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Artificial intelligence (AI) has significant potential in healthcare applications, but its training and de-
ployment are challenging due to healthcare’s diverse data, complex spectrum of possible tasks, and the
need to preserve privacy. Foundation models that perform well on various medical tasks and require less
task-specific tuning data are critical to accelerating the development of AI for healthcare applications. In
this technical report, we introduce MedGemma, a new collection of medical vision–language foundation
models based on Gemma 3 4B and 27B. MedGemma demonstrates advanced medical understanding and
reasoning on images and text, significantly exceeding the performance of similar-sized generative models
and approaching the performance of task-specific models, while maintaining the general capabilities of
the Gemma 3 base models. For out-of-distribution tasks, MedGemma achieves 2.6-10% improvements on
medical multimodal question answering, 15.5-18.1% improvements on chest X-ray finding classification,
and 10.8% improvement on agentic evaluations compared to the base models. Fine-tuning MedGemma
further improves performance in subdomains, reducing errors in electronic health record information
retrieval by 50% and reaching comparable performance to existing specialized state-of-the-art methods
for pneumothorax classification and histopathology patch type classification. We additionally intro-
duce MedSigLIP, a medically-tuned vision encoder derived from SigLIP. MedSigLIP powers the visual
understanding capabilities of MedGemma and, as an encoder, it achieves performance comparable to or
better than specialized medical image encoders. Taken together, the MedGemma collection provides
a strong foundation of medical image and text capabilities, with potential to significantly accelerate
medical research and development of downstream applications. More details about the MedGemma
collection, including tutorials and instructions for downloading the model weights, can be found at
https://goo.gle/medgemma.

1 See Contributions and Acknowledgments section for full author list.
Corresponding authors: {linyan, dangolden, asellerg}@google.com.
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1. Introduction

The landscape of modern healthcare is characterized by the generation and use of an unprecedented
volume and diversity of data. Diagnosis, treatment, and monitoring rely on synthesizing information
from disparate sources and specialties. Recently developed large multimodal models (LMMs), trained
on massive and diverse datasets, exhibit remarkable capabilities in detecting complex patterns,
generating coherent text, and processing visual information (Achiam et al., 2023; Alayrac et al., 2022;
Chen et al., 2022; Liu et al., 2023, 2024; OpenAI, 2023; Touvron et al., 2023). These capabilities
mark a potential paradigm shift in assisting with current workflows and extracting novel insights.

While general-purpose (non-medically tuned) LMMs demonstrate impressively broad abilities,
generic models can lack nuanced medical understanding and the ability to interpret and reason about
medical data in a robust way (Han et al., 2023; Labrak et al., 2024; Singhal et al., 2023b,c; Toma
et al., 2023; Tu et al., 2024; Yang et al., 2024). Recognizing this gap, we created MedGemma, a
new suite of open, medically-tuned, vision-language foundation models. These models represent the
latest addition to the Health AI Developer Foundations (Kiraly et al., 2024) collection. Built upon the
robust architecture of Gemma 3 (Gemma-Team et al., 2025), the MedGemma models are designed
to interpret and reason about medical images and text while retaining the strong general-purpose
capabilities present in Gemma 3.

Development and Evaluation

See original: 
https://docs.google.com/drawings/d/1ZA8CBw-LQ
ICPZZ-vhaoJsbZGZrMSJxD6Lx542K_sNC8/edit
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Figure 1 | Overview of the MedGemmamodel collection featuring the MedSigLIP image encoder, MedGemma
4B Multimodal and MedGemma 27B Text

In this report, we focus on two MedGemma models: a 4B variant that can accept text, images,
or both as input, and a 27B variant that is optimized for text-only inputs. Both models output text.
MedGemma 4B demonstrates strong performance on Vision Question Answering (VQA) benchmarks
compared to prior SOTA models like Med-Gemini (Saab et al., 2024; Yang et al., 2024) despite
being considerably smaller. Both MedGemma 4B and 27B are highly competitive on challenging
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text-only medical benchmark tasks, including MedQA (Jin et al., 2021), MedMCQA (Pal et al., 2022),
PubMedQA (Jin et al., 2019), MMLU Med (Hendrycks et al., 2020), AfriMed-QA (Olatunji et al.,
2024), and AgentClinic (Schmidgall et al., 2024) when compared against other open models of
similar scale. In addition to these strong out-of-the-box capabilities, we show how performance can be
further improved by fine-tuning MedGemma on subdomains like chest X-ray reporting, histopathology
classification, and electronic health record information retrieval.

