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Abstract

Large language models (LLMs) are often praised for exhibiting near-human per-
formance on a wide range of tasks and valued for their ability to hold a general
conversation. The rise of agentic AI systems is, however, ushering in a mass of
applications in which language models perform a small number of specialized tasks
repetitively and with little variation.
Here we lay out the position that small language models (SLMs) are sufficiently
powerful, inherently more suitable, and necessarily more economical for many
invocations in agentic systems, and are therefore the future of agentic AI. Our
argumentation is grounded in the current level of capabilities exhibited by SLMs,
the common architectures of agentic systems, and the economy of LM deployment.
We further argue that in situations where general-purpose conversational abilities
are essential, heterogeneous agentic systems (i.e., agents invoking multiple different
models) are the natural choice. We discuss the potential barriers for the adoption
of SLMs in agentic systems and outline a general LLM-to-SLM agent conversion
algorithm.
Our position, formulated as a value statement, highlights the significance of
the operational and economic impact even a partial shift from LLMs to SLMs
is to have on the AI agent industry. We aim to stimulate the discussion on
the effective use of AI resources and hope to advance the efforts to lower
the costs of AI of the present day. Calling for both contributions to and cri-
tique of our position, we commit to publishing all such correspondence at
research.nvidia.com/labs/lpr/slm-agents.

1 Introduction

The deployment of agentic artificial intelligence is on a meteoric rise. Recent surveys show that more
than a half of large IT enterprises are actively using AI agents, with 21% having adopted just within
the last year [12]. Aside from the users, markets also see substantial economic value in AI agents: As
of late 2024, the agentic AI sector had seen more than USD 2bn in startup funding, was valued at
USD 5.2bn, and was expected to grow to nearly USD 200bn by 2034 [42, 47]. Put plainly, there is a
growing expectation that AI agents will play a substantial role in the modern economy.

The core components powering most modern AI agents are (very) large language models [48, 44]. It
is the LLMs that provide the foundational intelligence that enables agents to make strategic decisions
about when and how to use available tools, control the flow of operations needed to complete tasks,
and, if necessary, to break down complex tasks into manageable subtasks and to perform reasoning
for action planning and problem-solving [48, 14]. A typical AI agent then simply communicates with
a chosen LLM API endpoint by making requests to centralized cloud infrastructure that hosts these
models [48].
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LLM API endpoints are specifically designed to serve a large volume of diverse requests using one
generalist LLM. This operational model is deeply ingrained in the industry — so deeply ingrained, in
fact, that it forms the foundation of substantial capital bets: While the market for the LLM API serving
that underlies agentic applications was estimated at USD 5.6bn in 2024 [26], the investment into
the hosting cloud infrastructure surged to USD 57bn in the same year [72]. The 10-fold discrepancy
between investment and market size has been accepted, because it is assumed that this operational
model will remain the cornerstone of the industry without any substantial alterations, and that the
large initial investment will deliver returns comparable to traditional software and internet solutions
within 3-4 years [53].

In this work, we recognize the dominance of the standard operational model but verbally challenge
one of its aspects, namely the custom that the agents’ requests to access language intelligence are –
in spite of their comparative simplicity – handled by singleton choices of generalist LLMs. We state
(Section 2), argue (Section 3), and defend (Section 4) the position that the small, rather than large,
language models are the future of agentic AI. We, however, recognize the business commitment
and the now-legacy praxis that is the cause for the contrary state of the present (Section 5). In remedy,
we provide an outline of a conversion algorithm for the migration of agentic applications from LLMs
to SLMs (Section 6), and call for a wider discussion (Section 7). If needed to concretize our stance,
we attach a set of short case studies estimating the potential extent of LLM-to-SLM replacement in
selected popular open-source agents (Appendix B).

2 Position

2.1 Definitions

For the purpose of concretizing our position, we use the following working definitions:

WD1 A SLM is a LM that can fit onto a common consumer electronic device and perform inference
with latency sufficiently low to be practical when serving the agentic requests of one user.

WD2 An LLM is a LM that is not a SLM.

We justify the wording of these definitions in Appendix A, but note that their choice has little bearing
on the essence of our position. We note that as of 2025, we would be comfortable with considering
most models below 10bn parameters in size to be SLMs.

