2025 EDITION

&

THE ILLUSTRATED
GUIDEBOOK

L) S K]

@o Daily Dose of Avi Chawla & Akshay Pachaar
' o .
° Data Science DailyDoseofDS.com

DailvDoseofDS.com

The reading time of this book is about 3 hours. But not all chapters will be of
relevance to you. This 2-minute assessment will test your current expertise and

recommend chapters that will be most useful to you.

Are you MCP-aware?

Answer 8 yes/no questions and we'll email you the list of chapters that must read to improve your MCP skillset.

= B o Start The Assessment

THE ILLUSTRATED
GUIDEBOOK

6] -]

Daily Dose of e e & Akskey Pachanr
Date Science Dulgseararas con

Scan the QR code below or open this link to start the assessment. It will only take

2 minutes to complete.

https://bit.ly/mcp-assessment

https://www.dailydoseofds.com/
https://bit.ly/mcp-assessment

DailvDoseofDS.com

Section #1) Model Context Protocol................3
1.1) What is MCP? 4-5
(oY (U ol < PO a4-5
1.2) Why was MCP created?. 6-8
TG PYrODLICM. ettt st seaessr e s sane s s s sr e s saes st s an e s s aenan s 6-7
TINE SOLULTON ettt e s s s aa s s s sr e e e ?-8
1.3) MCP Architecture Overview. -1
HOSE it s s s b b s s s s e a
CLIBNE. ettt s s s s R s R s R s R s 10
SVttt s s e s sa s sh s s e e bR SRS SRS SRS SRS e s bR SRR S SRS SR S0t 1
1.4) Tools, Resources and Prompts 12-18
TOOUSu ittt s R s s s R s s er e s R st s b 12
RESOUICES. ..ottt sa s s s sa s st s e bR st s e b b aR s sh e e b aR S sh e e b aR s sb e e b s 14
PYOMPES. ittt s s s s b e e sR s sb s s 15
Section #2) MCP Projects...icciccccsnnnnncccscccnas1q
2.1) 100% (OCAL MCP CLINE.cueieicerreniereeneinennenesenessssssssessssssssssssassssasesssesssessssssssesssasses 20
2.2) MCP-POWEIEA AGENEIC RAG..uweruenrnrerurensneesaesenessasesenssssssessssasssesssessssenseesssssses 25
2.3) MCP-powered FINaNnCial ANGLYSE.......civinniiienis s 29
2.8) MCP-POWEYEd VOICE AGENL...ccoruirrirenctrtseniertsesteesstsesssesssesssesssesssassssssssassasses 34
2.5) A unified MCP server... - - SR L
2.6) MCP-powered shared memory for Claude Desktop and CUYSON...cuunnnd a3
2.7) MCP-powered RAG over COMPLEX TOCS...uuuininninerentenenensesenesmessssssssenss a7
2.8) MCP-powered Synthetic Data GENerator...... i 51
2.9) MCP-powered Deep RESEATCNEY...... . ineiimesessnsssessssssssssssassssssssassssssesssess 57
2.10) MCP RAG OVEY VIROS...ccreuierereneereresennentesesesssessestsssessssssssssssssessssessssssssessssses 63
2.11) MCP-powered Audio ANALYSIS TOOLKIt....urimiiininriirienriiseessseseanens 69

https://www.dailydoseofds.com/

Model Context
Protocol
(MCP)

https://www.dailydoseofds.com/

DailyDoseofDS.com

Imagine you only know English. To get info from a person who only knows:

2 2

German speaker Chinese speaker

English speaker

You

French speaker Russian speaker

e French, you must learn French.
e German, you must learn German.

e And soon.

In this setup, learning even 5 languages will be a nightmare for you.

But what if you add a translator that understands all languages?

English speaker Translator

French speaker Russian speaker

https://www.dailydoseofds.com/

DailyDoseofDS.com
This is simple, isn't it?
The translator is like an MCP!

It lets you (Agents) talk to other people (tools or other capabilities) through a

single interface.

To formalize, while LLMs possess impressive knowledge and reasoning skills,
which allow them to perform many complex tasks, their knowledge is limited to

their initial training data.

What is MCP ?

Database

Web APIs

Local Filesystem

If they need to access real-time information, they must use external tools and

resources on their own.

Model context protocol (MCP) is a standardized interface and framework that
allows Al models to seamlessly interact with external tools, resources, and

environments.

MCP acts as a universal connector for Al systems to capabilities (tools, etc.),

similar to how USB-C standardizes connections between electronic devices.

https://www.dailydoseofds.com/

DailyDoseofDS.com

Without MCP, adding a new tool or integrating a new model was a headache.

If you had three Al applications and three external tools, you might end up

writing nine different integration modules (each AI x each tool) because there

was no common standard. This doesn’t scale.

Developers of Al apps were essentially reinventing the wheel each time, and tool

providers had to support multiple incompatible APIs to reach different Al

platforms.

MCP

-
MCP Host

(eg. Clavde)

e em m em em em -

User

Generate

response

*MCP Host does not have two LLMs. It is just shown to simplify the visualisation.)

e

“

deepsecelk

A N
@ | |)
Select |
MCP tool |
|
|

I Return
I mce tool

o

|
|
A4

Mce
Client
. I cend output
@) and query
| to LLM

B
Y

deepseek

/

L

E E E Tools

MCP Server

6)
Invoke
MCP tool

o

Mmce
tool

Let’s understand this in detail.

https://www.dailydoseofds.com/

DailyDoseofDS.com
The problem

Before MCP, the landscape of connecting Al to external data and actions looked

like a patchwork of one-off solutions.

Either you hard-coded logic for each tool, managed prompt chains that were not

robust, or you used vendor-specific plugin frameworks.
This led to the infamous MxN integration problem.

Essentially, if you have M different Al applications and N different tools/data

sources, you could end up needing M x N custom integrations.

The diagram below illustrates this complexity: each Al (each “Model”) might
require unique code to connect to each external service (database, filesystem,

calculator, etc.), leading to spaghetti-like interconnections.

l Model 1 'b

(Database)

Model 2

>‘(Ft|e.syste.mj

Caleulator

The solution

MCP tackles this by introducing a standard interface in the middle. Instead of M

x N direct integrations, we get M + N implementations: each of the M Al

https://www.dailydoseofds.com/

DailyDoseofDS.com

applications implements the MCP client side once, and each of the N tools

implements an MCP server once.

Now everyone speaks the same “language”, so to speak, and a new pairing doesn't

require custom code since they already understand each other via MCP.

The following diagram illustrates this shift.

f traditional approacl« mxn = 9 connections f MCP approacl« m+n = 6 connections \

(Model 1 GitHub

=

e On the left (pre-MCP), every model had to wire into every tool.
e On the right (with MCP), each model and tool connects to the MCP layer,

drastically simplifying connections. You can also relate this to the

translator example we discussed earlier.

https://www.dailydoseofds.com/

DailyDoseofDS.com

At its heart, MCP follows a client-server architecture (much like the web or other

network protocols).

However, the terminology is tailored to the Al context. There are three main

roles to understand: the Host, the Client, and the Server.

MCP Host
[Claude Desktop J [IDE (Cursor)] (Otl«er AT Apps)
1 I

v :

MCP client 2 | MCP Glient 3

MCP Client 1

d

MCP McP McP

MCP Server 1 MCP Server 2 ’ MCP Server 3 '
\ \
[Local Filesystem] Database ' Web APIs J

16

Host

The Host is the user-facing Al application, the environment where the AI model

lives and interacts with the user.

This could be a chat application (like OpenAI’s ChatGPT interface or Anthropic’s
Claude desktop app), an Al-enhanced IDE (like Cursor), or any custom app that

embeds an Al assistant like Chainlit.

Host is the one that initiates connections to the available MCP servers when the
system needs them. It captures the user's input, keeps the conversation history,

and displays the model’s replies.

https://www.dailydoseofds.com/

DailyDoseofDS.com

Good afternoon, Avi

Client

The MCP Client is a component within the Host that handles the low-level

communication with an MCP Server.

Think of the Client as the adapter or messenger. While the Host decides what to
do, the Client knows how to speak MCP to actually carry out those instructions

with the server.

MCP Host
) MCP Server) —
MMCP | |__ Transport Lager | -| - I‘
Client .t)
: Local Filesystem/DB
MCP Server

MCP ___Trftﬂfpftt}fisff__,l (i) \Web APTs
Client

-~ Internet

10

https://www.dailydoseofds.com/

DailyDoseofDS.com

Server

The MCP Server is the external program or service that actually provides the

capabilities (tools, data, etc.) to the application.

An MCP Server can be thought of as a wrapper around some functionality, which
exposes a set of actions or resources in a standardized way so that any MCP

Client can invoke them.

Servers can run locally on the same machine as the Host or remotely on some
cloud service since MCP is designed to support both scenarios seamlessly. The
key is that the Server advertises what it can do in a standard format (so the client
can query and understand available tools) and will execute requests coming from

the client, then return results.