An additional MedGemma variant, a multimodal version of MedGemma 27B, was also developed
and is being released along with the other models. More thorough evaluation of this multimodal 27B
variant is ongoing and preliminary results can be found in Appendix Section F. Unless otherwise
noted in this report, evaluations that reference “MedGemma 27B” refer to the text-only variant of
MedGemma 27B.

In addition to the MedGemma models, we describe the standalone MedSigLIP 400M-parameter
medical image encoder. MedSigLIP is based on SigLIP-400M (Zhai et al., 2023) and is the same
encoder that powers MedGemma’s image interpretation capabilities. When used on its own, MedSigLIP
enables data-efficient and zero-shot image classification and retrieval, with performance comparable
to or exceeding specialized image encoders.

A high level overview of the released models is shown in Fig. 1. More details about the MedGemma
collection, including tutorials and links to download all of the above models, can be found at https:
//goo.gle/medgemma.

2. Methods

2.1. Datasets

For general purpose data replay during pretraining, original data mixtures from SigLIP (Zhai et al.,
2023) and Gemma 3 (Gemma-Team et al., 2025) were leveraged. The medical training and evaluation
datasets largely followed the datasets in Med-Gemini (Yang et al., 2024). In this section, we outline
the specific changes or differences in datasets relative to Med-Gemini.

2.1.1. Training datasets

Text-only datasets: For text datasets, we sampled responses and logits from a large IT (instruction-
tuned) teacher using the train splits of multiple medical QA datasets, including MedQA (Jin et al.,
2021), MedMCQA (Pal et al., 2022), PubMedQA (Jin et al., 2019), MedExpQA (Alonso et al., 2024),
AfriMed-QA (Olatunji et al., 2024), HealthSearchQA (Singhal et al., 2023a), and LiveQA (Abacha
et al., 2017). We also sampled responses and logits for approximately 200,000 synthetic medical
questions generated by asking the same large IT teacher to generate a new question using 5 randomly
sampled questions from the above datasets as examples.

Multimodal datasets: Relative to Med-Gemini, the multimodal capabilities of MedGemma are
currently focused on 2D medical images (e.g. X-ray, 2D slices from CT/MRI); 3D volumes and genomic
datasets described in Yang et al. (2024) were not included. Additionally, we and others have identified
potential data quality issues in PathVQA and MedVQA. Thus, we removed them from the training
dataset. We did not include PAD-UFES-20 in the post-training dataset since it focuses on 6-class
classification of very specific lesion types, which is not in line with the goal of more general purpose
dermatology capabilities and use cases. For the PMC-OA component of the training data, we only
included the single panel medical images from PMC-OA for better data quality. Relative to Med-
Gemini we also introduced a larger internal collection for ophthalmology (184,852 more retinal
fundus images), dermatology (51,049 more dermatology images with 210 different skin conditions),
histopathology (a total of ∼32.5 million patch-text pairs), and radiology data (54,573 more CT 2D
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Table 1 | Overview of MedGemma training datasets.

Modality Dataset No. examples Training stages Description

Text-only

MedQA 9,275 Distill, RL USMLE style exam questions
MedMCQA 182,806 Distill, RL Indian medical entrance exam questions
AfriMed-QA 1,003 Distill, RL Pan-African English multi-specialty QA
MedExpQA 434 Distill, RL Spanish medical residency exam questions
PubMedQA 1,000 Distill, RL Biomedical QA compiled from PubMed abstracts
LiveQA 634 Distill, RL Consumer health questions from United States

National Library of Medicine (NLM)
HealthSearchQA 3,375 Distill, RL Common consumer medical questions from

search engines
Synthetic 200,000 Distill Generated from large IT teacher

Radiology

SLAKE 450 Vision, PT, RL Captions generated from QA pairs
VQA-Rad 1,391 RL Radiology image QA pairs
MIMIC-CXR 231,483 Vision, PT, RL Chest X-ray images & free-form reports
Digital Knee X-ray 1,469 Vision, PT Knee X-ray images & labels
CT-US1 59,979 Vision, PT 2D CT slices & free-form reports
MRI-US1 47,622 Vision, PT 2D MRI slices & free-form reports