We use the words agent and agentic system interchangeably, preferring the former when emphasizing
the software with some agency as a whole (e.g., “as seen in popular coding agents”) and the latter
when highlighting the systems aspect of the agentic application as a sum of its components (e.g.,
“not all LMs of an agentic system are replaceable by SLMs”). For brevity, we focus on LMs as the
bedrock of agentic applications and do not explicitly consider vision-language models, although we
note that our position and most of our arguments readily extend to vision-language models as well.

2.2 Statement

We contend that SLMs are

V1 principally sufficiently powerful to handle language modeling errands of agentic appli-
cations;

V2 inherently more operationally suitable for use in agentic systems than LLMs;
V3 necessarily more economical for the vast majority of LM uses in agentic systems than

their general-purpose LLM counterparts by the virtue of their smaller size;

and that on the basis of views V1–V3 SLMs are the future of agentic AI.

The phrasing of our position is deliberate. In its statement, we wish to convey that the described
future development is ultimately a necessary consequence of the differences between SLMs and
LLMs if the natural priorities are followed. We do not make a recommendation or try to impose an
obligation — we make a statement of what we see as a faithful reflection of the community’s values
in this context.
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2.3 Elaboration

We assert that the dominance of LLMs in the design of AI agents is both excessive and misaligned
with the functional demands of most agentic use cases. While LLMs offer impressive generality and
conversational fluency, the majority of agentic subtasks in deployed agentic systems are repetitive,
scoped, and non-conversational—calling for models that are efficient, predictable, and inexpensive.
In this context, SLMs not only suffice, but are often preferable. They offer several advantages: lower
latency, reduced memory and computational requirements, and significantly lower operational costs,
all while maintaining adequate task performance in constrained domains.

Our position stems from a pragmatic view of language model usage patterns within agentic architec-
tures. These systems typically decompose complex goals into modular sub-tasks, each of which can
be reliably handled by specialized or fine-tuned SLMs. We argue that insisting on LLMs for all such
tasks reflects a misallocation of computational resources—one that is economically inefficient and
environmentally unsustainable at scale.

Moreover, in cases where general reasoning or open-domain dialogue is essential, we advocate for
heterogeneous agentic systems, where SLMs are used by default and LLMs are invoked selectively
and sparingly. This modular composition — combining the precision and efficiency of SLMs with
the generality of LLMs — enables the construction of agents that are both cost-effective and capable.

Ultimately, we observe that shifting the paradigm from LLM-centric to SLM-first architectures
represents to many not only a technical refinement but also a Humean moral ought. As the AI
community grapples with rising infrastructure costs and environmental concerns, adopting and
normalizing the use of SLMs in agentic workflows can play a crucial role in promoting responsible
and sustainable AI deployment.

3 Position Arguments

We support views V1–V3 by the following non-exclusive arguments.

3.1 SLMs are already sufficiently powerful for use in agents

A1 SLMs are sufficiently powerful to take the place of LLMs in agentic systems. This argument
stands in support of view V1.

Over the past few years, the capabilities of small language models have advanced significantly.
Although the LM scaling laws remain observed, the scaling curve between model size and capabilities
is becoming increasingly steeper, implying that the capabilities of newer small language models
are much closer to those of previous large language models. Indeed, recent advances show that
well-designed small language models can meet or exceed the task performance previously attributed
only to much larger models.

Extensive comparisons with large models have been conducted in the individual works cited below,
but not all capabilities assessed by benchmarks are essential to their deployment in the agentic context.
Here we highlight their aptitude for commonsense reasoning (an indicator of basic understanding),
tool calling and code generation (both indicators of the ability to correctly communicate across the
model→tool/code interface; see Figure 1; [74, 75]), and instruction following (ability to correctly
respond back across the code←model interface; [80]). In each case, we also quote the efficiency
increase if stated by the authors.

• Microsoft Phi series. Phi-2 (2.7bn) achieves commonsense reasoning scores and code
generation scores on par with 30bn models while running ∼15× faster [34]. Phi-3 small
(7bn) [3] achieves language understanding and commonsense reasoning on par with and
code generation scores running up to 70bn models of the same generation.

• NVIDIA Nemotron-H family. The 2/4.8/9bn hybrid Mamba-Transformer models achieve
instruction following and code-generation accuracy comparable to dense 30bn LLMs of the
same generation at an order-of-magnitude fraction of the inference FLOPs [7].

