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Abstract

We interact with computers on an everyday basis, be it in everyday life or work,
and many aspects of work can be done entirely with access to a computer and
the Internet. At the same time, thanks to improvements in large language models
(LLMs), there has also been a rapid development in AI agents that interact with and
affect change in their surrounding environments. But how performant are AI agents
at accelerating or even autonomously performing work-related tasks? The answer
to this question has important implications both for industry looking to adopt AI
into their workflows and for economic policy to understand the effects that adoption
of AI may have on the labor market. To measure the progress of these LLM agents’
performance on performing real-world professional tasks, in this paper we introduce
TheAgentCompany, an extensible benchmark for evaluating AI agents that interact
with the world in similar ways to those of a digital worker: by browsing the Web,
writing code, running programs, and communicating with other coworkers. We
build a self-contained environment with internal web sites and data that mimics
a small software company environment, and create a variety of tasks that may be
performed by workers in such a company. We test baseline agents powered by both
closed API-based and open-weights language models (LMs), and find that the most
competitive agent can complete 30% of tasks autonomously. This paints a nuanced
picture on task automation with LM agents–in a setting simulating a real workplace,
a good portion of simpler tasks could be solved autonomously, but more difficult
long-horizon tasks are still beyond the reach of current systems. We release code,
data, environment, and experiments on https://the-agent-company.com.

Website https://the-agent-company.com
Code https://github.com/TheAgentCompany/TheAgentCompany
Evaluations https://github.com/TheAgentCompany/experiments

1 Introduction

We are in the midst of a technological transformation. With the rapid month-by-month progress
brought about by large language models (LLMs), we are seeing AI-based assistance or automation
become commonplace in tasks that were unthinkable only years ago. In fact, the pace of progress is
so fast that some have gone so far as to claim that the majority of human labor may be automatable
within the next couple of years (Eloundou et al., 2023; Amodei & Fridman, 2024). On the other hand,
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Figure 1: An overview of TheAgentCompany benchmark. It features a reproducible and self-
hosted environment, simulated colleagues to test agent communication capabilities, checkpoint and
execution-based evaluation, and a set of 175 diverse, realistic and professional tasks in a software
engineering company setting.

others are skeptical, claiming that language models cannot truly reason (Kambhampati et al., 2024),
do not generalize well to novel tasks (Chollet et al., 2024), and may only have an impact on a small
minority of the labor market (Wittenstein, 2024).

What is the reason for this disconnect? We argue that it is, in part, due to a lack of objective
benchmarks that not only demonstrate the power of existing LLM-based agents to accelerate a
wide variety of repetitive tasks encountered in every-day workplaces, but also provide appropriate
caveats about the tasks that agents cannot do. This is a pressing issue, because the commercial and
policy implications of diverse and effective acceleration or automation of work-related tasks will be
broad, both positive (e.g. increase of quality of life and accelerated scientific discovery) and negative
(e.g. potential displacement or loss of jobs and increase in wealth disparities). In this paper, we take
some first steps towards resolving this gap and providing a clearer view of where we are now with
respect to acceleration or automation of consequential work-related tasks, and a litmus test for future
development in this direction.

Concretely, we propose a benchmark, TheAgentCompany (Figure 1) that estimates the ability of
AI agents to perform tasks encountered in everyday workplaces. We create a simulated software
development company where agents must perform tasks related to software engineering, project
management, financial analysis, and other typical tasks encountered in such business settings. The
agents must browse the web, code, and interact with other simulated co-workers to achieve success
on the provided tasks. TheAgentCompany’s environment is based entirely on open-source software
and self-hostable for reproducibility purposes, and we create rigorous evaluators that also assign
partial credit when the agent gets the answer partially correct.

We perform experiments using twelve large language model backbones, including closed models such
as Anthropic Claude (Anthropic, 2023), OpenAI GPT-4o (OpenAI, 2024), Google Gemini (Team
et al., 2023), Amazon Nova (Intelligence, 2024), plus open models like Meta Llama (Dubey et al.,
2024) and Alibaba Qwen (Yang et al., 2024). All models are run with OpenHands agent framework
(Wang et al., 2024b),2 which provides a stable and strong agent harness for both web browsing
and coding. We find in experiments that the best performing model, Gemini 2.5 Pro was able to
autonomously perform 30.3% of the provided tests to completion, and achieve a score of 39.3% on
our metric that provides extra credit for partially completed tasks.

These results present a nuanced picture of the current ability of AI agents to perform tasks. Agents
powered by the current gold-standard AI techniques are able to autonomously perform a wide
variety of tasks encountered in everyday work. However, they are not close to automating every task
encountered in a workspace, even on the subset of tasks presented in TheAgentCompany, which are
well-scoped administrative and coding tasks encountered in a software company’s day-to-day work.

2 Benchmark Desiderata and Comparison to Other Benchmarks

In order to evaluate the ability of agents to perform tasks in complex real-world settings, we built
TheAgentCompany with a number of desiderata in mind. The comparison with several existing
prominent agent benchmarks with respect to these desiderata is in Table 2. More details of the
benchmark construction can be found in Appendix B.

2https://github.com/All-Hands-AI/OpenHands
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Coverage of Multiple Work-related Tasks: In order to make any valid statements about the
potential of AI to accelerate or automate various types of real-world work, we should have tasks that
are motivated by real-world work across multiple job categories. Many benchmarks are not relevant to
real-world work (e.g. MiniWob++ (Liu et al., 2018)) or very relevant to real-world work, but only over
a limited scope of tasks (e.g. SWE-Bench (Jimenez et al., 2024)). In contrast, TheAgentCompany
contains a set of more diverse, realistic, and professional tasks that would typically be completed by
multiple job roles in a software engineering company.

Requirement for Interaction If agents are integrated into real-world workplaces, they need to
communicate with the other human members of the workspace. Most other benchmarks do not
measure communication or interactivity, except for τ -bench (Yao et al., 2024) that only measures
interaction in customer service scenarios. TheAgentCompany is a better testbed for communication,
as asking and providing information to colleagues as part of many more complex tasks.

Long-horizon Tasks with Checkpoints In real-world settings, many tasks require many steps to
achieve a higher-level goal. One novel contribution of TheAgentCompany is that we both (1) contain
tasks that require an agent to perform significantly more consecutive work (i.e. involving more steps
and realistically taking human professionals longer to accomplish) than previous benchmarks, and (2)
provide granular evaluators that measure the ability of models to perform subtasks of larger tasks.

Versatile Environment Interface: In order to handle a diversity of tasks in real-world settings,
we minimally should be able to interact with the tools that real-world workers use – including web
interfaces, programs, command-line terminals, and communication tools. TheAgentCompany covers
all of these interfaces, while most previous benchmarks focus only on one or two.

Self-hosted and Reproducible: In order to allow for careful comparisons between different meth-
ods that remain constant over time, the benchmark should be fully self-hosted and reproducible. This
contrasts with existing benchmarks that do not have execution environments (e.g. Mind2Web (Deng
et al., 2023)) or require the usage of third-party hosted platform (e.g. WorkArena (Drouin et al.,
2024), CRMArena (Huang et al., 2024)).

3 TheAgentCompany Environment Setup

Our benchmark is set in an imaginary software engineering startup called TheAgentCompany, hence
the benchmark’s name. We create tasks inspired by tasks handled by workers inside such companies.
More details about the company’s imaginary background, overview and employees can be found in
Appendix G. The benchmark environment contains multiple components.

Local Workspace The local workspace runs locally on the agent’s host, which is analogous to a
human professional’s local workspace, e.g. their work laptop computer. This environment is created
as a sandboxed Docker environment to provide a safe execution environment that will not affect other
parts of the evaluation machine. This environment is where agents work on the task, and within this
environment the TheAgentCompany baseline agent (§ 6) uses a browser, code editor and a Linux
terminal with typical software preinstalled.3

Intranet This part of the environment mimics the company’s internal websites that host code,
documents, project management software, and communications software. To achieve a reproducible,
self-contained environment, we follow WebArena (Zhou et al., 2023), in using open-source, self-
hostable software to host our environment. The environment mainly contains the following websites:

1. GitLab,4 an open-source alternative to source-code repositories such as GitHub. This is used for
hosting TheAgentCompany’s code repositories and tech-oriented wiki pages.