Histopathology Internal histopathology 32,550,599 Vision, PT, RL Histopathology image patches, caption pairs
Dermatology PAD-UFES-20 2,047 Vision, PT Skin lesion images & labels

Internal dermatology 51,049 Vision, PT, RL Skin lesion images & labels
Ophthalmology EyePACS 199,258 Vision, PT, RL Fundus images & labels
General Medical PMC 41,853 Vision, PT Single panel medical images & caption pairs

Vision: Vision encoder enhancement, PT: Pretraining, Distill: Distillation, RL: Reinforcement learning.

slices, 47,622 more MRI 2D slices). The additional CT and MRI slices utilized for training were
curated based on mention of a specific slice associated with abnormal findings in the radiology report.

2.1.2. Data Preprocessing

Our data preparation followed Yang et al. (2024) closely. Image padding and resizing algorithms
remain the same, but because the vision encoder is different in Gemma 3, our images were resized
to 896×896 instead of 768×768. Following Gemma 3, we use the SentencePiece tokenizer with
262,000 entries. Additionally, for CT images, we preselected three windows and converted them into
the RGB color channels of the input image to highlight (1) bone and lung, window-width: 2250,
window-level: -100; (2) soft tissue, window-width: 350, window-level: 40; (3) brain, window-width:
80, window-level: 40.

2.2. Modeling Methodology

2.2.1. Modeling Architecture and Training Infrastructure

The MedGemma model architecture follows Gemma 3 (Gemma-Team et al., 2025) and is compatible
with all existing Gemma infrastructure. The vision encoder for Gemma 3 is the 400M variant of
the SigLIP encoder (Zhai et al., 2023) and is shared across the different Gemma language model
sizes (4B, 27B). The input image resolution is 896×896 with pixel values normalized to [-1, 1]. The
language model component also follows Gemma 3, featuring arbitrary image-text interleaving and
long context (128k). Similar to Gemma 3, MedGemma was trained on TPUv4, TPUv5e, and TPUv5p,
leveraged pre-computed visual tokens for memory saving, and used data and model shardings for
multi-pod training.
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2.2.2. Model Training

The MedGemma 4B multimodal model utilized all of the following steps while the text-only version
of MedGemma 27B leveraged the post-training stage alone.

Vision Encoder Enhancement for MedGemma: To improve the vision encoder’s capability of
encoding and distinguishing subtle differences in medical images, we fine-tuned the vision encoder
in Gemma 3 (SigLiP-400M) using over 33M medical image-text pairs (635k from various medical
modalities and 32.6M histopathology patches) as listed in Table 1. To retain SigLIP’s existing
performance, its original training data (e.g., WebLI) were retained and medical data was mixed with
2% weight into the training. While the Gemma 3 vision encoder works with 896×896 resolution,
we found that many medical vision tasks worked reasonably well at 448×448 resolution (Table 15).
Thus, while the MedGemma 4B image encoder is based on 896×896 resolution for compatibility
and consistency with Gemma 3, the released MedSigLIP model is based on 448×448 resolution for
more efficient experimentation and adaptation by the community. The 448×448 encoder shares the
same model weights as the 896×896 encoder with the only difference being down-sampled positional
embeddings to work with fewer input patches from the lower resolution.

Multimodal Decoder Pretraining: After the vision encoder enhancement, the Gemma language
model needed to be re-adapted for this new vision encoder, not only for the medical data but also
for the general image domain to preserve the visual-language reasoning capabilities. This goal was
achieved in the pretraining stage incorporating both the text and interleaved imaging data from the
original mixture and the newly introduced medical domain image-text paired data. Notably, we did
not introduce further medical text-only data in this step, as the original Gemma 3 mixture was already
general-purpose and large-scale. To reduce compute requirements, we continued our pretraining on
top of the original Gemma 3 pretrained checkpoints, mixed our medical image data (Table 1) with
10% weight, trained for approximately 5 epochs on the medical mixture given the mixing ratio, and
picked the checkpoint based on the validation set performance on chest X-ray report generation, and
radiology, dermatology, and ophthalmology visual question answering.

