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Abstract

One of the most widely used tasks for
evaluating Large Language Models (LLMs)
is Multiple-Choice Question Answering
(MCQA). While open-ended question answer-
ing tasks are more challenging to evaluate,
MCAQA tasks are, in principle, easier to assess,
as the model’s answer is thought to be simple
to extract and is compared directly to a set of
predefined choices. However, recent studies
have started to question the reliability of
MCQA evaluation, showing that multiple
factors can significantly impact the reported
performance of LLMs, especially when
the model generates free-form text before
selecting one of the answer choices. In this
work, we shed light on the inconsistencies
of MCQA evaluation strategies, which can
lead to inaccurate and misleading model
comparisons.  We systematically analyze
whether existing answer extraction methods
are aligned with human judgment, and how
they are influenced by answer constraints in
the prompt across different domains. Our
experiments demonstrate that traditional
evaluation strategies often underestimate
LLM capabilities, while LLM-based answer
extractors are prone to systematic errors.
Moreover, we reveal a fundamental trade-off
between including format constraints in the
prompt to simplify answer extraction and
allowing models to generate free-form text
to improve reasoning. Our findings call for
standardized evaluation methodologies and
highlight the need for more reliable and
consistent MCQA evaluation practices.

1 Introduction

MCQA is one of the most common tasks used to
evaluate LLMs across various domains, including
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Question: A desert environment is

Choices:
A. dry and grass covered
B. lush and tropical
C. arid and parched
D. dry, damp, and lush
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Figure 1: Different evaluation strategies (RegEx, Log-
probs, xFinder and Human) and prompt settings (con-
strained or not) can lead to discrepancies in model per-
formance.

commonsense reasoning (Talmor et al., 2019; Mi-
haylov et al., 2018; Bisk et al., 2019; Sap et al.,
2019), grade-school science (Clark et al., 2018),
and multi-domain challenges (Hendrycks et al.,
2021; Wang et al., 2024b; Gema et al., 2025),
among others. MCQA is straightforward: given a
question and a set of answer choices, the model has
to select the correct answer. Despite the apparent
simplicity of the task, the evaluation of LLMs on
MCQA benchmarks is not trivial, as the model’s
answer has either to be extracted from its gener-
ated output, or selected based on the probabilities
assigned to each answer choice.

Since the introduction of techniques that enhance
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the reasoning capabilities of LLMs, such as Chain-
of-Thought (Wei et al., 2022; Kojima et al., 2023,
CoT), most models are now prompted to generate
free-form text before selecting an answer, which
improves their accuracy but complicates the ex-
traction of the model’s intended answer, as shown
in Figure 1. Recently, the reliability of MCQA
evaluation strategies has been called into question,
as different methods can lead to significant vari-
ations in the model performance reported (Wang
et al., 2024a; Yu et al., 2024). For example, mea-
suring the probability of the first token generated
by the model to be the label (“A” to “D”) of the cor-
rect answer can yield different results compared
to extracting the answer from the model’s out-
put text (Hendrycks et al., 2021; Robinson et al.,
2023; Zheng et al., 2024). As researchers intro-
duce more sophisticated reasoning capabilities—
such as test-time scaling and “thinking” mecha-
nisms (DeepSeek-Al et al., 2025)—the reliability
of MCQA evaluation strategies becomes increas-
ingly important for ensuring fair comparisons.

In this work, we investigate the reliability of
MCQA evaluation strategies, focusing on how dif-
ferent methods for extracting the model’s answer
impact the reported performance of LLMs. To the
best of our knowledge, we introduce the first com-
prehensive analysis on how different factors in the
evaluation strategy, prompt setting, and benchmark
domain influence model performance. We conduct
a human evaluation to assess the alignment between
evaluation strategies and human judgment, high-
lighting the limitations and inconsistencies of cur-
rent practices. Finally, we identify cases in which
existing evaluation methods systematically fail, in-
cluding those methods based on LLMs, thereby
highlighting which challenges still remain unsolved
in MCQA evaluation. In summary, we address the
following critical research questions:

¢ RQ1: How well do current evaluation strate-
gies align with human judgment?

¢ RQ2: How does the choice of evaluation strat-
egy and prompt setting impact LLM perfor-
mance?

* RQ3: How does model performance shift
across different benchmark domains for each
prompt setting and evaluation strategy?

¢ RQ4: How reliable are LLLM-based methods
in extracting a model’s intended answer?

We hope our work will lead to more rigorous
and standardized evaluation practices. We re-
lease our code and data at https://github.com/
SapienzaNLP/mcga-eval.

2 Related Work

This section surveys previous research in MCQA
evaluation on two main aspects: how task format
and inherent biases affect model performance (Sec-
tion 2.1), and how different strategies for answer
extraction influence evaluation (Section 2.2).

2.1 Task Format and Label Bias

The research community has demonstrated that
even minor variations in evaluation setup can signif-
icantly impact LLM performance. For instance, a
seminal work by Robinson et al. (2023) studied the
impact of task format on LLM performance, show-
ing that models struggle with multiple-choice sym-
bol binding, i.e., maintaining order invariance when
reasoning over different answer choices. Build-
ing on these findings, Zheng et al. (2024) docu-
mented systematic position biases in LLMs, show-
ing that models disproportionately favor certain an-
swer positions (e.g., “Option A” over “Option B”).
This positional sensitivity was further validated
by Alzahrani et al. (2024), who demonstrated that
reordering answer choices or modifying answer
selection methods can alter leaderboard rankings.

A parallel line of research has questioned
whether LLMs truly require question context for
MCQA. Balepur et al. (2024) showed that LLMs
can achieve high performance on MCQA bench-
marks without access to the question, suggesting
that they may rely on spurious correlations in the
answer choices. Further evidence of such shortcuts
emerged in Wang et al. (2025)’s work, suggest-
ing that LL.Ms can select answers by eliminating
clearly incorrect options rather than identifying the
most accurate choice.

Unlike previous studies focused on answer selec-
tion biases and task formulation, our work exam-
ines how variations in prompt settings and format—
including the trade-off between prompts that im-
pose constraints on the answer format and those
that allow free-form text generation—affect model
performance across evaluation strategies.

2.2 Evaluation Strategies

Current MCQA evaluation approaches broadly fall
into two categories: those based on direct prob-
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ability analysis and those that require answer ex-
traction from the model’s output. If, given a ques-
tion, there is a finite set of answer choices, we
can assign a simple label to each choice (e.g., “A”
to “D”) and compute the next-token probability
distribution for each label after “Answer:”. This
method, which we refer to as Logprobs, has been
widely used in recent studies (Hendrycks et al.,
2021; Robinson et al., 2023; Zheng et al., 2024).
Although Logprobs is computationally efficient and
conceptually straightforward, it cannot be applied
when the model generates free-form text before
selecting an answer, which is becoming an increas-
ingly common practice in MCQA evaluation, e.g.,
with Chain-of-Thought (Wei et al., 2022; Kojima
et al., 2023). In such cases, answer extraction
methods are required, such as those based on reg-
ular expressions (RegEx) or LLM-based models,
such as xFinder (Yu et al., 2024). RegEx methods
can be used to scan the model’s output for pre-
defined patterns, such as “Answer: {label}” or
“The answer is: {label}” (Wang et al., 2024b).
However, the effectiveness of RegEx methods re-
quires careful crafting of patterns, which can still
lead to high miss rates (Yu et al., 2024), espe-
cially when the model generates complex reason-
ing chains. In contrast, classifier- or LLM-based
methods, e.g., xFinder, are fine-tuned to extract the
model’s intended answer from its output, given the
question and answer choices (Yu et al., 2024).