: Data Sources

(¢

To Client

[ELN EXXN BXT
[ELN EXXN KXT
DN N Y}

e|e

MCP Server

=]

Tools Resources Prompts

11

https://www.dailydoseofds.com/

DailyDoseofDS.com

Tools, prompts and resources form the three core capabilities of the MCP
framework. Capabilities are essentially the features or functions that the server
makes available.
e Tools: Executable actions or functions that the AI (host/client) can invoke
(often with side effects or external API calls).
e Resources: Read-only data sources that the Al (host/client) can query for
information (no side effects, just retrieval).

e Prompts: Predefined prompt templates or workflows that the server can

supply.
Tools

Tools are what they sound like: functions that do something on behalf of the Al
model. These are typically operations that can have effects or require

computation beyond the Al’s own capabilities.

Importantly, Tools are usually triggered by the Al model’s choice, which means
the LLM (via the host) decides to call a tool when it determines it needs that

functionality.

Suppose we have a simple tool for weather. In an MCP server’s code, it might

look like:

12

https://www.dailydoseofds.com/

DailvDoseofDS.com

LN @ tool_example.py

amcp.tool()
def get_weather(location: str) — dict:

non

"""Get the current weather for a specified location.

return {
"temperature": 72,
"conditions": "Sunny",
"humidity": 45

This Python function, registered with @mcp.tool(), can be invoked by the Al via
MCP.

When the AT calls tools/call with name "get_weather" and {"location": "San
Francisco'} as arguments, the server will execute get_weather("San Francisco")

and return the dictionary result.

The client will get that JSON result and make it available to the AI. Notice the
tool returns structured data (temperature, conditions), and the Al can then use or

verbalize (generate a response) that info.

Since tools can do things like file I/O or network calls, an MCP implementation

often requires that the user permit a tool call.

13

https://www.dailydoseofds.com/

DailyDoseofDS.com

New chat

Let's discuss the QuboAl app further. What did | tell you
about it? Use MCP tool

v/ Calling MCP tool search_facts

{

"query": "QuboAI app"

y Approval

For example, Claude’s client might pop up “The Al wants to use the ‘get_weather’
tool, allow yes/no?” the first time, to avoid abuse. This ensures the human stays in

control of powerful actions.

Tools are analogous to “functions” in classic function calling, but under MCP,
they are used in a more flexible, dynamic context. They are model-controlled but

developer/governance-approved in execution.

Resources
Resources provide read-only data to the AI model.

These are like databases or knowledge bases that the AI can query to get

information, but not modify.

Unlike tools, resources typically do not involve heavy computation or side effects,

since they are often just information lookup.

Another key difference is that resources are usually accessed under the host
application’s control (not spontaneously by the model). In practice, this might

mean the Host knows when to fetch a certain context for the model.

14

https://www.dailydoseofds.com/

DailvDoseofDS.com

For instance, if a user says, “Use the company handbook to answer my question,”
the Host might call a resource that retrieves relevant handbook sections and

feeds them to the model.

Resources could include a local file’s contents, a snippet from a knowledge base
or documentation, a database query result (read-only), or any static data like

configuration info.

Essentially anything the AI might need to know as context. An Al research
assistant could have resources like “ArXiv papers database,” where it can retrieve

an abstract or reference when asked.

A simple resource could be a function to read a file:

® @ resource_example.py

amcp.resource("file:// {path}")
def read_file(path: str) — str:
"""Read the contents of a file at the given path.
with open(path, 'r') as f:
return f.read()

mmn

Here we use a decorator @mcp.resource("file://{path}") which might indicate a

template for resource URIs.

The AI (or Host) could ask the server for resources.get with a URI like
file://home/user/notes.txt, and the server would

callread_file("/home/user/notes.txt") and return the text.

Notice that resources are usually identified by some identifier (like a URI or

name) rather than being free-form functions.

15

https://www.dailydoseofds.com/

DailyDoseofDS.com

They are also often application-controlled, meaning the app decides when to

retrieve them (to avoid the model just reading everything arbitrarily).

From a safety standpoint, since resources are read-only, they are less dangerous,
but still, one must consider privacy and permissions (the AI shouldn’t read files

it’s not supposed to).

The Host can regulate which resource URIs it allows the Al to access, or the

server might restrict access to certain data.

In summary, Resources give the Al knowledge without handing over the keys to

change anything.

They're the MCP equivalent of giving the model reference material when needed,
which acts like a smarter, on-demand retrieval system integrated through the

protocol.

Prompts

Prompts in the MCP context are a special concept: they are predefined prompt

templates or conversation flows that can be injected to guide the Al’s behavior.

Essentially, a Prompt capability provides a canned set of instructions or an

example dialogue that can help steer the model for certain tasks.
But why have prompts as a capability?

Think of recurring patterns: e.g., a prompt that sets up the system role as “You

are a code reviewer,” and the user’s code is inserted for analysis.

Rather than hardcoding that in the host application, the MCP server can supply
it.

Prompts can also represent multi-turn workflows.

For instance, a prompt might define how to conduct a step-by-step diagnostic

interview with a user. By exposing this via MCP, any client can retrieve and use

16

https://www.dailydoseofds.com/

DailyDoseofDS.com

these sophisticated prompts on demand.

As far as control is concerned, Prompts are usually user-controlled or

developer-controlled.

The user might pick a prompt/template from a UI (e.g., “Summarize this

document” template), which the host then fetches from the server.
The model doesn’t spontaneously decide to use prompts the way it does tools.

Rather, the prompt sets the stage before the model starts generating. In that
sense, prompts are often fetched at the beginning of an interaction or when the

user chooses a specific “mode”.

Suppose we have a prompt template for code review. The MCP server might have:

@ prompt_example.py

pt()
w(language: str) —
"""provide a structured prompt for reviewing code in the <€iven language."""

[

{"role": "system™, "content™: f"You are a meticulous {lan€uage} code reviewer..."},

{"role": "user", "content": f"Please review the following {language} code:"}

This prompt function returns a list of message objects (in OpenAl format) that

set up a code review scenario.

When the host invokes this prompt, it gets those messages and can insert the

actual code to be reviewed into the user content.

Then it provides these messages to the model before the model’s own answer.

Essentially, the server is helping to structure the conversation.

While we have personally not seen much applicability of this yet, common use
cases for prompt capabilities include things like “brainstorming guide,”

“step-by-step problem solver template,” or domain-specific system roles.

17

https://www.dailydoseofds.com/

DailyDoseofDS.com

By having them on the server, they can be updated or improved without changing

the client app, and different servers can offer different specialized prompts.

An important point to note here is that prompts, as a capability, blur the line

between data and instructions.
They represent best practices or predefined strategies for the Al to use.

In a way, MCP prompts are similar to how ChatGPT plugins can suggest how to

format a query, but here it’s standardized and discoverable via the protocol.

18

https://www.dailydoseofds.com/

DailvDoseofDS.com

MCP Projects

https://www.dailydoseofds.com/

DailyDoseofDS.com
#1) 100% local MCP Client

An MCP client is a component in an Al app (like Cursor) that establishes

connections to external tools. Learn how to build it 100% locally.

100% local and private MCP Client X imvaigoseoros.com

Local MCP Host MCP Server

UamaIndex

Developer e
I 1 €
@ Send | add_data | read_data
~ Context) P .
I 1 |
1 Tool Calls |
D | v
Context / A4
Tech Stack L g
g == =,
|
LlamaIndex |
d | Add | ! Read
| v
|

fo% ollama | O _______
e -% Py
Q‘- DeepSeek-R1 sQﬂLITEJ [e5oa]

SQLlite Database

.)

Tech stack:

e Llamaindex to build the MCP-powered Agent
e Ollama to locally serve Deepseek-R1.
e LightningAl for development and hosting

Workflow:

e User submits a query.
e Agent connects to the MCP server to discover tools.
e Based on the query, agent invokes the right tool and get context

® Agent returns a context-aware response.

20

https://www.dailydoseofds.com/

DailvDoseofDS.com

Let’s implement this!
#1) Build an SQLite MCP Server

For this demo, we've built a simple SQLite server with two tools:

e add data
e fetch data

This is done to keep things simple, but the client we're building can connect to

any MCP server out there.

o0 @ server.py

import sqlite3
from mcp.server.fastmcp import FastMCP

(——————y
mcp = FastMCP("sqlite-demo") SQLﬁE]
- (-C)

) sQLite Database)
data(query: str) — bool: ~
"""Execute an INSERT query to add a recoxd.""" Add Data
conn sqlite3.connect("demo.db")

conn.execute(query) \/ Tool
conn.commit ()

conn.close()

return True

) ‘:,,——.\\\
data(query: str "SELECT * FROM people") — list:

Execute a SELECT query and return all records."""
conn sqlite3.connect("demo.db") Read Data
results = conn.execute(query).fetchall() Tool
conn.close()
eturn results

S~ _ __— Sstartserver

#2) Set Up LLM

We'll use a locally served Deepseek-R1 via Ollama as the LLM for our
MCP-powered agent.

o000 @ ollama-client.py Deepseek-R1 {a

from llama_index.llms.ollama import Ollama
from llama_index.core import Settings

1lm = Ollama(model="deepseek-rl", request_timeout=120.0)
Settings.llm = 1lm

21

https://www.dailydoseofds.com/

DailvDoseofDS.com

#3) Define system prompt

We define our agent’s guiding instructions to use tools before answering user

queries.

Feel free to tweak this on a need basis.