Post-training: The knowledge acquired from pretraining needs to be surfaced as capabilities in
the post-training stage. There are two primary post-training components as previously outlined for
Gemma 3. The recipes for distillation and reinforcement learning (RL) were the same as in Gemma 3
development with the following additions: (1) Distillation: addition of medical text data during this
component to enable further learning in these domains from a large instruction-tuned (IT) teacher.
(2) Reinforcement learning: Medical imaging data with paired text was utilized in the RL stage of
post-training. For multimodal training, we found that RL enables better generalization compared to
supervised fine-tuning, so all multimodal post-training was performed via RL.

3. MedGemma Evaluations

MedGemma was evaluated and compared with other models on five types of medical tasks: text
question-answering, image classification, visual question answering, chest X-ray (CXR) report gen-
eration, and agentic behavior. We additionally validated MedGemma on several general purpose
(non-medical) benchmarks. A high-level overview of tasks and datasets is provided in Table 2 and
additional details on each task are below.

3.1. General evaluation approach

Evaluation parameters: Unless reported otherwise, all evaluations that we performed consisted
of a single inference run per example. For MedGemma evaluations, a temperature of 0.0 was used
on medical benchmarks and the default temperature was used on non-medical benchmarks. For
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Table 2 | Overview of MedGemma evaluation datasets.

Task Dataset Modality No. Examples OOD†

Medical text question-answering

MedQA Text 1,273 -
MedMCQA Text 4,183 -
PubMed QA Text 500 -
MMLU Med Text 3,685 -
MedXpertQA Text 2,450 ✓

AfriMed-QA (MCQ) Text 25 -

Medical image classification

MIMIC-CXR (Med-Gemini test set) Radiology 1532 -
MIMIC-CXR (MAIRA test set) Radiology 2461 -
ChestX-ray14 (CXR14) Radiology 1,962 ✓

CheXpert Radiology 668 ✓

US-Derm MCQA Dermatology 1,996 -
Path MCQA Histopathology 450 -
EyePACS Ophthalmology 3,161 -

Medical visual question-answering MedXpertQA General medical 2,000 ✓

SLAKE (English-only) Radiology 1,061 -
VQA-RAD Radiology 2,248 -

Chest X-ray report generation MIMIC-CXR Radiology 306 -

Medical agentic behavior AgentClinic-MedQA Agentic text 215 -
AgentClinic-MIMIC-IV Agentic text 200 ✓

General purpose
MMLU Pro Text 12,032 N/A
Global MMLU Lite Text 6,400 N/A
MMMU (val) Text+Image 900 N/A

† Out of Distribution: Data not seen during any model development stages. For general purpose benchmarks, it is difficult to determine
if data are OOD given the large amount of pretraining data in the original mixture.

evaluations of all other models, on all datasets, each model’s default temperature and top-k were used.
Due to data privacy and license terms, only publicly available datasets were used in evaluating models
involving public APIs (e.g. OpenAI models). In cases where existing literature with performance
metrics was available, those values were used and noted (with inclusion criteria for external models
described below). For generalist models, we found that giving them a persona in the system message,
such as “You are a helpful medical assistant” or “You are a helpful radiology assistant” could improve
their performance, we thus added these messages into the evaluation prompts. Detailed prompt
usages can be found in Appendix Tables A6 and A7. As the DeepSeek R1 model (DeepSeek-AI, 2025)
is a text-only model, it was only evaluated on text benchmarks.

Inclusion of previously published model performance data: Where comparisons to other models
were made, we restricted inclusion to models that met the following criteria: a publicly accessible
model card (e.g., via Hugging Face or an institutional website); clear and verifiable attribution,
including the name and contact information of the responsible individual or institution; explicit
licensing terms governing its use; at least one associated technical report or publication for the current
or a prior version of the model. These inclusion criteria were chosen to help ensure accountability,
transparency, and adherence to sound machine learning practices, such as avoiding test dataset
leakage. Additionally, for visual question answering (VQA) comparisons, we only include zero-shot
generative evaluations for the most direct and meaningful comparisons (thus excluding few-shot or
discriminative, embedding-based approaches for VQA).

3.2. Medical text question-answering

For evaluation of medical and health related capabilities, we used the official, publicly available
test splits for MedQA, MedMCQA, PubMedQA, MMLU medical subcategories, AfriMed-QA, and
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MedXpertQA. AfriMed-QA includes a mix of closed and open questions though we limited evaluations
to only the closed multiple choice questions (MCQs). No data from MedXpertQA was used in model
training, so it is considered an out-of-distribution (OOD) benchmark.