• Huggingface SmolLM2 series. SmolLM2 family of compact language models with sizes
ranging from 125mn to 1.7bn parameters [6] each run up in their language understanding,
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Figure 1: An illustration of agentic systems with different modes of agency. Left: Language model
agency. The language model acts both as the HCI and the orchestrator of tool calls to carry out a
task. Right: Code agency. The language model fills the role of the HCI (optionally) while a dedicated
controller code orchestrates all interactions.

tool calling, and instruction following performance to 14bn contemporaries while matching
70bn models of 2 years prior.

• NVIDIA Hymba-1.5B. This Mamba-attention hybrid-head SLM demonstrates best in-
struction accuracy and 3.5× greater token throughput than comparably-sized transformer
models [20]. On instruction following, it outperforms larger 13bn models.

• DeepSeek-R1-Distill series. DeepSeek-R1-Distill is a family of reasoning models featuring
1.5-8bn sizes, trained on samples generated by DeepSeek-R1 [16]. They demonstrate strong
commonsense reasoning capabilities. Notably, the DeepSeek-R1-Distill-Qwen-7B model
outperforms large proprietary models such as Claude-3.5-Sonnet-1022 and GPT-4o-0513.

• DeepMind RETRO-7.5B: Retrieval-Enhanced Transformer (RETRO) is a 7.5bn param-
eter model augmented with an extensive external text database, achieving performance
comparable to GPT-3 (175B) on language modeling while using 25× fewer parameters [8].

• Salesforce xLAM-2-8B. The 8bn model achieves state-of-the-art performance on tool
calling despite is relatively modest size, surpassing frontier models like GPT-4o and Claude
3.5 [78].

Note that on top of competitive off-the-shelf performance, the reasoning capabilities of SLMs can
be enhanced at inference time with self-consistency, verifier feedback, or tool augmentation — e.g.,
Toolformer (6.7bn) outperforms GPT-3 (175bn) via API use [61], and 1-3bn models have rivaled
30bn+ LLMs on math problems via structured reasoning [81].

In sum, with modern training, prompting, and agentic augmentation techniques, capability — not
the parameter count — is the binding constraint. SLMs now supply sufficient reasoning power for
a substantial portion of agentic invocations, making them not just viable, but comparatively more
suitable than LLMs for modular and scalable agentic systems.

3.2 SLMs are more economical in agentic systems

A2 SLMs are more economical than LLMs in agentic systems. This argument supports view V3.

Small models provide significant benefits in cost-efficiency, adaptability, and deployment flexibility.
These advantages are specifically valuable in agentic workflows where specialization and iterative
refinement are critical. Section 3.1 detailed a number of efficiency comparisons of the listed SLMs to
relevant LLMs. Here we draw a more encompassing picture to support argument A2.

• Inference efficiency. Serving a 7bn SLM is 10–30× cheaper (in latency, energy consump-
tion, and FLOPs) than a 70–175bn LLM, enabling real-time agentic responses at scale
[66, 64, 33, 49]. Recent advances in inference operating systems such as NVIDIA Dy-
namo [21] explicitly provide support for high-throughput, low-latency SLM inference in
both cloud and edge deployments. In addition, since SLMs require less or no parallelization

4



across GPUs and nodes, the maintenance and operation of the serving infrastructure comes
at a lower expense as well (see counter-argument CA4 and argument A13).

• Fine-tuning agility. Parameter-efficient (e.g., LoRA [30] and DoRA [40]) and full-
parameter finetuning for SLMs require only a few GPU-hours, allowing behaviors to be
added, fixed, or specialized overnight rather than over weeks [66].

• Edge deployment. Advances in on-device inference systems such as ChatRTX [55] demon-
strate local execution of SLMs on consumer-grade GPUs, showcasing real-time, offline
agentic inference with lower latency and stronger data control.

• Parameter utilization. At the outset, LLMs appear to operate as monoliths involving a large
amount of parameters representing swathes of compressed information in the production of
their outputs. On a closer look, however, much of the signals passing through these systems
is sparse, engaging only a fraction of their parameters for any single input [65, 41]. That
this behavior appears to be more subdued in SLMs [65, 71] suggests that SLMs may be
fundamentally more efficient by the virtue of having a smaller proportion of their parameters
contribute to the inference cost without a tangible effect on the output.

Modular system design. The position outlined in [52] presents a thorough argument in favor of
composite agentic systems. Here we note that the approach of leveraging several models of varying
sizes aligns well with the real-world heterogeneity of agentic tasks and is already slowly being
incorporated into major software development frameworks [25]. Furthermore, this newly discovered
sense for modularity in the context of agents allows for the easy addition of new skills and the ability
to adapt to changing requirements, and is consistent with the push for modularity in language model
design [24, 10, 37].

