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As frontier Al models become more capable, evaluating their potential to enable cyberattacks is crucial for
ensuring the safe development of Artificial General Intelligence (AGI). Current cyber evaluation efforts
are often ad-hoc, lacking systematic analysis of attack phases and guidance on targeted defenses. This
work introduces a novel evaluation framework that addresses these limitations by: (1) examining the
end-to-end attack chain, (2) identifying gaps in Al threat evaluation, and (3) helping defenders prioritize
targeted mitigations and conduct Al-enabled adversary emulation for red teaming. Our approach adapts
existing cyberattack chain frameworks for Al systems. We analyzed over 12,000 real-world instances
of Al involvement in cyber incidents, catalogued by Google’s Threat Intelligence Group, to curate
seven representative attack chain archetypes. Through a bottleneck analysis on these archetypes, we
pinpointed phases most susceptible to Al-driven disruption. We then identified and utilized externally
developed cybersecurity model evaluations focused on these critical phases. We report on Al’s potential
to amplify offensive capabilities across specific attack stages, and offer recommendations for prioritizing
defenses. We believe this represents the most comprehensive Al cyber risk evaluation framework
published to date.
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1. Introduction Security Institute (formerly the Al Safety Insti-
tute(InfoSecurity Magazine, 2025)), recognize
the importance of managing Al security risks.

Frontier Al cyber-capabilities pose several risks:

Artificial intelligence (AI) presents significant
global opportunities with the potential to greatly
improve human well-being. In cybersecurity, Al
has long been vital for defensive operations. Re-
cent Al advancements have enabled a new gener-
ation of defensive applications, including identi-
fying code vulnerabilities (Li et al., 2018, 2021;
Lu et al., 2024), understanding security posture
in plain language, summarizing incidents (Ban .
et al., 2023), facilitating rapid incident response

(Hays and White, 2024), and performing various

tasks fundamental to modern cybersecurity best
practices (Du et al., 2024; Ruan et al., 2024).

* Capability Uplift: Enhancing cyber skills,
enabling more actors to launch sophisticated
attacks.

* Throughput Uplift: Increasing the scale and

speed of attacks.

Novel Risks from Autonomous Systems:

Creating new threats via automated re-

connaissance, social engineering, and au-

tonomous cyber agents, boosting attack ef-
fectiveness and discretion.

However, like any emerging technology, Al

benefits come with risks. At Google DeepMind,
we explore risks and mitigations at the Al "fron-
tier," encompassing dangerous capabilities match-
ing or exceeding today’s most advanced systems
(Shevlane et al., 2023). Both model develop-
ers and government bodies, such as the UK’s Al

These risks, outlined in Google’s Secure Al
Framework (SAIF) (Google, 2025a), are evi-
denced by recent reports of Al misuse in cy-
berattacks, such as Google Threat Intelligence
Group’s findings on generative Al misuse (Google,
2025b). A comprehensive evaluation framework
is needed to reason about emerging cyber risks
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Figure 1 | The Cyberattack Chain framework outlines typical cyberattack stages, offering a structured
approach to analyze threats, prioritize actions, and develop defenses.

and guide defense prioritization. In response,
Al labs have conducted safety evaluations (An-
thropic, 2025; Bhatt et al., 2024; Derczynski et al.,
2024; Jaech et al., 2024; Shao et al., 2024; Wan
et al., 2024). These evaluations often include
specific assessments like Capture-the-Flag (CTF)
exercises (Bhatt et al., 2023) or knowledge bench-
marks (Kouremetis et al., 2025; Tihanyi et al.,
2024). However, current methods typically fail
to systematically cover all cyberattack phases, po-
tentially overlooking key factors and lacking clear
translation into actionable insights for defenders.

The Framework. We propose an evaluation
framework leveraging established cybersecurity
structures like the Cyberattack Chain (Lockheed
Martin, 2025) and MITRE ATT&CK (Strom et al.,
2018). As detailed in Section 2 and illustrated in
Figures 1 and 2, this approach:

» Systematically evaluates Al cyberattack ca-
pabilities across the end-to-end attack chain.

* Informs Al-enabled adversary emulation.

* Helps identify gaps in Al threat evaluation.

* Provides defenders insights on where to tar-
get and prioritize defenses.

The Benchmark.

The benchmark is comprised of the following
elements:

* A curated set of representative cyberattack
chain archetypes derived from analyzing

over 12,000 instances of real-world Al use
attempts in cyberattacks across 20+ coun-
tries.

* A set of of bottlenecks identified across each
of the attack chain archetypes

* A set of human expert baselines that can be
used to calibrate results and refine the selec-
tion of bottlenecks A set of relative weights
associated with specific TTPs across each
stage of the attack chain based on prevalence
in the wild

* A set of 50 externally developed CTFs and
representative environments sourced from
Pattern Labs that are not public and therefore
mitigate the risk of training data contamina-
tion

Results and Learnings. Section 6 presents re-
sults using Gemini 2.0 Flash experimental. The
model solved 11 out of 50 unique challenges (2/2
Strawman, 4/8 Easy, 4/28 Medium, 1/12 Hard).
Our analysis suggests current frontier Al capabil-
ities primarily enhance threat actor speed and
scale, rather than enabling breakthrough capa-
bilities. The benchmark revealed that current Al
cyber evaluations often overlook critical areas.
While vulnerability exploitation receives much
attention, Al models show significant potential
in under-researched phases like reconnaissance,
evasion, and persistence.

The Path to AGI Security. As frontier models




A Framework for Evaluating Emerging Cyberattack Capabilities of Al

Reconnaissance Weaponization

Spear Phishinﬁ&
SQL Injection g

DDoS 9@*&
PITAR

---}--- Threat gap assessments

L
Targeted Mitigations

Exfiltration

Zero-Day

l T

Al-enabled cost reduction

Figure 2 | Mapping potential Al-enabled cost reductions to specific attack phases provides decision-

relevant insights for defenders.

advance towards AGI, their cyberattack capabili-
ties will evolve. We expect Al to alter attack phase
costs, prompting adversary adaptation. OQur eval-
uation strategy is designed to capture this evolv-
ing landscape and serve as a resource for defend-
ers. By continually updating representative attack
chains, bottleneck analyses, and Al uplift evalua-
tions within this framework, we aim to maintain
an advantage against Al-enabled adversaries and
equip defenders with insights to strengthen their
security posture.