Our work builds on these studies by systemati-
cally analyzing the reliability of MCQA evaluation,
examining how evaluation strategies, prompt set-
tings, and benchmark domains affect performance
assessment. Importantly, we evaluate the agree-
ment between automated evaluation strategies and
human judgment, providing insights into the chal-
lenges and limitations of current practices.

3 Methodology

Our investigation into MCQA evaluation reliabil-
ity covers three dimensions: evaluation strategies,
prompt settings, and benchmark domains. For each
dimension, we design controlled experiments that
isolate specific variables while maintaining others
constant, allowing us to measure:

¢ The correlation between automated evaluation
strategies and human judgment;

* The impact of prompt constraints on model
reasoning and answer extraction;

* The variation in evaluation reliability across
different domains.

In the following sections, we first formalize the
MCQA task and our evaluation framework (Sec-
tion 3.1), then outline the evaluation strategies un-
der investigation (Section 3.2), and finally describe
our prompt settings (Section 3.3).

3.1 Task Formulation

Let D = {(¢;,Cy,ai)}Y, be a dataset of N
multiple-choice instances, where each instance con-
sists of a question ¢; € @), a set of k answer choices
Cq; = {c1,¢2, ..., e}, and a ground-truth answer
a; € Cy,. The MCQA task requires a model f to
generate an output ¢; in response to a question g;
and its corresponding choices Cy,. Formally, we
write:
ti = f(%'acqi)a

where t; is free-form text or a structured response
(e.g., “Answer: C”). To extract the model’s in-
tended answer ¢; from its output ¢;, we apply an
evaluation strategy s, yielding:

¢ = s(ti).

The prediction ¢; is considered correct if ¢; = a;.
We assess the model’s overall performance on a
dataset D by computing the accuracy:

1 N
NZ]I[@@Z%],
i=1

where 1] is the indicator function that evaluates
to 1 if its argument is true and O otherwise. This
framework allows us to compare how different eval-
uation strategies s and prompting configurations
influence the final accuracy of model f.

Acc(f,s) =

3.2 [Evaluation Strategies

To assess LLM performance on MCQA tasks, we
need a method to identify or extract the model’s in-
tended answer ¢ from its output ¢, given a question
¢q and its answer choices C;. We experiment with
three evaluation strategies, which are representa-
tives of traditional approaches or emerging trends
in MCQA evaluation.

Logprobs: Rather than extracting answers
from generated text, this strategy analyzes the
model’s probability distribution over first to-
kens after a prompt terminating with g =
“Answer:” (Hendrycks et al., 2021). Formally:

SIngrob(Q> Cq) = argmaxcec’q P(C|Q> qu tO)



where P(c|q, Cy, to) is obtained by applying the
softmax operation to the model’s log-probabilities
corresponding to the labels (e.g., “A” to “D”) of
the choices. Although efficient, this method can-
not handle free-form text generation or chain-of-
thought reasoning.

RegEx: This parameterless method applies a set
of regular expressions R = {ry, ..., ry,} to extract
the model’s answer. For an output ¢, we define:

) match(r;,t) if Ir; € R matching ¢
S =
e 0 otherwise

where match(r;, t) returns the first answer choice
label that matches pattern r; in ¢. Although com-
putationally efficient, this approach can fail when
models generate complex reasoning chains or devi-
ate from expected patterns.

LLM-based answer extraction: This approach
uses an LLM sy, fine-tuned to extract answers
from arbitrary outputs:

Sllm(% an t) = LLM(Qa an t)

LLM-based approaches are relatively new and have
shown promising results. Unlike Logprobs and
RegEx, LLM-based methods can handle free-form
text generation and complex reasoning chains, mak-
ing them more robust to variations in model output.
We evaluate two state-of-the-art models: xFinder-
Llama (8B parameters) and xFinder-Qwen (500M
parameters), introduced by Yu et al. (2024).

Full details about the RegEx patterns used in this
work, as well as the xFinder models can be found
in Appendix A.1.

3.3 Prompt Settings

We investigate how four widely-used prompt set-
tings influence both model performance and evalu-
ation reliability. For each setting p € P, we define
a prompt template:

Pp(q, Cq) = sys, @ insty(q, Cy) @ const,,

where sys,, is the system prompt, inst, the instruc-
tion template, and const, any format constraints.
We focus on the following four settings and hypoth-
esize that results on other settings would follow
similar trends:

Zero-Shot (ZS): The model receives only a sys-
tem prompt, followed by the question and available
choices. This setting imposes no constraints on
the output format, allowing the model complete
freedom in response generation.

Zero-Shot Chain-of-Thought (ZS-CoT): This
setting prompts the model to use CoT, allowing
it to explain its reasoning before selecting the an-
swer (Kojima et al., 2023).

Zero-Shot with Format Constraint (ZS-Const):
Similar to ZS, but with a format constraint on the
answer. The LLM is prompted to respond in a
specific format, e.g., “Answer: {label}” (Wang
et al., 2024a), which simplifies answer extraction.

Few-Shot (FS): The model is provided with n
examples randomly selected from the training or
validation set of the benchmark. These examples
are structured as multi-turn conversations, follow-
ing common practice (Gao et al., 2024). There are
no constraints on the answer, which the LLLM can
observe from the provided examples.

These prompt settings allow us to study the trade-
off between format constraints vs. free-form text
generation, and LLM performance vs. simplicity
of answer extraction. Full details of the prompts
used in this work can be found in Appendix A.2.

4 Experimental Setup

4.1 Benchmark Selection

We select 3 popular MCQA benchmarks, each tar-
geting different aspects of language understanding:

MMLU-Redux: A manually curated subset of
MMLU (Hendrycks et al., 2021) comprising 5,700
questions across 57 domains. This dataset ad-
dresses potential quality issues in the original
MMLU by incorporating additional information
and annotation provided by experts in order to
review and correct problematic instances (Gema
et al., 2025). The domains span four major cate-
gories: STEM, HUMANITIES, SOCIAL SCIENCES,
and OTHER.

OpenBookQA: A question-answering dataset
(Mihaylov et al., 2018, OBQA) that tests factual
recall and multi-hop reasoning. Each question
requires combining scientific facts with common
sense.



Agreement with Humans

ZS 7S-CoT 7ZS-Const FS | Avg.