2. OwnCloud,5 an open-source alternative to office software such as Google Drive or Microsoft
Office. This to save and share files, especially for document storage and collaborative editing.

3Other options would include using a GUI-based desktop environment with office software (Xie et al.,
2024), but we opt to build a baseline solution that is entirely web-based, reflecting the recent trend of more
enterprise software moving to the cloud. Despite this, we also provide a virtual machine OS image with the
entire environment pre-packaged.

4https://about.gitlab.com/install/
5https://doc.owncloud.com/
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3. Plane,6 an open-source alternative to task management software such as Jira or Linear. This is
used to track issues, run sprints cycles, and manage product roadmaps.

4. RocketChat,7 an open-source alternative to communication software such as Slack. This is a
company-internal real-time messaging tool that facilitates collaboration between employees.

All the websites hosted are reproducible and reset-able with mock data inspired by that from a
software engineering company. The data inside these company internal websites are populated with
real-world software project data, as well as data manually curated by co-authors who have some
experience in the relevant corporate roles.

Simulated Colleague Communication One major aspect of working in a company is communi-
cating with other company members, and in TheAgentCompany we also test the ability of models to
perform this type of communication. Specifically, we allow agents to use RocketChat to message
other company members and obtain information that may not be available in the original task de-
scription. To create these simulated colleagues, we rely on the Sotopia platform (Zhou et al., 2024),
which supports the creation of simulated human characters with LLMs. Each simulated colleague is
equipped with a detailed profile that includes their name, role, responsibilities, and project affiliations
(e.g., Sarah Johnson, who serves as the CTO, oversees technical strategy planning and R&D team
leadership, with access to all technical channels). Agents can interact with these simulated colleagues
through direct messages or in specific channels, as is standard in RocketChat and other platforms. By
default, all simulated human characters are backed by the Claude-3-5-Sonnet-20241022 LLM
across experiments, as we found that it provided the best results during preliminary experiments. The
detailed error analysis with respect to the introduction of LLM as Colleageus is given in Appendix F.
For example conversations between the agent and the simulated colleagues drawn from empirical
experiments, please refer to Appendix H.

4 Task Structure

The tasks in TheAgentCompany include a task intent, a list of checkpoints the agent must achieve, a
programmatic evaluator to check success on these checkpoints, and code to initialize and finalize the
environment. We show some examples in Appendix C (Table 3), and detail each aspect below.

Task Intent Each task begins with an English description, simulating how a user would instruct an
LLM-based agent to perform a real-world task. In general, we aim for these tasks to be clear enough
so that a human worker would be able to complete the task without asking for further instructions
directly from the user (although they may need to ask questions of their other co-workers).

Checkpoints Tasks are divided into checkpoints representing intermediate milestones, each as-
signed a point value to measure progress. Each checkpoint is awarded a certain number of points
based on its significance to the overall completion of the task. Checkpoints are written in English,
and typically specify one or more of the following:

• Action Completion: Verifying whether required actions, such as using tools, navigating to URLs,
or collecting data, were carried out successfully.

• Data Accuracy: Evaluating the correctness and completeness of the output, such as extracted data
or formatted documents.

• Collaboration: Assessing interactions with simulated colleagues or sharing of output, such as
posting messages or asking for additional information to complete the task.

Evaluators Checkpoints are created in the task design phase, but for actual evaluation, each of
the checkpoints must be concretely implemented through an evaluator – a program that checks the
completion of the checkpoint. These evaluators are implemented by examining environment states,
such as the local workspace, intranet status, simulated colleague interactions, or by analyzing agent
trajectories, like verifying browsing history or action sequences.

In most cases, these evaluators are deterministic and written as simple Python functions. For instance,
in the SWE task in Table 3, the checkpoints are deterministic: verifying if the JanusGraph repository is
cloned, the binary file is built, and the server is launched with an HTTP endpoint. However, for tasks
with more complex and unstructured deliverables, such as in Table 3, the last checkpoint in the Finance

6https://github.com/makeplane/plane
7https://www.rocket.chat/install
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task requires contacting the correct finance director (David Wong) to resolve ambiguous questions,
which involves a judgment from a (simulated) human colleague, deterministic evaluation can be
challenging due to subjectivity and variability. In such cases, we employ LLM-based evaluation.
This involves prompting LLMs with predefined rubrics or reference outputs to assess the agent’s
deliverables, enabling a more nuanced and flexible evaluation of these tasks. Same as the NPC
backbone, all LLM-based evaluators are backed by the Claude-3-5-Sonnet-20241022. For an
error analysis with respect to the LLM evaluator, refer to Appendix E.

4.1 Evaluation Metrics

Due to our checkpoint-based evaluation scheme and the need for showcasing both the progress of
the agent’s capability improvement as well as the eventual goal completion ability, we calculate two
scalar agent capability metrics and two efficiency metrics.

Full completion score We define the full completion score Sfull as:

Sfull =

{
1 if all checkpoints are successfully passed,
0 otherwise.

This binary metric evaluates if the agent successfully completed the task by passing all checkpoints.

Partial completion score To provide a more nuanced measure that rewards partial task completion
while strongly incentivizing full task completion, we define partial completion score as: Spartial =

0.5 · Result
Total + 0.5 · Sfull, where: “Result” is sum of awarded points across all checkpoints (including

partial credit), “Total” is sum of the total points for all checkpoints, Result
Total is fractional progress toward

full completion, and Sfull is binary indicator equal to 1 when the task is fully completed.

This formulation ensures that agents are awarded partial credit in proportion to the points achieved,
reflecting their progress toward task completion. At the same time, full task completion is strongly
incentivized by incorporating an additional 50% credit, which is awarded only when all checkpoints
are successfully completed. This design ensures that agents achieving partial progress receive scores
scaled linearly with their performance, while those reaching 100% completion are distinctly rewarded
to emphasize the importance of achieving the end goal.

Number of steps The number of steps is defined as the total number of LLM calls made during
the task execution. This metric quantifies the operational effort required to perform the task.

Cost per instance We measure the monetary cost of querying the underlying LLMs via API. Assum-
ing no prompt caching, we calculate the cost as: Cost = (Prompt token count×Prompt token cost)+
(Completion token count×Completion token cost). This efficiency metric reflects the computational
expense of task completion based on token usage.

4.2 Workflow

Each task typically follows a workflow with three stages. Initialization: The agent sets up its
workspace and prepares to execute the task. Execution: The agent completes subtasks, such as
navigating tools, collecting or processing data, or if required by the task, the agent interacts with sim-
ulated colleagues or shares results via communication platforms. Finalization: The agent produces
and submits the final output for evaluation. A detailed example task can be found in Appendix C.

5 Task Creation

5.1 Choosing Task Categories

Many previous agent benchmarks discussed in § 2 were created to evaluate agents on tasks people
perform in daily life (Zhou et al., 2023; Lù et al., 2024; Deng et al., 2023), or tasks that accomplish
digital chores (Yoran et al., 2024; Trivedi et al., 2024). Obtaining realistic tasks for the benchmark
poses challenges. Some benchmark (Xie et al., 2024; Drouin et al., 2024; Yoran et al., 2024)
crowdsourced tasks based on predetermined interfaces, platforms, and services available to the agent.
They adopt a strategy to first gather task templates and then instantiate more task instances by filling
in the variables. Some benchmark (Zhou et al., 2023; Koh et al., 2024; Bonatti et al., 2024) took a
semi-systematic approach of reviewing the action history of the research team and choosing tasks that
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reflected the types of task that the researchers carried out in their daily life. There are several obvious
issues with this if we want to evaluate agents with broader implications in the TheAgentCompany
benchmark. Despite some grounding in realistic data, the process of creating tasks from these data
was susceptible to heuristic, and no consideration was made for how important or time-consuming
the tasks are. The tasks are biased towards those important for academics in computer science and do
not reflect the tasks performed by the entire population.

