non-GC 3250 648 12351 2041 1209 379 269 957 1003 1000 2582 1861 78 795 114 12 364 430 977 404 400 676 698
Age (IQR) 61(5571) 61(55-72) S9(33T5) | 61(5569) 62(5671) | 61(55:69) 62(56-72) | S6(45-68) 60 (SITI) 46(33-59) 55 (4S-66) 49 (37-60) 61(54-69) SO(366) 67(60-75) 65(65-70) ST(4T-6T) S4(A166) SAM66S) 59(SI6T) S0 (49T1) 62 (5669) 64 (57-72)
Sex (Female/Male) 2245/4475 4507848 712311037 | 16293124 616/1351 | 306/538 144310 | 466508 506520  386/619 13781629 TS2I085 2758 34sMS2 49778 SN0 186213 223241 44166 25TAT3 179245 13973237 496/1103
T stage
i 657 143 1031 539 18 129 14 2 1 0 127 0 0 0 0 0 10 0 2 53 0 577 250
n 500 84 762 341 159 53 31 8 3 0 a7 1 2 1 2 1 9 12 5 65 2 an 133
iH] 476 7 676 266 210 2 as 1 4 1 7 2 3 0 4 1 2 5 4 20 7 441 104
T4 1783 346 3340 1512 271 251 95 6 15 4 174 B 2 1 7 1 14 17 19 179 15 2469 414
Location
Upper 13 759 13 1106 64 125 91 2 1 1 1 81 1 3 0 4 0 7 10 9 110 1 734 143
Middle 1/3 7 161 1683 560 217 104 57 5 6 1 88 1 0 1 4 1 10 8 1 9 8 1233 207
Lower 1/3 1872 364 2906 1471 401 261 103 11 16 3 242 4 4 1 5 2 18 14 9 114 15 1927 521
Total stomach 53 12 14 4 15 9 3 0 0 0 14 0 0 0 0 0 0 2 1 3 0 64 30
Z::) Thidkness mesn 54 53 48 54 50 53 50 50 50 50 51 50 50 50 50 50 50 26 50 50 30 44 50
Slice Thickness Q1 50 5 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 25 50 50 30 30 50
Slice Thickness Q3 50 5 50 6.0 5.0 5.0 5.0 5.0 5.0 5.0 50 5.0 50 50 50 50 50 L 50 50 3.0 5.0 50
Slice Thickness IPR 00 00 00 10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00
CTDIvol mean (mGy) 13 109 127 154 92 156 93 - 10 - 85 128 163 139 76 - - 80 86 160 13.0 142 129
CTDIvol Q1 73 70 80 114 6.0 118 58 - 108 - 7.1 87 L 132 68 70 6.6 112 42 10.7 99
CIDIvol Q3 157 144 157 186 13 188 115 - 108 - 94 159 176 139 81 - - 87 103 215 183 170 152
CTDIvol IPR 83 74 77 72 53 70 57 - 00 - 23 72 21 07 13 - - 17 37 103 140 63 54
KVP mean 118 n7 19 120 106 120 107 120 120 120 120 115 120 120 120 120 119 120 120 122 109 120 120
KVP QI 120 120 120 120 % 120 % 120 120 120 120 100 120 120 120 120 120 120 120 120 100 120 120
KVP Q3 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120
KVPIPR 0 0 0 0 30 0 30 0 0 0 0 20 0 0 0 0 0 0 0 0 20 0 0
