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Abstract

Word Sense Disambiguation (WSD) is a key
task in Natural Language Processing (NLP), in-
volving selecting the correct meaning of a word
based on its context. With Pretrained Language
Models (PLMs) like BERT and DeBERTa now
well established, significant progress has been
made in understanding contextual semantics.
Nevertheless, how well these models inher-
ently disambiguate word senses remains un-
certain. In this work, we evaluate several
encoder-only PLMs across two popular inven-
tories (i.e. WordNet and the Oxford Dictionary
of English) by analyzing their ability to sepa-
rate word senses without any task-specific fine-
tuning. We compute centroids of word senses
and measure similarity to assess performance
across different layers. Our results show that
DeBERTa-v3 delivers the best performance on
the task, with the middle layers (specifically the
7th and 8th layers) achieving the highest accu-
racy, outperforming the output layer by approx-
imately 15 percentage points. Our experiments
also explore the inherent structure of Word-
Net and ODE sense inventories, highlighting
their influence on the overall model behavior
and performance. Finally, based on our find-
ings, we develop a small, efficient model for
the WSD task that attains robust performance
while significantly reducing the carbon foot-
print. We publicly release our software at http:
//github.com/SapienzaNLP/wsd-probing.

1 Introduction

Language is inherently ambiguous, with many
words denoting distinct meanings depending on
the context. For example, the word wing can refer
to a bird’s limb in "The white bird has a broken
wing", or to a section of a building in "I visited
the new museum’s wing about contemporary art".
Capturing the correct meaning of a word in context
– known as Word Sense Disambiguation (WSD, see
Navigli (2009) and Bevilacqua et al. (2021) for sur-
veys of the field) – is a long-standing challenge in

Natural Language Processing (NLP), essential in
order to better understand and enhance applications
like Machine Translation (Liu et al., 2018; Pu et al.,
2018; Campolungo et al., 2022), Information Ex-
traction (Moro and Navigli, 2013; Bovi et al., 2015;
Martinelli et al., 2024) and Information Retrieval
(Sinoara et al., 2019; Agosti et al., 2020; Blloshmi
et al., 2021).

WSD is typically framed as a multi-label clas-
sification problem (Raganato et al., 2017a; Hadi-
winoto et al., 2019) where the model must assign
one or more senses chosen from a fixed inventory to
each word to disambiguate. Most WSD approaches
rely on WordNet (Miller, 1994) as an inventory of
senses, and SemCor (Miller et al., 1993) as train-
ing corpus. With the advent of Transformer-based
models, such as BERT (Devlin et al., 2019) or De-
BERTa (He et al., 2021), there have been signif-
icant advancements in understanding contextual
and semantic nuances, leading to improvements
in benchmark results. Concurrently, probing stud-
ies have suggested that language models can cap-
ture linguistic knowledge during pretraining (Adi
et al., 2017; Conneau et al., 2018), and that differ-
ent Transformer layers specialize in different types
of linguistic information (Tenney et al., 2019a).
Nevertheless, it remains unclear how well these
models separate word senses without explicit fine-
tuning for WSD.

To investigate this, we conduct extensive ex-
periments using the WordNet inventory and the
Oxford Dictionary of English (Stevenson, 2010,
ODE). Specifically, we investigate the disambigua-
tion capabilities of several encoder-only pretrained
language models (PLMs) by probing their latent
representations and computing sense-specific cen-
troids to select the correct word sense based on
similarity metrics. We use this strategy to analyze
the performance of each intermediate and output
layer of the various models to find both the best
model and its optimal layer for the WSD task. Ad-
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ditionally, we provide an extensive discussion of
our results, examining the structural similarities
and differences between WordNet and ODE. This
analysis highlights potential shortcuts that PLMs
might exploit when evaluated on these resources
and identifies the challenges these resources pose.
Our findings offer insights into how factors such as
distribution, granularity, and homogeneity of word
senses can impact WSD performance.

To summarize, we aim to answer the following
three main research questions:

• (RQ1) To what extent can PLMs distinguish
between word senses in their latent space with-
out fine-tuning?

• (RQ2) Which PLM better captures semantic
information, and which intermediate layer per-
forms best for WSD?