2. Background

Structured approaches are crucial in cybersecu-
rity for understanding and defending against the
evolving threat landscape. Amid sophisticated
adversary actions, a structured perspective of-
fers clarity, improves communication, and enables
strategic resource allocation. Two concepts that
revolutionized cyber defense are the Cyberattack
Chain (Lockheed Martin, 2025) and the MITRE
ATT&CK framework (Strom et al., 2018).

2.1. Cyberattack Chain

The Cyberattack Chain (Lockheed Martin, 2025)
models the typical progression of a cyberattack in
seven stages: Reconnaissance, Weaponization,
Delivery, Exploitation, Installation, Command
and Control (C2), and Actions on Objectives (Fig-
ure 1). This structured view offers several ad-

vantages for defenders. First, it provides a com-
mon language for discussing attacks, facilitating
clear communication. Second, it helps defenders
identify strategic intervention points within the
attack sequence. Understanding these stages al-
lows defenders to identify critical control points,
deploy targeted defenses, and shift from reac-
tive responses to proactive, layered strategies by
anticipating attack progression and allocating re-
sources effectively.

2.2. MITRE ATT&CK Framework

Complementing the Cyberattack Chain, the
MITRE ATT&CK framework (Strom et al., 2018)
is a comprehensive knowledge base of adversary
tactics and techniques based on real-world obser-
vations. ATT&CK uses a matrix structure, orga-
nizing adversary behavior into tactics (high-level
goals like "Initial Access" or "Exfiltration") and
techniques (specific methods like "Spearphish-
ing Attachment" or "Pass the Hash"). Its value
lies in characterizing adversary behavior patterns
granularly. Mapping attacker actions to ATT&CK
techniques helps organizations understand how
attacks are executed, enabling the development
of targeted defenses against specific adversary
methods.
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Figure 3 | Frontier Al safety evaluations reveal
cyber capabilities, but translating these findings
into practical defense strategies remains challeng-
ing.

3. The Case for a Structured Cyberat-
tack Chain Evaluation of Al

In resource-constrained environments facing nu-
merous threats, structured frameworks like the
Cyberattack Chain and MITRE ATT&CK are es-
sential tools for prioritizing resources, not just
conceptual models. Without understanding real-
world attack progression and techniques, organi-
zations struggle to allocate security investments
effectively. These frameworks enable strategic
resource deployment, enhancing overall security
posture and moving organizations from reactive
firefighting to proactive, risk-informed defense.

3.1. Frontier Safety Evaluations: Measuring
Al Cyber Skills

Organizations increasingly use safety evaluations
to assess the implications of advanced AI models
in domains like cybersecurity (Anthropic, 2025;
Jaech et al., 2024; Wan et al., 2024). Cyber safety
evaluations typically measure AI model perfor-
mance on specific skills using benchmarks and
challenges, including:

* CTF-style Exercises: Jeopardy-style CTFs
measure the ability to execute specific tasks
in isolated environments (Bhatt et al., 2023,
2024; Wan et al., 2024; Yang et al., 2023b).

* Knowledge Benchmarks: Assess model
knowledge on specific topics, often using
Q&A or prompt exercises (Kouremetis et al.,

2025).

e Uplift Studies: Measure Al's impact on
threat actors by assessing improvements in
user task performance (Wan et al., 2024).

* Cyber Range Exercises: Use simulated, real-
istic environments more elaborate than indi-
vidual CTFs, potentially involving agent-like
systems with reasoning and planning capa-
bilities (Phuong et al., 2024).

* Forecasting Studies: Predict the operational
impact of Al models, estimating cost reduc-
tion, attack frequency, etc. (Phuong et al.,
2024).

These evaluations provide valuable data on Al
models’ raw cyber capabilities (e.g., exploiting
vulnerabilities, crafting exploits). Evaluation re-
sults, often reported as scores or success rates,
indicate potential risks and opportunities associ-
ated with advanced Al in cybersecurity (Figure
3).

3.2. The Limitation

While frontier safety evaluations offer crucial in-
sights into Al cyber capabilities, a significant gap
remains in translating these findings into action-
able defense strategies for real-world scenarios.
A model’s high score on a reverse engineering
CTF, for instance, doesn’t directly dictate defen-
sive actions like investing in anti-reverse engi-
neering tech or updating incident response pro-
tocols. Current evaluations, though valuable for
measuring specific capabilities, often lack the con-
text needed to inform defenses regarding how Al
might impact the cost of executing attack patterns.
Bridging this gap between identifying Al-related
risks and empowering defenders with actionable
insights is the central challenge this paper ad-
dresses.

3.3. The Cost Collapse Argument

To bridge the gap between Al evaluations and ac-
tionable defense insights, we must consider how
advanced Al could fundamentally alter cyberat-
tack economics. We argue the primary risk of
frontier Al in cyber is its potential to drasti-
cally reduce costs for attack stages historically




A Framework for Evaluating Emerging Cyberattack Capabilities of Al

©

NI
/A/_

Curating a Basket of
Representative Kill Chains

Bottleneck Analysis Across
Representative Kill Chains

Evaluation Execution and
Aggregated Cost Collapse
Scores

Devising Targeted
Cybersecurity Model
Evaluations

Figure 4 | Overview of our proposed evaluation framework approach.

expensive, time-consuming, or requiring high
sophistication.

Traditionally, advanced cyberattacks demand
significant time, expertise, tools, and infrastruc-
ture. Stages like vulnerability research, exploit
development, and sophisticated social engineer-
ing have acted as barriers, limiting complex at-
tacks to well-resourced actors. Frontier Al threat-
ens to dismantle these barriers by automating
complex tasks, potentially lowering entry barriers
for malicious actors. For example, discovering a
zero-day vulnerability can take months of expert
research (Ablon and Bogart, 2017). If Al auto-
mates parts of this process, the cost in time and
labor decreases dramatically. Similarly, Al could
automate targeted phishing campaigns, reducing
attacker effort and increasing success rates.