3.3. Medical image classification

We evaluated medical image classification on three public chest X-ray datasets, as well as private
datasets of dermatology, histopathology and retinal fundus images. We measured classification
performance using accuracy or macro F1, depending on the dataset, targeting common findings or
diagnoses in each modality.

Chest X-rays: Prediction accuracy was evaluated for five conditions in the MIMIC-CXR (Goldberger
et al., 2000; Johnson et al., 2019a,c) and CheXpert (Irvin et al., 2019) datasets: atelectasis, car-
diomegaly, consolidation, edema, and pleural effusion. Accuracy was evaluated for three conditions
in the ChestX-ray14 (CXR14) (Wang et al., 2017) dataset: lung opacity, pneumothorax, and fracture.
We used the original condition labels from CheXpert. For MIMIC-CXR, we report performance on
two different versions of the test data: (1) using radiologist-adjudicated labels with missing and
uncertain labels excluded, as in Yang et al. (2024) and (2) using original labels from Johnson et al.
(2019b) with missing and uncertain labels considered to be negative, with the same set of test cases as
reported in Hyland et al. (2023). For the CXR14 data set, radiologist-adjudicated labels as described
in Majkowska et al. (2020) were used for evaluation. Evaluations on MIMIC-CXR were not performed
with the OpenAI o3 model due to data privacy considerations.

Dermatology: “US-Derm MCQA” (Liu et al., 2020) is an internal, de-identified dataset consisting
of one image per patient from 1996 patients who were referred to tele-dermatologists by primary
care physicians in the United States. There are 136 different skin conditions represented across the
images, with ground truth diagnoses provided by dermatologists based on the images and metadata.
We converted this dataset into a multiple choice question format where the associated reference
condition is included among three other randomly assigned condition labels from the same dataset
(four options total per MCQ).

Histopathology: “Path MCQA” is an internal dataset of 450 patches extracted from 354 unique whole
slide images associated with specimens from breast cancer, lung cancer, prostate cancer, lymph nodes,
and cervical biopsies. These represent test splits (by patient) from several different data sources.
Patches comprise magnifications of 5x, 10x, and 20x (2, 1, and 0.5 microns per pixel). A single,
multiclass labeling task for each patch was formulated as a multiple choice question, with four to
nine possible options per question depending on the tissue type and labeling task associated with the
image. These questions focus on identification and grading for breast cancer, prostate cancer, and
cervical dysplasia as well as lung cancer histologic classification and histologic sub-typing. Ground
truth labels were obtained via annotations provided as region-level labels by US board-certified
pathologists (Jaroensri et al., 2022; Nagpal et al., 2019, 2020; Sadhwani et al., 2021).

Ophthalmology: We used the de-identified 45-degree fundus imagery dataset from EyePACS (Cuadros
and Bresnick, 2009) as described previously (Yang et al., 2024). We evaluated one image per patient
from 3161 patients on clinically-determined 5-class diabetic retinopathy (DR) severity labels, with
each task formulated as a multiple choice question with five options: none, mild, moderate, severe or
proliferative DR.

3.4. Medical visual question-answering

We measured visual question-answering performance on the radiology SLAKE and VQA-RAD data sets
using the average tokenized F1 metric across open and closed QAs, as well as accuracy on the subset
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of yes/no questions. For SLAKE, we used the default train/test split, and for VQA-RAD, we used splits
from Yang et al. (2024)2 to avoid the train/test image contamination present in the original splits.

3.5. Chest X-ray report generation

The MedGemma 4B pretrained model was used to generate radiology reports from the MIMIC-CXR test
set. The pretrained model was chosen here rather than the post-trained model due to the sensitivity
to reporting style of metrics like RadGraph F1 (Jain et al., 2021). The pretrained model could better
follow the style of MIMIC-CXR, as MIMIC-CXR reports are used in training, while the post-trained
model conformed more closely to the original Gemma 3 style in terms of report generation.

We measured accuracy of chest X-ray report generation on the MIMIC-CXR dataset by comparing
MedGemma-generated reports to the original radiologist reports for both impression and findings
using the RadGraph F1 metric (Jain et al., 2021) on the 912 image set used in Tanno et al. (2024)
and Yang et al. (2024).