Exposure mean (mAs) 150 149 127 149 154 148 151 23 161 3 %8 191 214 104 13 140 19 259 128 64 205 170 50
Exposure Q1 98 102 65 7 123 85 17 17 160 23 6 124 200 35 101 125 19 215 9 14 145 136 2%
Exposure Q3 206 206 169 210 19 208 194 23 160 38 126 25 250 169 120 157 19 305 153 100 250 194 121
Exposure IPR 108 104 104 133 67 123 7 1 0 10 0 m 50 134 20 E 0 % 54 86 105 58 95
ExposureTime mean (ms) 549 536 652 548 557 533 546 792 504 805 423 603 6767 2591 500 500 607 769 509 500 501 611 814
ExposurcTime Q1 500 500 500 500 500 500 500 800 500 800 350 500 4783 600 500 503 600 800 500 500 500 500 500
ExposurcTime Q3 600 600 750 600 05 600 05 800 500 800 500 752 10538 6431 500 503 600 800 500 500 500 750 600
ExposurcTime IPR 100 100 250 100 125 100 125 0 0 0 150 252 5756 5831 0 0 0 0 0 0 0 250 100
‘Tube Current mean (mA) 295 298 27 300 268 305 7 235 274 323 208 258 370 345 136 280 252 336 178 310 306 an 260
Tube Current Q1 28 232 19 233 213 236 23 170 m 276 166 182 354 331 122 28 209 280 19 189 183 23 185
Tube Current Q3 343 341 336 349 313 319 313 287 m 375 27 290 s 350 145 a3 29 378 208 s 100 375 31
‘Tube Current IPR 115 109 146 116 100 13 90 n7 0 9 51 108 7 19 23 3 0 98 89 234 217 152 136
2_axis extent mean (mm) 363 370 4 341 466 340 465 406 334 485 376 an 340 452 a1 455 2 4ss 331 si8 520 sal 435
2_axis extent Q1 250 250 400 240 445 240 445 310 230 455 366 395 265 35 415 433 a10 38 275 35 426 462 420
2_axis extent Q3 470 an 490 460 95 457 490 470 450 510 435 4ss 360 480 46 465 40 a7 345 665 @1 675 445
2_axis extent IPR 20 24 % 20 50 217 4s 160 20 55 © 60 95 45 8 3 30 W 70 230 195 213 25
Spacing mean (mm) 0720 0718 0733 072 0713 0.720 0713 0711 0679 0775 0658 0724 0730 0735 0.687 0686 0707 0751 0741 0771 0746 0803 0.704
Spacing Q1 0672 0673 0.683 0674 0,663 0676 0669 0.684 0635 0703 0625 0.684 0.684 0.684 0,631 0664 0684 0697 0.684 0727 0705 0702 0699
Spacing Q3 0768 0763 0782 0770 0756 0764 0762 0734 0n7 0820 0683 0768 0775 0774 0.736 0710 0730 0793 0793 0820 0797 0355 0703
Spacing IPR 0,09 0.09 009 009 0.093 0.088 0093 0051 0.082 017 0058 0.084 0092 0,09 0.105 0.047 0.047 009 0109 0.09 0092 013 0.004