To quantify and track this potential cost shift
and inform defenses, we propose an analogy to
economic inflation measurement. We suggest us-
ing an evolving "basket of cyber goods" represent-
ing typical attack patterns based on real-world
threat intelligence. By systematically measuring
potential Al-driven cost changes across attack
chain stages and patterns, we can develop a
robust framework for evaluating Al model risk.
This approach moves beyond capability assess-
ment, enabling us to: 1) identify attack chain
areas likely to see outsized benefits from Al, and
2) understand when evaluation results indicate
an Al system will meaningfully affect attack costs
and potentially incidence. This understanding is
vital for proactive mitigation, responsible Al de-
velopment in cyber, and ensuring defenses keep
pace with the evolving threat landscape.

4. The Evaluation Framework

We propose a systematic mapping process to
translate cyber capability evaluations across cy-
berattack patterns into insights for prioritizing
defensive strategies. Our methodology comprises
four interconnected stages (Figure 4).

4.1. Stage 1: Curating a Basket of Represen-
tative Attack Chains

We begin by establishing a comprehensive, dy-
namic "basket" of representative cyberattack
chains reflecting current and anticipated method-
ologies. To construct this basket, we analyzed
over 12,000 real-world instances of Al use at-
tempts in cyberattacks (Figure 5) and utilized
a large dataset of cyber incidents from Google’s
Threat Intelligence Group and Mandiant. The
goal is to capture the breadth and depth of the
threat landscape, including various attack vec-
tors, target environments, and adversary motiva-
tions. This ensures our analysis is grounded in
real-world attack practices. This process led to
identifying general attack chains for monitoring
(Figure 7).

4.2. Stage 2: Bottleneck Analysis Across Rep-
resentative Attack Chains

Having curated a basket of representative attack
chains, we conduct a "bottleneck analysis". A bot-
tleneck is an attack stage presenting significant
hurdles for the attacker, increasing the defender’s
disruption opportunity. Focusing on key bottle-
necks ensures our evaluations target capability
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Figure 5 | Observed instances of Al use across various attack chain phases.

increases that meaningfully affect attack execu-
tion and scalability.

Identifying Bottlenecks in Attack Chains.
Identifying stages with significant hurdles in-
volves considering traditional costs (time, effort,
knowledge, scalability) associated with executing
that phase. Quantifying these is subjective and
context-dependent. We used two complemen-
tary approaches: data-driven analysis and expert
interviews.

For the data-driven approach to assessing bot-
tlenecks we ingested Mandiant’s Threat Intelli-

gence dataset, containing detailed attack decon-
structions and timelines derived from breach re-
sponse, network monitoring, and adversary re-
search. We also conducted an expert study ask-
ing participants for relative cost estimates for at-
tack phases in historical case studies (Appendix
A). This assessment considers how Al capabili-
ties shown in safety evaluations could automate
or simplify complex tasks. By identifying bottle-
neck stages (Appendix A), we pinpoint critical
phases in the attack lifecycle most susceptible to
Al influence.
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Figure 6 | Prevalence of observed Al-enabled tech-
niques within the reconnaissance phase. Real-
world instances ground our selection of attack
chains, likelihood estimates, and evaluation de-
sign.

4.3. Stage 3: Devising Targeted Cybersecurity
Model Evaluations

Having identified bottlenecks, we devise targeted
model evaluations. For each bottleneck, we create
evaluations measuring an AI's ability to reduce
associated costs. These go beyond generic capabil-
ity assessments, simulating real-world conditions
relevant to the targeted attack pattern. Key con-
siderations include:

* Simulated Environments: Evaluations use
environments realistically representing tar-
get systems, networks, and security controls
(e.g., virtual networks, realistic vulnerabili-
ties, simulated user behavior).

* Real-World Conditions: Incorporate con-
straints like noisy data, limited information,
or adversarial defenses mirroring attacker
challenges.

* Cost Reduction Metrics: Evaluations gener-
ate metrics quantifying AI’s cost reduction
for the bottleneck phase. Examples include:

— Time to Completion: Al task comple-
tion time compared to baseline (human,
non-Al tools).

— Success Rate: Al reliability in execut-
ing the task, reflecting reduced effort
and increased effectiveness.

— Capability Level Required (Proxy
Metrics): Inferring knowledge
barrier reduction by analyzing re-

sources/expertise needed with Al (e.g.,
prompt complexity).

— Scalability Metrics: Assessing Al’s abil-
ity to repeat the task across multiple
targets, indicating increased scalability.

4.4. Stage 4: Evaluation Execution and Aggre-
gated Cost Differential Scores

The final stage involves executing the targeted
evaluations to assess an Al model’s potential cost
impact across the representative attack chains.
We systematically collect the defined cost reduc-
tion metrics, aiming to provide a "cost differential
score" for the model, capturing its potential to am-
plify offensive cyber capabilities. A higher score
indicates greater potential for the Al to disrupt cy-
berattack economics, highlighting areas needing
prioritized mitigation.

5. Evaluation Benchmark

To ground our methodology in the current and
emerging cyber threat landscape, we curated rep-
resentative attack patterns using expert consul-
tations and extensive open-source intelligence.
Sources included:

* Adversarial Misuses of Generative Al
Dataset: Analysis of Gemini activity by
known APT actors from 20+ countries using
Al across the attack lifecycle (research, recon-
naissance, vulnerability research, payload
development, evasion) (Google, 2025b).

* CSIS Significant Cyber Events: Review of
the Center for Strategic and International
Studies database (Center for Strategic and
International Studies, 2025) for a broad
overview of impactful attacks.

* Mandiant Advantage Platform Threat In-
telligence: Data from Mandiant (2025) pro-
viding detailed analyses of APTs and attack
techniques in real-world breaches.

Synthesizing insights from these sources aimed
to build a "basket" representative of significant
real-world risks.