In TheAgentCompany, we attempt to cover a wide variety of tasks motivated by real-world work.
While it is highly challenging to create a representative sample of tasks, fortunately we can rely on
existing resources created for other purposes as a reference. Specifically, we start by referencing the
29.1 release of O*NET database (O*NET, 2024; Rounds et al., 1999), which is a database of jobs
performed by workers in the US created by the US Department of Labor. It also contains information
about tasks performed within the context of each job, abilities required to perform each task, whether
the task is a major or minor task for that job category, and other pieces of relevant information. Based
on this data, we first identified a few categories of occupation categories to focus on. First, based on
statistics from O*NET, we identified job categories that have a large number of people performing
this job. Then, we used median salary information for each of these job categories from the US
department of labor statistics, and multiplied the number of employees in that category to estimate the
aggregate value of performing this job. Based on this, we identified several categories of jobs such as
“General and Operations Managers”, “Registered Nurses”, “Software Developers”, and “Financial
Managers” that have both a high population and high average salary. Because TheAgentCompany is
designed to be a non-embodied benchmark in the digital domain, we excluded the categories that
require extensive physical labor such as “Registered Nurses”, and eventually settled on the setting of
a software company, which would allow us to cover tasks from the other categories.

5.2 Choosing Tasks

Next, within this setting we chose tasks to implement. In this setting, we attempted to create a diversity
of tasks, but mostly focused on concrete tasks that have well-defined goals and success criteria. These
tasks were created through a combination of referencing the O*NET task list, introspection based on
paper co-authors who had experience in each task category, and brainstorming lists with language
models. It is important to note that in no cases have we covered an extensive list of all the tasks
that are performed in a particular occupational category, and therefore we caution against making
any assumptions about whether a particular job may be in danger of full automation based solely on
TheAgentCompany. Rather, it may provide insight into whether certain tasks within jobs may be
accelerated or automated, and inform further analysis by labor professionals into this question.

5.3 Manual Task Curation

Once we set up the environment required for our desired jobs and task categories (§ 3), we return to
the curated list, and perform a manual curation process for tasks. For each task, this consists of the
following steps: We first create a description of task intent, checkpoints, and how to evaluate each
checkpoint. We then identify and import the required data for the task that are currently missing in
the company Intranet services and create any necessary data. We then write scripts to configure the
required initialization state in the local workspace. Finally, we implement the checkpoint evaluators
that calculate the scalar scores for each checkpoint.

All tasks were created by coauthors of the paper. Overall, it took 20 computer science students,
software engineers, and project managers over 2 months, consuming approximately 3,000 person-
hours in total. Some of the more complex tasks take more than 10 hours each to design, implement,
test, and verify. To ensure quality control of the task creation process, we implement several check
and verification processes. For each task implementation, we require screenshot proof that the
evaluator is valid and that the task is able to get a full score when successfully completed. We also
encourage including tests for the implemented evaluator programs. Each task contribution is also
code reviewed by a panel of lead authors before merging into the benchmark. After creating all tasks,
a final round of manual human double-check of required environment data, evaluator behavior, and
checkpoint scoring for every task is performed to ensure quality. During the process, a person who
has not curated the tasks checks all the checkpoint score assignments to make sure that the importance
scoring is consistent over all the tasks and correlates reasonably with the relative importance of the
checkpoint within the task.

6



6 Baseline Agents

To test the current state-of-the-art performance on the TheAgentCompany benchmark, we need agents
that can at least perform tasks using a browser, operate a local workspace using a terminal, and
write and execute programs to perform most of the tasks. We adopt OpenHands’ main agent (Wang
et al., 2024b,a; Song et al., 2024), CodeAct Agent with Browsing8, as well as OWL-RolePlay (Hu
et al., 2025), a multi-agent framework designed for real-world task automation.9 An overview of the
OpenHands agent architecture is illustrated in Figure 4, with more details in Appendix D.

7 Experimental Results

We evaluate popular foundation models, both closed and open, on TheAgentCompany benchmark. We
use OpenHands CodeAct agent and OWL-Roleplay (§ 6) for all experiments. This serves as a baseline
for future development of both the foundation LLMs and the agent infrastructure. Note that since
LLM evaluators and NPCs are part of the environment rather than the agent being evaluated, we fix
their backbone LLM to Claude-3-5-Sonnet-20241022, which demonstrated the best qualitative
accuracy in simulating human colleagues and judging deliverables in preliminary experiments.

7.1 Result Overview
Table 1: Performance comparison of various foundation models
on TheAgentCompany.

Agent Model Success Score Steps Costs

API-based Models

OpenHands 0.28.1 Gemini-2.5-Pro 30.3% 39.3% 27.2 $4.2
OpenHands 0.28.1 Claude-3.7-Sonnet 26.3% 36.4% 27.8 $4.1
OpenHands 0.14.2 Claude-3.5-Sonnet 24.0% 34.4% 29.2 $6.3
OpenHands 0.14.2 Gemini-2.0-Flash 11.4% 19.0% 39.9 $0.6
OpenHands 0.14.2 GPT-4o 8.6% 16.7% 14.6 $1.3
OWL RolePlay GPT-4o, o3-mini 4.0% 11.3% N/A N/A
OpenHands 0.14.2 Gemini-1.5-Pro 3.4% 8.0% 22.1 $6.8
OpenHands 0.14.2 Amazon-Nova-Pro-v1 1.7% 5.7% 19.6 $1.6

Open-weights Models

OpenHands 0.14.2 Llama-3.1-405b 7.4% 14.1% 23.0 $3.2
OpenHands 0.14.2 Llama-3.3-70b 6.9% 12.8% 20.9 $0.9
OpenHands 0.14.2 Qwen-2.5-72b 5.7% 11.8% 24.0 $1.5
OpenHands 0.14.2 Llama-3.1-70b 1.7% 6.5% 19.2 $0.8
OpenHands 0.14.2 Qwen-2-72b 1.1% 4.2% 23.7 $0.3

Table 1 shows the evaluation re-
sults of both closed and open
foundation models on the full
evaluation set of TheAgentCom-
pany (175 tasks). We can see
that Gemini-2.5-Pro is the clear
winner across all models. How-
ever, even with the strongest fron-
tier model, it only manages to
complete 30% of the total tasks
and achieves a score of 39% tak-
ing into account partial comple-
tion credits. Note that this re-
sult comes at a cost: It requires
an average of almost 27 steps
and more than $4 to complete
each task, making it an expen-
sive model to run both in time and in cost. This is expected as most of the tasks in our benchmark are
of long-horizon nature. The Gemini 2.0 Flash model that comes fourth in terms of capability requires
40 steps on average to complete the tasks, which is time consuming, yet only to achieve one-third of
the success rate compared to the top-performing model. Surprisingly, its cost is less than $1, making
it a very cost-efficient, yet relatively strong model. A qualitative examination demonstrated that this
was due to instances where the agent got stuck in a loop or aimlessly explored the environment.

Both using GPT-4o, OpenHands (8.6%) and OWL RolePlay (4.0%) show varied performance
due to differences in their technical designs. OpenHands CodeAct is a single agent that is better at
maintaining consistency in a long-horizon task, while OWL RolePlay adopts multi-agent collaboration
and experiences difficulty in preserving progress and context. For example, the main agent in OWL
delegates browsing tasks to a dedicated browsing agent that often cannot finish the task within the
step limit. Although the main agent then starts another round of delegation with a revised plan, the
browsing agent often fails to pick up its previous progress due to UI complexity. This is very common
in modern websites where not every browsing action results in a change in web URL.

Among the open-weight models, Llama 3.1 (405B) achieves the highest performance, nearly on
par with OpenAI’s GPT-4o model, though still having a big gap behind the leading Gemini 2.5 Pro.

8More specifically, version 0.14.2 and 0.28.1 (to accommodate newer models). Full details can be found in
https://github.com/All-Hands-AI/OpenHands/releases

9For OWL RolePlay, we tested only with the recommended model configuration using branch https://github.
com/camel-ai/owl/tree/gaia58.18
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Figure 2: Comparing OpenHands success rate across platforms (left) and task categories (right).