• (RQ3) What are the main structural differ-
ences between the WordNet and ODE inven-
tories, and how do they affect the WSD task?

Building on our findings, we also design a small,
efficient model for the WSD task that delivers
competitive performance while significantly re-
ducing computational requirements and lowering
the associated carbon footprint. Finally, to en-
courage further research on the analysis of PLMs
on semantic tasks, we publicly release our soft-
ware and data at https://https://github.com/
SapienzaNLP/wsd-probing.

2 Related Work

2.1 Approaches to WSD

Over the years, various approaches have been devel-
oped to tackle the WSD task, including knowledge-
based (Lesk, 1986; Jeh and Widom, 2003; Moro
et al., 2014; Scozzafava et al., 2020), unsupervised
(Chen et al., 2009; Rahman and Borah, 2022), and
supervised approaches (Raganato et al., 2017b;
Hadiwinoto et al., 2019; Scarlini et al., 2020a;
Wang and Wang, 2020; Barba et al., 2021). With
the rise of pre-trained language models and in-
creased computational power, the supervised learn-
ing paradigm has become the dominant approach.
These systems typically employ neural architec-
tures, frame the WSD task as a classification prob-
lem, and use annotated data to learn the association
between words in context and their appropriate
senses.

Beyond the underlying PLM, supervised ap-
proaches are often distinguished by the type of
additional information the models are able to lever-
age. For instance, GlossBERT (Huang et al., 2019),
SensEmBERT (Scarlini et al., 2020a), ARES (Scar-
lini et al., 2020b) and SREF (Wang and Wang,
2020) exploit sense definitions (also known as
glosses) to perform WSD. Glosses provide a sim-
ple way to clarify word meanings by offering brief
definitions or explanations, and can be encoded as
vectors by averaging their tokens. Along the same
lines, Barba et al. (2021) frame WSD as a text-
extraction problem, and use the glosses of neigh-
boring words to enrich the context of a target word.

Another common recent trend is to exploit rela-
tions between senses to further enhance the disam-
biguation capabilities of the models. Specifically,
Wang and Wang (2020, SREF) exploit the WordNet
hypernymy and hyponymy relations, Bevilacqua
and Navigli (2020) use a richer set of relations to
compute "structured logits", while Vial et al. (2019)
reduce the number of output classes by linking each
sense to an ancestor in the WordNet taxonomy.

Other approaches have taken a different direc-
tion and, instead of exploiting sense definitions and
relations, leverage translations to improve the out-
put of an arbitrary WSD system (Luan et al., 2020),
or use images to create multimodal gloss vectors
(Calabrese et al., 2020).

2.2 Probing Pretrained Language Models for
Lexical-Semantics Tasks

Although all the above-mentioned approaches rep-
resent valuable contributions to the field, the un-
derlying PLMs are typically used as black boxes.
Hence, it remains unclear to what extent the ability
of these systems in disambiguating words comes
from the fine-tuning phase – where the model has
access to task-specific data, such as labeled data,
glosses and relations – or from the pre-training
stage of the PLM itself.

In this context, a widely used technique for
gaining insights about a model’s internal repre-
sentation and behavior is probing (Rogers et al.,
2020). Early works on probing language models
(Adi et al., 2017; Conneau et al., 2018) pointed
out the possibility that models could capture lin-
guistic knowledge before training, with encoders
capable of capturing local and global syntactic and
semantic information (Shi et al., 2016; Ettinger
et al., 2016). Subsequent studies (Blevins et al.,
2018; Hewitt and Manning, 2019; Peters et al.,
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Figure 1: A graphical representation of the proposed methodology. Given a target lemma, we use its training
examples to compute sense-level centroids by means of a frozen transformer encoder M. Then, for disambiguating
a test instance, we select the sense associated with the centroid that maximizes the cosine similarity score. Note that,
for the sake of visualization, we focus only on the first two senses of bank#NOUN in this example.