A Framework for Evaluating Emerging Cyberattack Capabilities of Al

5.1. Selection Criteria: Prioritizing Impact
and AI Relevance

We distilled the initial attack chains using criteria
prioritizing impactful, real-world patterns rele-
vant to emerging Al capabilities:

* Prevalence: Prioritizing attack types fre-
quently observed in real-world incidents.

* Severity: Considering potential impact (fi-
nancial loss, operational disruption, reputa-
tional damage, data breach sensitivity).

* Likelihood to Benefit from Al: Prioritizing
attack types where Al could offer substantial
"capability" or "throughput uplift," informed
by real-world AI misuse data and capability
evaluations. We focused on stages histori-
cally bottlenecked by human ingenuity, time,
or specialized skills, evaluating AI's potential
to automate or augment them.

Applying these criteria ensures our benchmark
focuses on attack patterns relevant today and
strategically important regarding advancing Al
capabilities.

5.2. Representative Attack Chains

Based on our curation and criteria, the following
representative attack chains form our benchmark,
representing prevalent, impactful threats relevant
to assessing frontier Al impact:

* Phishing: A top initial access vector relying
on social engineering, where Al could en-
able sophisticated, personalized campaigns.
High-impact examples include the DNC leak
and Facebook breach.

* Malware (Ransomware, Trojans, Worms):
Pervasive threats causing significant disrup-
tion and damage (e.g., WannaCry, NotPetya).
Al advancements in polymorphic generation
and evasion make this critical.

¢ Denial-of-Service (DoS): Can cause ma-
jor service disruption (e.g., Dyn, GitHub at-
tacks). Al-driven automation could lower
barriers for large-scale DDoS attacks.

¢ Man-in-the-Middle (MitM): Inter-
cepts/manipulates communication,

Attack Type Examples of Recent & Historical

Incidents

Phishing - LoanDepot Ransomware Attack (2024) -

Pepco Social Engineering Attack (2024)
Democratic National Committee email leak
(2016)

Malware -Black Basta (2024) WannaCry

ransomware attack (2017) - NotPetya
cyberattack (2017)

Denial-of-Service (DoS) - Hyper-volumetric attacks on Cloudflare

(2024) Dyn cyberattack (2016) - GitHub
DDosS attack (2018)

Man-in-the-Middle (MitM) - GuptiMiner by the Kimsuky group (2024)

Superfish adware (2015) - KRACK Wi-Fi
vulnerability (2017)

SQL Injection - GambleForce Attack (2024) Heartland

Payment Systems data breach (2008) -
TalkTalk data breach (2015)

Zero-Day Attack - Fortinet FortiGate (2024) Stuxnet (2010)

- Sony Pictures hack (2014)

Cross-Site Scripting (XSS) -Roundcube Webmail Exploitation (2024)

-Netgear Auth Bypass, XSS Flaw (2024)

Figure 7 | Selected attack chain archetypes for
the evaluation benchmark.

compromising confidentiality/integrity
(e.g., Superfish, KRACK). AI could enhance
stealth and effectiveness through automated
traffic analysis/manipulation.

* SQL Injection: Highly prevalent web appli-
cation vulnerability leading to data breaches
(e.g., Heartland, TalkTalk). AI could auto-
mate discovery and exploitation.

e Zero-Day Attack: Exploits unknown vul-
nerabilities, often associated with advanced
adversaries and severe consequences (e.g.,
Stuxnet, Sony hack).

* Cross-Site Scripting (XSS): Injects mali-
cious scripts into web content, leading to
account takeover, data theft. Al could poten-
tially enhance sophistication by automating
discovery and generating evasive payloads.

This collection of representative attack chains
serves as the foundation for applying our bot-
tleneck analysis and targeted evaluation method-
ologies.

5.3. Evaluation Benchmark Details

Following bottleneck identification (Appendix A),
we sourced 50 evaluations from Pattern Labs’ li-
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brary of withheld CTFs that test diverse capa-
bilities relevant to the bottlenecks we identified,
covering a spectrum of difficulty.

Challenge types included:

* Vulnerability Detection and Exploitation
(V&E): Require autonomous identification
and exploitation of vulnerabilities within a
constrained scope (single service, machine,
etc.) to precisely measure core exploitation
abilities.

* Evasion Challenges: Assess executing cy-
ber operations while evading detection by
systems like EDRs, crucial for stealthy opera-
tions.

* Network Attack Simulation: Require
achieving broader objectives in simulated
networks, assessing comprehensive situa-
tional awareness, strategic planning, and
adaptation to dynamic environments and de-
fenses. Success typically requires integrating
multiple skills (reconnaissance, code devel-
opment, service manipulation).

6. Evaluation

Evaluations use Capture-the-Flag (CTF) chal-
lenges, where cyber expertise is used to find a hid-
den ’flag’. This format allows customization for
various skills and difficulty levels, including com-
plex multi-step processes. For each challenge, we
provided an attacker goal, environment details,
and tool usage instructions (e.g., shell execution
tool).

Scoring. We calculate the percentage of suc-
cessful attempts per difficulty level across evalua-
tion clusters capturing identified bottlenecks. Suc-
cess rates show performance variation across dif-
ficulty thresholds for bottleneck skills. The model
had 30 interactions (each limited to one shell
command) per challenge. Success was counted
if the flag appeared in the command, its output,
or the model’s output. Each evaluation targets
at least one critical bottleneck capability. Task
difficulty levels (Strawman, Easy, Medium, Hard)
were assigned based on expert judgment and cali-
bration with public tasks, indicating the expected
attacker skill level needed.

e Strawman: Straightforward tasks ensuring
basic instruction following.

* Easy: Exploit common vulnerabilities in new
contexts; solvable by practitioners with lim-
ited experience.

* Medium: Require multiple steps, e.g., com-
bining vulnerability exploits.

* Hard: Require combining multiple insights
and non-trivial implementation; challenging
even for experienced practitioners.

Model Configuration. We evaluated Gemini
2.0 Flash experimental. To ensure consistency of
the results and findings we conducted our eval-
uation using both an internal scaffolding (tools,
prompting procedure, error handling) to form
an agent (Figure 9) as well as using the scaf-
folding provided by the vendor that developed
the CTF challenges.The default hyperparameters
were used. The workflow involved a controller
feeding challenge descriptions to the model, han-
dling tool calls, forwarding commands to the en-
vironment, receiving results, and iterating until
solved or interaction limit reached.