Eval. Strategy

RegEx 90.7 84.3 97.9 97.3 92.5
Logprobs 74.7 — 94.1 90.4 86.4*
xFinder-Llama 95.8 89.7 98.4 97.3 95.3
xFinder-Qwen  94.8 90.3 98.4 97.3 95.2
Human 98.2 97.0 98.7 100.0 ‘ 98.5

Table 1: Average agreement between human annota-
tors and evaluation strategies across eight LLMs in each
prompt setting, measured with Cohen’s kappa. For Log-
probs, the average agreement (marked with *) is com-
puted over ZS, ZS-Const and FS, excluding ZS-CoT.

ARC-Challenge: A collection of grade-school
science questions (Clark et al., 2018, ARC) se-
lected to be challenging for NLP systems. Ques-
tions often require complex reasoning and external
knowledge.

Following standard practice, we evaluate on the
provided test sets. For few-shot experiments, we
randomly sample five examples from training sets
when available, or validation otherwise.

4.2 Model Selection

We evaluate eight LLMs with different architec-
tures and sizes, ranging from 1 billion to 8 bil-
lion parameters. The models are selected to rep-
resent a diverse set of LLMs, including both high-
performing and smaller, efficient models. More
specifically, we evaluate the following models:

¢ Small-scale LLMs (1B - 4B): Llama-3.2-
1B-Instruct, Phi-3.5-mini-instruct, Phi-4-mini-
instruct and SmolLM2-1.7B-Instruct.

¢ Medium-scale LLMs (4B — 8B): Llama-2-
7B-chat-hf, Qwen2.5-7B-Instruct, LLlama-3.1-
8B-Instruct and Mistral-7B-Instruct-v0.3.

We perform greedy decoding with all models, set-
ting the temperature to 0.0 and allowing the models
to generate a maximum of 512 tokens. Due to bud-
get constraints, we exclude models with more than
8 billion parameters, hypothesizing that larger mod-
els would exhibit similar trends to those analyzed
in this work.

5 Results

RQ1: “How well do current evaluation strategies
align with human judgment?” To answer this
question, we conduct a manual annotation process

in which human annotators extract the intended an-
swer from the model’s response across all prompt
settings and evaluation strategies. First, we prompt
each of the eight LLMs on the full MMLU-Redux
dataset under four different prompt settings. We
then randomly sample a total of 1,000 (¢, Cy) in-
stances for annotation, ensuring a balanced distri-
bution across the different prompt settings. Then,
four human annotators extract the intended answer
from the model’s response, assigning a label from
“A” to “D” or a special tag, “[No valid answer],”
for cases where the model produces an invalid re-
sponse. If a response is invalid, annotators are
required to specify the reason for invalidity, which
can arise from various factors, including: i) con-
flicting answers (e.g., the reasoning produced by
the model supports choice “C” but the model con-
cludes with “Answer: A”), ii) label binding incon-
sistencies (e.g., the model responds with “Answer:
C. bank” where “bank” corresponds to option “B”),
iii) refusal to answer (e.g., due to safety concerns
or insufficient knowledge), iv) irrelevant response,
where the model fails to engage with the question,
and v) generation limits, e.g., the model generates
a response that exceeds the token limit. In total,
each annotator is assigned 400 instances, with 200
instances shared between all annotators in order
to assess inter-annotator agreement. We provide
details on the annotation process in Appendix A.3.

We compute the agreement between annotators
using pairwise Cohen’s kappa, averaging across all
pairs, yielding a score of 98.5, indicating an “al-
most perfect” agreement. This shows that human
annotators are consistent in extracting the intended
answer from the model’s response, providing a
reliable benchmark for evaluating the alignment be-
tween automated evaluation and human judgment.

Having created a gold dataset of 1, 000 instances,
we evaluate the agreement between human anno-
tators and automated evaluation strategies using
Cohen’s kappa!. The results are reported in Ta-
ble 1. We observe that LLM-based approaches for
answer extraction generally achieve higher agree-
ment with human judgment compared to tradi-
tional methods. In particular, xFinder-Llama dis-
plays the highest agreement with humans across all
prompt settings, outperforming traditional strate-
gies, namely RegEx and Logprobs, by a significant
margin. However, the agreement between humans

'We used majority voting for the 200 shared instances and
the single available annotation for the remaining 800.
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Figure 2: Average accuracy scores across eight LLMs
and four prompt settings when evaluated on the MMLU-
Redux (Figure 2a) and OBQA (Figure 2b) datasets. Dot-
ted lines indicate the RegEx miss rate.

and evaluation strategies is not consistent across
prompt settings. Recent work on LLMs is mov-
ing away from constrained prompts so as to allow
models to generate free-form text with a view to
improving reasoning. But our analysis shows that
moving from ZS-Const to ZS leads to a significant
drop in agreement between humans and evaluation
strategies: —2.6% for xFinder-Llama (from 98.4
to 95.8), —3.6% for xFinder-Qwen (from 98.4 to
94.8), —7.2% for RegEx (from 97.9 to 90.7), and
—19.2% for Logprobs (from 94.1 to 74.7). This
is even more pronounced in the ZS-CoT setting,
where the agreement between xFinder-Llama—the
best model on average, with 8B parameters—and
humans drops by 8.7%. In contrast, pairwise hu-
man agreement shows just a minor drop when
changing the prompt setting from ZS-Const to ZS
(—0.5%) or from ZS-Const to ZS-CoT (—1.7%).
These results suggest that the extent to which mod-
els adhere to the required format has a significant
impact on the reliability of the evaluation strategy
employed, and also that state-of-the-art LLM-based
approaches are not immune to this variability, espe-
cially in settings where models generate free text.

Average Character Offset vs Accuracy in MMLU-Redux
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Figure 3: The plots show the relationship between av-
erage answer offset (log, scale) and accuracy (%) for
different settings using the xFinder evaluation strategy.

RQ2: “How does the choice of evaluation strategy
and prompt setting impact LLM performance?”’
The disagreement between human annotators and
evaluation strategies shown in Table 1 raises the
question of how the choice of evaluation strat-
egy and prompt setting affects LLM performance.
Therefore, we analyze the behavior of the eight
LLMs on MMLU-Redux, OBQA, and ARC using
the four prompt settings and the three evaluation
strategies. Figures 2a and 2b present the results
on the MMLU-Redux and OBQA datasets, respec-
tively. Additionally, we provide the results on the
ARC dataset and the individual performance of all
the LLMs in Appendices A.4 and A.5.

The plots show that in prompt settings that con-
strain the output format—either explicitly, as in
ZS-Const, or implicitly through few-shot exam-
ples, as in FS—LLMs performance remain stable
across evaluation strategies, which is consistent
with the high agreement between humans and eval-
uation strategies in these settings, i.e., simplifying
answer extraction leads to more reliable evaluation
outcomes. However, our results also show that
a simplified evaluation process can hide the true
capabilities of current LLMs, as models in ZS or
ZS-CoT generate outputs in which the answer is



harder to extract, e.g., leading to a higher RegEx
miss rate.? Interestingly, the prompt settings that
show the largest differences between the results
obtained with different evaluation strategies are the
ones where the disagreement with human annota-
tors is the highest, i.e., ZS and ZS-CoT. As the
research community moves towards letting models
generate more complex free text before selecting
an answer, current evaluation strategies are likely
to become less reliable.