2018; Tenney et al., 2019a; Ethayarajh, 2019; Ten-
ney et al., 2019b) confirmed that these models pos-
sess rich internal representations of linguistic struc-
tures and can extract semantic features useful for
a wide range of downstream tasks. Specifically,
Tenney et al. (2019a) found that different layers
of BERT specialize in different types of linguistic
information, with syntactic information being more
localized within specific initial layers, whereas se-
mantic information is re-distributed across multiple
intermediate layers. Along the same lines, Etha-
yarajh (2019) showed that upper layers produce
more context-specific representations, while Liu
et al. (2024) revealed that lower layer representa-
tions of Llama 2 encode lexical semantics. Gessler
and Schneider (2021), instead, framed the WSD
probing task as a query-by-example similarity rank-
ing, showing that BERT outperforms RoBERTa on
capturing rare word senses.

Even more relevant to the scope of our study,
Coenen et al. (2019) found evidence of geometric
representation of word senses by probing BERT.
Similarly, Tripodi (2021) analyzed word sense rep-
resentations, and found that even though contextu-
alized models do not create one representation per
word sense, their contextualization creates similar
representations for the same word sense that can
be easily clustered.

Moreover, Proietti et al. (2024) showed that
PLMs are able to differentiate homonymous word
senses with up to 95% accuracy scores without fine-
tuning. Nevertheless, existing works focus either
on probing a specific model (Coenen et al., 2019,
BERT), or on a simplified version of the WSD task
(Coenen et al., 2019; Proietti et al., 2024) – hence

overlooking the well-known granularity issue – or
do not look at the internal representations of the
various Transformer layers (Proietti et al., 2024;
Tripodi, 2021). To fill this gap, we extensively eval-
uate four different pre-trained encoders belonging
to different models’ families according to their pre-
training strategies, and measure how their individ-
ual layers perform on the WSD task. Furthermore,
unlike previous works, we experiment with two
sense inventories (WordNet and ODE) and exten-
sively compare them in the context of WSD.

3 Methodology

As highlighted by previous studies (Coenen et al.,
2019; Tripodi, 2021; Proietti et al., 2024), PLMs
can distinguish between different senses of the
same word, thus placing the corresponding con-
textualized word embeddings at different points in
the latent space. The core objective of our work
is to further investigate this phenomenon by quan-
tifying the disambiguation capabilities of PLMs
in a fine-grained setting, while aiming at identify-
ing the optimal model and layer to represent word
meanings (cf. RQ1 and RQ2 in Section 1).

To achieve this, we rely on an annotated corpus
C and divide it into Ctrain and Ctest splits. Before
splitting the corpus, we filter out all the instances
belonging to monosemous words (i.e. unambigu-
ous words with just one meaning), and remove all
the senses that have less than K examples in the
corpora. The former filter is applied to focus on
non-trivial disambiguation cases, while the latter
is applied to include in our study only the senses
whose number of examples in the corpora is suf-
ficient to create reasonable and reliable represen-
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tations. We then compute sense-specific centroids
for each sense in the corpus, and select the correct
word sense based on similarity metrics. We apply
this strategy to each layer of the various models
under evaluation. Formally, for each word sense S
in the corpus Ctrain, each with N associated train-
ing examples {s1, . . . , sN } in which a word w is
annotated with S , we use a Transformer model M
to compute the contextualized word embeddings
E = {e(s1), . . . , e(sN )} = {e1, . . . , eN }. If a
word is split into multiple tokens, we average the
embeddings of the tokens to obtain a single repre-
sentation. Then, we compute the centroid of the
cluster of embeddings E as follows:

Centroid(E) =
1

N
N∑

i=1

ei (1)

Once the centroids for all the senses in Ctrain
have been computed, we can proceed by assess-
ing the quality of the model M in separating word
senses using Ctest. Specifically, for each test in-
stance t ∈ Ctest1, we use M to produce its em-
bedding vector and compare it with the centroids
constructed from Ctrain having the same lemma
and Part-of-Speech (POS) tag of t. We then verify
whether the closest centroid c∗ is the centroid of
the correct sense. For a given embedding vector
e, the nearest centroid c∗ ∈ C is defined as the
centroid that maximizes the cosine similarity with
respect to e, where C is the set of all the centroids
of senses that have the same lemma and POS of the
target word:

c∗ = argmax
c∈C

c · e
∥c∥∥e∥ (2)

We repeat this procedure by using any layer ML of
the Transformer M to generate both the centroids
in Ctrain as well as the embeddings of the test in-
stances in Ctest. This allows us to gain detailed
insights into the model’s behavior and identify the
optimal layers for the WSD task. The overall pro-
cedure is summarized in Figure 1.