ZJCC: Zhejiang Cancer Hospital; NBSH: Ningbo Sencond Hospital; CXPH; Cixi People Hospital; YYPH: Yuyao People Hospital; LGPH: Longgang People Hospital; FAHZCMU: First Affilited Hospital of Zhejiang Chinese Medical University; WZPH; Wenzhou People Hospital; TZCC: Taizhou Cancer Hospital; ZJTDH: Zhejiang Tongdei Hospital; HZPH:
JC

Huzhou People Hospital; YZPH: Yinzhou People Hospits

FAHWZMU: First Affiliated Hospital of Wenzhou Medical University

SAHZCMU: Second Affiliated Hospital of Zhejiang Chinese Medical University; LPPH: Linping People Hospital; SAHANMU: Second Affiliated Hospital of Anhui Medical University;

‘ujian Cancer Hospital; QNZPH: Qiannanzhou People Hospital; LNCC: Liaoning Cancer Hospital;
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Extended Data Table 2 | The performance of GRAPE models in internal validation cohort and external validation

Center Sensitivity 95% CI of Sensitivity Specificity 95% CI of Specificity Accuracy 95% CI of Accuracy AUC 95% CI of AUC
Internal cohort (n=1298) 0.851 0.825-0.877 0.968 0.953-0.980 0.909 0.893-0.924 0.970 0.962-0.978
ZICC (n=844) 0.834 0.802-0.867 0.982 0.967-0.995 0.901 0.880-0.921 0.978 0.970-0.985
NBSH (n = 454) 0.892 0.844-0.935 0.948 0.920-0.973 0.925 0.989-0.949 0.963 0.943-0.979
External cohort (n=18160) 0.817 0.807-0.827 0.905 0.900-0.910 0.877 0.872-0.882 0.927 0.922-0.931
CXPH (n=974) 0.588 0.333-0.812 0.951 0.936-0.965 0.945 0.930-0.958 0.913 0.838-0.972
YYPH (n = 1026) 0.870 0.706-1.000 0.902 0.883-0.921 0.902 0.883-0.919 0.919 0.812-0.995
LGPH (n = 1005) 1.000 1.000-1.000 0.971 0.961-0.981 0.971 0.960-0.981 0.995 0.985-1.000
FAHZCMU (n =3007) 0.798 0.759-0.838 0.833 0.817-0.848 0.827 0.814-0.841 0.903 0.886-0.919
WZPH (n = 1867) 0.833 0.500-1.000 0.951 0.942-0.961 0.950 0.940-0.960 0.953 0.858-0.998
TZCC (n=85) 0.857 0.500-1.000 0.962 0.917-1.000 0.953 0.906-0.988 0.906 0.707-1.000
ZJTDH (n=1797) 0.500 0.000-1.000 0.970 0.957-0.981 0.969 0.956-0.980 0.965 0.917-1.000
HZPH (n = 127) 0.846 0.636-1.000 0.737 0.658-0.819 0.748 0.669-0.819 0.941 0.853-0.999
YZPH (n=15) 0.667 0.000-1.000 0.750 0.500-1.000 0.733 0.533-0.933 0.806 0.500-1.000
SAHZCMU (n = 399) 0.714 0.556-0.862 0.885 0.851-0.917 0.870 0.837-0.902 0.905 0.843-0.953
LPPH (n = 464) 0.852 0.719-0.967 0.858 0.825-0.893 0.858 0.825-0.888 0.951 0.907-0.986
SAHANMU (n =1007) 0.800 0.656-0.935 0.931 0.916-0.946 0.928 0.912-0.943 0.923 0.846-0.984
FICC (n=1730) 0.724 0.675-0.771 0.933 0.907-0.957 0.840 0.814-0.866 0.902 0.879-0.924
QNZPH (n =424) 0.958 0.862-1.000 0.878 0.844-0.910 0.882 0.851-0.913 0.978 0.960-0.992
LNCC (n=4634) 0.798 0.796-0.810 0.944 0.927-0.961 0.819 0.808-0.830 0.929 0.921-0.937
FAHWZMU (n = 1599) 0.881 0.860-0.902 0.812 0.782-0.840 0.851 0.834-0.868 0.921 0.908-0.934

ZJCC: Zhejiang Cancer Hospital; NBSH: Ningbo Sencond Hospital; CXPH: Cixi People Hospital; YYPH: Yuyao People Hospital; LGPH: Longgang People Hospital; FAHZCMU: First Affiliated Hospital of Zhejiang Chinese Medical University;
‘WZPH: Wenzhou People Hospital; TZCC: Taizhou Cancer Hospital; ZITDH: Zhejiang Tongdei Hospital; HZPH: Huzhou People Hospital; YZPH: Yinzhou People Hospital; SAHZCMU: Second Affiliated Hospital of Zhejiang Chinese Medical
University; LPPH: Linping People Hospital; SAHANMU: Second Affiliated Hospital of Anhui Medical University; FICC: Fujian Cancer Hospital; QNZPH: Qiannanzhou People Hospital; LNCC: Liaoning Cancer Hospital; FAHWZMU: First
Affiliated Hospital of Wenzhou Medical University
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Extended Data Table 3 | Reader experience

CT read per year GC CT read pear year

Reader ID Experience year i) ) Seniority
1 18 20,000 1,100 Senior
2 8 15,000 900 Senior
3 13 18,000 1,000 Senior
4 8 12,000 600 Senior
5 9 11,000 600 Senior
6 5 11,000 500 Junior
7 S 10,000 600 Junior
8 5 9,000 400 Junior
9 5 12,000 400 Junior
10 4 10,000 500 Junior
11 4 11,000 500 Junior
12 3 9,000 500 Junior
13 2 8,000 100 Junior