000 @ ollama-client.py System Prompt

SYSTEM_PROMPT = """\

You are an AI assistant for Tool Calling.
Before helping, work with our tools to interact
with our database.

#4) Define the Agent

We define a function that builds a typical Llamalndex agent with its appropriate

arguments.

The tools passed to the agent are MCP tools, which llama_index wraps as native

tools that can be easily used by our FunctionAgent.

000 @ ollama-client.py Llamaindex Function calling Agent h

from 1lama_index.tools.mcp import McpToolSpec
from 1lama_index.core.agent.workflow import FunctionAgent Fetch & wrap

server tools
c def get_agent(tools: McpToolSpec):

tools await tools.to_tool_list_async()

agent = FunctionAgent(create the
name="Agent", agent

description="agent that interacts with our Database.",
tools=tools,

1lm=11lm,

system_prompt=SYSTEM_PROMPT)

return agent

22

https://www.dailydoseofds.com/

DailvDoseofDS.com

#5) Define Agent Interaction

We pass user messages to our FunctionAgent with a shared Context for memory,

stream tool calls and return its reply. We manage all the chat history and tool
calls here.

000 @ ollama-client.py

Agent Interaction

from 1llama_index.core.agent.workflow import (
FunctionAgent,
ToolCallResult, Pass message
ToolCall) to agent

from llama_index.core.workflow import Context

async def handle_user_messasge(
message_content: str,
agent: FunctionAgent,
agent_context: Context, agent
verbose: bool = False,

Invoke

handlex agent.run(message_content, ctx=agent_context)
a for event in handler.stream_events():
if verbose and type(event) = ToolCall:
print(f"calling tool {event.tool_name}")
elif verbose and type(event) = ToolCallResult:
print(f"Tool {event.tool_name} returned {event.tool_output}")

response = await handler
return str(response)

#6) Initialize MCP Client and the Agent

Launch the MCP client, load its tools, and wrap them as native tools for
function-calling agents in Llamalndex. Then, pass these tools to the agents and

add the context manager.

©068 % olama-ciientpy Initialize MCP client

from llama_index.tools.mcp import BasicMCPClient, McpToolSpec
from 1lama_index.core.workflow import Context Connect to

server
mcp_client BasicMCPClient("http://127.0.0.1:8000/sse")

mcp_tool McpToolSpec(client=mcp_client)

agent get_agent (mcp_tool) Get agent and context
—
context = t(agent)
while True:
msg = input("> ")
if msg.lower() = "exit": /\ Interaction
bre
resp handle_user_message(msg, agent, context)
print("Agent:", resp)

loop

23

https://www.dailydoseofds.com/

DailvDoseofDS.com

#7) Run the Agent:

Finally, we start interacting with our agent and get access to the tools from our

SQLite MCP server.

while True:
user_input input ("Enter your messasge: ")
if user_input "exit":
break
print("Usexr: ", user_input)
response await handle_user_messasge(user_input,
agent, agent_context, verbose=True)

print("Agent: ", response)

User: Add to the db: Rafael Nadal whose age is 39 and is a tennis player
Calling tool add_data with kwargs {'query': "INSERT INTO people (name, age
Tool add_data returned meta=None content=[TextContent(type='text', text='t
Agent: The data has been added successfully.

User: fetch data

Calling tool read_data with kwargs {'query': 'SELECT * FROM people'}

Tool read_data returned meta=None content=[TextContent(type='text', text='
Agent: Here is the data from the database:

1. ID: 1
Name: Rafael Nadal
Age: 39
Profession: Tennis Player

The code is available here:

https://www.dailydoseofds.com/p/bui

lding-a-100-local-mcp-client/

24

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/building-a-100-local-mcp-client/
https://www.dailydoseofds.com/p/building-a-100-local-mcp-client/

DailyDoseofDS.com
#2) MCP-powered Agentic RAG

Learn how to create an MCP-powered Agentic RAG that searches a vector

database and falls back to web search if needed.

| MCP-powered Agentic RAG workflow

Query MCP Client MCP Server

@ Query @
0 ______ > Contact l <z I
o, MCP server lj
@ Response ===
AR BEH
Developer
—
=
Tech stack J
search MCP tool search MCP tool

Cursor
:@ Response @

S Vector DB Web
@ Context context
I Send context —

o | .
ofﬁ,{oo Jjoin.DailyDoseofDS.com \tO_M_CP_d'f"E ______________ L

& J

‘ Qdrant

bright

|
|
|
|
|
|
| Qdrant vector DB Bright Data web
|
|
|
|
|
|
|

Tech stack:

e Bright Data to scrape the web at scale.
e Qdrant as the vector DB.
e Cursor as the MCP client.

Workflow:

e The user inputs a query through the MCP client (Cursor).
e The client contacts the MCP server to select a relevant tool.

e The tool output is returned to the client to generate a response.
Let’s implement this!

#1) Launch an MCP server

25

https://www.dailydoseofds.com/

DailvDoseofDS.com

First, we define an MCP server with the host URL and port.

000 @ serverpy Define MCP server

from mcp.server.fastmcp import FastMCP

mcp = FastMCP("MCP-RAG-app",
host="127.0.0.1",
port=8080,
timeout=30)

#2) Vector DB MCP tool
A tool exposed through an MCP server has two requirements:

e [t must be decorated with the "tool" decorator.

e It must have a clear docstring.

Below, we have an MCP tool to query a vector DB. It stores ML-related FAQs.

o000 @ server.py k :

Vector DB
MCP tool

from rag_app import Retriever, QdrantVDB, EmbedData

amcp. tool() &~ Add the tool decorator

def machine_learni ag_retrieval_tool(query: str) — str:

"""Retrieve the most relevant documents from the machine learning
FAQ collection. Use this tool when the user asks about ML.

Input:
query: str — The user query to retrieve the most relevant documents

Output:
response: str — most relevant documents retrieved from a vector DB

if not isinstance(query, str):
raise ValueError("query must be a string")

retriever Retriever(QdrantVDB("ml_faqg_collection"), EmbedData())

return retriever.search(query)

26

https://www.dailydoseofds.com/

DailvDoseofDS.com

#3) Web search MCP tool

If query is unrelated to ML, we resort to web search using Bright Data's SERP

API to scrape data at scale across several sources to get relevant context.

@ server.py data '
Web search
MCP tool

rag_app Retriever, QdrantVDB, EmbedData

0 &7 Add the tool decorator

rch_t (query: str) — list[str]:

from .env file

username} : {password}a{host}: {port}'

response.json()['oxrganic'

#4) Integrate MCP server with Cursor

Go to Settings > MCP - Add new global MCP server. In the JSON file, add

what's shown below

Cursor Settings

MCP Servers

mcp.json

{
"mcpServers": {

"mcp-rag-app": { Server name
"command": "python",
"args": ["path/to/server.py"l,
Uhos it M1D7HE K0T
"port": 8080,
"timeout": 30000

' Server path
or address

27

https://www.dailydoseofds.com/

DailyDoseofDS.com

Done!
Your local MCP server is live and connected to Cursor. It has two MCP tools:

e Bright Data web search tool to scrape data at scale.

e Vector DB search tool to query the relevant documents.

Cursor Settings

% General

M CP Serve rs + Add new global MCP server

2 Features
il Models
E] Rules e mcp-rag-app

= MCP * Tools: machine_learning_faq_retrieval_too bright_data_web_search_too

| & Beta ;omm'd e MCP server launched
with two tools

Next, we interact with the MCP server.

e When we ask an ML-related query, it invokes the vector DB tool.
e But when we ask a general query, it invokes the Bright Data web search

tool to gather web data at scale from various sources.

That's Agentic behavior!

The code is available here:

https://www.dailydoseofds.com/p/mc

28

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/mcp-powered-agentic-rag/
https://www.dailydoseofds.com/p/mcp-powered-agentic-rag/

DailyDoseofDS.com

#3) MCP-powered Financial Analyst

Build an MCP-powered Al agent that fetches, analyzes & generates insights on

stock market trends, right from Cursor or Claude Desktop.

MCP powered Financial Analyst [:X; wioatpeseonscom

MCP Host MCP Server
> N

Developer .

1
@ Context/ |
Result |

I
]
I
|
: :
! c«z@? v
(i Query —
NIQNaVAIPRP! PlotYTDstockDM
Tech stack AT LA ! :

—— : gain of Tesla
I
eomal |
’ Cursor '
&' DeepSeek
\ J

3 Tool Calls

Agent 1 j

Tech stack:

e CrewAl for multi-agent orchestration
e Ollama to locally serve DeepSeek-R1 LLM
e Cursor as the MCP host

Workflow:

e User submits a query.
e The MCP agent kicks off the financial analyst crew.
e The crew conducts research and creates an executable script.

e The agent runs the script to generate an analysis plot.

29

https://www.dailydoseofds.com/

DailvDoseofDS.com

#1) Setup LLM

We will use Deepseek-R1 as the LLM, served locally using Ollama.

000

from crewai import LLM

1lm = LLM(
model="ollama/deepseek-xr1:7b",
base_url="http://localhost:11434"

Let's setup the Crew now
#2) Query Parser Agent

This agent accepts a natural language query and extracts structured output using

Pydantic. This guarantees clean and structured inputs for further processing!