4 Experimental Setup

In this section, we describe the data used for con-
ducting our experiments (Section 4.1) and the mod-
els under evaluation (Section 4.2). All our experi-
ments are carried out using the Hugging Face Trans-

1Each test instance corresponds to a target word to disam-
biguate based on the given context.

formers library (Wolf et al., 2020) and PyTorch2 to
ensure the reusability of our code.

4.1 Data
We use two different corpora in our experiments:

• SemCor (Miller, 1994): It contains 33,362
senses and 226,036 instances annotated man-
ually with senses from WordNet 3.0. The
dataset is openly available.3

• ODE (Stevenson, 2010): We use the version
introduced by Chang et al. (2018) containing
79,004 senses and around 785,000 instances
from the Oxford Dictionary of English.

We run experiments using K = 5 and K = 10,
with K being the minimum number of examples
for a given sense to be included in our study (cf.
Section 3). We use both corpora as training and
test sets, splitting them following the standard 80%
- 20% ratio. SemCor test instances are disam-
biguated with the centroids constructed using the
SemCor training split; an analogous process is car-
ried out with the ODE instances.

4.2 Models
In order to have a broad overview of the capabilities
of PLMs, we analyze the four most popular ones:

• BERT (Devlin et al., 2019): A Transformer-
based encoder model trained using the
Masked Language Modeling (MLM) objec-
tive, where certain tokens in the input are
masked, and the model learns to predict them.
BERT features an additional task called Next
Sentence Prediction (NSP), where the model
learns to determine whether two sentences
follow each other. In our experiments, we use
both the google-bert/bert-base-cased4

and google-bert/bert-base-uncased5

versions available on Hugging Face;

• RoBERTa (Liu et al., 2019): An im-
proved variant of BERT, pre-trained with
the same MLM task but with more data,
longer training, and hyperparameter opti-
mizations. It excludes BERT’s Next Sen-
tence Prediction task and focuses on max-
imizing the effectiveness of MLM through

2https://pytorch.org/
3https://www.nltk.org/nltk_data/
4https://huggingface.co/google-bert/

bert-base-cased
5https://huggingface.co/google-bert/

bert-base-uncased
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↓ Model \ Layer → 1 2 3 4 5 6 7 8 9 10 11 12
O

D
E

bert-base-uncased 71.25 76.05 78.36 80.46 82.84 83.58 84.29 85.66 86.83 88.27 88.68 88.60
bert-base-cased 65.49 73.46 77.02 79.11 81.09 82.44 83.44 84.63 86.12 87.75 88.10 87.54
roberta-base 69.88 75.10 79.67 82.95 84.80 85.63 86.01 85.84 86.49 87.55 87.66 86.51
electra-base-discriminator 69.31 80.12 83.29 83.74 86.57 85.65 86.12 85.85 86.19 85.66 84.43 82.20
deberta-v3-base 72.77 81.26 86.28 88.39 89.74 90.13 90.46 90.26 89.47 88.80 87.20 75.94

Se
m

C
or

bert-base-uncased 46.68 52.69 59.91 62.98 65.84 67.53 67.95 68.58 68.80 69.21 69.10 67.92
bert-base-cased 41.75 52.11 60.04 62.56 64.51 66.47 67.89 68.12 68.62 69.70 69.65 68.09
roberta-base 49.11 59.63 64.92 66.79 68.07 68.55 68.83 68.90 69.13 69.70 69.10 65.59
electra-base-discriminator 48.22 61.16 63.22 66.02 68.32 68.58 69.47 69.69 70.20 69.70 69.18 66.98
deberta-v3-base 49.03 62.01 67.28 68.6 1 69.87 70.55 71.05 71.05 70.26 69.57 68.00 55.15