Interestingly, comparing the number of steps and costs between the open Llama 3.1 (405B) model
and the closed OpenAI GPT-4o model, Llama 3.1 takes more steps and costs nearly 2x more to run,
while having a lower success than GPT-4o. Anecdotally, our inspection showed that GPT-4o seems
to be better at giving up early, saving steps and costs if the task is clearly out of the capacity range of
the agent. This suggests that open-weight models are not always the most cost-effective choice in
agents given the serving cost, especially with highly complex tasks.

On the other hand, the newer generation, Llama 3.3 (70B), achieves a considerably high performance
of 6.9% success rate, on par with the much larger (405B), older generation (Llama 3.1) model. This
model also costs significantly less because of its smaller size. This suggests a promising future for
LLM development, as smaller and more efficient models begin to catch up in agent performance.

7.2 Analysis

How well do agents operate on different platforms? Figure 2 (left) shows the result breakdown
on tasks on different platforms in TheAgentCompany (more detailed results in Appendix I, Table 4).
A task is categorized under a platform if it requires that platform. We see that most models struggle
with RocketChat and ownCloud. RocketChat is where all social interaction with peers occurs, and
the low scores suggest that LLMs still lack communication skills. ownCloud provides online Office
suite functionality, and due to the complexity of the UI of web-based Office software, it is expected
that current LLMs fail badly. These results underscore the inherent challenges of performing tasks in
real-world work environments, with social interactions, or understanding of complex web interfaces.

How well do agents perform on different type of tasks? Figure 2 (right) presents the performance
breakdown for different types of tasks in TheAgentCompany (more details in Appendix I, Table 5).
Depending on the nature of the task, i.e. what kind of professionals are usually assigned to the
task, the tasks in TheAgentCompany can be categorized into various departments of jobs. Software
Development Engineering (SDE), Project Management (PM), Data Science (DS), Administrative
(Admin), Human Resources (HR), Financial (Finance) and all the remaining (Other). From the
success rate, we can see that DS, Admin, and Finance tasks are the lowest, with many LLMs
completing none of the tasks successfully, and even the strongest Gemini model achieving lower
scores than other tasks. On the other hand, software engineering tasks, which may seem like much
harder tasks for many humans, result in a higher success rate. This suggests that there exists a gap
between the perceived difficulty of the tasks for humans versus the difficulty for LLM agents.

For example, some Admin and Finance tasks involve making spreadsheets, collecting and filling in
a lot of information from various people, or understanding images scanned by employees. These
tasks are arguably easier conceptually for humans in terms of professional skill sets than software
engineering, as SDE jobs usually have a higher barrier of entry and more prerequisites for certain
knowledge. However, most LLMs achieve a much higher score on the SDE tasks. LLMs fail these
seemingly easier tasks due to lack of ability to understand documents, communicate with other
people, navigate complex software and tedious processes, and autonomously automate repetitive
tasks. We hypothesize that part of the reason lies in the fact that current LLM development is heavily
based on software engineering abilities, such as coding, due to several high profile benchmarks that
measure this capability (e.g. HumanEval, SWE-Bench) as well as the abundance of publicly available
training data related to software. On the other hand, administrative and financial tasks, are usually
private data within companies, not readily available for training LLMs.
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7.3 Common Agent Failures

Overall, the agent performance on TheAgentCompany is still low and a majority of tasks are failed.
Among those, we try to find some common and interesting agent mistakes that are often surprising
because they are usually not made by humans.

Lack of social skills Sometimes, the agent fails to understand the implications and goals in the
social conversations with colleagues in TheAgentCompany. For example, one task involves asking
Alex for help, and the agent first successfully asks the right question “Could you tell me who I should
introduce myself to next on the team?” Then the simulated colleague Alex replied “You should
introduce yourself to Chen Xinyi next. She’s on our frontend team and would be a great person to
connect with!” At this point, a human would then talk to Chen Xinyi, but instead the agent then
decides to not follow up with her, and prematurely considers the task accomplished.

Incompetence in browsing Oftentimes, the biggest obstacle in tasks is the parts that require
browsing the Web. This is expected as browsing is still hard for agents given the complexity of
modern-day web UIs and the numerous distractions on a webpage. For example, on many tasks
that involve ownCloud, a closable welcome popup has become an obstacle for OpenHands agent
which uses text-based browsing. OpenHands agent gets stuck and fails to click on the ’x’ to close the
popup, while OWL RolePlay, which uses visual browsing, suffers less from this problem. On the
other hand, OWL gets lost in complex web UIs more easily and clicks on wrong elements more often
than OpenHands, although both agents share the same problem.

Deceiving oneself Interestingly, we find that for some tasks, when the agent is not clear what the
next steps should be, it sometimes try to be clever and create fake “shortcuts” that omit the hard part
of a task. For example, during the execution of one task, the agent cannot find the right person to
ask questions on RocketChat. As a result, it then decides to create a shortcut solution by renaming
another user to the name of the intended user.

8 Implications and Future Directions

In this paper, we present TheAgentCompany, a new benchmark that stands out because it specifically
focuses on real-world tasks that would be tackled within the context of real-world work. Unsurpris-
ingly, current state-of-the-art agents fail to solve a majority of the tasks, suggesting that there is a big
gap for current AI agents to autonomously perform most of the jobs a human worker would do, even
in a relatively simplified benchmarking setting. Looking at how different models perform on different
types of tasks, we argue that tasks that involve social interaction with other humans, navigating
through complex user interfaces designed for professionals, and tasks that are typically performed
in private, without a significant open and publicly available resources, are the most challenging.
However, we believe that currently new LLMs are making significant progress: not only are they
becoming more and more capable in terms of raw performance, but also more cost-efficient (e.g.
Gemini 2.0 Flash). Open-weights models are closing the gap between proprietary frontier models
too, and the newer models are getting smaller (e.g. Llama 3.3 70B) but with equivalent performance
to previous huge models, also showcasing that efficiency will further improve.

That said, this is just a first step towards forming a firmer grasp on how AI may affect the tasks
performed within a workspace, and it has its limitations. First, our tasks are generally on the more
straightforward side due to the need to automatically evaluate with programs and test cases, and we
do not cover more complex creative tasks such as brainstorming new product ideas or designing
system architectures. Second, we are only using two agent scaffolds as the baseline performance,
and others may differ in performance. Third, while it would be interesting to know the actual
performance of human professionals on these tasks to understand how LLM agents perform in
comparison, due to resource limitations we were not able to perform this comparison in the current
iteration of TheAgentCompany. Fourth, the topic and content of the tasks were mostly created
through introspection by people familiar with these workspaces, which may result in some disconnect
with actual tasks performed in enterprise settings.

Based on this, there are many future directions for further improvement of TheAgentCompany or
other related benchmarks in this space. These include further expanding the benchmark tasks to
those encountered in other industries, or tasks that require physical labor. Benchmarking may also be
expanded with tasks that have more vague intents to better simulate real-world scenarios where the
goal is not immediately clear at the very beginning. Further, benchmarks could also be expanded to
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include higher-level longer-horizon tasks such as conceptualizing a new product and carrying it to
execution. We hope that TheAgentCompany provides a first step, but not the only step, towards these
goals, and that we or others may build upon the open source release of TheAgentCompany to further
expand in these promising directions.
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Table 2: Comparison of different AI agent benchmarks. Interface: the interface agent has access to; is web
browser, is desktop, is API usage, is Python runtime, is chat platform, is bash terminal. Task
Categories: tasks in the benchmark, ∗ indicate tasks with no association with real-world occupations; SE refers
to software engineering, HR is human resources, PM is project management. Long-Horizon with Checkpoints:
if tasks are evaluated at intermediate checkpoints and assigned partial scores. Requires Interaction: If the agent
can interact with other NPC agents during task-solving.