LN J

[E2)
from pydantic import BaseModel, Field gﬁzg
from crewai im t Agent, Task
Structured output schema

ss QueryAnalysisOutput(BaseModel):
"""Structured output for the query analysis task."""
symbols: list[str] = Field(..., description="List of stock ticker symbols")
timeframe: str = Field(..., description="Time period")
action: str = Field(..., description="Action to be performed")

query_parser_agent = Agent(

role="Stock Data Analyst",

goal="Extract stock details and fetch required data from {query}.",
backstory="Financial analyst specializing in stock market data retrieval.",
1lm=11lm

)

query_parsing_task Task(
description="Analyze the user query and extract stock details.",
expected_output="A dictionary with keys: 'symbols', 'timeframe', 'action'.",
output_pydantic=QueryAnalysisOutput,
agsent=query_parser_asgent,

30

https://www.dailydoseofds.com/

DailvDoseofDS.com

#3) Code Writer Agent

This agent writes Python code to visualize stock data using Pandas, Matplotlib,

and Yahoo Finance libraries.

7 5

from crewai import Agent, Task Code
Writer
code_writer_agent = Agent(Agent 2
role="Senior Python Developer",
goal="Write Python code to visualize stock data.",
backstory="""Senior Python developer specialized in stock market data
visualization and writing production-ready Python code.""",
Tlm=1lm

code_writer_task Task(
description="Write production-ready Python code to visualize stock data.",
expected_output="An executable Python script for stock visualization.",
agent=code_writer_asgent,

#4) Code Executor Agent

This agent reviews and executes the generated Python code for stock data

visualization.

It uses the code interpreter tool by CrewAl to execute the code in a secure

sandbox environment.

LN J

/

from crewai import Agent, Task Code
from crewai_tools i 't CodeInterpreterTool executor

code_execution_agent = Agent(
role="Senior Code Execution Expert",
goal="Review and execute the Python code written by code writer agent.",
backstory="Skilled at executing Python code.",
tools=[CodeInterpreterTool()],
allow_code_execution=True,
allow_delegation=True,
Tlm=1lm
)

code_execution_task = Task(

description="Review and execute the Python code to visualize stock data.",
expected_output="A clean and executable Python script file (.py).",
agent=code_execution_agent,

31

https://www.dailydoseofds.com/

DailvDoseofDS.com

#5) Setup Crew and Kickoff

We set up and kick off our financial analysis crew to get the result shown below!

from crewai import Crew, Process

crew = Crew(

, code_uriter_agent, code_execution_agent],
<, code_writer_task, code_execution_task],

)

"Plot YTD stock gains for Tesla vs Nvidia"}

)

Year-to-Date Retus (2025-01-01 - 2025-05-27)

nnnnnn

#6) Create MCP Server

Now, we encapsulate our financial analyst within an MCP tool and add two more

tools to enhance the user experience.

e save_code -> Saves generated code to local directory

e run_code_and_show_plot -> Executes the code and generates a plot

o060 @ serverpy

from mep.server.fastmep import FastMCP
from finance_crew import run_financial_analysis

mcp = FastMCP("financial-analyst")

E query: str) — str:
"""Analyzes ock market data sed on query and generates
executable Python code for analysis and visualization"""
result = run_financial_analysis(query)
Irn result

le stock_analysis.py"""
pen('stock_analysis.py', 'w') as f:
f.write(code)
return "Code saved to stock_analysis.py"

(0) = g

nerate a plot"""
n('stol Sis:pVa Tl) Raskf::
f.read())

if __name__ = "__main__": @ Model Context Protocol

mep. run(transport="stdio')

32

https://www.dailydoseofds.com/

DailvDoseofDS.com

#7) Integrate MCP server with Cursor

Go to: File > Preferences - Cursor Settings > MCP - Add new global MCP
server. In the JSON file, add what's shown below

MCP Servers

mcp.json

Server name

"absolute/path/to/project_root",
"run",
"server.py"

Server path

Done! Our financial analyst MCP server is live and connected to Cursor.

= Cursor Settings X |

MCP Servers

The code is available here:

https://www.dailydoseofds.com/p/hands-o

n-building-an-mcp-powered-financial-an

alyst

33

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-building-an-mcp-powered-financial-analyst/
https://www.dailydoseofds.com/p/hands-on-building-an-mcp-powered-financial-analyst/
https://www.dailydoseofds.com/p/hands-on-building-an-mcp-powered-financial-analyst/

DailyDoseofDS.com

#4) MCP-powered Voice Agent

This project teaches you how to build an MCP-driven voice Agent that queries a

database and falls back to web search if needed.

| McP-powered Voice Agent Workflow with Qwen3

P
Speech T ib
ranscribe
__Inpt |\ AssemblyAl | e N %
@ Speech-To-Text @

Transcript
User '

@ : Interpret
. Text

A\

Generate

Convert >
Text-to-Speech /m Response ﬁ
o L T e —
o ®
Speach Text-to-Speech ' M
Output]
" (q)

v right tool v

8 B

I

1

I

|

| r

i | Invoke the !
I

I

I

I

0q . . R Firecrawl Supabase D
iggkoj join.DailyDoseOfDS.com Websearch PTOO(S
\ J

Tech Stack

e AssemblyAl for Speech-to-Text.
e Firecrawl for web search.

e Supabase for a database.

e Livekit for orchestration.

e Qwen3as the LLM.

Workflow:

e User's speech query is transcribed to text with AssemblyAl.
e Agent discovers DB & web tools.
e LLM invokes the right tool, fetches data & generates a response.

e The app delivers the response via text-to-speech.

34

https://www.dailydoseofds.com/

DailyDoseofDS.com

Let’s implement this!
#1) Initialize Firecrawl & Supabase

We instantiate Firecrawl to enable web searches and start our MCP server to

expose Supabase tools to our Agent.

Initialize Firecrawl & Supabase

A %

from firecrawl import FirecrawlApp Firecrawl Supabase DB
from pydantic_ai.mcp import MCPServerStdio Webssarch fieots

FIRECRAWL_API_KEY os.getenv("FIRECRAWL_API_KEY")
SUPABASE_TOKEN = os.getenv("SUPABASE_ACCESS_TOKEN")

firecrawl_app FirecrawlApp(api_key=FIRECRAWL_API_KEY) Firecrawl app

mcp_server = MCPServerStdio('"npx", Start MCP server
args=["-y", "@supabase/mcp-server-supabasealatest",
"——access-token", SUPABASE_TOKEN])

#2) Define web search tool

We fetch live web search results using Firecrawl search endpoint. This gives our

agent up-to-date online information.

35

https://www.dailydoseofds.com/

DailvDoseofDS.com

t asyncio

t requests Firecrawl

om livekit.agents import function_tool Websearch

@function_tool
ch(query, limit=5):

url = "https://api.firecrawl.dev/vl/search" Firecrawl Search endpoint
payload = {"query": query, "limit": limit}

headers = {"Authorization": f"Bearer {FIRECRAWL_API_KEY}",
"Content-Type": "application/json"}

loop = asyncio.get_event_loop()
response await loop.run_in_executox(

Llambda: requests.post(url, json=payload, headers=headers)

response.raise_for_status()
return response.json()

#3) Get Supabase MCP Tools

We list our Supabase tools via the MCP server and wrap each of them as LiveKit

tools for our Agent.

®® % Generate Supabase MCP Tools e |
o)

import json

: : x Supabase DB
m livekit.agents import function_tool

Tools

ef build_livekit_tools(server: MCPServerStdio):

available_tools = it server.list_tools()
tools = []

for tool in available_tools:
if tool.name = "deploy_edge_function":

continue
def make_pr (tool_def=tool):
c def proxy(context: RunContext):

response = a t server.call_tool(tool_def.name)
return response

generates function
return function_tool(proxy) wrappers from tool
definitions

tools.append(make_proxy())
return tools

36

https://www.dailydoseofds.com/

#4) Build the Agent

We set up our Agent with instructions on how to handle user queries. We also

give it access to the Firecrawl web search and Supabase tools defined earlier.

ooe Set up the Agent

from livekit.agents import Agent

tools = [firecrawl_search] + supabase_tools Firecrawl
Websearch

agent = Agent(instructions=(
"You can either perform live web "
"searches via ‘firecrawl_search’
"database queries via Supabase MCP "

"tools. Choose the right tool based "

"on whether the user needs fresh

"web data (news, external facts) or

"internal Supabase data."),
tools=tools

#5) Configure Speech-to-Response flow

e We transcribe user speech with AssemblyAlI Speech-to-Text.
e Qwen 3 LLM, served locally with Ollama, invokes the right tool.

® A voice output is generated via TTS.

D0OC Speech-to-Response Flow

from livekit.agents img t AgentSession
from livekit.plugins import silero, assemblyai, openai

session AgentSession (
vad = silero.VAD.load(min_silence_duration=0.1),

stt = assemblyai.STT(word_boost=["Supabase"]l),

Tlm=openai.LLM.with_ollama (
model="qwen3",
base_url="http://localhost:11434/v1")

tts = openai.TTS(voice="ash"))

Speech

o Input R I\ AssemblyAl Tmns:nbe) %
1 Speech-To-Text

Transcript

Interpret

3

Generate
Response
§T —
s
Speech

utpat Text-to-Speech

DailvDoseofDS.com

37

https://www.dailydoseofds.com/

#6) Launch the Agent

DailvDoseofDS.com

We connect to LiveKit and start our session with a greeting. Then continuously

listen and respond until the user stops.