(a) K = 5

↓ Model \ Layer → 1 2 3 4 5 6 7 8 9 10 11 12

O
D

E

bert-base-uncased 72.94 77.57 79.98 81.98 84.28 85.00 85.60 86.87 87.89 89.25 89.64 89.52
bert-base-cased 67.33 75.18 78.72 80.81 82.65 83.95 84.94 85.95 87.31 88.79 89.08 88.55
roberta-base 72.07 77.34 81.67 84.65 86.28 86.99 87.29 87.10 87.70 88.64 88.67 87.52
electra-base-discriminator 71.37 81.84 84.92 85.50 87.99 87.24 87.60 87.24 87.43 86.94 85.78 83.48
deberta-v3-base 74.39 82.82 87.64 89.60 90.74 91.11 91.40 91.18 90.43 89.79 88.33 77.33

Se
m

C
or

bert-base-uncased 46.07 51.36 60.18 63.09 65.95 67.70 68.08 68.77 69.08 69.11 68.65 67.18
bert-base-cased 41.94 51.99 60.34 63.40 65.61 67.19 68.50 68.66 69.07 69.69 69.70 68.18
roberta-base 48.70 59.88 65.25 66.89 67.98 68.76 69.16 68.99 69.63 70.05 69.34 65.50
electra-base-discriminator 48.50 60.85 62.74 66.49 68.51 68.90 69.67 69.52 69,91 69.70 69.44 67.15
deberta-v3-base 50.31 63.18 67.83 68.89 70.58 70.95 71.22 71.53 70.42 69.70 68.17 55.56

(b) K = 10

Table 1 (a) and (b): Performance of the various Pretrained Language Models (PLMs) and their individual layers on the ODE and
SemCor inventories with K = 5 and K = 10, respectively. The best layer for each PLM is highlighted in liliac , while the
overall best layer across the various PLMs is marked in bold.

better pretraining strategies. We use the
FacebookAI/roberta-base6 model;

• ELECTRA (Clark et al., 2020): Introduces a
novel pretraining task called Replaced Token
Detection (RTD), where a generator replaces
tokens in the input, and the model learns
to detect whether a token has been replaced.
This approach is more sample-efficient than
MLM, allowing ELECTRA to perform well
with less computational resources. We use
google/electra-base-discriminator7;

• DeBERTa-v3 (He et al., 2021): Builds
upon ELECTRA’s Replaced Token Detec-
tion task, but introduces further innovations
such as disentangled attention and enhanced
mask decoding. These improvements al-
low DeBERTa-v3 to better capture word
relationships and outperform earlier mod-
els in representation learning. We use the
microsoft/deberta-v3-base8 model.

6https://huggingface.co/FacebookAI/
roberta-base

7https://huggingface.co/google/
electra-base-discriminator

8https://huggingface.co/microsoft/
deberta-v3-base

Considering their different pretraining objectives
and specificities, we expect their output represen-
tations to have different properties, which renders
our analysis more robust and of greater generality.

5 Results

In Tables 1a and 1b, we report the F1 scores of the
PLMs under evaluation on both ODE and SemCor
datasets, using K ≥ 5 and K ≥ 10, respectively.

The first key finding of our study is that different
PLMs encode semantic information more effec-
tively at distinct depths within their architectures.
Specifically, models trained using the Masked Lan-
guage Modeling (MLM) objective, such as BERT
and RoBERTa, exhibit peak performance in the fi-
nal layers, with the 10th and 11th layers being the
most effective ones on SemCor and ODE, respec-
tively. In marked contrast, models trained with the
Replaced Token Detection (RTD) objective, like
ELECTRA and DeBERTa-v3, achieve their highest
scores in the intermediate layers – specifically, the
layers between the 5th and 8th, depending on the
dataset and value of K. This result is particularly
interesting in the case of DeBERTa-v3, which ex-
hibits a significant performance gap between its
optimal layer (highlighted in liliac) and its final
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layer (i.e. the one usually used in the literature for
classification tasks), with an average improvement
of approximately 15 F1 score points.