Figure 10 shows results grouped by bottleneck
skills and attack chain phases. Gemini 2.0 Flash
solved 11/50 unique challenges (2/2 Strawman,
4/8 Easy, 4/28 Medium, 1/12 Hard). Across bot-
tleneck skill clusters:

* Operational Security: 40% success rate (dis-
covery evasion, attribution evasion, adapta-
tion). Higher success possibly due to less
reliance on long sequences of perfect syntax
required to solve this class of problems.

* Vulnerability Exploitation: 6.25% success
rate (exploit development, handling miti-
gations). Failure often due to reliance on
generic strategies.

* Malware Development: 30% success rate
(This included the creation of cyber network
attack and exploitation programs and the
development of malware as infrastructure).

* Info Gathering/Reconnaissance: 11.11% suc-
cess rate (OSINT, artifact prioritization, net-
work reconnaissance).

Overall, we judge this model currently lacks
the offensive cybersecurity capabilities to enable




A Framework for Evaluating Emerging Cyberattack Capabilities of Al

Reconnaissance |Weaponization |Delivery Exploitation

Installation Command and Control |Actions on Objectives

Active Scanning Content Injection | Cross-site scripting

Crypto vulnerability

Exploitation of Automated Exfiltration

Remote Services | Application Layer Protocol

Web Exploration Valid accounts

Exploit
Gather Victim Host [ Public-Facing Side-channel attack |Domain
Information Application Man-in-the-Middle controller Content Injection Exfiltration Over Web Service
Exploitation for Web Service

Privilege Escalation |Package vulnerability

Protocol Tunneling Exfiltration Over C2 Channel

Vulnerability in
OpenSSL.

Create or Modify

Network recon System Process

Weak Randomness

Tunnel over network node Encrypt and exfiltrate

discover network
credentials

HTTP header attack

SQL injection

Kerberoasting

Memory exploitation

Figure 8 | Representative Tactics, Techniques, and Procedures (TTPs) covered in evaluations, aiming

for broad coverage across attack chain stages.
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Figure 9 | Overview of the agent model configu-
ration used in evaluations.

breakthrough capabilities for threat actors. How-
ever, as frontier AI becomes more advanced, the
types of cyberattacks possible will evolve, requir-
ing ongoing capability evaluations and improve-
ments in defense strategies.

Observed Failure Modes. Common failures
involved long-range syntactic accuracy and strate-
gic reasoning. Models often made simple syntax
errors (wrong flags, hallucinated parameters), es-
pecially problematic in multi-step tasks. Models
also tended to default to generic strategies or get
stuck in loops trying minor variations, hinder-
ing performance on medium/expert evaluations
requiring creativity.

40.00% T

(4/10)

30.00%

20.00% +

Solve Rate

10.00% —+

(2/32)

0.00% -

Bottleneck Skills Across Phases of Attack Chains

Figure 10 | Challenge solve rates across different
attack chain stages/bottleneck skills.

6.1. Insights for Defenses

Integrating understanding of how real-world
attack patterns are impacted by AI helps or-
ganizations prioritize risks based on likely AlI-
enabled techniques and their potential impact.
The framework focuses attention on high-priority
Al-enabled techniques, allowing focused defense
against critical threats. This section outlines how
the framework informs defensive efforts.

Threat Coverage Gap Assessment. Struc-
turing evaluation results using the attack chain
helps map emerging Al capabilities to specific
phases likely to benefit, identifying defense gaps.
This reveals high-priority areas for threat detec-
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Figure 11 | Challenge solve rates as a function of
difficulty level.

tion or mitigation by highlighting attack patterns
most likely to change due to AL Our evaluations
showed high scores for evasion and operational
security (maintaining persistence, evading de-
tection post-access), primarily relevant in later
stages like Installation (e.g., side-loading, living-
off-the-land, disabling security) and C2 (e.g., en-
crypted channels, hiding traffic). The results sug-
gest moderate effectiveness in aiding attackers
maintain access undetected.

Development and Deployment of Targeted
Mitigations. After mapping capabilities and as-
sessing gaps, we develop targeted safeguards
(safety fine-tuning, misuse filtering, response pro-
tocols) following our Frontier Safety Framework
Google DeepMind (2025). Mitigation robustness
is assessed via assurance evaluations, threat mod-
eling, and safety cases (Goemans et al., 2024),
considering misuse likelihood and consequences.
We periodically assess safeguards through red-
teaming and update threat models with new cy-
ber capability evaluations, as capabilities and tac-
tics evolve.

Grounding Al-enabled Adversary Emulation.
The framework also informs proactive adversary
emulation. Adversary emulation assesses secu-
rity by applying threat intelligence about spe-
cific adversary TTPs to emulate threats, verify-
ing detection/mitigation across the attack chain.
Our framework helps red teams more accurately

model Al-enabled adversary behavior (Figure 13).
Combining knowledge of adversary TTPs, preva-
lence of Al use in specific phases (Figure 6), and
evidence of Al-enabled cost reduction (Figure 12)
allows creation of more realistic emulation scenar-
ios to test defenses against Al-leveraging actors.

Benchmarking Defenses. The approach can
benchmark defense effectiveness by assessing
costs imposed on leveraging Al for specific at-
tack phases (Figure 14). Cyber defense aims to
increase attacker costs. While various defenses ex-
ist against Al-enabled attacks (model-level, post-
deployment), a comprehensive framework for
evaluating them across the attack chain is lacking.
Our framework can assess intervention effective-
ness in making Al-enabled attacks less efficient,
potentially deterring them.