To assess the trade-off between generating
longer responses and model performance, we study
the improvement in model performance as the av-
erage answer offset increases. The average answer
offset is defined as the number of characters after
which one of the available RegEx patterns matches
the model’s intended answer. Figure 3 shows that,
while higher offsets generally lead to better perfor-
mance, the gain is often marginal beyond a certain
threshold, e.g., moving from 102 to 103 characters
only provides a +0.6% improvement in accuracy
in MMLU-Redux®. Given the agreement study
reported in Table 1, this suggests that even LLM-
based methods for answer extraction can struggle
to generalize to longer responses, highlighting the
need for more robust evaluation strategies.

RQ3: “How does model performance shift across
different benchmark domains for each prompt set-
ting and evaluation strategy?” To systematically
analyze domain-specific effects, we use the exist-
ing categorization of MMLU-Redux, which divides
the questions into four macro-domains: STEM, HU-
MANITIES, SOCIAL SCIENCES, and OTHER. We
focus our analysis on STEM and HUMANITIES, as
our results show that these categories exhibit the
most significant differences in model performance
across prompt settings and evaluation strategies
(results for other categories are provided in Ap-
pendix A.6).

As our results show in Figure 4a, models in the
STEM category tend to perform best in the ZS and
ZS-CoT settings. In particular, we observe that,
when evaluated with RegEx, LLMs achieve bet-
ter scores in these settings compared to ZS-Const,
despite a persistently higher miss rate. The same
holds for xFinder, where the performance gap be-
tween the ZS and ZS-Const settings increases to 2.5

2We define RegEx miss rate as the percentage of instances
where no RegEx pattern is able to extract an answer from the
model output.

3For OBQA, the +1.2% improvement in accuracy corre-
sponds to only six instances.
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Figure 4: Average accuracy scores across eight LLMs
and four prompt settings when evaluated on the STEM
(Figure 4a) and HUMANITIES (Figure 4b) categories
of the MMLU-Redux dataset. Dotted lines indicate the
RegEx miss rate.

accuracy points—substantially larger than the 1.7-
point gap observed in Figure 2a across all MMLU
domains. This is especially important when con-
sidered jointly with our study on the agreement be-
tween human annotators and evaluation strategies:
given the fact that LLM-based answer extraction
strategies remain imperfect (as shown in Table 1,
the agreement between xFinder and humans is 7.3
points lower than the agreement between humans),
the true performance of models in the STEM cate-
gory may be even higher than what we report here,
which calls for further research on more reliable
evaluation strategies. This also underscores the
importance of allowing models to generate freely
before producing a final answer, particularly in sce-
narios requiring reasoning over mathematical ex-
pressions or scientific formulas. On the other hand,
models in the HUMANITIES category tend to per-
form similarly across prompt settings, as shown in
Figure 4b, with the FS setting providing an advan-
tage in terms of final accuracy, suggesting that for
humanities-related questions, models do not need
to generate long-form reasoning to provide accu-



Question

Model output containing inconsistent reasoning or multiple answers

On which continent are most of the Venus figurines found? [...]
A.Europe  B. Africa C. Asia D. Australia

The majority of Venus figurines have been found on the continent
of Europe . Therefore, the answer to the question is: Answer: B. Africa

Which of the following capital cities is located OUTSIDE the
central core area of the country?

A. Abuja B. Paris C.London  D. Cairo

[...] analyze the options:
[...] D. Cairo: located in the central core area [...] the capital city
NOT located within the central core area of the country is: D. Cairo.

A. Abuja: located in the central core area

Question: If f(z) = x® + 222 — 92 — 18, which of the
following statements is true?

Choices:

A. f(z) = 0 has three real solutions. C.
B. f(z) > —18forallz > 0.

C. f(z) < —18forallz < 0.

D. The function f(x) is decreasing for x < —3.

A. f(x) = @ has three real solutions: [...] So, the correct answer is A.
B. f(x) >= -18 for all x >= 0:
the correct answer is B.

f(x) <= -18 for all x <= 0: [...]
the correct answer is C.

D. The function f(x) is decreasing for x <= -3:
the correct answer is D.

[...] Since 1782 is greater than -18,
Since -64 is less than -18,

We can determine [...]

Table 2: Examples where xFinder fails to detect inconsistencies in model outputs. Blue highlights the model’s
reasoning path towards a particular answer, while red highlights the final answer(s) selected by the model.

rate answers, but rather rely on recalling factual
information stored in their parameters.

RQ4: “How reliable are LLM-based approaches
in extracting the models’ intended answers?”
Our experiments show that LLM-based methods
like xFinder correlate well with human judgment
(Table 1), but still underperform compared to hu-
man annotator agreement, especially on longer
responses. Here we investigate the main failure
modes of xFinder to identify vulnerabilities and ar-
eas for improvement in state-of-the-art evaluation
strategies. In order to do so, we manually inspect
the cases where xFinder and human annotators dis-
agree. The main source of disagreement occurs
when xFinder assigns a valid answer to a model
output while human annotators label it as “[No
valid answer]”.*

Specifically, we identify two main patterns that
consistently mislead xFinder: i) a reasoning path
that supports one answer but concludes with an-
other without justification, and ii) situations where
the model presents conflicting reasoning, implying
multiple answers. We refer to these cases as “in-
consistent reasoning” and “multiple answers” and
provide examples in Table 2, where blue highlights
the model’s reasoning path towards a particular
answer, while red highlights the final answer(s)
selected by the model.

The identification of these two patterns allows
us to construct an adversarial dataset derived from
MMLU-Redux, which we call MMLU-Adversarial.
With this adversarial dataset we aim to assess the
ability of current LLM-based techniques to iden-
tify instances where the model generates invalid an-
swers and provide the opportunity for future work

“XxFinder is also trained to recognize invalid outputs and
tag them with “[No valid answer]”.

to benchmark new LLM-based answer extraction
methods on more challenging instances.

For the inconsistent reasoning pattern, we start
from the ZS outputs of the models on MMLU-
Redux and then prompt Gemini-1.5-Flash to pre-
serve the original reasoning and swap the final an-
swer with one that contradicts the reasoning. For
the multiple answers pattern, we generate adver-
sarial instances by taking the original (g, C,) pairs
and asking the model to explicitly generate a series
of reasoning paths that motivate, explain or justify
multiple answers. The complete prompts used for
dataset creation, along with input-output examples,
are provided in Appendix A.7.

To ensure the relevance and quality of the gen-
erated resource, we conduct a thorough manual
verification process. This involves carefully re-
viewing each instance to eliminate any artifacts or
unintended errors introduced during generation. As
a result, we retain a curated subset consisting of
1,000 high-quality and correctly modified instances
for each of the two patterns.