Readers were stratified into senior vs. junior radiologists endorsed by the National Health Commission’s Physician Title Evaluation Standards (2021 Edition) and the Chinese Medical
Association Radiology Branch certification guidelines. Senior status required either: (1) attainment of associate chief physician or higher academic rank; or (2) accumulated >8 years of
independent diagnostic reporting experience, as verified through institutional credentialing databases.
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Extended Data Table 4 | Data characteristics of the GRAPE-high risk group in the real world study

FHPH (n = 1248) PYPH (n=3397) ZICC (n=3045)
GC confirmed by gastroscopy 289 556 311
NGC confirmed by gastroscopy 261 572 355
NGC confirmed after more than one year of follow-up 630 2023 1906
Patients without gastriscopy or less than one year of follow-up 68 246 473
T stage
Tl 25 57 12
T2 42 92 49
T3 63 110 74
T4 159 297 180
Location
Upper 1/3 58 142 121
Middle 1/3 87 127 66
Lower 1/3 128 267 114
Total stomach 16 20 14

FHPH: Fenghua People Hospital; PYPH: Pingyang People Hospital; ZJCC: Zhejiang Cancer Hospital;
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested
|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

XXX [0 0 XX [OOOS

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Dicom files were handled with the open source libraries Pydicom(https://pydicom.github.io/, version 2.2.2), SimplelTK(https://simpleitk.org/,
version 2.0.2), and NiBabel(https://nipy.org/nibabel/, version 3.2.1).

Data analysis The code used for the implementation of GRAPE has dependencies on internal tooling and infrastructure, is under patent protection
(CN116188392; the other application number is not currently in the public domain) and thus is not able to be publicly released. However, all
experiments and implementation details are described in sufficient detail in the Methods section to support replication with public libraries.
Several major components of our work are available in open-source repositories: PyTorch (https://pytorch.org/, v2.2.0) and nnU-NetV1
(https://github.com/MIC-DKFZ/nnUNet/tree/nnunetvl). Data analysis was conducted in Python using the numpy (version 1.26.2), scipy
(version 1.11.4), and scikit-learn (version 1.3.2) packages. ITK-SNAP software (version 3.8, available at http://www.itksnap.org)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The datasets analyzed in this study are not publicly available due to restrictions imposed by the respective institutional review boards (IRBs). Researchers may
request access to the anonymized data and supporting clinical documentation by contacting the corresponding author (Xiangdong Cheng; chengxd@zjcc.org.cn).
Access will be granted subject to IRB approval, a signed data use agreement, and for non-commercial academic purposes only. Requests will be processed within 6
weeks.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender We are using only retrospective data collected through clinical practice. Sex was assigned based on the government-issued
ID. The datasets used in the internal training and test cohorts, and the external multi-center test cohorts have sex
distributions reported in the paper. Sex-based analysis was not reported because sex was unrelated to model
implementation or deployment. Self-identification gender was not collected from patients.

Reporting on race, ethnicity, or = We are using retrospective data collected through clinical practice. Race, ethnicity, and other socially relevant groupings

other socially relevant were not collected from the patients and were unrelated to model implementation or deployment.
groupings
Population characteristics Full characteristics were displayed in Extended Data Table 1. This study employed a phase design and included three

independent cohorts. The study was approved by the centralized institutional review board (IRB) covering 20 participating
centers (IRB-2024-279, Clinicaltrials.gov number, NCT06614179). The training cohort was enrolled between September 2006
and June 2024 across 2 centers in China, comprising 3470 participants with GC and 3250 participants with NGC, aged 18 to
99 years. The internal validation cohort was enrolled between December 2006 and April 2024 across 2 centers in China,
comprising 650 participants with GC and 648 participants with NGC, aged 20 to 94 years. Moreover, between January 2011
and August 2024, we conducted an independent external validation cohort, enrolled 18,160 participants from 16 centers,
aged 18 to 80.

Finally, we validated the performance of GRAPE in realistic hospital opportunistic screening using two real-world study
cohorts, including a cohort comprising 41,178 consecutive participants with non-contrast CT between 2018 and 2024 from
two basic hospitals and a cohort comprising 37,415 participants with last non-contrast CT between 2021 and 2024 from a
cancer center.