Framework Diverse
Real-world Work Task Categories Requires

Interaction
Long-Horizon

w/ Checkpoints Interface Self-Hosted
Environment

MiniWob++ (Liu et al., 2018) % Browsing∗ % % "

Mind2Web (Deng et al., 2023) % Browsing∗ % % %

WebLINX (Lù et al., 2024) % Browsing∗ % % %

AssistantBench (Yoran et al., 2024) % Browsing∗ % % %

WebArena (Zhou et al., 2023) % Browsing∗ % % "

VisualWebArena (Koh et al., 2024) % Browsing∗ % % "

VideoWebArena (Jang et al., 2024) % Browsing∗ % % "

WorkArena (Drouin et al., 2024) " Enterprise Software % % %

OSWorld (Xie et al., 2024) " Office, Coding % % "

Windows Agent Arena (Bonatti et al., 2024) " Browsing∗, Office, Coding % % "

CRMArena Huang et al. (2024) " Service agent, Analyst, Manager % % %

AppWorld (Trivedi et al., 2024) % Daily % % "

Gorilla APIBench (Patil et al., 2023) % Coding % % "

τ -bench (Yao et al., 2024) " Retail, Airline " % %

SWE-bench (Jimenez et al., 2024) % SWE % % "

DevBench (Li et al., 2024) % SWE % % %

Smallville (Park et al., 2023) % Social∗ " % "

Sotopia (Zhou et al., 2024) % Social∗ " % "

TheAgentCompany "
SWE, HR, Admin,

PM, Research, Finance " " "

A Agent Benchmark Comparison

We compare TheAgentCompany with other available agent benchmarks in Table 2.

B Benchmark Construction

Our goal was to construct a high-quality, hand-curated benchmark rather than relying on large-scale
scraping of publicly available tasks. Every task in our benchmark was created by domain experts and
designed to reflect complex and realistic workflows.

All tasks in our benchmark are carefully curated by referencing the ONET database with detailed job
responsibilities. ONET database was created by the US Department of Labor with extensive data
curation, analysis, and summarization by domain experts.

Domain experts are heavily involved in creating the respective tasks to ensure the complexity
and realism of the tasks. Specifically: Among the task creators, ten are experienced software
engineers currently employed at companies, representing a diverse cross-section of the industry. They
range from junior developers to senior engineers and engineering managers, working in various
sectors, including small startups, established tech giants, and financial institutions. They contributed
extensively to the brainstorming, drafting, and iterative refinement of the 69 software engineering
tasks.

For the 28 project management and 14 data science tasks, two of the task creators are industry
professionals with domain expertise in project management and data science, respectively. They were
directly involved in the collection and validation of this set of tasks.

For the 15 administrative, 29 human resources and 12 finance tasks, we collaborated with two senior
HR/admin staff professionals. Both have extensive professional experience in HR, finance, and
administrative operations. We show more example tasks in Table 3.

TheAgentCompany is significantly closer to a real-world work setting than any existing work in this
area. In particular, we have made deliberate efforts to approximate realistic work environments. To
highlight, our benchmark introduces LLM-based NPCs to simulate real-world human interactions
with unpredictability. For example, in some admin/HR tasks, we deliberately included realistic traps
and pitfalls that could cause both LLMs and human testers to make mistakes. Such human factors
are not considered in existing benchmarks such as WebArena (Zhou et al., 2023) and SWE-bench
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Figure 3: Example TheAgentCompany workflow illustrating an agent managing a sprint for the
RisingWave project. The task involves identifying and moving unfinished issues to next sprint cycle,
notifying assignees of those issues, running a code coverage script, uploading summarized report to
OwnCloud, and incorporating feedback on report from a simulated project manager.

(Jimenez et al., 2024). In addition, our environment simulates concern cases such as exceptions
in real-world task executions. For example, in some coding tasks, we simulate issues related to
environment setup and configuration, while existing SWE benchmarks (e.g., SWE-bench (Jimenez
et al., 2024)) only consider perfect scenarios with flawless environment setup and configurations.
Finally, our environment carefully selects the comprehensive set of four well-related services to
reflect typical workplace scenarios, along with non-work-related distractions such as pop-ups on
websites, while existing benchmarks include isolated application where cross-app tasks are rare.

C Example Tasks

We consider a task designed to evaluate an agent’s ability to perform realistic project management
workflows using multiple tools and services hosted on the benchmark. The task involves managing
a sprint for the RisingWave project, requiring the agent to execute interdependent steps such as
sprint issue management, team communication, repository operations, and report generation while
incorporating feedback from a simulated project manager.

The workflow as illustrated in Figure 3 begins with the agent identifying unfinished issues in the
current sprint on Plane and updating their sprint assignments. This step is worth 2 points and is fully
completed, earning the agent the maximum score of 2/2. Next, the agent successfully notifies the
relevant assignees using Rocket.Chat regarding their pending tasks and earns 1/1 point.

The agent then proceeds to clone the RisingWave repository from GitLab and execute a Python
script in the terminal to calculate updated code coverage. This step, worth 2 points, is only partially
completed, as the agent successfully clones the repository but fails to run code coverage. As a result,
the agent earns 1/2 points for this checkpoint. The subsequent steps—generating and sharing the sprint
summary report on OwnCloud and incorporating feedback from a simulated project manager—are
not completed, resulting in 0/2 and 0/1 scores, respectively. Notably, the checkpoints can also fail if
the report does not meet quality standards as assessed by the LLM-based evaluator, which evaluates
the report for clarity, completeness, and successful incorporation of feedback. This ensures that the
assessment reflects both the generation of outputs and their qualitative relevance to the task.

Finally, the overall score is calculated using the partial completion formula defined in § 4.1, where
the total possible points are 8, and the awarded points sum to 4. Substituting these values, the agent
achieves a final score of 0.25 (25%). Our scoring mechanism thus rewards incremental progress
while strongly incentivizing full completion.

This example represents a typical task in the TheAgentCompany benchmark, where agents are re-
quired to handle complex workflows involving multiple tools and interdependent steps. By evaluating
both partial progress and overall results, our benchmark provides a rigorous and realistic measure of
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Table 3: Example task intents and checkpoints for three domains.

Domain Task Intent Checkpoints

SWE Set up JanusGraph and run it locally with an HTTP endpoint:

• Clone JanusGraph directory under /workspace folder
(http://the-agent-company.com:8929/root/janusgraph).

• Build the binary file.
• Launch JanusGraph server locally on port 8182 with an HTTP

endpoint.

Checkpoint 1 (1pt): Check if Janus-
Graph repo is cloned.
Checkpoint 2 (3pts): Check if the
binary file is built (requires skipping
Docker in pom.xml, hence higher
points).
Checkpoint 3 (2pts): Check the Janus-
Graph Server as an HTTP endpoint.

Finance Navigate to ownCloud at http://the-agent-company.com:8092 and
complete Section B—Alternative Simplified Credit of IRS Form
6765:

• Gather necessary information from
/Documents/Financials/TAC_financials.csv and
/workspace/research_wages.csv.

• Consult
/Documents/Financials/f6765_instructions.pdf for
instructions.

• Contact the finance director (David Wong) on Rocket.Chat
(http://the-agent-company.com:3000/home) for ambiguous
questions.

• Save the filled form as /workspace/filled_f6765.pdf.

Checkpoint 1 (5pts): Check if all 16
questions in Section B of the form have
been answered correctly.
Checkpoint 2 (3pts): Check if the
correct finance director (David Wong)
was contacted to answer two ambiguous
questions.

PM Analyze The Agent Company’s performance and create a summary
in Plane:

• Access Plane (http://the-agent-company.com:8091/tac/) and
navigate to "Analytics."

• Collect metrics: Open Tasks, Backlog Tasks, Unstarted Tasks,
Started Tasks, Unassigned Issues, Pending Issues.

• Create a summary and share it on Rocket.Chat
(http://the-agent-company.com:3000/home) in the #kudos
channel.

Checkpoint 1 (1pt): Check if Plane was
accessed and the agent navigated to "An-
alytics" section.
Checkpoint 2 (3pts): Check if all re-
quired project metrics were collected.
Checkpoint 3 (1pt): Check if the sum-
mary was shared in the #kudos channel
on Rocket.Chat.

agent performance, allowing us to identify their strengths and pinpoint areas for improvement in task
execution.

D Baseline Agent Details

To test the current state-of-the-art performance on the TheAgentCompany benchmark, we need agents
that can at least perform tasks using a browser, operate a local workspace using a terminal, and write
and execute programs to perform most of the tasks. Throughout this paper, we experiment with
OpenHands’ main agent (Wang et al., 2024b,a; Song et al., 2024), CodeAct Agent with Browsing.10

We also experiment with OWL-RolePlay (Hu et al., 2025), a multi-agent framework designed for
real-world task automation.11. Hereby we illustrate OpenHands only. An overview of OpenHands
agent architecture is illustrated in Figure 4.