The above-mentioned “Lego-like” composition of agentic intelligence—scaling out by adding small,
specialized experts instead of scaling up monolithic models—yields systems that are cheaper, faster
to debug, easier to deploy, and better aligned with the operational diversity of real-world agents.
When combined with tool calling, caching, and fine-grained routing, SLM-first architectures appear
to offer the best path forward for cost-effective, modular, and sustainable agentic AI.

3.3 SLMs are more flexible

A3 SLMs possess greater operational flexibility in comparison to LLMs. This argument stands
in support of views V2 and V3.

Due to their small size and the associated reduction in pre-training and fine-tuning costs (Section 3.2),
SLMs are inherently more flexible than their large counterparts when appearing in agentic systems. As
such, it becomes much more affordable and practical to train, adapt, and deploy multiple specialized
expert models for different agentic routines. This efficiency enables rapid iteration and adaptation,
making it feasible to address evolving user needs, including supporting new behaviors, meeting new
output formatting requirements, and complying with changing local regulation in selected markets
[69, 38, 68].

Democratization. One particularly notable and desirable consequence of SLM flexibility when put
in place of LLMs is the ensuing democratization of agents. When more individuals and organizations
can participate in developing language models with the aim for deployment in agentic systems, the
aggregate population of agents is more likely to represent a more diverse range of perspectives and
societal needs. This diversity can then help with reducing the risk of systemic biases and encourage
competition and innovation. With more actors entering the field to create and refine models, the field
will advance more rapidly [35].

3.4 Agents expose only very narrow LM functionality

A4 Agentic applications are interfaces to a limited subset of LM capabilities. This supports
views V1 and V2.

An AI agent is essentially a heavily instructed and externally choreographed gateway to a language
model featuring a human-computer interface and a selection of tools that, when engaged correctly,
do something of utility [69]. From this perspective, the underlying large language model that was
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engineered to be a powerful generalist is through a set of tediously written prompts and meticulously
orchestrated context management restricted to operate within a small section of its otherwise large
pallet of skills. Thus, we argue that a SLM appropriately fine-tuned for the selected prompts would
suffice while having the above-mentioned benefits of increased efficiency and greater flexibility.

It could be argued back that the careful interfacing with a generalist LLM is necessary for strong
performance on the narrow task because of the LLM’s better understanding of the broader language
and the world (alternative view AV1). This is addressed in Section 4.1.

3.5 Agentic interactions necessitate close behavioral alignment

A5 Agentic interactions necessitate close behavioral alignment. This aligns with view V2.

A typical AI agent has frequent interactions with code, be it through LM tool calling or by returning
output that is to be parsed by a piece of agentic code that makes the LM call [48]. It is essential for
the success of these interactions that the generated tool call and the generated output conform to strict
formatting requirements imposed on it by the order, typing, and nature of the tool’s parameters, and
the expectation of the code invoking the LM, respectively. In such cases, it becomes unnecessary
for the model to handle multiple different formats (e.g. JSON/XML/Python for tool calls and
XML/YAML/Markdown/Latex for output [50]), as only one would be chosen for consistency across
the agentic application. It is also undesirable for the model to make the occasional hallucinatory
mistake and respond in a format different from that being expected by the “code parts” of the agentic
system. It is because of this that the SLM trained with a single formatting decision enforced during
its post-training or encouraged through additional fine-tuning at a low cost is preferable over a
general-purpose LLM in the context of AI agents.

3.6 Agentic systems are naturally heterogeneous

A6 Agentic systems naturally allow for heterogeneity in the selection of models that they use.
This aligns with view V2.

A language model can itself be a tool called by another language model. Likewise, every time the
agent’s code invokes a language model, it can, in principle, choose any language model. This is
illustrated in Figure 1. We argue that incorporating multiple language models of different sizes and
capabilities for queries or operations of different levels of complexity offers a natural way for the
introduction of SLMs. In the context of Figure 1-Left, an LLM can be used for the model with
the root agency, while a SLM could be used for the subordinate LM. In Figure 1-Right, all LMs
could in principle be specialized SLMs: one for conversationality, another one for carrying out
controller-defined language modeling tasks.