When evaluated on MMLU-Adversarial,
xFinder-Llama correctly identifies only 1.9% of
instances exhibiting inconsistent reasoning as
“[No valid answer]” and just 10.9% of instances
involving multiple answers. The performance
of xFinder-Qwen is even more limited, correctly
labeling only 0.6% of inconsistent reasoning cases
and 0.9% of multiple answers cases. These results
support our hypothesis that current LLM-based
detection methods struggle to reliably identify
conflicting or ambiguous reasoning in model out-
puts. We argue that to justify their computational
cost over parameterless alternatives, LLM-based
methods should reliably tag erroneous outputs as
“[No valid answer].” Such alignment with human
judgment is essential to avoid inflated performance



and ensure reliable automated evaluation.

6 Can LLM-based Answer Extractors
Solve the MCQA Task?

Our analysis in Section 5 uncovered discrepancies
between xFinder’s outputs and human annotations.
Additionally, in cases where the annotators labeled
responses as “[No valid answer]”, we found that,
in some instances, XFinder still assigned one of
the available labels. This suggests that xFinder
may inherit biases from its underlying base model,
occasionally attempting to solve the MCQA task
rather than strictly adhering to the intended answer
extraction objective for which it was fine-tuned.

To test this hypothesis, we designed three dis-
tinct prompts to highlight this unintended behav-
ior (Appendix A.8) . The rationale behind these
prompts is the creation of an ambiguous answer
that tries to stimulate the answer extractor model
to solve the MCQA task. According to xFinder’s
design principles, all these prompts should result
in a “[No valid answer]” response, since no single
answer is explicitly deemed as correct.

To quantify the effects that these prompts have
on the behavior of xFinder, we designed two met-
rics: the adversarial rate and the relative accuracy.
The adversarial rate is defined as the percentage of
instances where xFinder assigns one of the avail-
able labels instead of generating “[No valid an-
swer]”, while the relative accuracy is defined as the
percentage of cases where xFinder selects a label
that correctly matches the ground truth for a given
sample in the dataset.

The results in Table 3 show that xFinder is in-
deed prone to solving the MCQA task rather than
strictly performing answer extraction. For instance,
xFinder-Qwen reaches an adversarial rate of up
to 96.9% on the MMLU-Redux dataset, while
xFinder-Llama reaches a relative accuracy of up
to 89.9% on OBQA and ARC. This suggests that,
when prompted adversarially, xFinder models may
shift towards solving the original MCQA task in-
stead of extracting the intended answer.

7 Conclusions

In this paper, we analyzed the evaluation of Large
Language Models in Multiple-Choice Question An-
swering, examining the impact of evaluation strate-
gies, prompt constraints, and benchmark domains
on model performance. Our findings show that
traditional RegEx-based and first-token probability

‘ xFinder-Llama xFinder-Qwen

Prompt ‘ Adv. Rate Rel. Acc. ‘ Adv. Rate Rel. Acc.
Prompt A 58.9 68.2 45.7 29.3
Prompt B 54.0 69.6 43.2 28.0
Prompt C 15.3 74.8 96.9 23.1
(a) MMLU-Redux

‘ xFinder-Llama xFinder-Qwen
Prompt ‘ Adv. Rate Rel. Acc. ‘ Adv. Rate Rel. Acc.
Prompt A 49.8 76.7 19.8 424
Prompt B 36.4 82.4 16.4 42.7
Prompt C 5.8 89.9 92.0 30.0

(b) OBQA

‘ xFinder-Llama xFinder-Qwen
Prompt ‘ Adv. Rate Rel. Acc. ‘ Adv. Rate Rel. Acc.
Prompt A 67.6 82.3 424 27.2
Prompt B 60.1 84.0 40.0 26.2
Prompt C 13.5 89.9 96.8 232

(c) ARC

Table 3: Results of xFinder models with adversarial
prompts on three datasets. The adversarial rate indicates
the percentage of instances where xFinder assigns one
of the available labels instead of “[No valid answer].”
The relative accuracy column reflects the percentage
of cases where xFinder selects a label that correctly
matches the ground truth for that sample in the dataset.

approaches often underestimate model reasoning,
while LLM-based extraction methods, though more
aligned with human judgment, remain prone to
systematic errors. Moreover, constrained prompts
improve evaluation consistency but may hinder rea-
soning, whereas unconstrained settings tend to en-
hance a model’s performance, but complicate an-
swer extraction. Additionally, performance varies
by domain, with STEM tasks benefiting from free-
form reasoning, while accuracy on humanities-
related questions remains stable. Finally, our ad-
versarial analysis reveals that even state-of-the-art
answer extractors struggle with inconsistencies in
LLM-generated reasoning, underscoring the need
for better verification mechanisms.

Our analyses — which corroborate the lesson of
Tedeschi et al. (2023) — highlight the need for stan-
dardized evaluation protocols in order to mitigate
biases introduced by prompt constraints and answer
extraction techniques. We hope that our findings
may help researchers establish more accurate, fair,
and reliable model assessments.



Limitations

There are several aspects of our work that leave
room for future improvements. First, our study is
limited to English-only benchmarks. Expanding
to multilingual and cross-lingual settings would be
valuable, especially since strategies for extracting
answers using LLMs in multilingual contexts re-
main underexplored and current multilingual LLMs
are known to be English-centric in several aspects,
including their naturalness (Guo et al., 2024) and
the composition of their vocabulary (Moroni et al.,
2025). Second, we focus on a specific set of mod-
els and do not include other families like Mistral or
Gemma. Future work could broaden the analysis to
these and other models so as to better understand
differences across architectures. Third, our evalua-
tion covers only three MCQA benchmarks. Extend-
ing this to additional datasets or tasks, including
those that require more complex reasoning, dealing
with adversarial examples or knowledge-intensive
processes (Scire et al., 2024), could provide deeper
insights. Fourth, due to budget constraints, we
evaluate only models with parameter sizes ranging
from 1 billion to 8 billion. Further expanding our
analysis to models with larger parameter counts, as
well as RAG systems for MCQA (Molfese et al.,
2024), would be valuable.
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In this section we present the details of our evalu-
ation strategies, including the regular expressions
we use to parse the LLMs outputs and the details
of the xFinder models (Yu et al., 2024).

A.1.1 Regular Expressions

To cover multiple cases, we sample several gener-
ated answers and we tune the RegEx to match the
most common answer types, resulting in 18 regex
patterns (Table 4). We test each pattern sequen-
tially on the generated output and consider only the
first match for our statistics.