- Launch & Run our Agent

import asyncio
from livekit.agents import cli, JobContext

f entrypoint(ctx: JobContext):

ctx.connect() Connect and start session
session.start(agent=agent, room=ctx.room)
await session.generate_reply("Hello-how can I help today?")
Welcome message
while True:
await asyncio.sleep(1)

Speech
o TP /\ AssemblyAl
1 Tex
ser

Done!

Our MCP-powered Voice Agent is ready.

e If the query is related to a database, it queries Supabase via MCP tools.

e Otherwise, it performs a web search via Firecrawl.

The code is available here:

https://www.dailydoseofds.com/p/an

-mcp-powered-voice-agent/

38

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/an-mcp-powered-voice-agent/
https://www.dailydoseofds.com/p/an-mcp-powered-voice-agent/

DailyDoseofDS.com

39

https://www.dailydoseofds.com/

#5S) A Unified MCP server

DailyDoseofDS.com

This project builds an MCP server to query and chat with over 200+ data sources

using natural language through a unified interface powered by MindsDB and

IUnified MCP Server with MindsDB

Federated Data

Cursor IDE.
GUI
User
- ©
B (
= i 2
A= R
Query
Mobile app Browser
Ly
@0 s MindsDB MCP Server
Chat ! | Response
|
l

lr—\%" join.DailyDoseof DS.com

)

indsdb

3

|

Tech stack

e MindsDB to power our unified MCP server

e Cursor as the MCP host

e Docker to self-host the server

Workflow

e User submits a query

e Agent connects to the MindsDB MCP server to find tools

e Selects the appropriate tool based on the user query and calls it

e Finally, returns a contextually relevant response

Let’s implement this!

40

https://www.dailydoseofds.com/

DailvDoseofDS.com

#1) Docker Setup
MindsDB provides Docker images that can be run in Docker containers.

Install MindsDB locally using the Docker image by running the command in your

terminal.

06 Command line

— Spin up a container
--name mindsdb_container \ | ==—=» Specify container name

~e MINDSDB_APIS='http,mcp' \ | ==——=» Specify APIs

-p 47334:47334 \ |=>> HTTPport
-p 47337:47337 \ > MCPport

mindsdb/mindsdb | e==—=» Docker image

#2) Start MindsDB GUI

After installing the Docker image, go to 127.0.0.1:47334 in your browser to access
the MindsDB editor.

Through this interface, you can connect to over 200 data sources and run SQL

queries against them.
#3) Integrate Data Sources

Let's start building our federated query engine by connecting our data sources to
MindsDB.

We use Slack, Gmail, GitHub and Hacker News as our federated data sources.

41

https://www.dailydoseofds.com/

DailvDoseofDS.com

CREATE DATABASE mindsdb_slack

WITH ENGINE = 'slack',

PARAMETERS = {
"token": "xoxb-..."

"app_token": "xapp-..."
I

CREATE DATABASE mindsdb_gmail
WITH ENGINE = 'gmail',
PARAMETERS = {
"credentials_file": "path/to/credentials.json"

};

CREATE DATABASE mindsdb_github
WITH ENGINE = 'github',
PARAMETERS = {

"repository": "username/repo"
};

\TE DATABASE mindsdb_hack
WITH ENGINE = 'hackernews';

#4) Integrate MCP Server with Cursor

After building the federated query engine, let's unify our data sources by
connecting them to MindsDB's MCP server.

Go to: File » Preferences - Cursor Settings » MCP > Add new global MCP
server. In the JSON file, add the following

Cursor Settings

mcp.json

"mcpSexrvers": {
Server name

"mindsdb": {

"url": "http://127.0.0.1:47337/sse"

Server URL

42

https://www.dailydoseofds.com/

DailvDoseofDS.com

Done! Our MindsDB MCP server is live and connected to Cursor!
The MCP server offers two tools:

e list databases: Lists all data sources connected to MindsDB.

e query: Answers user queries on the federated data.

Cursor Settings

MCP Servers

more information

&) Rules ® mindsdb - :

2 Mmep : query list databases

er Link: httpy//127.0.0.1:47337/sse

B Indexing __
A Beta Server running

Apart from Claude and Cursor, MindsDB MCP server also works with the new
OpenAl MCP integration.

openai

in
client = openai.OpenAI(
api_key = 'openai-api-key' ry £\ X

: mindsdb

response = client.responses.create(

[

"server_label

}
1, MindsDB MCP server as
: input = "what t /a e2" tool with OpenAl 03

print(response)

The code is available here:

https://www.dailydoseofds.com/p/buil

d-an-mcp-server-to-connect-to-200-d

ata-sources|

43

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/build-an-mcp-server-to-connect-to-200-data-sources/
https://www.dailydoseofds.com/p/build-an-mcp-server-to-connect-to-200-data-sources/
https://www.dailydoseofds.com/p/build-an-mcp-server-to-connect-to-200-data-sources/

DailyDoseofDS.com

#6) MCP-powered shared memory for Clavde
Desktop and Cursor

Devs use Claude Desktop and Cursor independently with no context sharing.

Learn how to add a common memory layer to cross-operate without losing

context.
| Cursor and Claude Desktop Memory Integration Workflow
~
MCP Hosts MCP Server
.:“(_'L; Q_W«_"!_ (2) Connect
0, " i from Cursor IDE
(S) Response *
«--—--=-| S |- --------=-- >
ii. from Claude Desktop
Developer :
0 13 Tool Calls
@ Send !
 Comtext ' - === == T ——————— |
1
add_episode : search_nodes ! | clear_graph
\4 A\ A\
Context (\
o zep
T Memory)
! —”’Ca;eil i \\\\\‘
Tech Stack ! «-7 EPISODES ¥ "o
= N 0 S - P (M Row data
, Cursor IDE : i i
X Documents Conversations ISONs
Claude : Level 2 i Entities &
Desktop ~--- ENTITIES v velationships
o e 20 22,2 fo{,;gf/
@ zep arophiti
Level 3 | Clusters &
and COMMUNITIES v their summaries
w Docker &
/%m_a o
- J
Graphiti Memory Structure
g%%go join.DailyDoseofDS.com J
\— J
Tech Stack

® Zep's Graphiti MCP as a memory layer for AT Agents.
e Cursor and Claude as the MCP hosts.

Workflow

User submits a query to Cursor & Claude.
Facts/Info are stored in a common memory layer using Graphiti MCP.
Memory is queried if context is required in any interaction.

Graphiti shares memory across multiple hosts.

44

https://www.dailydoseofds.com/

DailyDoseofDS.com
#1) Docker Setup

Deploy the Graphiti MCP server using Docker Compose. This setup starts the
MCP server with Server-Sent Events (SSE) transport.

o Command line

git clone https://github.com/getzep/graphiti.git
cd graphiti/mcp_server
uv sync

Output

o

docker compose up

- Graphiti client initialized successfully
- Using OpenAIl model: gpt-4.1-mini
- Using temperature: 0.0
- Using group_id: graph_4cad67af
action: disabled
sse

- Running MC! ith SSE transport on 127.0.0.1:8000

The Docker setup above includes a Neo4j container, which launches the database
as a local instance.

This configuration lets you query and visualize the knowledge graph using the
Neo4j browser preview.

i http://localhost:7474/brouser/)

& B 680
Database Information neo4j$

Use database

neo4j$ MATCH (n) RETURN n LIMIT 25

Node labels

@ (Commanry GI)
 Episodkc

Relationship types

Property keys

45

https://www.dailydoseofds.com/

DailyDoseofDS.com

#2) Connect MCP server to Cursor
With tools and our server ready, let's integrate it with our Cursor IDE!

Go to: File > Preferences - Cursor Settings > MCP - Add new global MCP
server. In the JSON file, add what's shown below

MCP Servers

mcp.json

"mcpServers": {
"Graphiti": { Server URL

"url": "http://localhost:8000/sse"

#3) Connect MCP server with Claude

Go to File » Settings - Developer - Edit Config, add what's shown below

claude_desktop_config.json MCP is a protocol that enables secure connections

between clien ktop app, and

Claude

Edit Config Get Started
Server name
to/uv",

Done!

46

https://www.dailydoseofds.com/

DailyDoseofDS.com

Our Graphiti MCP server is live and connected to Cursor & Claude!

Cursor Settings

MCP Servers

Connected to Cursor

Coffee and Claude time?

e <\C nn d
to Claude

Claude Sonnet 4 T

® Write &, Create S 88 Connect apps

Now you can chat with Claude Desktop, share facts/info, store the response in

memory, and retrieve them from Cursor, and vice versa.

This way, you can pipe Claude’s insights straight into Cursor, all via a single
MCP.

The code is available here:

https://[www.dailvdoseofds.com/p/build-a

-shared-memory-for-claude-desktop-and
-cursor/

47

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/build-a-shared-memory-for-claude-desktop-and-cursor/
https://www.dailydoseofds.com/p/build-a-shared-memory-for-claude-desktop-and-cursor/
https://www.dailydoseofds.com/p/build-a-shared-memory-for-claude-desktop-and-cursor/

DailyDoseofDS.com

#3) MCP-powered RAG over complex docs

Learn how to use MCP to power an RAG app over complex documents with

tables, charts, images, complex layouts, and whatnot.