Recruitment The training cohort was enrolled between September 2006 and June 2024 across 2 centers in China, comprising 3470
participants with GC and 3250 participants with NGC, aged 18 to 99 years. The internal validation cohort was enrolled
between December 2006 and April 2024 across 2 centers in China, comprising 650 participants with GC and 648 participants
with NGC, aged 20 to 94 years. Moreover, between January 2011 and August 2024, we conducted an independent external
validation cohort, enrolled 18,160 participants from 16 centers aged 18 to 80. The inclusion criteria for the GC group
required participants to have a diagnosis of GC confirmed by gastroscopic pathological biopsy and to have undergone a non-
contrast CT examination before receiving any treatment at the time of diagnosis. Participants were excluded if they
underwent the non-contrast CT examination after receiving treatment. For the NGC group, inclusion criteria required
participants to be confirmed as not having GC by gastroscopy and to have undergone a non-contrast CT examination within
six months of the gastroscopy. Alternatively, NGC participants were included if they underwent a non-contrast CT
examination and were confirmed without GC based on a one-year follow-up. We conducted a comprehensive review of the
medical records for all enrolled patients, including age, gender, T stage, location and etc.

We validated the performance of GRAPE in realistic hospital opportunistic screening using two real-world study cohorts,
including a cohort comprising 41,178 consecutive participants with non-contrast CT between 2018 and 2024 from two basic
hospitals and a cohort comprising 37,415 participants with last non-contrast CT between 2021 and 2024 from a cancer
center. All participants with confirmed GC at the time of non-contrast CT have been excluded in the cohort of cancer center.

Ethics oversight The study was approved by the centralized institutional review board (IRB) covering 20 participating centers (IRB-2024-279,
Clinicaltrials.gov number, NCT0O6614179).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Sample size The internal cohort included 8,018 participants. We randomly allocated approximately 80% of participants (GC: Non-GC at approximately 1:1)
to the training cohort and 20% to the internal validation cohort. No formal sample size calculation was performed; instead, the sample size
was determined based on data availability and the need to ensure a balanced representation of GC and NGC cases for model training and
evaluation. The training cohort consisted of 3,470 GC and 3,250 NGC participants, aged 18 to 99 years, enrolled between September 2006
and June 2024 across two centers in China. The internal validation cohort comprised 650 GC and 648 NGC participants, aged 20 to 94 years,
enrolled between December 2006 and April 2024 across the same centers. These sample sizes were deemed sufficient for model
development and initial validation based on prior studies and empirical assessments of convergence and generalization.

For external validation, we utilized an independent dataset collected between January 2011 and August 2024, consisting of 18,160
participants from 16 centers, aged 18 to 80 years. The sample size was determined based on the availability of real-world data to assess the
model’s generalizability across multiple institutions.
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To further evaluate real-world performance, we validated GRAPE in two hospital-based opportunistic screening cohorts. The first comprised
41,178 consecutive participants who underwent non-contrast CT between 2018 and 2024 at two basic hospitals. The second included 37,415
participants who had their most recent non-contrast CT between 2021 and 2024 at a cancer center. These large sample sizes were chosen to
ensure robust assessment in clinical settings, covering a diverse patient population and reflecting real-world screening conditions.

Data exclusions  For the internal and external cohorts, the inclusion criteria for the GC group required participants to have a diagnosis of GC confirmed by
gastroscopic pathological biopsy and to have undergone a non-contrast CT examination before receiving any treatment at the time of
diagnosis. Participants were excluded if they underwent the non-contrast CT examination after receiving treatment. For the NGC group,
inclusion criteria required participants to be confirmed as not having GC by gastroscopy and to have undergone a non-contrast CT
examination within six months of the gastroscopy. Alternatively, NGC participants were included if they underwent a non-contrast CT
examination and were confirmed without GC based on a one-year follow-up. We conducted a comprehensive review of the medical records
for all enrolled patients, including age, gender, T stage, location and etc.