Interfaces The agent can interact with the environment through 3 interfaces. (1) A bash shell
that connects with the local workspace operating system environment for command execution.
(2) A Jupyter IPython server to handle interactive python (IPython) code execution requests and
return the execution results back. (3) A Chromium browser based on Playwright. The provider
provides a set of action primitives defined by BrowserGym (ServiceNow; Drouin et al., 2024), such
as navigation, clicking, typing, and scrolling. After executing these actions, the browser runtime
provides a rich set of observations about the current state of the browser, including HTML, DOM,

10More specifically, version 0.14.2 and 0.28.1 (to accommodate newer models). Full details can be found in
https://github.com/All-Hands-AI/OpenHands/releases

11For OWL RolePlay, we tested only with the recommended model configuration using branch https://github.
com/camel-ai/owl/tree/gaia58.18
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accessibility tree (Mozilla), screenshot, opened tabs, etc. These observations can be also augmented
with configurable attributes that could allow agents to better understand web page observations, such
as using a set-of-marks on screenshot (Yang et al., 2023; He et al., 2024), visible element marking,
focused element, interactable element marking, in-viewport element filtering (Zhou et al., 2023), etc.

Actions The agent connects with the environment through a core set of general actions. Actions
IPythonRunCellAction and CmdRunAction enable the agent to execute arbitrary Python code
and bash commands inside the sandbox environment (e.g., a secure isolated Linux operating system
used as our local workspace). BrowserInteractiveAction enables interaction with a web browser
with a domain-specific language for browsing introduced by BrowserGym (Chezelles et al., 2024;
Drouin et al., 2024). These actions provide a comprehensive, yet flexible set of primitives that cover
most of the tasks performed by human employees of TheAgentCompany, including navigation, click,
hovering, and typing, etc.

Observations Observations describe the environmental changes that the agent observes. The
main types of observations used in the CodeAct agent include the execution result of bash terminal
commands, Python programs, and browser actions. Specifically, the execution result of browser
actions is usually browser snapshots and textual representation in the form of accessibility tree of the
current browser viewport.

Workflow At each step, the underlying backbone LLM will take in prompts consisting of previous
agent history and the current observation of the environment, and generate a response consisting of the
action to execute next. On a higher level, the agent can perform the task by executing code, including
executing bash commands, Python code, or browser-specific programming language (defined in
BrowserGym).12 This general action space allows the agent to perform various tasks, including
editing files, browsing the Web, running programs, etc.

Agent

[1] Message

Find API server codebase in internal wiki, clone the  
repository to /workspace folder, and start up the 
API server locally, then ....

Event History

[Past Action(s) & Observation(s)]

[6] IPythonRunCellAction 

<execute_ipython>

from apiserver import *

api_server.run(port=8080)

..

[7] IPythonRunCellObservation

...

Listening to 0.0.0.0:8080

TheAgentCompany API server started.

[4] CmdRunAction

<execute_bash>

git clone git://repos/apiserver

</execute_bash>

Action

[5] CmdRunObservation

 Cloning into `apiserver`... 
 remote: Counting objects: 10, done. 
 remote: Compressing objects: 100% (8/8), done. 
 remove: Total 10 (delta 1), reused 10 (delta 1) 
 Unpacking objects: 100% (10/10), done.

[2] BrowseInteractiveAction

<execute_browse>

input(“api server”, “searchbox”)

click(“search”)

</execute_browse>

 [3] BrowserOutputObservation

 API Server Repo: git://repos/apiserver

Interactive Python 
(IPython) Server

Bash Shell

Browser

Playwright Chromium

Observation

Action

Figure 4: Overview of OpenHands’ default CodeAct + Browsing agent architecture, the baseline
agent used throughout the experiments.

E LLM-as-a-Judge

In TheAgentCompany, there are 51 tasks (29%) involving LLM evaluation. LLM-based evaluators are
mainly used in well-defined tasks that require simple information extraction and classification, which
has been shown to have high precision Zheng et al. (2023). Furthermore, we first use deterministic
keyword matches and then use LLM as a fallback. Our use of LLM evaluation is a supplement
to the deterministic evaluator, rather than a replacement. In addition, the assessors were reviewed
and tested by 3 to 5 contributors and continuous integration was carried out to ensure robustness.
TheAgentCompany scoring framework includes both step-by-step and final-result evaluations. In
cases where a correct and sound deliverable receives no credit due to an evaluator misjudging an
intermediate step, the scoring framework would override the score and grant full credit. Above all,
the main concerns about the introduction of LLMs as judges should be dismissed.

12https://github.com/ServiceNow/BrowserGym/blob/main/browsergym/core/src/browsergym/core/action/
functions.py
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F LLM-as-Colleagues

Although we acknowledge that LLMs can make mistakes when acting in different roles, we empir-
ically found such errors to be rare. A careful examination of the early version of all 41 tasks that
simulated colleagues involved revealed only one trajectory with an issue that stemmed from role-play
prompt ambiguity, which was already fixed in the latest TheAgentCompany version. The prompt to
define each role (i.e. the NPC) is simple and straightforward without prompt engineering. As more
powerful models are released to act as simulated colleagues, the likelihood of errors decreases.

For NPCs, most context interactions occur within a few hundred tokens. If we assume 3000 input
tokens and 1000 output tokens, which is a reasonable upper bound, then according to Claude 3.5
Sonnet’s pricing (Input token price: $3.00, Output token price: $15.00 per 1M tokens, assuming no
prompt caching), the cost per NPC interaction would not exceed $0.024, and in most cases, it is much
lower.

G More TheAgentCompany Environment Details

G.1 TheAgentCompany Overview

## Company Introduction
The Agent Company is an innovative software firm specializing in distributed systems

, database technologies, and artificial intelligence. Our core business
includes developing and maintaining high-performance distributed graph
databases, streaming databases, and providing advanced AI solutions.

## Main Products and Services
1. Distributed Graph Database (based on JanusGraph)
2. Streaming Database (based on RisingWave)
3. AI Model Development and Inference Platform (based on OpenHands and llama.cpp)
4. Web Crawler Framework (based on Colly)
5. Distributed Search Engine (based on OpenSearch)
6. Low-Code Event-Driven Application Platform (based on Node-RED)

## Technology Stack
- Programming Languages: Rust, Python, C++, Go, Java
- Databases: Graph databases, Streaming databases, Search engines
- AI/ML: Large Language Models (LLM)
- Others: Distributed systems, API development, Documentation management

## Company Vision
To become a global leader in distributed systems and artificial intelligence,

solving complex data processing and analysis challenges through innovative
technologies.

## Company Mission
To provide businesses and developers with the most advanced, efficient, and user-

friendly data processing and AI tools, driving technological innovation and
maximizing the value of data.