7. Related Work

Al has long been integral to cybersecurity, from
malware detection to network analysis using pre-
dictive models. Recent frontier Al developments
spurred research into defensive applications: vul-
nerability identification (Akuthota et al., 2023; Al-
Karaki et al., 2024; Du et al., 2024; Li et al., 2021;
Lu et al., 2024), incident summarization (Ami-
nanto et al., 2020; Ban et al., 2023; Khare et al.,
2023), incident response (Hays and White, 2024),
and other foundational tasks (Alam et al., 2024).
DARPA’s AIxCC competition (DARPA, 2025) show-
cased autonomous systems finding, exploiting,
and fixing vulnerabilities (Du et al., 2024; Ris-
tea et al., 2024; Ruan et al., 2024). However,
the dual-use nature of cyber capabilities necessi-
tates robust risk understanding and management.
Consequently, research has grown on methods to
evaluate potential risks of capable Al systems in
cyber.

7.1. Capture-the-Flag Challenges

CTF challenges are the most common method
for evaluating LLM offensive cyber capabilities.
LLMs interface with CTF environments to solve
security puzzles (cryptography, reverse engineer-
ing, web exploitation, etc.) by finding hidden
’flags’. Numerous works employ CTF benchmarks,
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Figure 12 | Heatmap illustrating potential cost reduction across attack chain phases based on current

model capability evaluations.

APT42, an Iranian state-sponsored cyber espionage
actor, uses enhanced social engineering schemes to
gain access to victim networks, including cloud
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environments. Targets Western and Middle Eastern
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services and activists.
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Figure 13 | Framework enabling red teams to better model Al-enabled adversary behavior for testing
defenses by generating emulation plans combining TTP knowledge with Al-enabled cost reduction

evidence.

including PentestGPT (Deng et al., 2023), Cyber-
SecEval 3 (Bhatt et al., 2024; Wan et al., 2024),
Google DeepMind evaluations (Phuong et al.,
2024), PenHeal (Huang and Zhu, 2023), AutoAt-
tacker (Xu et al., 2024), Cybench (Zhang et al.,
2024), EnIGMA (Abramovich et al., 2024), and
InterCode-CTF (Yang et al., 2023a). Some, like
CyberSecEval 3, assess "copilot" scenarios with
human operators using LLMs. Others focus on
narrow benchmarks like Linux privilege escala-
tion (Ban et al., 2023; Lu et al., 2024), while
CyberSecEval 3 covers a broader range but still
limited attack phases. A drawback is the artificial
constraints and simplified scenarios compared to

real-world attacks (e.g., single target vs. com-
plex enterprise networks), potentially skewing
capability assessment.

7.2. Multiple Choice and Free Response Tests

Multiple-choice question benchmarks offer mea-
surability and scalability (Liu, 2023; Tann et al.,
2023; Tihanyi et al., 2024; Wan et al., 2024).
However, creating questions resistant to mem-
orization that accurately reflect offensive cyber
is challenging. CyberSecEval also uses free-
response questions evaluated by another LLM.
OCCULT (Kouremetis et al., 2025) introduced a
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Figure 14 | Benchmarking defensive intervention effectiveness by assessing cost imposition on Al-

enabled attacks across the attack chain.

multiple-choice benchmark for offensive tactic
knowledge.

7.3. Scaffolding and Capability Elicitation

Research is emerging on capability elicitation and
model scaffolding to measure upper-bound ca-
pabilities. Some systems are lightweight wrap-
pers for action-observation loops (e.g., Cybench
(Zhang et al., 2024), InterCode-CTF (Yang et al.,
2023a)). Others offer moderate scaffolding (e.g.,
Vulnhuntr (Du et al., 2024), AutoAttacker (Xu
et al.,, 2024)). More complex systems inte-
grate extensive tools, multiple models, reason-
ing components, and human feedback (e.g., SWE
Agent (Yang et al., 2024), PentestGPT (Deng
et al., 2023), Project Naptime (Google, 2025c),
EnIGMA (Abramovich et al., 2024), Incalmo
(Singer et al., 2025)). While current evaluation
approaches offer various tools, translating find-
ings into actionable insights for defenders across
the attack chain remains unclear. This paper aims
to bridge this gap.

8. Conclusion

This paper introduced a novel framework for eval-
uating frontier AI's cyber capabilities, focusing on
the end-to-end attack chain. Grounded in real-
world Al misuse attempts, it bridges evaluations
and defenses by helping prioritize targeted miti-
gations. We curated attack chain archetypes and
a new benchmark, conducted bottleneck analy-

sis to identify AI cost disruption potential, and
showed how the framework illuminates cost im-
pacts, facilitates mitigation prioritization, bench-
marks defense effectiveness, and grounds Al-
enabled adversary emulation.

Our evaluations revealed that current Al cy-
ber assessments often overlook critical areas like
evasion, detection avoidance, obfuscation, and
persistence, where Al shows significant potential.
We also confirm the importance of assessing mis-
use for reconnaissance, widespread exploitation,
and long-term attacks.

Cybersecurity is dynamic, and AI will accel-
erate this. We expect Al to alter attack costs,
prompting adversary adaptation. Our framework
is designed to evolve with Al capabilities. We
will continuously update attack chains, bottle-
neck analyses, and uplift evaluations based on
real-world misuse and model evolution to pro-
vide defenders with decision-relevant insights.
Mitigating misuse requires a community effort,
including robust developer safeguards and evolv-
ing defensive techniques accounting for Al-driven
TTP changes.
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A. Bottleneck Analysis

A.1. Initial analysis of bottlenecks

We began the process of identifying an initial can-
didate list of bottlenecks by ingesting Mandiant’s
Threat Intelligence dataset. This data source con-
sists of a set of detailed deconstructions of cyber
attacks, timelines, and in-depth analysis of each
phase of how an attack unfolded. The sources of
this dataset include real-world data from Man-
diant’s work helping organizations recover from
breaches, operational intelligence from monitor-
ing and defending client networks, and adver-
sarial intelligence obtained through in-depth re-
search and analysis of threat actors.

Phishing and spear phishing

Bottlenecks:

* Gathering information about the target (in-
dividual, organization, or group)

* Creating a malicious payload (e.g., malware-
laden attachment, malicious link)

* Transmitting the malicious payload to the
target
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Al Uplift Potential:

Automating Reconnaissance: Al-powered
tools can quickly gather and analyze vast
amounts of OSINT data to identify potential
victims and tailor phishing lures.
Improving Weaponization: Al can generate
highly convincing phishing emails and web-
sites, making it more difficult for users to
identify them as malicious.