3.7 Agentic interactions are natural pathways for gathering data for future improvement

A7 Agentic interactions are a good source for data for future model improvement. This is
fundamentally supportive of view V2.

As noted in Section 3.4, invocations of tools and language models during an agentic process are
often accompanied by careful prompting that focuses the language model on delivering the narrow
functionality that is required at the time. Each one of these invocations is itself a natural source of
data for future improvement (under the necessary assumption that no non-retainable confidential
data is being processed). A listener decorating the tool/model call interface can gather specialized
instruction data that can later be used to produce a fine-tune an expert SLM and lower the cost of that
call in the future (see logger in Figure 1). We argue that this avenue is enabled by the architecture
of agents [48] and produces high-quality organic data (that can be further post-filtered by considering
the overall success of the workflow), thus making the production of expert SLMs to stand in place of
LLMs a natural step in agent deployment — not just an auxiliary effort.

4 Alternative Views

The following significant alternative views have been expressed in the academic and popular literature.
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4.1 LLM generalists will always have the advantage of more general language understanding

AV1 Let T be a single task using general language and let L, S be a large and a small language
model of the same generation, respectively. The performance of L on T will always trump
that of S.

This alternative view disputes view V2 and rests on the following counter-arguments:

CA1 There is a non-negligible body of empirical evidence of the superiority of large language
models in general language understanding over small language models of the same genera-
tion. LLMs acquire their language understanding capabilities in accordance with scaling
laws [15]. Their larger scale then enables them to demonstrate better performance across a
wide array of specialized natural language tasks, including text generation, translation, and
reasoning, outperforming small models trained both (a) in the same general fashion and (b)
from scratch specifically for these tasks [54]. It can then be said that to claim otherwise is to
contradict the LM scaling laws [29, 28].

CA2 Moreover, recent studies also purport that LLMs possess a “semantic hub” mechanism,
which has been hypothesized to enable them to integrate and abstract semantic information
from various modalities and languages in a generalized manner [77]. If true, LLMs could be
thought to generalize knowledge across languages and domains far more effectively than
smaller models, which under the same study lack the capacity for the presence of such a
hub [77]. It can then argued that while small language models may be efficient for narrowly
defined or highly specialized tasks, their limited scale fundamentally restricts their ability
to achieve the same level of general language understanding in these specialized as LLMs
because of the lack of room for the internalization of complex abstractions.

A conclusion can be then drawn that LLM generalist models will always retain the advantage of
universally better performance on language tasks, no matter how narrowly defined, over small
language models of the same generation. This to be to their advantage over SLMs when deployed in
agentic applications.

Rebuttal. The above alternative view is the most popularly cited belief against the use of SLMs,
even when only a narrow language task needs to be performed [2, 67, 27, 1].

We believe that counter-argument CA1 is too limited to attack view V2, namely because

A8 Popular scaling law studies assume the model architecture to be kept constant [29, 28] within
the same generation, whereas the recent work on small language model training demonstrates
that there are distinct performance benefits to considering different architectures for different
model sizes [20, 7].

A9 The flexibility of small language models (Section 3.3) comes to the rescue. A small language
model can be easily fine-tuned for the task T of alternative view AV1 to perform to the
desired level of reliability. This is unaccounted for in scaling law studies.

A10 Reasoning (or, more generally, test-time compute scaling; see Section 3.2) is significantly
more affordable. A small language model, still retaining its benefits of greater cross-device
agility can be reasonable expected to be scalable at inference time to the desired level of
reliability.

We also believe that counter-argument CA2 is too arcane to attack view V2 because

A11 The utility of the purported “semantic hub” shows itself when tasks or inputs at hand to be
processed by the LM are complex. However, advanced agentic systems are either designed in
their entirety or at least actively prompted to perform decompositions of complex problems
and inputs [48, 14]. Therefore, we argue to the contrary that invocations of small language
models within agentic systems would be on appropriately broken-down into sub-tasks so
simple that any general abstract understanding due to the hub would be of little utility.

4.2 LLM inference will still be cheaper because of their centralization

AV2 The per-token inference cost benefit of the smallness of specialized SLMs in agentic
applications is dwarfed by the economy of scale.
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It could be argued that the analysis in argument A2 that put forth in favor of view V3 was ignorant of
the wider business of AI model deployment:

CA3 It is more difficult to fully utilize and properly balance the load for an expert SLM inference
endpoint than it is for a generalist LLM endpoint [66, 22].