G.2 TheAgentCompany Employee Roster with Project Assignments and Slack Channels

1. AI Agent (Agent employee being tested in TheAgentCompany)
- Role: All
- Responsibilities: All
- Project: All
- Slack Channels: All

2. Sarah Johnson (Female, 42 years old)
- Role: CTO
- Responsibilities: Technical strategy planning, R&D team leadership, new

technology assessment
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- Project: Oversees all technical projects
- Slack Channels: All technical channels, #general, #tech-talk

3. Li Ming (Male, 35 years old)
- Role: Database Team Project Manager
- Responsibilities: Managing database projects, resource coordination, ensuring

timely delivery
- Skills: Java, distributed systems
- Project: JanusGraph (Graph Database)
- Slack Channels: #project-graphdb, #engineering, #tech-talk

4. Zhang Wei (Male, 31 years old)
- Role: Senior Software Engineer (Streaming Database Team)
- Responsibilities: Developing and optimizing core streaming database

functionalities
- Skills: Rust, database systems
- Project: RisingWave (Streaming Database)
- Slack Channels: #project-streamdb, #engineering, #tech-talk

5. Wang Fang (Female, 28 years old)
- Role: AI Researcher (AI Team)
- Responsibilities: Designing and implementing machine learning models,

optimizing model performance
- Skills: Python, machine learning, LLM
- Project: OpenHands (LLM project)
- Slack Channels: #project-ai, #engineering, #tech-talk

6. Mike Chen (Male, 33 years old)
- Role: Senior Software Engineer (AI Team)
- Responsibilities: Developing and optimizing LLM inference engines
- Skills: C++, CUDA, performance optimization
- Project: llama.cpp (LLM inference project)
- Slack Channels: #project-ai, #engineering, #tech-talk

7. Emily Zhou (Female, 29 years old)
- Role: Software Engineer (Web Crawler Team)
- Responsibilities: Designing and implementing web crawler functionalities
- Skills: Go, distributed systems
- Project: Colly (Web Crawler Framework)
- Slack Channels: #project-webcrawler, #engineering, #tech-talk

8. Liu Qiang (Male, 36 years old)
- Role: Quality Assurance Engineer
- Responsibilities: Developing test strategies, executing tests, ensuring product

quality
- Project: All projects (focusing on testing and quality)
- Slack Channels: All project channels, #engineering, #tech-talk

9. Priya Sharma (Female, 27 years old)
- Role: Documentation Engineer
- Responsibilities: Writing technical documentation, maintaining wiki, improving

documentation processes
- Project: Documentation (Wiki)
- Slack Channels: All project channels, #engineering, #tech-talk

10. Mark Johnson (Male, 40 years old)
- Role: Sales Director
- Responsibilities: Developing sales strategies, managing sales team, expanding

client relationships
- Project: N/A (Sales)
- Slack Channels: #sales-marketing, #general

11. Jessica Lee (Female, 32 years old)
- Role: Marketing Manager
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- Responsibilities: Developing marketing strategies, managing brand image,
organizing marketing events

- Project: N/A (Marketing)
- Slack Channels: #sales-marketing, #general

12. Chen Xinyi (Female, 30 years old)
- Role: Human Resources Manager
- Responsibilities: Recruitment, employee training, compensation management
- Project: N/A (HR)
- Slack Channels: #hr-announcements, #general

13. David Wong (Male, 45 years old)
- Role: Finance Director
- Responsibilities: Financial planning, budget management, financial reporting
- Project: N/A (Finance)
- Slack Channels: #general

14. Huang Jie (Male, 34 years old)
- Role: Product Manager (Search Engine Team)
- Responsibilities: Defining product requirements, planning product roadmap,

communicating with clients
- Project: OpenSearch (Search Engine)
- Slack Channels: #project-search, #product, #tech-talk

15. Sophia Rodriguez (Female, 37 years old)
- Role: UX Designer
- Responsibilities: Designing user interfaces, improving user experience,

conducting user research
- Project: All projects (focusing on user experience)
- Slack Channels: All project channels, #product, #tech-talk

16. Alex Turner (Male, 30 years old)
- Role: Software Engineer (Low-Code Platform Team)
- Project: Node-RED (Low-Code Platform)
- Slack Channels: #project-lowcode, #engineering, #tech-talk

17. Emma Lewis (Female, 33 years old)
- Role: Software Engineer (API Team)
- Project: API-server (Python project)
- Slack Channels: #engineering, #tech-talk

18. Jessica Chen (Female, 28 years old)
- Role: Frontend Software Engineer
- Responsibilities: Developing user interfaces, implementing responsive designs,

optimizing web performance
- Project: E-commerce Website Redesign
- Slack Channels: #project-ecommerce, #frontend, #tech-talk

G.3 TheAgentCompany Q3 2024 Quarterly Sprint Goals

## Engineering Teams
1. Graph Database Team (JanusGraph)

- Optimize large-scale graph query performance
- Implement new graph analysis algorithms
- Improve stability of distributed deployments

2. Streaming Database Team (RisingWave)
- Implement new stream processing operators
- Optimize memory usage
- Improve fault recovery mechanisms

3. AI Team (OpenHands & llama.cpp)
- Integrate latest LLM models
- Optimize model inference speed
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- Develop model fine-tuning functionality

4. Web Crawler Team (Colly)
- Implement distributed crawling functionality
- Improve anti-crawling detection and bypass mechanisms
- Develop data cleaning and preprocessing modules

5. Search Engine Team (OpenSearch)
- Optimize full-text search performance
- Implement new relevance ranking algorithms
- Develop custom analyzer functionality

6. Low-Code Platform Team (Node-RED)
- Design new visual components
- Improve workflow execution engine
- Develop more third-party service integrations

## Product Team
- Conduct user research, collect product feedback
- Develop Q4 product roadmap
- Optimize product documentation and user guides

## Quality Assurance Team
- Develop automated test suites
- Conduct performance and load testing
- Improve bug tracking and reporting processes

## Sales and Marketing Team
- Organize industry trade show participation
- Launch new content marketing campaigns
- Develop sales team training programs

## Human Resources Team
- Implement new employee development plans
- Optimize recruitment processes
- Organize team-building activities

## Finance Team
- Prepare Q2 financial reports
- Develop Q4 budget plans
- Optimize financial analysis tools

G.4 TheAgentCompany Internal Documents

Employee Handbook
Company Policies and Procedures Document
Payroll and Compensation Structure Document
Performance Evaluation Forms and Guidelines
Project Management Templates (including Gantt charts, risk assessment forms, etc.)
Technical Architecture Documentation
Coding Standards and Best Practices Guide
Product Roadmap
Marketing Strategy Document
Sales Process and CRM Usage Guide
Financial Reporting Templates
Budget Planning Document
Human Resources Policies (including recruitment, training, promotion, etc.)
IT Security Policies and Guidelines
Customer Support Process Documentation
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Zhang Wei 
Male, 31 years old
Senior Software Engineer (Streaming Database Team)

Good morning! Which equipment do you need, 
and in what quantities?

We require three desktop computers (HP 
WorkStation) and three wireless mice. 

Thank you for providing the details. However, the 
total cost comes to $4,704, which exceeds your 
department's budget. Could you please consider 
reducing the equipment request to align with the 
allocated budget?

I understand the budget limitations so we can cut 
down on two mice and one desktop but not more 
than this because these are critical for our team 
to effectively work on RisingWave project.

Thank you so much for understanding. I will 
update you once we confirm the order. Have a 
great day! 

9:43 AM

10:03 AM

10:04 AM

10:24 AM

10:25 AM

Figure 5: Simulated Colleague Communication Example 1 – The agent is tasked with collecting
required equipment while adhering to the department’s budget. After calculating that the requested
items exceed the budget, the agent negotiates with the simulated colleague to reduce the request,
showcasing its ability of effective communication.

H Agent-Simulated Colleagues Conversation Examples

We present some examples (see Figure 5, Figure 6 and Figure 7) of the agent’s interaction with the
simulated colleagues within our environment.

I Detailed Experimental Results

Table 4 presents performance breakdown on tasks that involve different platforms in TheAgentCom-
pany. A task is categorized under a platform if it is one of the platforms for which the task requires
it. Table 5 presents the performance breakdown for different types of tasks in TheAgentCompany.
Depending on the nature of the task, i.e. what kind of professionals are usually assigned to the
task, the tasks in TheAgentCompany can be categorized into various departments of jobs. Software
Development Engineering (SDE), Project Management (PM), Data Science (DS), Administrative
(Admin), Human Resources (HR), Financial (Finance) and all the remaining (Other).

J Limitation

During the construction of this benchmark, we had people test and complete all tasks to ensure the
feasibility of the tasks and the evaluator. However, we did not collect human performance data.
The main reason is cost, as completing a single task can take anywhere from 10 minutes to several
hours, and currently we do not have the means to recruit a large number of people with the relevant
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11:23 AM

Hi Ming, where can I find the job description template 
for the new grad database engineering position?

The job description template for the new grad 
software engineering position is located on your local 
machine under the /instruction directory with the 
filename template.md

Thank you for the details. Also, what are the minimum 
and preferred qualifications?

Minimum qualifications:
1. Recent or upcoming Bachelor's/Master's 

Degree in Computer Science, Information 
Systems, or related fields.