Additionally, our results show how DeBERTa-
v3 consistently outperforms its competitors across
all settings, while ELECTRA – sharing the same
training objective – is frequently outperformed by
both BERT and RoBERTa models. However, this
result is expected and aligned with the analysis
of He et al. (2021), which showed that using the
same token embeddings for the discriminator and
the generator affects the model’s performance, be-
cause the losses of the two pull token embeddings
in opposite directions. Specifically, the MLM ob-
jective used for training the generator pulls the
tokens that are semantically similar close to each
other, while the RTD objective of the discrimina-
tor tries to discriminate semantically similar tokens
and pull their embeddings as far apart as possible in
order to optimize the binary classification accuracy,
causing a conflict between their training objectives,
and, consequently, poor performance on semantic
tasks. This finding emphasizes the importance of
disentangled attention in the DeBERTa-v3 archi-
tecture, crucial for preventing tug-of-war dynamics
(Hadsell et al., 2020) and enhancing contextual
understanding.

With these results, we carefully addressed RQ2
(cf. Section 1), identifying the most suitable PLM
and its optimal layer for the WSD task. Never-
theless, the extent to which PLMs can effectively
differentiate between word senses (RQ1) remains
unclear, as their performance appears to be highly
dependent on the dataset used for evaluation. In-
deed, PLMs attain scores of around 90 F1 score
points on ODE, while they achieve just 70 F1 score
points on SemCor, on average. This disparity sug-
gests that RQ1 and RQ3 are strongly intertwined;
therefore, we devote the next section to analyzing
the structural differences between ODE and Sem-
Cor.

6 Analysis and Discussion

As shown in Tables 1a and 1b, the scores of the vari-
ous PLMs on the ODE dataset considerably exceed
the ones on the SemCor dataset. To understand this
discrepancy, we analyze several structural factors,
namely: i) sense granularity, ii) sense frequency,
and iii) the homogeneity of examples.

Figure 2: SemCor sense granularity.

Figure 3: ODE sense granularity.

6.1 Sense Granularity

Depending on the inventory (i.e. ODE or WordNet),
a given lemma may have a different number of
senses. In particular, the main criticisms that have
been raised against WordNet over the years is that
its fine granularity and subtle distinctions between
nearly identical senses make it hard to select the
most appropriate meaning of a given word, even
for humans (Edmonds and Kilgarriff, 2002).

Based on this evidence, we hypothesize that
WordNet may exhibit greater sense granularity
compared to ODE, potentially making the disam-
biguation task more challenging. Hence, here we
assess whether the two corpora offer comparable
levels of sense granularity. To do so, we take all
the polysemous lemmas in SemCor and ODE with
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Dataset ↓ Model \ Layer → 1 2 3 4 5 6 7 8 9 10 11 12

ODE deberta-v3-base 69.45 77.50 82.89 85.34 87.04 87.71 88.07 87.43 86.06 84.96 82.79 70.12
SemCor deberta-v3-base 53.91 61.94 66.67 67.67 68.96 70.10 70.79 70.86 69.30 68.37 66.08 55.50

Table 2: Performance of DeBERTa-v3 on SemCor and ODE with K = 5

Dataset ↓ Similarity \ Layer → 1 2 3 4 5 6 7 8 9 10 11 12

ODE
Internal 83.43 80.59 78.27 76.25 74.27 71.79 69.23 65.73 64.72 61.89 67.10 82.50
External 26.13 24.42 22.70 21.16 19.88 18.78 17.84 17.00 17.58 16.79 19.39 26.33

SemCor
Internal 83.44 79.35 74.99 71.41 68.31 64.64 60.91 57.57 57.85 53.82 60.77 81.93
External 80.29 74.19 67.17 61.43 56.59 52.11 48.08 45.57 48.11 44.40 53.22 78.70

Table 3: Internal and External similarity scores of DeBERTa-v3 and its layers on SemCor and ODE (K = 5).

at least K = 5 occurrences (i.e. the same setting
as that of our experiments, cf. Table 1a), and plot
the resulting distribution. Specifically, as we can
see from Figures 2 and 3 – despite ODE having
a larger set of lemmas – the two inventories have
matching distributions with most lemmas having
2-6 meanings, suggesting a similar level of gran-
ularity. For completeness, we also compute the
average polysemy degree D on the two inventories,
and obtain DODE = 2.93 and DSemCor = 2.82,
confirming our qualitative interpretation.

Based on these findings, we can exclude the
sense granularity from the factors contributing to
the performance discrepancy between ODE and
SemCor, and proceed with our investigation.