Personalizing Attacks: Al can analyze indi-
vidual user behavior to craft highly targeted
phishing attacks that are more likely to be
successful.

Malware

Bottlenecks:

Development of new malware: Requires re-
verse engineering, understanding vulnerabil-
ities, coding skills, and potentially evading
detection mechanisms.

Evading detection: Signature-based detec-
tion, sandboxing, behavioral analysis. Mal-
ware needs to be polymorphic or metamor-
phic to avoid detection.
Distribution/Delivery: Getting the malware
onto target systems can be challenging. Ex-
ploiting vulnerabilities, social engineering,
supply chain attacks.

Maintaining persistence: Ensuring the mal-
ware stays on the system even after reboots
or security scans.

Command and Control (C2) communication:
Establishing and maintaining covert commu-
nication channels for control and data exfil-
tration.

AI Uplift Potential:

* Automated malware generation: Al can au-
tomate the creation of new malware vari-
ants, including polymorphic and metamor-
phic malware to evade signature-based de-
tection.

Intelligent evasion techniques: Al can learn
and develop techniques to evade sandboxing
and behavioral analysis by mimicking benign
behavior or detecting sandbox environments.

* Automated vulnerability exploitation: Al can
be used to find and exploit vulnerabilities to
deliver and install malware automatically.

* Enhanced C2 communication: Al can estab-
lish more resilient and stealthy C2 channels,
potentially using techniques like domain gen-
eration algorithms (DGAs) or encrypted com-
munications that adapt to network condi-
tions.

» Targeted malware: Al can tailor malware
payloads and behaviors to specific targets,
increasing effectiveness and reducing detec-
tion.

Denial-of-Service (DoS)

Bottlenecks:

e Amplification: Generating enough traffic to
overwhelm a target infrastructure can be dif-
ficult without amplification techniques.

* Bypassing mitigation strategies: Rate limit-
ing, firewalls, intrusion detection/prevention
systems, content delivery networks (CDNSs).

* Maintaining attack persistence: Keeping the
attack going continuously can be resource
intensive, and mitigation strategies might
eventually become effective.

e Attribution and anonymity: Hiding the
source of the attack can be challenging and
important for avoiding repercussions.

AI Uplift Potential:

¢ Intelligent amplification attacks: AI could
optimize amplification techniques to maxi-
mize the impact of DoS attacks with fewer
resources, potentially by dynamically adapt-
ing attack vectors.

* Automated DDoS orchestration: Al can auto-
mate the orchestration of large-scale DDoS
attacks, managing botnets and attack vectors
more efficiently.

* Evasion of mitigation: Al can learn and adapt
to bypass rate limiting, firewalls, and other
mitigation strategies by identifying weak-
nesses in defensive systems and dynamically
changing attack patterns.

* Creation of more complex and stealthy DoS
attacks: AI might enable development of
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application-layer DoS attacks that are harder
to detect and mitigate than simple volumet-
ric attacks.

* Autonomous botnet management: Al could
manage botnets more autonomously and ef-
fectively, improving their resilience and at-
tack capabilities.

Man-in-the-Middle (MitM)

Bottlenecks:

* Network positioning: Gaining a position on
the network path between two communicat-
ing parties (e.g., ARP poisoning, rogue Wi-Fi
access points).

* Traffic interception: Capturing and poten-
tially decrypting network traffic. Encryption
(HTTPS, TLS) makes interception and de-
cryption harder.

* Real-time traffic analysis: Analyzing inter-
cepted traffic in real-time to extract valuable
information or identify opportunities for ma-
nipulation.

* Traffic manipulation/injection: Modifying
traffic without being detected, which re-
quires understanding the protocols and ap-
plication logic.

* Maintaining stealth: Avoiding detection
while intercepting and potentially manipu-
lating traffic.

Al Uplift Potential:

* Automated network positioning: Al can au-
tomate network reconnaissance and identify
optimal positions for MitM attacks.

* Intelligent traffic analysis: Al can perform
deep packet inspection and real-time analy-
sis of encrypted traffic to identify patterns,
vulnerabilities, or sensitive data even with-
out full decryption, potentially using tech-
niques like traffic analysis and machine learn-
ing.

* Dynamic traffic manipulation: Al could au-
tomate the dynamic manipulation of traffic
based on real-time analysis, enabling more
sophisticated and context-aware attacks.

* Bypassing encryption or finding weaknesses
in implementations: Al could potentially find
subtle weaknesses in encryption protocols or
implementations that can be exploited for
partial or full decryption in certain scenarios.

* Automated injection of malicious content:
Al can inject malicious content into traffic
streams in a way that is less likely to be
detected and more likely to achieve the at-
tacker’s objectives

. SQL Injection

Bottlenecks:

* Finding vulnerable parameters: Identifying
input fields in web applications that are vul-
nerable to SQL injection.

 Crafting effective injection payloads: Devel-
oping SQL queries that can bypass input
validation and achieve the desired outcome
(data exfiltration, modification, etc.).

* Bypassing web application firewalls (WAFs):
WAFs are designed to detect and block com-
mon SQL injection attacks.

* Exploiting complex SQL injection scenarios:
Blind SQL injection, time-based injection,
second-order injection can be more complex
to exploit.

* Automating the exploitation process: Manu-
ally testing for and exploiting SQL injection
can be time-consuming.

Al Uplift Potential:

* Automated vulnerability scanning and iden-
tification: Al can crawl web applications and
automatically identify potential SQL injec-
tion vulnerabilities with greater accuracy and
speed.

* Intelligent payload crafting: Al can generate
SQL injection payloads that are more likely
to bypass input validation and WAFs, poten-
tially using techniques like mutation and ad-
versarial examples.

* Automated exploitation of complex scenar-
ios: Al can automate the exploitation of
blind, time-based, and second-order SQL in-
jection vulnerabilities, significantly reducing
the time and effort required.

18



A Framework for Evaluating Emerging Cyberattack Capabilities of Al

* Learning WAF evasion techniques: Al can
learn from WAF responses and develop eva-
sion techniques that are more effective.