2. Experience with SQL and at least one 
database system (e.g., MySQL, PostgreSQL).

3. Knowledge of database design, normalization, 
and query optimization.

Preferred qualifications:
1. Internship experience in database 

development or administration.
2. Familiarity with cloud databases (e.g., AWS 

RDS, Azure SQL).
3. Strong problem-solving and troubleshooting 

skills.

Thank you so much! Lastly, what is the ideal salary 
range? 

9:50 AM

10:06 AM

10:07 AM

10:24 AM

10:25 AM

Li Ming
Male, 34 years old
Project Manager (Graph Database Team)

The salary range for the new grad database engineer 
position is between $120,000 and $150,000. If you 
have further questions, feel free to ask!

11:34 AM

Figure 6: Simulated Colleague Communication Example 2 – The agent is tasked with writing a
job description for a new graduate software engineering position. To fulfill the task, the agent
communicates with simulated Project Manager to gather requirements. The agent requests the
job description template, minimum and preferred qualifications, and the ideal salary range. This
interaction evaluates the agent’s ability to gather information systematically and clarify task-related
requirements through effective communication.
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Emily Zhou 
Female, 29 years old
Software Engineer (Web Crawler Team)

Good morning! I'd like to schedule a meeting with 
you and Liu. When are you available?

Hi there, I'm available for a meeting on 
Wednesday or Thursday. What time works best 
for you on those days?

Great! I’m also available on Wednesday 
afternoons or Thursday mornings. Let me check 
Liu Qiang's schedule and confirm.

Sounds good. Once you've checked with Liu, let 
me know the final time for Wednesday or 
Thursday, and I'll block it on my calendar.

Hello Emily! The final meeting time is 10:30 AM 
on Thursday.  

9:43 AM

10:03 AM

10:04 AM

10:04 AM

10:38 AM

Liu Qiang
Male, 36 years old
Quality Assurance Engineer 

Hi Liu Qiang, I’d like to schedule a meeting with 
you and Emily. She’s available on Wednesday or 
Thursday. When are you available?

Hello! I’m available on Thursday for the meeting 
with Emily. Please let me know what time works 
best for both of you.

Oh good, I think Thursday works for us. Could we 
aim for a mid-morning slot? Perhaps around 
10:30 AM?

Yup. That works for me. I will send Emily a link 
myself. 

Thank you. The final meeting time is 10:30 AM on 
Thursday. Have a great day! 

10:05 AM

10:24 AM

10:25 AM

10:37 AM

10:38 AM

Figure 7: Simulated Colleague Communication Example 3 - The agent is tasked with scheduling a
meeting between NPCs Emily Zhou and Liu Qiang based on their availability. Emily is available on
Wednesday and Thursday, while Liu is only available on Thursday. The agent identifies Thursday
as the common free day and successfully proposes a mid-morning slot at 10:30 AM, which both
participants confirm. This example highlights the agent’s ability to manage multi-turn conversations,
effectively going back and forth between participants to align schedules and finalize a meeting time.

Table 4: Performance of the models in tasks that require different platforms in TheAgentCompany.
All numbers are percentages (%).

GitLab (71 tasks) Plane (17 tasks) RocketChat (79 tasks) ownCloud (70 tasks)
Agent Model Success (%) Score (%) Success (%) Score (%) Success (%) Score (%) Success (%) Score (%)

API-based Models

OpenHands 0.28.1 Gemini-2.5-Pro 33.80 43.36 41.18 51.67 29.11 40.39 12.86 22.44
OpenHands 0.28.1 Claude-3.7-Sonnet 23.94 32.60 41.18 52.63 29.11 41.81 11.43 23.97
OpenHands 0.14.2 Claude-3.5-Sonnet 30.99 40.25 41.18 50.37 21.52 34.68 10.00 21.81
OpenHands 0.14.2 Gemini-2.0-Flash 11.27 18.21 17.65 29.84 13.92 23.34 2.86 8.52
OpenHands 0.14.2 GPT-4o 11.27 19.46 23.53 33.68 5.06 16.08 1.43 7.76
OWL Roleplay GPT-4o & o3-mini 5.63 12.51 5.88 15.39 3.80 11.07 0.00 5.85
OpenHands 0.14.2 Gemini-1.5-Pro 2.82 3.88 5.88 14.05 3.80 10.97 0.00 4.22
OpenHands 0.14.2 Amazon-Nova-Pro-v1 2.82 7.22 5.88 16.67 1.27 5.36 0.00 2.43

Open-weights Models

OpenHands 0.14.2 Llama-3.1-405b 5.63 11.84 29.41 39.12 8.86 16.46 0.00 4.45
OpenHands 0.14.2 Llama-3.3-70b 8.45 14.26 11.76 21.65 5.06 12.06 0.00 3.76
OpenHands 0.14.2 Qwen-2.5-72b 5.63 11.33 11.76 23.56 5.06 12.60 0.00 4.14
OpenHands 0.14.2 Llama-3.1-70b 1.41 6.09 5.88 15.35 2.53 8.23 0.00 3.32
OpenHands 0.14.2 Qwen-2-72b 1.41 1.94 5.88 12.45 0.00 4.88 0.00 2.60

background to complete the tasks on a scale. However, this does not affect the evaluation of the
current models in the benchmark.
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Table 5: Performance of various models in tasks with different nature in TheAgentCompany. All
numbers are percentages (%).

SDE (69 tasks) PM (28 tasks) DS (14 tasks) Admin (15 tasks) HR (29 tasks) Finance (12 tasks) Other (8 tasks)
Agent Model Success Score Success Score Success Score Success Score Success Score Success Score Success Score

API-based Models

OpenHands 0.28.1 Gemini-2.5-Pro 37.68 45.05 39.29 52.61 14.29 20.06 13.33 19.17 34.48 44.98 8.33 21.56 12.50 20.16
OpenHands 0.28.1 Claude-3.7-Sonnet 30.43 36.78 42.86 56.32 14.29 22.80 13.33 23.89 27.59 40.02 0.00 18.89 12.50 24.06
OpenHands 0.14.2 Claude-3.5-Sonnet 30.43 38.02 35.71 51.31 14.29 21.70 0.00 11.59 24.14 34.49 8.33 25.17 12.50 22.40
OpenHands 0.14.2 Gemini-2.0-Flash 13.04 18.99 17.86 31.71 0.00 6.49 6.67 15.20 17.24 23.08 0.00 4.31 0.00 10.05
OpenHands 0.14.2 GPT-4o 13.04 19.18 17.86 32.27 0.00 4.70 6.67 13.89 0.00 8.28 0.00 7.36 0.00 10.78
OWL RolePlay GPT-4o & o3-mini 5.80 11.67 3.57 16.19 0.00 4.82 0.00 3.53 6.90 14.30 0.00 9.58 0.00 2.86
OpenHands 0.14.2 Gemini-1.5-Pro 4.35 5.64 3.57 13.19 0.00 4.82 6.67 9.92 3.45 11.42 0.00 2.78 0.00 8.07
OpenHands 0.14.2 Amazon-Nova-Pro-v1 2.90 6.07 3.57 12.54 0.00 3.27 0.00 0.00 0.00 4.27 0.00 2.78 0.00 2.86

Open-weights Models

OpenHands 0.14.2 Llama-3.1-405b 5.80 11.33 21.43 35.62 0.00 5.42 0.00 3.33 6.90 12.56 0.00 5.00 12.50 17.45
OpenHands 0.14.2 Llama-3.3-70b 11.59 16.49 7.14 19.83 0.00 4.70 0.00 1.67 6.90 11.38 0.00 5.69 0.00 7.03
OpenHands 0.14.2 Qwen-2.5-72b 7.25 11.99 10.71 22.90 0.00 5.42 0.00 2.14 6.90 12.36 0.00 7.15 0.00 5.99
OpenHands 0.14.2 Llama-3.1-70b 1.45 4.77 3.57 15.16 0.00 5.42 0.00 2.42 3.45 7.19 0.00 3.82 0.00 2.86
OpenHands 0.14.2 Qwen-2-72b 2.90 3.68 0.00 7.44 0.00 4.70 0.00 0.56 0.00 4.14 0.00 3.61 0.00 4.95
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