A.1.2 xFinder Models Details

xFinder (Yu et al., 2024) is a family of models fine-
tuned to extract the intended answer from generated
outputs. The authors train models of varying archi-
tectures and sizes on the Key Answer Finder (KAF)
dataset, which comprises question-choice samples
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RegEx | Matching String
Answer: [A-Z] Answer: A
Answer: \\([A-ZI\\) Answer: (A)
Answer: \\[[A-Z]\\] Answer: [A]
Answer: [A-Z] Answer:A
ATA-ZIO\NL[$) A.
AN(LA-ZINW) WL [$) (A).

correct answer is [A-Z1( [\\.[|$)

... correct answer is A.

|
|
|
|
|
|
|
correct answer is \\([A-ZI\\)( |\\.[$) \ ... correct answer is (A).
correct answer is:\n[A-Z1( |\\.[$) ‘ I.A:correcl answeris:
correct answer is:\m\\([A-ZI\\)( |\\.|$) ‘ &\f‘ma answeris:
... correct answer is:
correct answer is:\n\n[A-Z]( |\\.[$)
A.
... corTect answer is:
correct answer is:\n\n\\([A-ZI\\)( [\\.|$)
(A).
is [A-ZI(C I\\.1$) | ..isA.
is \\([A-ZI\\) C [\\.[$) | ..is(A).
. st
is:\n[A-Z1( I\\.|$) ‘ A
1AM\ (TA-ZIN) C I\ [$) ‘ &\;S:
TS
is:\m\n[A-Z1( |\\.[$)
A.
st
is:AM\NM\N(LA-ZI\N\) C [\ [$)
(A).

Table 4: The 18 RegEx patterns we use to parse the LLMs outputs.

paired with model-generated responses, specifi-
cally designed for answer extraction. In our ex-
periments, we use their top-performing S00M and
8B models, based on Qwen1.5-0.5B and Llama-3-
8B-Instruct, respectively.

A.2 Prompt Details

Tables 5 to 8 present the prompts used in our ex-
periments. When we assess performance by means
of Logprobs, we also append the Assistant tag
together with the string “Answer:” to the input
prompt. We then look at the first-token probabili-
ties by applying the softmax operation to the log-
probability vector generated by the model for the
first token. The answer choice corresponding to the
token with the highest probability is selected as the
predicted answer.
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SYSTEM

You are an expert in question answering.
Given a question and a set of choices,
provide the correct answer.

USER

Question: {question}
Choices: {choices}

Table 5: Prompt for the Zero-Shot setting.

A.3 Annotation Guidelines and Invalid
Answer Examples

In this section, we outline the guidelines followed
by our annotators for the MMLU-Redux dataset
and present statistics on annotated invalid answer
types. The goal of the annotation process is to man-
ually identify the model’s intended answer from

5https: //huggingface.co/collections/
IAAR-Shanghai/xfinder-664b7b21e94e9a93f25a8412
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SYSTEM

You are an expert in question answering.
Given a question and a set of choices,
provide the reasoning process necessary
to answer the question and then
provide your answer exactly as ’Answer:
[label]’.

USER

Question: {question}
Choices: {choices}

Table 6: Prompt for the Zero-Shot Chain-of-Though
setting.

SYSTEM

You are an expert in question answering.
Given a question and a set of choices,
provide the correct answer. Answer
exactly as ’Answer: [label]’.

USER

Question: {question}
Choices: {choices?}

Table 7: Prompt for the Zero-Shot Constrained setting.

its generated output. The annotation process was
conducted by four expert Ph.D. students annota-
tors, all possessing at least a C1 level of English
proficiency.

For each sample, human annotators carefully re-
viewed the question, answer choices, and model
output before selecting the intended answer (i.e.,
“A”, “B”, “C”, “D”, or “[No valid answer]”). An-
notators did not have access to the ground-truth
answer or information about the model that gener-
ated the response. They were instructed to accept
both explicit answers (e.g., “The correct answer is
B”) and implicit ones, provided the reasoning was
coherent.

A.3.1 Annotation Procedure
Annotators followed a structured process:
Step 1: Read the Question and Answer Choices

Understand the question’s context and review all
answer choices (A, B, C, D) to ensure clarity.
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SYSTEM

You are an expert in question answering.
Given a question, a set of choices,
and few examples, provide the correct
answer.

USER

Question: {question}
Choices: {choices}

Table 8: Prompt for the Few-Shot setting.

Step 2: Read the Model Output Analyze the
entire response, considering explicit answers, rea-
soning leading to an answer, and any conflicting
statements.

Step 3: Extract the Intended Answer Identify
the direct answer or infer it from the model’s rea-
soning if unstated. Cases where the response is
ambiguous, irrelevant, or contradictory are labeled
as “[No valid answer].”

As discussed in Section 5, we define five types
of outputs that should be marked as “[No valid
answer]” and include them in the annotation guide-
lines with examples:

Conflicting Answer (C.A.): The model output
exhibits conflicting reasoning. For instance, it may
suggest that multiple answers are correct or present
a reasoning pattern that contradicts the explicitly
stated answer.

Inconsistency in Label Binding (I.L.B.): The
model associates a choice’s text with the wrong
label, e.g., generating “A. 3 when the original
choices were “A. 4” and “C. 3”.

Refused to Answer (R.A.): The model explicitly
declines to answer due to insufficient knowledge
or safety concerns.

Irrelevant Response (I.LR.): The model refer-
ences choices not provided (e.g., “The answer is E”
when E is not an option), or states that there is no
valid choice among the ones provided.

Reached Token Limit (R.T.L.): The model fails
to generate a complete response within the avail-
able 512 tokens, making it impossible to infer the
intended answer.

Table 9 provides examples of these invalid an-
swer patterns. Table 10 presents the number of



Error type

Description

Example

Conflicting answer

The model output includes con-
flicting answers, such as incon-
sistent reasoning or multiple an-
swers.

Question: When light undergoes interference, it can sometimes
Choices: A. build up to more than the sum of amplitudes B. cancel
completely C. Both of these D. Neither of these

Model Output: When light waves overlap, they can build
up to more than the sum of amplitudes (addition) or cancel each
other out (destruction). Therefore, the correct answer
(A) build up to more than the sum of amplitudes .

is

Inconsistency in la-
bel binding

The model fails to bind the
choice’s label to its correspond-
ing text.

Question: What is the capital of France?
Choices: A) Berlin, B) Madrid, C) Paris, D) Rome
Model Output: The capital of France is ‘A. Paris.

Refused to answer

The model explicitly states that
it cannot answer the question.

Question: How much energy do Americans waste each year by
throwing out the unused ice in their drinks?

Choices: A. 6 x 10°JB.6 x 10" JC.6 x 10" JD.6 x 10'7J
Model Output: I couldn’t find any information about the amount
of energy wasted by throwing out unused ice in drinks. This seems
to be an unknown or fictional fact.

Irrelevant response

The model fails to engage with
the question or generates an out-
put which is not relevant to the
question.

Question: Sofia and Tess will each randomly choose one of the 10 in-
tegers from 1 to 10. What is the probability that neither integer chosen
will be the square of the other?

Choices: A.0.64 B.0.72 C.0.81 D.0.95

Model Output: To find the probability that neither integer chosen will
be the square of the other, we need to consider the cases where this con-
dition is not met and subtract it from 1. [...] The probability that neither
integer chosen will be the square of the other is 1 - (9/100) = 91/100 =
0.91. However, none of the given choices match this answer.