MCP powered RAG over Complex real-world docs

a &
(MCP Host MCP Server \

F ? B, </>

(2) Connect

t Cursor

v v
[EYELEVEL ~--- }v‘ ’_‘ .

Bucket 1 Bucket 2 Bucket n

@ELEVEL GroundX

————— >
D <5 Response
Cursor IDE
Developer . :
| | @;‘
@ Send | Ingest | Search
A bk, e e e e an am o= o
Context e \
[| |
1 Tool Calls |
D v v
Context z ~~
Tech Stack A == _é N
|
|
| Ingest | I Search
|
|

Of@" join.DailyDoseOFDS,
Q(;‘O OO JjoinVai g ose .com

s

Tech Stack

e Cursor as the MCP client
e Eyelevel Al's GroundX to build an MCP server that can process complex

docs

Workflow

e User interacts with the MCP client (Cursor IDE)
e Client connects to the MCP server and selects a tool.
e Tools leverage GroundX to do an advanced search over docs

e Search results are used by Client to generate response

48

https://www.dailydoseofds.com/

DailyDoseofDS.com

Let’s implement this!

#1) Setup server

First we setup a local MCP server, using FastMCP and provide it a name

o Model Context Protocol @

from mcp.server.fastmecp import FastMCP

mcp = FastMCP("eyelevel-rag")

#2) Create GroundX Client

GroundX offers capabilities document search and retrieval capabilities for

complex real-world documents.

Here's how to set up a client:
o GRTUNDX
AN PRODUCT
import os
from dotenv import load_dotenv

from groundx import GroundX

load_dotenv()

client = GroundX(api_key=o0s.getenv("GROUNDX_API_KEY"))

49

https://www.dailydoseofds.com/

DailvDoseofDS.com

#3) Create Ingestion tool

This tool is used to ingest new documents into the knowledge base. User just

needs to provide a path to the document to be ingested:

oo GROUNDX

PRODUCT

from groundx rt GroundX, Document
from mcp.server.fastmcp im t FastMCP

st_documents(local_file_path: str)

nnn

Ingest documents from a local file into the knowledge base.
i
file_name = os.path.basename(local_file_path)
client.ingest(
documents=[
Document (
bucket_id=17279,
file_name=file_name,
file_path=local_file_path,
file_type="pdf",
search_data=dict(Ingestion
key = "value", Too
)y
)
]
)
return f"""Ingested {file_name} into the knowledge base.
It should be available in a few minutes

nun

#4) Create Search tool

This tool leverages GroundX's advanced capabilities to do search and retrieval

from complex real world documents. Here's how to implement it:

coc GROUNDX

PRODUC

from groundx import GroundX, Document
from mcp.server.fastmcp import FastMCP

text(query: str) — str:

Searches and retrieves relevant context from a knowledge base,
based on the user's query.
Args:
query: The search query supplied by the user.
Returns:
str: Relevant content for the Agent to generate response

response = client.search.content(

return response.search.text Search Tool

50

https://www.dailydoseofds.com/

#5) Start the server

DailyDoseofDS.com

Starts an MCP server using stdio as the transport mechanism:

#6) Connect to Cursor

o Model Context Protocol @

from mcp.server.fastmcp import FastMCP

if __name__ = "__main

mcp.run(transport="stdio")

Inside you Cursor IDE follow this: Cursor - Settings - Cursor Settings > MCP

Then add and start your server like this:

Add MCP Server

my-server command v

uv --directory server-dir-name run server.py

) Add (€)

e eyelevel-rag Enabled

& Tools: search_doc_for_rag_context ingest_documents

o resources available

Command:

uv --directory /Users/akshay/Eigen/ai-engineering-hub/eyelevel-mcp-rag run server.py

The code is available here:

https://www.dailydoseofds.com/p/mcp-

powered-rag-over-complex-docs/

51

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/mcp-powered-rag-over-complex-docs/
https://www.dailydoseofds.com/p/mcp-powered-rag-over-complex-docs/

DailyDoseofDS.com

#8) MCP-powered synthetic data generator

Learn how to build an MCP server that can generate any type of synthetic
dataset. It uses Cursor as the MCP host and SDV to generate realistic tabular
synthetic data.

100% local Synthetic Data Generator MCP Server

N

MCP Host MCP Server
- o - i
W q D connect 352
<« =----- Cursor Coding .c.
IDE
Developer A
[
@) Send sdv_generate
@ Context: - £ . | \
! ! sav_evaluate !
| | I
* ; :
Context f
Tech Stack A
2 2\ : —
< | Generate Evaluate Visualize
‘ Cursor IDE : : | !
~--- A A A
i“
SDV Synthetic + [;iﬁ‘
"""" Data Vault Real Data Real & Synthetic Data
= = $DV Operations
éi?&oo join.DailyDoseOfDS.com /

Tech Stack

e Cursor as the MCP host

e Datacebo's SDV to generate realistic tabular synthetic data
Workflow

e User submits a query
e Agent connects to MCP server to find tools
e Agent uses appropriate tool based on query

e Returns response on synthetic data creation, eval, or visualization

52

https://www.dailydoseofds.com/

DailvDoseofDS.com

Here's an overview of our MCP server, which includes three tools:

e SDV Generate
e SDV Evaluate
e SDV Visualise

We have kept the actual implementation of these tools using the SDV SDK in a
separate file, tools[.]py, that is imported here.

® server.py MCP Server

All three SDV Functions
~_ 7

mep = FastMCP(Register tools
ot - to MCP

generate(foldex_nam str) —

enerate synthet ata based on real data using SDV Synthesizer.
folder_name (str): Path to folder containing CSV data files and metadata.j

Success message with information about generated tables
i

generate(folder_name)

2s and metadata

dict: Evaluation x ts including ov

et evaluate(foldexr_name)

()
visualize(folder_name: r, table_name r, column_name: str) — st

zation comparing real and synthetic data for a specific column.

foldex_name : Path to folder containing the inal CSV data files and metadata.json
table_name of the table to visua (must t in th adata)

column_name (Name of the column to visualize within the ecified table

Success me e with the path to the saved visualiz on Or errxor m

wn

return visualize(folder_name, table_name, column_name)

Now let's look at each tool in more details.

53

https://www.dailydoseofds.com/

DailvDoseofDS.com

#1) SDV Generate Tool
This tool creates synthetic data from real data using the SDV Synthesizer.

SDV offers a variety of synthesizers, each utilizing different algorithms to

produce synthetic data.

@ tools.py Tool 1 - Data Generation

. o i

from sdv.io.local import CSVHandler m

from sdv.metadata import Metadata

from sdv.multi_table import HMASynthesizer —
Data Modeling

def generate(folder_name: str):
"""Generate synthetic data based on real data using SDV Synthesizer.

nun

connector = CSVHandlex() Load Metadata
data = connector.read(folder_name=folder_name)

metadata_file = os.path.join(folder_name, "metadata.json")
metadata = Metadata.load_from_json(metadata_file)

synthesizer = HMASynthesizer(metadata)
synthesizer.fit(data)

S Train
Synthesizer

synthetic_data = synthesizer.sample(scale=1) \

os.makedirs("synthetic_data", exist_ok=Txrue) Samp“ng Data
for table_name, df in synthetic_data.items():
output_file = os.path.join("synthetic_data", f"{table_name}.csv")
df.to_csv(output_file, index=False)

return f"Data generated successfully and saved in 'synthetic_data' folder."

#2) SDV Evaluate Tool
This tool evaluates the quality of synthetic data in comparison to real data.

We will assess statistical similarity to determine which real data patterns are

captured by the synthetic data.

54

https://www.dailydoseofds.com/

DailvDoseofDS.com

@00 & toolspy Tool 2 - Data Evaluation

from sdv.evaluation.multi_table import evaluate_quality

ef evaluate(folder_name: str):
"""Eyvaluate synthetic data compared to real data."""

metadata_file = os.path.join(foldexr_name, "metadata.json")
metadata = Metadata.load_from_json(metadata_file) Evaluation
table_names = metadata.tables

real_data_dict, synthetic_data_dict {}, {3

or table_name in table_names:
real_path = os.path.join(foldexr_name, f"{table_name}.csv")
synthetic_path = os.path.join("synthetic_data", f"{table_name}.csv")

real_data_dict[table_name] = pd.read_csv(real_path)
synthetic_data_dict[table_name] = pd.read_csv(synthetic_path)

quality_report = evaluate_quality(Run
real_data=real_data_dict, q
synthetic_data=synthetic_data_dict, Evaluation
metadata=metadata,
verbose=False,

overall_score quality_report.get_score() ‘———_--\§V

properties_df = quality_report.get_properties() Get Metrics
properties properties_df.to_dict(orient="recoxrds")

return {"Overall Score": overall_score, "Properties": properties}

#3) SDV Visualize Tool

This tool generates a visualization to compare real and synthetic data for a

specific column.

Use this function to visualize a real column alongside its corresponding synthetic

column.