We also performed a human expert evaluation on the same 306-case image set as in Yang
et al. (2024) with a US board-certified cardiothoracic radiologist to evaluate both the original and
MedGemma-generated reports with respect to the associated chest X-ray image. The evaluation task
compared the reports on a five-point scale, as originally described in Yang et al. (2024) and shown in
Appendix Table A1. Although the reviewer was asked to remain neutral in their evaluation, they were
not blinded to which report was from the original radiologist vs. from the AI system. This evaluation
complements the automated RadGraph-based evaluation as it can both distinguish between major
and minor issues as well as account for scenarios in which the original MIMIC-CXR report contains
errors or omissions.

3.6. Medical agentic behavior

To provide insights into the capabilities of MedGemma in more complex environments, we measured
the ability of MedGemma to operate in an agentic setting. We evaluated on AgentClinic (Schmidgall
et al., 2024), which positions MedGemma in the role of a “physician agent” in a simulated clinical
environment. Solving tasks in AgentClinic required the model to perform dialogue-driven patient
history taking, ordering and interpreting medical exams, and operating under incomplete information
in order to accurately provide a final diagnosis. We evaluated on 415 simulated cases using the
text-only environments, AgentClinic-MedQA (215 cases) and AgentClinic-MIMIC-IV (200 cases),
which are derived from MedQA (Jin et al., 2021) and MIMIC-IV (Johnson et al., 2023) respectively.

3.7. General purpose benchmarks

Given the limitations that many specialized medical models exhibit when faced with non-medical
tasks, we also evaluated possible tradeoffs of specialization by evaluating on the MMLU Pro, Global
MMLU Lite, and MMMU benchmarks. Performance on the MMMU benchmark is reported on the
validation set as the public test set does not include answers.

4. MedGemma Results

Medical text question-answering: Across all text-only biomedical QA tasks evaluated, MedGemma
demonstrated superior performance over the standard Gemma 3 model variant of the same size,
as well as competitive performance with much larger models in many cases. This was based on
evaluation on MedQA, MedMCQA, PubMedQA, MMLU subsets and AfriMed, shown in Table 3, and
the out-of-distribution MedXpertQA, shown in Table 4.
2https://github.com/Google-Health/google-health/blob/master/data_splits/
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Table 3 | Accuracy on text-only medical benchmarks. Metrics for MedQA correspond to the original 4 option
test set, unless otherwise specified with an asterisk. Metrics for external, small models as well as OpenBIOLLM
70B were obtained from the prior reports for these models. Other metrics were computed internally as described
in the evaluation section.

Model † Open ‡ MedQA MedMCQA PubMedQA MMLU
Anatomy

MMLU
Clinical Knowl.

MMLU
College Biology

MMLU
College Medicine

MMLU
Medical Genetics

MMLU
Prof. Medicine

MMLU
Virology

AfriMed

Small Models

MedGemma 4B ✓ 64.4 55.7 73.4 59.3 71.3 70.8 65.3 83.0 76.8 53.0 52.0
Gemma 3 4B ✓ 50.7 45.4 68.4 54.1 69.8 77.8 63.0 74.0 65.4 42.8 48.0
MedGemma 27B
(with test-time scaling) ✓ 87.7 74.2 76.8 83.7 86.0 96.5 86.1 97.0 93.4 53.6 84.0
Gemma 3 27B ✓ 74.9 62.6 73.4 74.8 86.0 93.8 78.6 91.0 85.7 51.2 72.0
BioMistral DARE 7B §
(Labrak et al., 2024) ✓ 51.1 48.7 77.7 55.8 62.3 66.9 58.0 67.0 61.4 N/A N/A
JSL-MedLlama 3 8B v2.0 §
(John Snow Labs, 2024) ✓|| 61.4* 61.2 74.2 71.9 78.1 82.6 71.1 83.0 78.7 N/A N/A
OpenBioLLM 8B §
(Ankit Pal, 2024) ✓ 59.0 56.9 74.1 69.8 76.1 84.2 68.0 86.1 78.2 N/A N/A
IQVIA Med-R1 8B §
(IQVIA, 2025) - 73.3 63.3 76.4 72.6 78.5 88.2 72.8 87.0 84.9 N/A N/A