Reach token limit

The model output is truncated as
it reached the maximum token
limit.

Question: The language ww | w in (0 + 1)* is

Choices: A. not accepted by any Turing machine B. accepted by
some Turing machine, but by no pushdown automaton C. accepted
by some pushdown automaton, but not context-free D. context-free,
but not regular

Model Output: Great! Let’s break down the question and the
choices: [...] The language ww | w in (0 + 1)* is context-sensitive,
but not context |[[EOS]

Table 9: Identified error categories in model outputs with corresponding examples. Errors are highlighted in red,
while input cues for correct answers (if present) are shown in green. Examples are drawn from the MMLU-Redux
dataset post-annotation. A similar table was provided to annotators before the annotation process.

Avg. Models Accuracy Scores in ARC

Setting | C.A. | LL.B | RA. | LR. | RT.L | # Samples 780
77.1 (+5.2) 3 RegEx
YA 5 2 1 3 5 250 v T RegEx Miss Rate
ZS-CoT 11 0 1 7 10 250 76.0 g :Fi"derb
ZS-Const| 3 | 0 | 1 | 1 | © 250 - J— e
FS 4 0 0 | 3 |1 0 250 S oo 741 (+13)
[ : i i [74.074.0
Al | 23| 2 | 6 | 12| 15 | 1000 s :
2720 719 (+1.3) 728
71.9 H
Table 10: Number of instances annotated as “[No valid
answer]” for each prompt setting. 70.0

ZS-CoT ZS-Const
Prompt Settings

FS

Figure 5: Average accuracy scores across eight LLMs
and four prompt settings when evaluated on the ARC
dataset. Dotted lines indicate the RegEx miss rate.

instances tagged as invalid answers across different
prompt settings for the 1, 000 manually annotated
samples. We observe that the frequency of “[No
valid answer]” varies with the prompt setting. No-
tably, under ZS and ZS-CoT settings, outputs are
more prone to invalid answers. The most common
invalid answer type is “conflicting answer” (C.A.).
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A.4 Results on ARC

In this section, we present the results for the ARC
dataset across different evaluation strategies and
prompt settings.

From Figure 5, we can observe that, since ARC
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Figure 6: The plot shows the average answer offset
(log, scale) and accuracy (%) across the four different
prompt setting using the xFinder evaluation strategy.

consists of grade-school science questions, model
performance closely aligns with the results ob-
tained for the STEM category in MMLU-Redux
(Figure 4a). Despite high miss rates, models evalu-
ated with the RegEx strategy in the ZS and ZS-CoT
settings perform comparably or even better than
in the ZS-Const setting, underscoring the benefits
of allowing free-form generation. This trend is
further supported by the xFinder-based evaluation,
where both ZS and ZS-CoT outperform ZS-Const,
and ZS-CoT even surpasses FS. To reinforce these
findings, Figure 6 reports average answer offsets
across prompt settings. The higher offset values
in ZS-CoT correlate strongly with final model per-
formance, except in FS, which we believe compen-
sates for the lack of explicit reasoning by leverag-
ing the benefits of learning from in-context exam-
ples.

A.5 Individual LLM Results

In order to have a more comprehensive analysis,
we present the accuracy results separately for each
of the LLMs under investigation (Section 4.2). The
results are organized into three distinct tables: Ta-
ble 11 for MMLU-Redux, Table 12 for OBQA, and
Table 13 for ARC.

The reported results validate the consistency
of our findings across all tested models, further
strengthening the conclusions highlighted in Sec-
tion 5.

A.6 Additional Results on MMLU-Redux

In this section, we present additional results for the
last two main categories of MMLU-Redux: SoO-
CIAL SCIENCES and OTHER (Figures 7a and 7b).

As shown in the figures, model performance
on these categories follow a trend similar to that
of the HUMANITIES category (Figure 4b). This
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Figure 7: Average accuracy scores across eight LLMs
and four prompt settings when evaluated on the SO-
CIAL SCIENCES (Figure 7a) and OTHER (Figure 7b)
categories of MMLU-Redux. Dotted lines indicate the
RegEx miss rate.

is expected, as they include subcategories such
as GLOBAL FACTS, BUSINESS ETHICS, HIGH
SCHOOL GEOGRAPHY, and HIGH SCHOOL PsY-
CHOLOGY, among others, which are less aligned
with STEM fields like ABSTRACT ALGEBRA and
COLLEGE MATHEMATICS.

A.7 MMLU-Adversarial Examples and
Prompts

Table 17 and Table 18 illustrate examples of the
inconsistent reasoning and multiple answers error
patterns, respectively. In each table, the first row
shows a real model output that was manually anno-
tated as exhibiting the corresponding error. These
examples serve as in-context demonstrations to
guide Gemini-1.5-Flash during generation. The
second row differs by error type: for inconsistent
reasoning, it includes an original model output and
an adversarially generated output from Gemini that
reproduces the same reasoning while selecting a
different answer. For multiple answers, the second
row contains only the adversarial output, which



| z8 ZS-CoT ZS-Const FS

Model ‘ RegEx Logprobs xFinder ‘ RegEx Logprobs xFinder ‘ RegEx Logprobs xFinder ‘ RegEx Logprobs xFinder
Qwen2.5-7B-Instruct | 714 72.1 735 | 752 — 758 | 721 72.1 721 | 740 74.0 74.1
Llama-3.1-8B-Instruct | 67.3 67.0 69.1 | 706 — 716 | 6638 66.8 668 | 688 69.0 69.8
Mistral-v0.3-7B-Instruct | 55.2 574 571 | 53.0 — 580 | 574 58.1 58.1 | 595 59.8 59.7
Llama-2-7b-chat-hf | 44.0 444 46.1 | 377 — 437 | 431 434 433 | 485 495 487
Phi-4-mini-instruct | 68.0 66.4 68.6 | 702 — 708 | 654 65.7 658 | 68.6 68.6 68.6
Phi-3.5-mini-instruct | 67.2 67.9 702 | 70.1 — 709 | 678 674 684 | 679 67.7 69.4
Llama-3.2-1B-Instruct | 44.6 45.6 475 | 388 — 449 | 442 44.0 443 | 417 48.1 47.9
Smol-2-1.7B-Instruct | 44.7 45.1 455 | 452 — 467 | 445 444 447 | 474 473 474

Table 11: Accuracy results on MMLU-Redux showing the individual performance of each model across four prompt
settings and three evaluation strategies.