55

https://www.dailydoseofds.com/

DailvDoseofDS.com

@ tools.py Tool 3 - Data Visualization

sdv.evaluation.multi_table t get_column_plot

lder_name tr, table_name tr, column_name: str, sualization_folder:

Generate ation comparin 1 thetic data for a specific columr

metadata_file os.path.join(folder_name, "metadata.json")

metadata Metadata.load_from_json(metadata_file)

table_name}.csv")

synthetic_path os.path.join(" ic) table_name}.csy

real dafa pd.read_csv(real) Data Plots
synthetic_data = pd.read_csv(synthetic_path)

real_path os.path.join(folder_name,

real_data_dict able_name: real_data}
synthetic_data_dict {table_name: synthetic_data}

os.makedirs(visualization_folder, ex
= = Generate
fig = get_column_plot(

al_data=real_data_dict, Column Plot
data=synthetic_data_dict,
adata=metadata,
e_name=table_name,
ami column_name,

safe_column_name column_name.replace(

"_n) . replace("/", "_")

filename table_name}_{safe_column_name}.png"

filepath = os.path.join(visualization_folder, filename) Create &
/ Save File
fig.write_image(filepath)

lization for {table_name}.{column_name

With tools and server ready, lets integrate it with our Cursor IDE! Go to: File »
Preferences » Cursor Settings > MCP - Add new global MCP server. In the
JSON file, add what's shown below

Cursor Settinc

neral

MCP Servers

mcp.json

"mepServers Server name
"sdv_mep": {
"command" :
"args": [
"--directory",
"absolute/path/to/project_root",
"run",
"——with",
"mep",
"server.py"

Server path

Done! Your synthetic data generator MCP server is live and connected to Cursor.

56

https://www.dailydoseofds.com/

DailyDoseofDS.com

Cursor Settings

£% General
MCP Servers
® Features
Bl Models
E] Rules

3 MCP

A Beta

Server Running

The code is available here:

https://www.dailydoseofds.com/p/hands-on

-mcp-powered-synthetic-data-generator/

57

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-mcp-powered-synthetic-data-generator/
https://www.dailydoseofds.com/p/hands-on-mcp-powered-synthetic-data-generator/

DailyDoseofDS.com

#9) MCP-powered deep researcher

ChatGPT has a deep research feature. It helps you get detailed insights on any

topic. Learn how you can build a 100% local alternative to it.

Multi-Agent Deep Researcher Workflow X ioinbaiydoseofds.com

gl 2% lin ku o]
User Querg Web Search Tool Eesenrr.h
notes
Web search Agent
i |
| @ | Analyse
_ Final | M
— response |
- with |
citations |
.
. @)
¢ | Notes
| | not approved
@ | Analyst Agent
Generate | | @
|
[' I
[' I
[' ®.
| Generate |
| N analysis
ot T T “--=--
Approved Orchestrated with
Writer Agent @ Analysis m

Tech Stack

e Linkup platform for deep web research
e CrewAl for multi-agent orchestration
e Ollama to locally serve DeepSeek

e Cursor as MCP host

Workflow

e User submits a query
e Web search agent runs deep web search via Linkup
e Research analyst verifies and deduplicates results

e Technical writer crafts a coherent response with citations

58

https://www.dailydoseofds.com/

DailvDoseofDS.com

#1) Setup LLM

We'll use a locally served DeepSeek-R1 using Ollama.

import os

from crewai import LLM

def get_llm_client():
"""Tnitialize and return the LLM client"""

return LLM(
model="ollama/deepseek-r1:7b",
base_url="http://localhost:11434"

)

#2) Define Web Search Tool

We'll use Linkup platform's powerful search capabilities, which rival Perplexity
and OpenAl, to power our web search agent. This is done by defining a custom

tool that our agent can use.

t os

typing Type .
e linku o)
linkup ort LinkupClient

crewai.tools ort BaseTool

Deep Web Research

search: 'standard' or 'deep'")

LELCH

description: fo from sing LinkUp and return results"
args_schema: Type[BaseModel]

linkup_client LinkupClient (api_key=0s.getenv("LINKUP_API_KEY"))

search_response = linkup_client.search(qu

str(search_response)

59

https://www.dailydoseofds.com/

DailvDoseofDS.com

#3) Define Web Search Agent

The web search agent gathers up-to-date information from the internet based on

user query. The linkup tool we defined earlier is used by this agent.

n crewai import Agent, Task Web Search Agent

linkup_search_tool LinkUpSeaxrchTool() l‘\
ar)

client get_llm_client()

web_searcher Agent (
role="Web Searcher",

"Retrieve relevant info with citations (source URLs)",

"Expert searcher; forwards results to Research Analyst only.",

allow_delegation=True,
tools=[linkup_search_tool],
)

search_task = Task(
description=f"Search for comprehensive information about: {query}.",
agent=web_searcher,
expected_output="Detailed raw search results including sources (urls).",
tools=[1linkup_seaxrch_tool]

#4) Define Research Analyst Agent

This agent transforms raw web search results into structured insights, with
source URLs. It can also delegate tasks back to the web search agent for

verification and fact-checking.

from crewai import Agent, Task

research_analyst Agent (LA
"Research Analyst", Analyst Agent
info into structured insig h URLs.",
xpert analyst; can delegate hecks to Web Searcher;
hands final output to Technical Writer.""",
verbo
all tion=True,
llm=client,

)

analysis_task = Task(

iption="Analyze search results, extract insights, and verify facts.",
nt=research_analyst,

d_output="Structured insights with verified facts and source URLs.",
search_taskl],

60

https://www.dailydoseofds.com/

DailvDoseofDS.com

#5) Define Technical Writer Agent

It takes the analyzed and verified results from the analyst agent and drafts a

coherent response with citations for the end user.

P Technical Wri
n crewai import Agent, Task echnical Writer

o /
U s
technical_writer = Agent(

role="Technical Writer",

goal="Create clear markdown responses with citations and source URLs.",
backstor Expert in simplifying complex information.",

verbose=True,

allow_delegation=False,

writing_task = Task(
description="Write a clear, organized response based on research.",
nt=technical_writer,
expected_output="Comprehensive answer with citations and source URLs.",
context=[analysis_task],

#6) Setup Crew

Finally, once we have all the agents and tools defined we set up and kickoff our

deep researcher crew.

crewai import Crew, Process

crew = Crew(
1ts=[web_searcher, research_analyst, technical_writer],
asks=[search_task, analysis_task, writing_task],
True,

Process.sequential

result crew.kickoff(
inputs={

"query": "how Small La e Models (SLMs) are Reshaping AI?",

Linkup Configuration

DeepWeb search

e The Role of Small Language Models (SLMs) in
Enterprise Al

61

https://www.dailydoseofds.com/

DailvDoseofDS.com

#7) Create MCP Server

Now, we'll encapsulate our deep research team within an MCP tool. With just a

few lines of code, our MCP server will be ready.

Let's see how to connect it with Cursor.

from mcp.server.fastmecp import FastMCP
from agents import run_research

mcp = FastMCP("crew_research")

amcp.tool()
def crew_research(query: str) — str:

nnn

Run CrewAI-based deep-research system for given user query.

Args:
query (str): The research query or question.

Returns:
str: The research response from the CrewAI pipeline.

nmn

return run_research(query)

if __name__ = "__main__":
mep.run(transport="stdio") @ Model Context Protocol

#8) Integrate MCP server with Cursor

Go to: File » Preferences - Cursor Settings » MCP - Add new global MCP

Sserver

In the JSON file, add what's shown below

62

https://www.dailydoseofds.com/

DailyDoseofDS.com

Cursor Settings

¢ General
MCP Servers

% Features
sl Models

Rules

Server name

directory",
"absolute/path/to/project_root",
"run",
"server.py"

Server path

"eog
"LINKUP_API_KEY": "your-key"

env vars

Cursor Settings

£ General
MCP Servers + Add new global MCP server

Mode ontext Protocol is a way to offer new toc
VI d more information about MCP in Cursc

R Features

E) Rules ® crew_research
8 Mcp

A Beta

Server Running

The code is available here:

https://www.dailydoseofds.com/p/hands-
on-mcp-powered-deep-researcher/

63

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-mcp-powered-deep-researcher/
https://www.dailydoseofds.com/p/hands-on-mcp-powered-deep-researcher/

DailyDoseofDS.com

#10) MCP-powered RAG over videos

We have an MCP-driven video RAG that ingests a video and lets you chat with it.

It also fetches the exact video chunk where an event occurred.

MCP-powered Video RAG with Ragie

’ —®—>

Video
Developer in !
Cursor IDE '
|
|

-— e dl - —)

MCP Server
\ S

o
Co joinDailyDoseOfDS.com

)

R @ 2
| Query 'aeo | @
(?)| Generate Ivuaestlomv
|
g '
=
| @ \ | Video channel
Return Retrieval b \ I F
MRt Rasie I“dex Audio channel
\) g y,
Tech Stack

e RagieAl for video ingestion and retrieval.

e Cursor as the MCP host.

Workflow

e User specifies video files and a query.

e An Ingestion tool indexes the videos in Ragie.

e A Query tool retrieves info from Ragie Index with citations.

e Show-video tool returns the video chunk that answers the query

64

https://www.dailydoseofds.com/

DailyDoseofDS.com

Let’s implement this!

#1) Ingest data

We implement a method to ingest video files into the Ragie index.

We also specify the audio-video mode to load both audio and video channels

during ingestion.