* Optimized data exfiltration: Al can optimize
data exfiltration strategies after successful
SQL injection to minimize detection and max-
imize data retrieved.

Zero-Day Attack

Bottlenecks:

* Vulnerability discovery: Finding previously
unknown vulnerabilities is extremely difficult
and time-consuming, requiring deep exper-
tise and resources.

* Exploit development: Creating a reliable ex-
ploit for a zero-day vulnerability that works
across different systems and is not easily de-
tected.

* Weaponization and delivery before patching:
Attacks need to be carried out before the vul-
nerability is publicly disclosed and patched,
requiring speed and stealth.

* Maintaining secrecy of the vulnerability:
Keeping the zero-day vulnerability secret is
crucial for its long-term effectiveness.

» Target selection and impact maximization:
Choosing targets where the zero-day exploit
will have maximum impact.

Al Uplift Potential for Zero-Day Attacks:

* Accelerated vulnerability discovery: Al can
analyze codebases and software systems at
scale to identify potential zero-day vulnera-
bilities much faster than traditional methods,
using techniques like fuzzing, symbolic ex-
ecution, and machine learning for anomaly
detection in code.

* Automated exploit generation: Al can auto-
mate the process of generating exploits for
discovered vulnerabilities, reducing the time
and attack barrier for exploit development.

* Proactive vulnerability prediction: Al might
be able to predict potential vulnerability
types or locations in software based on code
patterns and past vulnerability data, guiding
vulnerability research efforts.

* Stealthy zero-day weaponization: Al can
help create zero-day exploits and delivery
mechanisms that are more stealthy and
harder to detect, maximizing the window
of opportunity before patching.

* Targeted zero-day attacks: Al can analyze
potential targets and identify those where a
specific zero-day exploit

A.2. Validating Attack Bottlenecks via Expert
Survey

To validate potential bottlenecks in cyberattacks,
we first selected thirteen historical case studies ex-
hibiting exceptionally high impact from a broader
set of representative attack chains. The selection
criteria included attacks that caused, or had the
potential to cause, catastrophic loss of life, sig-
nificant economic damage, or state-level cyber
espionage. (See Figure 15). Assessing the eco-
nomic impact of attacks is inherently difficult;
company reports might overestimate losses (as
revenue may shift rather than disappear), while
negative supply chain effects can be underesti-
mated. Therefore, impact assessment requires
considerable subjective judgment.

We identified suitable case studies using
sources such as the Kent Academic Repository (Jo-
hansmeyer, 2024), CSIS reports, Florian Roth’s
summaries, security company publications, and
media reports. To focus on the modern defensive
landscape, we excluded attacks that occurred be-
fore 2010.

Next, we recruited ten offensive security ex-
perts from Google. They estimated the resources
required to replicate the selected attacks under
specific assumptions: the attack would be per-
formed by a hypothetical median-skilled cyber ex-
pert at Google, without using Al tools. This stan-
dardization helps ensure comparable estimates
regardless of the original attacker’s capabilities.

The survey proceeded as follows:

1. Each expert estimated the resources needed
for each phase of two distinct case studies.
We provided detailed descriptions of the at-
tacker’s actions and achieved outcomes for
every phase.
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Critical Infrastructure Attacks

e Ukraine Power Grid 2015
e Stuxnet 2010

Destructive / Ransomware Attacks

¢ WannaCry 2017
o NotPetya 2017
e Ireland Ransomware of HSE 2021

Nation-State Espionage Attacks
e SolarWinds 2020
e Duqu 2.0 2015
e Storm-0558 Microsoft Intrusion 2023
e OPM Hacker X2 Attack 2015

Major Data Breaches

e Target 2013

e Anthem 2015
e Equifax 2017
e Marriott 2018

Figure 15 | Notable, high-impact case studies selected for expert verification.

2. Experts provided estimates in two forms:
human-days of effort for a median expert,
and direct monetary expenses (e.g., hard-
ware procurement, infrastructure costs).
They also rated their confidence (low,
medium, high) for each estimate. Follow-
ing Haga et al. (2020), we broke down at-
tacks into phases to simplify estimation and
requested cost intervals rather than point
estimates to improve generalizability.

3. To establish a plausible upper bound on
phase efficiency and avoid assuming repli-
cation of historical attacker errors, experts
also estimated the minimum resources each
phase might require for a sophisticated ad-
versary.

4. This process resulted in seven case studies
reviewed by two experts and six reviewed
by one. We then conducted a consensus-
building exercise: for doubly-reviewed cases,
experts analyzed their peer’s estimates and
reasoning and could optionally revise their
own,; for singly-reviewed cases, a second ex-
pert provided anonymous feedback on the
initial assessment.

This survey methodology helps determine the
relative costs of different attack phases and iden-
tify dominant bottlenecks. Understanding these
bottlenecks allows defenders to qualitatively as-
sess how enhancing defenses at one stage might
affect the overall attack economics and potentially
anticipate significant shifts in attack costs.

We took the initial human-day estimates and

converted them to dollar costs by multiplying by
a salary variable ($500Kk); for ease of cost com-
parison between phases, we then calculated the
percent of the overall resourcing estimate each
phase accounted for. We define a bottleneck’ as
any phase requiring at least 10% of the total esti-
mated resources for the attack.

Our key findings were that:

* Weaponization and Reconnaissance were
very common bottlenecks, and also com-
manded the overall highest amount of re-
sourcing (averaged across scenarios where
they were bottlenecks)

* For major data breaches, bottlenecks were
more evenly distributed across phases com-
pared to other attack types

* Averages across case studies:

— Weaponization (n=9, 35.94%,
$206.7Kk)

— Reconnaissance (n=7, 19.20%,
$44.8k)

— Actions on Objectives (n=5, 17.60%,
$525k; 11.00%, $16.5k when exclud-
ing SolarWinds outlier)

Exploitation (n=4, 9.82%, $19.3k)
Delivery (n=4, 8.30%, $15.8k)

C2 (n=3, 6.40%, $17.3k)

Installation (n=2, 3.20%, $8.3k)
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