| VA ZS-CoT ZS-Const FS
Model ‘ RegEx Logprobs xFinder ‘ RegEx Logprobs xFinder ‘ RegEx Logprobs xFinder ‘ RegEx Logprobs xFinder
Qwen2.5-7B-Instruct | 77.0 87 852 | 888 — 89.0 | 872 87.2 874 | 894 902 89.4
Llama-3.1-8B-Instruct | 814 82.6 814 | 854 — 854 | 826 83.0 826 | 810 81.0 81.0
Mistral-v0.3-7B-Instruct | 66.6 66.6 700 | 676 — 716 | 710 71.6 708 | 742 744 74.0
Llama-2-7b-chat-hf | 572 52.4 576 | 532 — 546 | 522 52.0 526 | 632 64.2 632
Phi-4-mini-instruct | 802 81.4 804 | 818 — 824 | 826 82.0 828 | 838 83.8 83.8
Phi-3.5-mini-instruct | 80.0 834 830 | 852 — 856 | 840 83.8 840 | 86.0 852 86.0
Llama-3.2-1B-Instruct | 55.8 51.0 566 | 512 — 554 | 548 55.0 548 | 60.0 60.0 60.0
Smol-2-1.7B-Instruct | 54.0 54.4 548 | 550 — 564 | 540 54.8 542 | 590 59.4 59.0

Table 12: Accuracy results on OBQA showing the individual performance of each model across four prompt settings
and three evaluation strategies.

| VA ZS-CoT ZS-Const FS
Model ‘ RegEx Logprobs xFinder ‘ RegEx Logprobs xFinder ‘ RegEx Logprobs xFinder ‘ RegEx Logprobs xFinder
Qwen2.5-7B-Instruct | 854 89.3 895 | 897 — 917 | 877 89.5 895 | 87.8 89.7 89.6
Llama-3.1-8B-Instruct | 81.8 824 842 | 858 — 87.7 | 806 823 823 | 809 824 83.1
Mistral-v0.3-7B-Instruct | 70.6 73.9 741 | 726 — 751 | 729 73.0 735 | 759 76.9 76.1
Llama-2-7b-chat-hf | 545 522 57.1 | 495 — 553 | 502 523 526 | 595 612 61.1
Phi-4-mini-instruct | 824 82.8 828 | 8638 — 87.0 | 8238 83.0 829 | 830 83.1 83.0
Phi-3.5-mini-instruct | 81.8 86.5 873 | 868 — 889 | 843 85.4 86.6 | 843 86.0 86.6
Llama-3.2-1B-Instruct | 50.1 517 546 | 470 — 548 | 512 52.3 523 | 541 55.7 55.7
Smol-2-1.7B-Instruct | 56.0 552 572 | 570 — 596 | 544 553 546 | 569 57.0 56.8

Table 13: Accuracy results on ARC showing the individual performance of each model across four prompt settings
and three evaluation strategies.

presents a rationale that supports more than one
possible answer. Table 15 and Table 16 show the
system prompts used to generate adversarial ex-
amples for the inconsistent reasoning and multiple
answers error patterns, respectively.

A.8 Answer Extractors Adversarial Prompts

Table 14 shows the adversarial prompts used to
stimulate xFinder to perform the MCQA task.
Specifically, Prompt A and Prompt B list all pos-
sible answers and state that one is correct without
specifying which one, while Prompt C simply lists
all available choices in natural order.
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Prompt A

Given the Answer Choices: {choices}.
There is a correct option, and it is
quite straightforward to identify in

Prompt B

Given the Answer Choices: {choices}.
There is a right choice, and it is
fairly easy to be recognized in

Prompt C

The correct option is: {choices}

Table 14: Prompt configuration for the xFinder biasing
test. The {choices} string serves as a placeholder for
the list of answer choices, which is instantiated for each
sample.

System Prompt

Given an input question, answer
choices, and an output generated by a
model, substitute ONLY the model answer
label and text with another one among
the ones available. DO NOT change
anything else in the output.

Table 15: System prompt used with Gemini-1.5-Flash,
to create the Inconsistent Reasoning subset of MMLU-
Adversarial

System Prompt

You are an expert at the game of writing
convincing pseudo-explanation. Given
an input question and an answer, write
the explanation for why that answer is
correct with respect to the question.
If the answer seems not correct to
you, do not acknowledge it. End your
explanation with ’Answer: [label].’

Table 16: System prompt used with Gemini-1.5-Flash
to create the Multiple Answers subset of MMLU-
Adversarial
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Input sample
Question: On which continent are most of the Venus
figurines found?

Original Model Output
[...] The majority of Venus figurines have been found on
the continent of Europe. In fact, over 70% of all known

Choices: Venus figurines are from Europe, with the majority coming
A. Europe from the Upper Paleolithic period (around 40,000-10,000
B. Africa BCE). [...]

C. Asia Therefore, the answer to the question is:
D. Australia Answer: B. Africa

Input sample Original Model Output

Question: How much toothpaste is recommended
for cleaning teeth?

Choices:

A. A smear.

B. A pea-sized amount.

C. The length of the toothbrush.

D. Half an inch.

The correct answer is B. A pea-sized amount.

According to the American Dental Association (ADA) and
most dental professionals, a pea-sized amount of
toothpaste is recommended for cleaning teeth,
especially for children.

Adversarial Model Output (GEMINI-1.5-FLASH)

The correct answer is A. A smear .

According to the American Dental Association (ADA) and
most dental professionals, a pea-sized amount of
toothpaste is recommended for cleaning teeth,
especially for children.

Table 17: Examples of outputs showing inconsistent reasoning (blue highlights the reasoning path, while red
highlights the answer given as correct). The first row shows one of the annotated samples, while the second row
depicts a coherent sample generated by one of the models used in our study, along with the relative adversarial

sample generated by Gemini-1.5-Flash.

Input sample

Question: If f(x) = 2 + 22® — 9z — 18, which
of the following statements is true?

Choices:

A. f(z) = 0 has three real solutions.

B. f(z) > —18forall z > 0.

f(z) < =18 forall z < 0.

T

C.
D. The function f(z) is decreasing for x < —3.

Original Model Output
To determine the correct answer, we need to analyze the
given function.

A. f(x) = @ has three real solutions: [...] So,
the correct answer is A.

B. f(x) >= -18 for all x >= 0:
function as [...] Since 1782
the correct answer is B.

C. f(x) <= -18 for all x <= 0:

We can rewrite the
is greater than -18,

We can rewrite the

function as [...] Since -64 is less than -18, the
correct answer is C.
D. The function f(x) is decreasing for x <= -3: We can

determine [...] 'the correct answer is D.

Input sample
What number makes the equation 35/ ? =7 true?
A5

B.6
C.7
D.8

Adyversarial Model Output (GEMINI-1.5-FLASH)

C. 7 is the correct answer because 35 divided by a
divisor that is a multiple of 7 will yield a quotient of
7. [...]1 Answer: C.

A. 5. What makes it
35 divided by 5 equals 7, which is a
property of arithmetic division. [...]
makes 5 the correct answer.

valid is that
fundamental
and it’s what

Table 18: Examples of outputs showing multiple answers (red highlights multiple answers given as correct). The
first sample is one of the annotated samples, labeled as “A” by xFinder, while the second is an adversarial sample

generated by Gemini-1.5-Flash.
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