6.2 Sense Frequency

At this stage, we aim to assess how the number
of training examples influences the formation of
centroids, guided by the intuition that word senses
with fewer examples may produce less accurate,
noisier centroids. This issue is particularly relevant
in SemCor as it exhibits highly imbalanced sense
frequencies, with the most frequent sense (MFS) of
a given word often being overrepresented in the cor-
pus. As a result, the dominance of the MFS could
skew the classification process, leading to errors in
identifying less common, tail senses. This imbal-
ance poses a challenge to accurate disambiguation,
as the scarcity of training data for rare senses may
cause the system to favor more frequent senses,
thus reducing overall classification precision.

To investigate this factor, for a given lemma,
we take exactly K = 5 examples for both ODE
and SemCor, and repeat the experiments using the
best model, i.e. DeBERTa-v3. However, when
comparing the results in Table 2 against those in
Table 1a, we still observe a notable discrepancy of
approximately 18 points between ODE and Sem-

Cor. Notably, the results on SemCor remain stable,
indicating that K = 5 examples are sufficient to
produce accurate centroids, and suggesting that
sense balancing is not the factor driving the per-
formance gap. On the other hand, the results on
ODE — where both frequent (top) and rare (tail)
senses already had a similar number of examples
— show a 2-point drop in F1 score. However, this
outcome was expected, as the examples in ODE
were already balanced, and the only change applied
was the reduction in the total number of examples
per sense, which negatively impacted the quality of
the centroids created.

As a side note, we highlight that the 7th and
8th layers are still the best-performing ones, con-
firming that those layers are the most suitable for
encoding semantic information, independently of
the number of examples given.

6.3 Homogeneity of Examples

After excluding sense granularity (Section 6.1) and
sense frequency (Section 6.2) as key factors char-
acterizing the performance gap between ODE and
SemCor, we proceed to analyze the homogeneity
of examples within the two inventories. This ad-
ditional study aims to determine whether the dis-
tinctions between word senses are more clearly
reflected in their corresponding sentence examples.

To conduct our analysis, we compute the simi-
larity scores between pairs of examples belonging
to the same word sense and between pairs of exam-
ples belonging to different senses (within the same
lemma). Specifically, following Tripodi (2021),
we define the internal similarity as a measure to
quantify how similar the instances within the same
sense cluster are, while we define the external sim-
ilarity as a measure to quantify how different the
instances within different sense clusters are. For-
mally, given a lemma L, with N sense clusters
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S = {S1, . . . , SN}, we define the internal similar-
ity of the sense cluster Si as:

IntSim(Si) =
1

n2 − n

∑

i

∑

j ̸=i

cos(ei, ej), (3)

where n is the number of data points (i.e. embed-
dings of examples) in the sense cluster Si, and
cos(ei, ej) is the cosine similarity between a pair
of embeddings.

Similarly, we define the external similarity of
a sense cluster Si with all the other clusters in
Ŝ = S \ Si, as:

ExtSim(Si, Ŝ) =

1

n ·m
∑

ei∈Si

∑
ej∈Sk,

Sk∈Ŝ cos(ei, ej),
(4)

where m is the number of embeddings of all the
other clusters Ŝ belonging to the lemma L.

Based on these metrics, we expect an easy disam-
biguation setting to have a high internal similarity
(i.e. examples of the same word sense are near in
the latent space) and low external similarity (i.e.
examples of different word senses are far apart in
the latent space), resulting in a large difference be-
tween the two scores. Conversely, we expect a hard
disambiguation setting to have a less marked dis-
tinction between the internal and external similarity
scores, indicating a higher difficulty in assigning a
test instance to the correct sense cluster.

In Table 3, we report the average scores for each
layer of DeBERTa-v3: ODE turns out to be an
easier disambiguation benchmark than SemCor ac-
cording to the above definitions. In particular, when
evaluating on ODE, the best disambiguation layers
(i.e. the 7th and 8th layers, according to Tables 1a,
1b and 2) have high internal similarity (∼70) and
low external similarity (∼20). This result strongly
suggests that the examples of a given sense are
cohesive, while examples of different senses are
easily distinguishable. In contrast, the scores on
SemCor show both a high internal similarity as well
as a high external similarity, indicating a higher se-
mantic and contextual similarity between examples
of different senses.