CA4 The costs of inference infrastructure setup combined with the costs of acquiring and retain-
ing talent for its upkeep are often omitted in inference cost calculations but figure more
prominently if the deployment of (S)LMs became the responsibility of the agent service de-
veloper. Early industrial reports point to considerable costs associated with these operations
[36, 11, 63].

Acknowledgment. We acknowledge that alternative view AV2 is a valid view, with the exact
economical considerations being highly case-specific. We believe that the jury is still out on alternative
view AV2, but that several factors hint that view V3 might prevail:

A12 Recent improvements in inference scheduling and large inference system modularization
offer unprecedented levels of inference system flexibility in monolithic computing clusters
[82, 56, 46], countering the traditional stance expressed in counter-argument CA3.

A13 The most recent analyses on the set-up costs of inference infrastructure indicate a consistent
falling trend due to underlying technological reasons [79, 4].

4.3 Equally possible worlds
AV3 Both the agentic world utilizing SLMs and agentic world utilizing LLMs are equally possible

worlds, but the “LLM agentic world” has a considerable head start in terms of deployment
practice and optimization, and the industry inertia already funnels efforts into innovation
solely in that direction.

Acknowledgment. We acknowledge alternative view AV3 as a distinct possibility, but maintain the
position that the weight of advantages described across arguments A1–A7 can plausibily overturn the
present state of affairs.

5 Barriers to Adoption

It would be prudent to ask oneself: If the arguments A1–A7 are truly compelling, why do the ever
newer generations of agents seemingly just perpetuate the status quo of using generalist LLMs?

We believe the following to be among the today’s main barriers to wide-spread adoption of SLMs:

B1 Large amounts of upfront investment into centralized LLM inference infrastructure.
As detailed in Section 1, large capital bets have been made on the centralized LLM inference
being the leading paradigm in providing AI services in the future. As such, the industry
has been much quicker at building the tools and infrastructure to that end, omitting any
considerations for the possibility that more decentralized SLM or on-device inference might
be equally feasible in the near future.

B2 Use of generalist benchmarks in SLM training, design, and evaluation. It must be
pointed out that much of the work on SLM design and development follows the tracks of
LLM design, focusing on the same generalist benchmarks in their development [43, 57]. On
this point, [20] notes that if one focuses solely on benchmarks measuring the agentic utility
of agents, the studied SLMs easily outperform larger models.

B3 Lack of popular awareness. SLMs often do not receive the level of marketing intensity
and press attention LLMs do, despite their better suitability in many industrial scenarios.

We note that barriers B1–B3 are practical hurdles and far from being fundamental flaws of the SLM
technology in the context of agentic AI. With advanced inference scheduling systems such as Dynamo
[21], barrier B1 is being reduced to a mere effect of inertia. barrier B2 is becoming increasingly
recognized in the field [20, 34], and it would be natural for barrier B3 to fall once the economic
benefits of SLM deployment in agentic applications (argument A2) are better known. With the inertia
of barrier B1 in particular, we do not endeavor to give a timeline for the retreat of these barriers or
the popular adoption of SLMs.
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6 LLM-to-SLM Agent Conversion Algorithm

The very nature of agentic applications enables them to eventually switch from using LLM generalists
to using SLM specialists at many of their interfaces. In the following steps, we outline an algorithm
that describes one possible way to carry out the change of the underlying model painlessly.

S1 Secure usage data collection. The initial step involves deploying instrumentation to log
all non-HCI agent calls, capturing input prompts, output responses, contents of individual
tool calls, and optionally latency metrics for a later targeted optimization. In terms of
implementation, it is the recommended practice to set up encrypted logging pipelines with
role-based access controls [51] and anonymize all data with respect to its origins before
storage [70]. See logger in Figure 1 for an illustration.

S2 Data curation and filtering. Begin collecting data through the pipelines of step S1. Once
a satisfactory amount of data has been collected (10k-100k examples being sufficient for
fine-tuning of small models as a rule of thumb [5, 19]), it is necessary to remove any PII,
PHI, or any other application-specific sensitive data that could cause a data leak across
user accounts once used to produce a SLM specialist. Many typical varieties of sensitive
data can be detected and masked or removed using popular automated tools for dataset
preparation [60, 58]. Application specific inputs (e.g. legal or internal documents) can
be often be automatically paraphrased to obfuscate named entities and numerical details
without compromising the general information content [9, 76, 73].