In real word study of cancer center cohort:We consecutively collected the abdominal non-contrast CT between January 2022 and June 2024
from ZJCC. For patients with multiple abdominal non-contrast CT examinations, only the last performed scan was included. In this cohort, we
additionally excluded 4,573 patients diagnosed with GC prior to routine CT examination, to simulate the prospective utility for the
opportunistic screening purpose.

Replication First, we developed GRAPE using a cohort from two centers in China, including 3,470 GC cases and 3,250 non-GC (NGC) cases. Its
effectiveness and utility were validated using internal validation cohort (1,298 cases) with the AUC of 0.970 and an independent external
validation cohort from 16 centers (18,160 cases) with the AUC of 0.927. Subgroup analysis showed that the proportion of GC detected by
GRAPE increased with advancing T stage but showed no significant association with tumor location. Then, we compared GRAPE's
interpretations with those of radiologists and explored its potential in assisting radiologists during diagnostic interpretation. Reader studies
showed that GRAPE significantly outperformed the average reader performance by 21.8% in sensitivity and 14.0% in specificity, especially in
early-stage GC. Finally, we validated the performance of GRAPE in realistic hospital opportunistic screening using a real-world study cohort of
78,593 consecutive participants with non-contrast CT scans in one comprehensive cancer center and two independent regional hospitals. The
real-world study showed that the detection rate of GC in GRAPE-predicted high-risk group were 24.5% and 17.7% in two basic hospitals,
including 23.2% and 26.8% T1/2 stage GC. In addition, GRAPE can also detect GC that easily missed by radiologists in advance in follow up due
to other disease in cancer center.

Randomization  For the dataset in the internal training cohort and the internal test cohort, patients were randomly assigned into training and test splits. In the
internal training cohort, patients were randomly assigned to training and validation in the process of the cross-validation.

Blinding The internal validation cohort, the external validation cohort and the real -world clinical test cohort were not used for the development of
GRAPE. In the reader studies, readers were binded to results and other clinical information, except for patient age and sex. Readers were also
binded to the data collection, exact ratio of the positive patients, and blinded to other readers. Readers were blinded to the ground-truth
labels and their performance after the study. In real-word study, researchers were blinded to results of consecutive participants with non-
contrast CT scans before the interpretation by GRAPE.
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ClinicalTrials.gov registration: NCT06614179
https://clinicaltrials.gov/study/NCT06614179?cond=NCT06614179&rank=1

The training cohort was enrolled between September 2006 and June 2024 across 2 centers in China, comprising 3470 participants
with GC and 3250 participants with NGC, aged 18 to 99 years. The internal validation cohort was enrolled between December 2006
and April 2024 across 2 centers in China, comprising 650 participants with GC and 648 participants with NGC, aged 20 to 94 years.
Moreover, between January 2011 and August 2024, we conducted an independent external validation cohort, enrolled 18,160
participants from 16 centers, aged 18 to 80. The inclusion criteria for the GC group required participants to have a diagnosis of GC
confirmed by gastroscopic pathological biopsy and to have undergone a non-contrast CT examination before receiving any treatment
at the time of diagnosis. Participants were excluded if they underwent the non-contrast CT examination after receiving treatment.
For the NGC group, inclusion criteria required participants to be confirmed as not having GC by gastroscopy and to have undergone a
non-contrast CT examination within six months of the gastroscopy. Alternatively, NGC participants were included if they underwent a
non-contrast CT examination and were confirmed without GC based on a one-year follow-up. We conducted a comprehensive review
of the medical records for all enrolled patients, including age, gender, T stage, location and etc.

We validated the performance of GRAPE in realistic hospital opportunistic screening using two real-world study cohorts, including a
cohort comprising 41,178 consecutive participants with non-contrast CT between 2018 and 2024 from two regional hospitals and a
cohort comprising 37,415 participants with last non-contrast CT between 2021 and 2024 from a comprehensive cancer center. All
participants with confirmed GC at the time of non-contrast CT have been excluded in the cohort of cancer center.

The AUCs, sensitivity and specificity of the Al models. The detection rate of GC in Al model-predicted high-risk group
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Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied-

Describe-any-atithentication-procedtres foreach seed stock-tised-or-novel-genotype generated—-Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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