Importantly, we note that this result may be influ-
enced by the nature of the examples provided in the
ODE dictionary, which are potentially less varied
and realistic than those from SemCor. Moreover,
the SemCor examples originate from texts written
in the 1960s.

System F1 #Layers Training Time
GlossBERT (Huang et al., 2019) 77.0 12 28:42h
GlossDeBERTa (Ours) 79.5 12 38:01h
GlossDeBERTa-small (Ours) 79.5 7 22:27h

Table 4: F1-score (%) for fine-grained English all-words
WSD on the ALL dataset.

7 GlossDeBERTa-small

Based on our experiments (cf. Section 4), we identi-
fied that DeBERTa-v3 is the best-performing PLM
for modeling semantic information, and that its 7th
and 8th layers are the most effective ones. Using
these findings, we now aim at creating a new WSD
model that achieves competitive performance while
having a limited number of parameters.

To achieve this, we place a classification layer on
top of the 7th layer of DeBERTa-v3 and fine-tune
this model on SemCor, following the methodol-
ogy of GlossBERT9 (Huang et al., 2019), which
involves the creation of sentence-gloss pairs with
weak supervision on the target word. We train our
model for 4 epochs on an NVIDIA GPU 1080 Ti
with a dropout parameter set to 0.1, a learning rate
of 2e-5, a batch size of 64, and use the development
set (SE07) for selecting the optimal checkpoint.

We then evaluate the model on the ALL dataset
to assess its performance. For completeness, we
also train the same architecture using the full BERT
and DeBERTa-v3 models, and report the results in
Table 4. Notably, GlossDeBERTa-small attains the
best score while boasting a training speedup of 28%
and 70.6% compared to GlossBERT and GlossDe-
BERTa, respectively, thus considerably reducing
the carbon footprint of the resulting model.

8 Conclusions and Future Work

We presented a probing task with the goal of de-
termining the extent to which pre-trained encoder
models know about word senses before being fine-
tuned. Specifically, we analyzed the performance
of each intermediate and output layer of four dif-
ferent models using a centroid-based method, and
compared their accuracy on the WordNet and ODE.
We found that DeBERTa-v3 is the best model and
that it surprisingly achieves its best scores with the
7th and 8th layers, outperforming the output layer
by ∼15 percentage points.

Additionally, our results highlighted how the
performance of the PLMs is strongly connected to

9We reproduce the GlossBERT(Sent-CLS-WS) model us-
ing DeBERTa-v3 instead of BERT as the underlying PLM.
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the underlying inventory used to construct the cen-
troids, with SemCor being more challenging than
ODE. Hence, to further investigate the behavior of
the PLMs, we performed an extensive analysis on
the structure of the two inventories, and discovered
that the performance gap is mostly due to the qual-
ity of examples present in the inventories. Finally,
based on our findings, we proposed a small yet
effective WSD model that achieves strong perfor-
mance while considerably reducing training times
and hardware requirements.

For future work, we plan to extend our study to
multilingual PLMs as well as to Large Language
Models (LLMs) such as ChatGPT (Bahrini et al.,
2023), Llama (Touvron et al., 2023) or Mistral
(Jiang et al., 2023) and investigate their behavior
across a broader set of languages and tasks.

9 Limitations

Although we analyzed the four most popular Trans-
former models spanning the main pretraining strate-
gies, other notable PLMs exist, like ALBERT (Lan
et al., 2020), CamemBERT (Martin et al., 2020),
SpanBERT (Joshi et al., 2020) and DistilBERT
(Sanh et al., 2019). Additionally, due to hardware
constraints, we focused on the base version of the
PLMs (i.e. models with 12 layers) and did not in-
clude the large versions of the models (e.g. models
with 24 layers). Finally, while our analysis focused
on the English language, it would be interesting
to extend this work to popular multilingual PLMs,
such as mBERT (Libovickỳ et al., 2019), XLM
(Conneau and Lample, 2019), XLM-R (Conneau,
2019) and XLM-E (Chi et al., 2022) where similar
analyses could yield valuable insights. We plan to
address these limitations in future works.
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