X J @ video_rag.py

Video channel

import os
‘rom pathlib import Path I\ ,WMW
from ragie import Ragie Ragie Index

Audio channel

ragie = Ragie(
auth=os . getenv ('RAGIE_API_KEY') Initialize Ragie client
def ingest_data(directory):

directory_path = Path(directory)
files = os.listdir(directory_path)

for my_file in files:
file_path = directorxy_path / my_file
with open(file_path, 'rb') as video:
response = ragie.documents.create(
lngest request={

.d "file": {"file_name": my_file, "content": video},
video "mode": {"video": "audio_video", "audio": True}

files

#2) Retrieve data

We retrieve the relevant chunks from the video based on the user query.

65

https://www.dailydoseofds.com/

DailvDoseofDS.com

Each chunk has a start time, an end time, and a few more details that correspond

to the video segment.

[N N

def retrieve_data(query):
retrieval = ragie.retrievals.retrieve(
request={"query": query}

content = []
for chunk in retrieval.scored_chunks:
content.append({
**chunk.document_metadata,
"text": chunk.text,

"document_name": chunk.document_name,
"start_time": chunk.metadata.get("start_time"),
"end_time": chunk.metadata.get("end_time"),

})

return content

retrieve_data("What is shown in the video?")

#3) Create MCP Server
We integrate our RAG pipeline into an MCP server with 3 tools:

e ingest_data_tool: Ingests data into Ragie index
e retrieve_data_tool: Retrieves data based on the user query

e show_video_tool: Creates video chunks from the original video

66

https://www.dailydoseofds.com/

DailvDoseofDS.com

000 @ server.py

from mcp.server.fastmcp import FastMCP
from main import clear_index, ingest_data, retrieve_data, chunk_video

mcp = FastMCP("ragie")

amcp.tool()
def ingest_data_tool(directory: str) — None:
"""| oads data from a directory into the Ragie index
clear_index()
ingest_data(directory)
return "Data loaded successfully"

nun

amcp.tool()

def retrieve_data_tool(query: str) — list[dict]:
"""Retrieves data from the Ragie index based on the quexry"""
content = retrieve_data(query)
return content

amcp.tool()

def show_video_tool(doc_name: str, t_start: float, t_end: float) — str:
"""Ccreates and saves a video chunk based on start and end time"""

chunk_video(doc_name, t_start, t_end)

return "Video chunk created successfully"

if _name__ = "__main__": @ Model Context Protocol

mcp.run(transport="'stdio"')

#4) Integrate MCP server with Cursor

To integrate the MCP server with Cursor, go to Settings > MCP > Add new
global MCP server.

67

https://www.dailydoseofds.com/

DailyDoseofDS.com

Cursor Settings

MCP Servers

mcp.json

"mcpServers": { Server name

"ragie": {

"command": "uv",

"args": [
"——directory",
"/absolute/path/to/project_root",
SxlingG:
"server.py" Server path

] ’

"env": {
"RAGIE_API_KEY": "YOUR_RAGIE_API_KEY"

env variables

Done!

Your local Ragie MCP server is live and connected to Cursor!

< Cursor Settings X

Tools & Integrations

B J

Ragie MCP

ingest_data_tool retrieve_data_tool show_video_tool server

connected

I, Tools & Integrations

68

https://www.dailydoseofds.com/

DailyDoseofDS.com

Next, we interact with the MCP server through Cursor.
Based on the query, it can:

e Ingest a new video into the Ragie Index.
e Fetch detailed information about an existing video.

e Retrieve the video segment where a specific event occurred.

And that was your MCP-powered video RAG.

The code is available here:

https://www.dailydoseofds.com/p/build-

an-mcp-powered-rag-over-videos/

69

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/build-an-mcp-powered-rag-over-videos/
https://www.dailydoseofds.com/p/build-an-mcp-powered-rag-over-videos/

DailyDoseofDS.com

#11) MCP-powered Audio Analysis Toolkit

We have an MCP-driven audio analysis toolkit that accepts an audio file and lets

you transcribe it and extract insights such as sentiment analysis, speaker labels,

summary and topic detection. It also lets you chat with audio.

IMCP-powered Audio Analysis with AssemblyAI
Audio Query
o g > ¥ |
R P L
MCP Host MCP Server
User Response
|
1
r- == 7o - = 7o -~ = 7o == 7o - —== \
'@© '® '@ 1€ '@ @
v v v v v v
> & = Q o
D 5 P B g8 =
Chat with Topic Sentiment < Speaker T ioki
avdio detection analysis ummary labels ranscription
Tech stack

e AssemblyAl for transcription and audio analysis.

e Claude Desktop as the MCP host.
e Streamlit for the UI

Workflow

sentiment, and topics.

Post-transcription, the user can also chat with audio.

User's audio input is sent to AssemblyAl via a local MCP server.

AssemblyAl transcribes it while providing the summary, speaker labels,

70

https://www.dailydoseofds.com/

DailvDoseofDS.com

#1) Transcription MCP tool

This tool accepts an audio input from the user and transcribes it using

AssemblyAl. We also store the full transcript to use in the next tool.

©00 & serverpy Transcribe Audio |

amcp.tool()
def transcribe_audio(path: str): ”I““”

win

Audi
Transcribes audio using AssemblyAI and

returns sentence-level timestamps.

wnn

global transcript
transcript = aai.Transcribex().transcribe(AssemnyAl
path,
config=aai.TranscriptionConfig(
summarization=True,
iab_categories=True,
sentiment_analysis=True,

speaker_labels=True, %
language_detection=True))
Transcription

return {
"sentences": [
{"text": s.text, "timestamp": s.start}
for s in transcript.get_sentences()]

#2) Audio analysis tool

Next, we have a tool that returns specific insights from the transcript, like

speaker labels, sentiment, topics, and summary.

@ serverpy Extract Insights

iio_data(summary=False, speakers=
sentiment=Fa

Returns selected insights from the transcript:
summary, speakers, sentiment, or topics.
response = {} g

Sentiment
analysis detection

Summary Speaker labels

if summary:

response["summary"] = transcript.summary

if speakers:
response["speakers"] [{"speaker": u.speaker, "text": u.text}
for u in transcript.utterances]
if sentiment:
response["sentiment"] transcript.sentiment_analysis

if topics:
response["topics"] = transcript.iab_categories.summary

return response

71

https://www.dailydoseofds.com/

DailvDoseofDS.com

#3) Create MCP Server

Now, we'll set up an MCP server to use the tools we created above.

@00 & serverpy Create MCP Server

from fastmcp import FastMCP

mcp = FastMCP("Audio Analysis Toolkit")

amcp.tool()
def transcribe_audio(path):

amcp.tool()
def get_audio_data(...):

if __name__ = "__main__":

mcp.xun()

#4) Integrate MCP server with Claude Desktop

Go to File » Settings - Developer - Edit Config and add the following code.

claude_desktop config.json

"mcpServers": {
"assemblyai-audio-analysis": { Server name
"command": "python",
dares =l

"~path/to/server.py" Server path

1,
”enV": {
"ASSEMBLYAI_API_KEY": "api-key-here"

72

https://www.dailydoseofds.com/

DailyDoseofDS.com

Once the server is configured, Claude Desktop will show the two tools we built

above in the tools menu:

e transcribe _audio

e get_audio_data

% How was your day, Akshay?

How can | help you today?

Claude Sonnet 4

@ Learn 88 Connect apps

AssemblyAl MCP

~_7 server connected
/\ AssemblyAl

T Disable all tools

T transcribe_audio

G get_audio_data

And that was our MCP-powered audio analysis toolkit!
For accessibility, we have created a Streamlit UI for the audio analysis app.

You can upload the audio, extract insights, and chat with it using AssemblyAT’s
LeMUR. Find the code below.

The code is available here:

https://www.dailydoseofds.com/p/hands-o

n-build-an-mcp-powered-audio-analysis-

toolkit/

73

https://www.dailydoseofds.com/
https://www.dailydoseofds.com/p/hands-on-build-an-mcp-powered-audio-analysis-toolkit/
https://www.dailydoseofds.com/p/hands-on-build-an-mcp-powered-audio-analysis-toolkit/
https://www.dailydoseofds.com/p/hands-on-build-an-mcp-powered-audio-analysis-toolkit/

	How to make the most out of this book and your time?
	
	Table of contents

	
	
	
	
	Model Context
	Protocol
	(MCP)
	
	What is MCP?
	Why was MCP created?
	The problem
	The solution

	MCP Architecture Overview
	Host
	Client
	Server

	Tools, Resources and Prompts
	Tools
	Resources
	Prompts

	
	
	
	
	
	
	
	
	MCP Projects
	
	#1) 100% local MCP Client
	
	
	
	#2) MCP-powered Agentic RAG
	
	#3) MCP-powered Financial Analyst
	#4) MCP-powered Voice Agent
	
	
	
	
	#5) A Unified MCP server
	#6) MCP-powered shared memory for Claude Desktop and Cursor
	
	
	#7) MCP-powered RAG over complex docs
	
	#8) MCP-powered synthetic data generator
	
	#9) MCP-powered deep researcher
	#10) MCP-powered RAG over videos
	
	
	
	
	#11) MCP-powered Audio Analysis Toolkit