S3 Task clustering. Employ unsupervised clustering techniques on the collected prompts
and agent actions to identify recurring patterns of requests or internal agent operations
[32, 39, 18]. These clusters help define candidate tasks for SLM specialization. The
granularity of tasks will depend on the diversity of operations; common examples include
intent recognition, data extraction, summarization of specific document types, or code
generation with respect to tools available to the agent.

S4 SLM selection. For each identified task, select one or more candidate SLMs. Criteria for
selection include the SLM’s inherent capabilities (e.g., instruction following, reasoning,
context window size), its performance on relevant benchmarks for the task type, its licensing,
and its deployment footprint (memory, computational requirements). Models of Section 3.2
serve as good starting candidates.

S5 Specialized SLM fine-tuning. For each selected task and corresponding SLM candidate,
prepare a task-specific dataset from the curated data collected in steps S2 and S3. Then, fine-
tune the chosen SLMs on these specialized datasets. PEFT techniques such as LoRA [31]
or QLoRA [17] can be leveraged to reduce computational costs and memory requirements
associated with fine-tuning, making the process more accessible. Full fine-tuning can also
be considered if resources permit and maximal adaptation is required. In some cases, it may
be beneficial to use knowledge distillation, where the specialist SLM is trained to mimic
the outputs of the more powerful generalist LLM on the task-specific dataset. This can help
transfer some of the more nuanced capabilities of the LLM to the SLM.

S6 Iteration and refinement. One may retrain the SLMs and the router model periodically
with new data to maintain performance and adapt to evolving usage patterns. This forms a
continuous improvement loop, returning to step S2 or step S4 as appropriate.

7 Call for Discussion

The agentic AI industry is showing the signs of a promise to have a transformative effect on white
collar work and beyond.

It is the view of the authors that any expense savings or improvements on the sustainability of AI
infrastructure would act as a catalyst for this transformation, and that it is thus eminently desirable to
explore all options for doing so.

We therefore call for both contributions to and critique of our position, to be di-
rected to agents@nvidia.com, and commit to publishing all such correspondence at
research.nvidia.com/labs/lpr/slm-agents.
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A Definitions

This appendix provides two justifications for the choice of definitions in Section 2.1.

A.1 Pragmatic argument

It is desirable to have a definition of SLMs that meets three key criteria:

• Timelessness. The definition should be timeless: It should avoiding dependence on
hardware-specific metrics like parameter count or FLOPs, which quickly become obsolete
as technology advances—what qualifies as “small” today may be “large” tomorrow.

• Practicality. The definition is likely to have much wider generality if it is grounded in
practical use, reflecting the real-world goal of deploying SLMs on widely available consumer
devices, where they can serve the user in their proximity with low-latency inference.

• Motivation alignment. The definition should capture the fundamental motivation that
drives the training of SLMs in the first place, which is to enable capable language models
that can run on-device or within significantly constrained budgets compared to LLMs.

We find definition WD1 to possess all three. Definition WD2 is then phrased to complement the set
of all language models.

A.2 Limit argument

To explore the distinction between small and large language models in the context of agentic AI, let
us adopt the uncompromising lens of an extremalist, for whom intelligence must be either maximally
small or maximally large.

Imagine a super-intelligent system spanning galactic scales, marshaling all available matter to
optimize its computations. Such a system, while theoretically capable of addressing profound
questions would face insurmountable physical constraints. The speed of light limits communication,
with round-trip delays across a galaxy potentially spanning tens of thousands of years [59]. This
latency precludes real-time coordination, fragmenting the system into loosely coupled components
rather than a unified "mind". At cosmological scales, spanning millions or billions of light-years,
communication delays could approach or exceed the universe’s age of 13.8 billion years [13]. Such a
system, while vast, would be impractical for human-relevant applications, its computations unfolding
over eons.

Conversely, consider an infinitely small intelligent system, reduced to the minimal substrate capable
of computation. Such a system, akin to the simplest biological organisms, would lack the sensors,
effectors, or computational capacity to meaningfully interact with its environment. Its intelligence
would be constrained to rudimentary evolution, much like early life forms that emerged 3.5 billion
years ago [62]. Yet, even in nature, scale varies dramatically: living organisms range from bacteria
(hundreds of nanometers) to blue whales (up to 30 meters), the heaviest ones being limited by heat
dissipation due to their high volume-to-surface ratio [23]. At the cosmic scale, all terrestrial life
appears microscopic, suggesting that absolute size is less critical than functional adaptability.

Hereby: Humans, often regarded as a pinnacle of intelligence, offer a useful anchor for defining SLMs
and LLMs. With a brain-to-body mass ratio surpassed only by small mammals like mice [45], humans
balance computational efficiency with practical embodiment. SLMs, by analogy, are systems compact
enough to run on personal devices, be trained with modest human interaction, or perform constrained,
verifiable tasks. LLMs, in contrast, demand datacenter-scale infrastructure, organization-level training,
and extensive validation, reflecting their computational load. The extremalist perspective hints at a
profound truth: intelligence is not defined by size alone but by the balance of capability, efficiency,
and context. For agentic workflows, SLMs may offer agility and accessibility, while LLMs provide
depth at the cost of scale.

It is because of this apparent continuum that, if pressed to provide a definition of SLMs, we choose to
anchor it in characteristics of a model that can be deployed in a distributed fashion with present-day
technology and be interactive enough when engaging with a human to be of utility. Proceeding in
such a way, the contemporary instances of the definition will evolve as the technology underpinning
these models advances, making the definition sufficiently timeless to be practical.
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B LLM-to-SLM Replacement Case Studies

This appendix assesses the potential extent of replacing large language model invocations with small
language models in three popular open-source agents: MetaGPT, Open Operator, and Cradle. Each
case study examines the use of LLMs, evaluates where SLMs may be viable replacements, and
concludes with an estimated percentage of replaceable queries.

B.1 Case study 1: MetaGPT

Name. MetaGPT

License. Apache 2.0

Purpose. MetaGPT is a multi-agent framework designed to emulate a software company. It assigns
roles such as Product Manager, Architect, Engineer, and QA Engineer to collaboratively handle tasks
including requirement drafting, system design, implementation, and testing.

LLM Invocations.

• Role-Based Actions. Each agent role invokes LLMs to fulfill its specialized responsibilities
(e.g., coding, documentation).

• Prompt Templates. Structured prompts used for consistent outputs.

• Dynamic Intelligence. Used for planning, reasoning, and adaptation.

• Retrieval-Augmented Generation (RAG). Retrieves relevant documents to enhance genera-
tion.

Assessment for SLM Replacement. SLMs would be well-suited for routine code generation
and boilerplate tasks, as well as for producing structured responses based on predefined templates.
However, they would require further fine-tuning data to reliably perform more complex tasks, such as
architectural reasoning and adaptive planning or debugging, which would initially benefit from the
broader contextual understanding and the generality of LLMs.

Conclusion. In the case of MetaGPT, we estimate that about 60% of its LLM queries could be
reliably handled by appropriately specialized SLMs.

B.2 Case study 2: Open Operator

Name. Open Operator

License. MIT License

Purpose. Open Operator is a workflow automation agent enabling users to define behaviours of
agents that can perform tasks like API calls, monitoring, and orchestration using tools and services.

LLM Invocations

• Natural Language Processing. Parses user intent.

• Decision Making. Guides execution flow.

• Content Generation. Writes summaries, reports.

Assessment for SLM Replacement SLMs would be well-suited for tasks such as simple command
parsing and routing, as well as generating messages based on predefined templates. They could
be meeting their limitations when dealing with more complex tasks that would require multi-step
reasoning or the ability to maintain conversation flow and context over time—areas where LLMs
would continue to offer significant advantages.
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Conclusion. In the case of Open Operator, we estimate that about 40% of its LLM queries could be
reliably handled by appropriately specialized SLMs.

B.3 Case study 3: Cradle

Name. Cradle

License. MIT License

Purpose Cradle is designed for General Computer Control (GCC), enabling agents to operate GUI
applications via screenshot input and simulated user interaction.

LLM Invocations.

• Interface Interpretation. Understands visual context.
• Task Execution Planning. Determines sequences of GUI actions.
• Error Handling. Diagnoses and reacts to unexpected software states.

Assessment for SLM Replacement SLMs would be well-suited for handling repetitive GUI
interaction workflows and the execution of pre-learned click sequences. However, they would face
challenges when it comes to tasks involving dynamic GUI adaptation or unstructured error resolution,
which would require a higher degree of contextual understanding typically provided by LLMs.

Conclusion In the case of Cradle, we estimate that about 70% of its LLM queries could be reliably
handled by appropriately specialized SLMs.
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