Large Models

OpenBioLLM 70B §
(Ankit Pal, 2024) ✓ 78.2 74.0 79.0 83.9 92.9 93.8 85.7 93.2 93.8 N/A N/A
DeepSeek R1
(DeepSeek-AI, 2025) ✓ 90.1 78.8 77.2 91.1 91.7 98.6 90.8 99.0 95.6 56.0 92.0
Gemini 2.5 Flash - 92.0 79.7 76.2 91.1 91.7 98.6 87.9 97.0 96.0 59.6 84.0
Gemini 2.5 Pro - 92.6 81.1 75.8 91.1 91.7 98.6 89.0 96.0 96.3 56.0 84.0
GPT-4o - 86.5 76.1 78.4 86.7 89.4 94.4 86.7 98.0 93.0 58.4 80.0
o3 - 93.3 83.3 80.0 91.9 94.7 98.6 90.2 100 96.0 56.0 84.0

* Indicates results for the all-options version of the dataset
† See Section 3.1 for inclusion criteria
‡ Open-weight models
§ Prior reported results
|| Research use only

Medical image classification: To further evaluate MedGemma across the modalities that are most
highly represented in the training data, we utilized a set of image-based classification tasks across
radiology, histopathology, dermatology, and ophthalmology. Although addressing classification as a
zero-shot generative task may not provide maximum performance compared to training an embedding-
based classifier, these evaluations provide additional insights into the quality and performance of
underlying image encoder and the overall model capabilities. Results are summarized in Table 7
for CXR evaluations and Table 8 for histopathology, dermatology, and retina image classification.
MedGemma demonstrated substantially superior performance on these tasks relative to the Gemma 3
baselines, and notably, MedGemma also demonstrated superior performance as compared to much
larger API-based models.

Table 4 | Accuracy results on MedXpertQA (OOD)

Small Models Large Models

Type MedGemma 4B Gemma 3 4B MedGemma 27B Gemma 3 27B Gemini 2.5 Flash Gemini 2.5 Pro o3
Text-only 14.2 11.6 25.7 15.7 36.2 43.1 54.6
Multi-modal only 24.4 22.3 N/A 29.8 47.4 58.9 67.5

MedGemma is also capable of engaging in open-ended clinical reasoning tasks. Examples of such
tasks with MedGemma 27B, including clinical commentary on model performance, are shown in
Table 5 (long-form MedGemma response) and Table 6 (succinct MedGemma response). Additional
examples can be found in Appendix Section E.

Medical visual question answering: Performance for SLAKE (Liu et al., 2021) and VQA-RAD (Lau
et al., 2018) are summarized in Table 9. Again, MedGemma 4B demonstrated superior performance
over the standard Gemma 3 model variant of the same size, as well as competitive performance with
much larger models in many cases. Of note, we did not compare to models for which these metrics are
calculated using a discriminative, embedding-based approach. Such approaches can be informative,
but use the train set to define the set of possible text answers, and thus represent a classification
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Table 5 | Example of MedGemma 27B clinical reasoning in an oncology setting, including commentary by a US board-
certified practicing oncologist

Prompt

A 62-year old man presents with a 2 cm spiculated right upper lobe peripheral lung nodule and mediastinal
lymphadenopathy. Imaging furthermore shows multiple metastatic lesions in the liver and bones, and a
solitary 1 cm lesion in the right parietal lobe without surrounding vasoedema. A biopsy from the liver
demonstrated adenocarcinoma consistent with a lung primary. Genomic sequencing demonstrated TP53 and
EGFR L858R mutation, and PD-L1 was 70%. On examination, the patient is without any neurologic deficits
and is ECOG 0. What is the best next step in management for this patient?

MedGemma 27B output

Okay, let’s break down the management for this patient with Stage IV NSCLC.
Key Findings:
1. Diagnosis: Stage IV Adenocarcinoma of the Lung (confirmed by liver biopsy).
2. Driver Mutation: EGFR L858R mutation (highly actionable).
3. Biomarker: PD-L1 70% (high expression).
4. Metastases: Widespread (mediastinal nodes, liver, bone, solitary brain lesion).
5. Clinical Status: Excellent performance status (ECOG 0), asymptomatic brain lesion.
Analysis & Rationale:
• EGFR Mutation is Paramount: The presence of the EGFR L858R mutation is the most critical factor guiding
first-line therapy. Patients with EGFR-mutated NSCLC have demonstrated significantly improved outcomes
with EGFR tyrosine kinase inhibitors (TKIs) compared to chemotherapy.

• PD-L1 High: While PD-L1 is high (70%), indicating potential benefit from immunotherapy, current
guidelines and clinical trial data (like FLAURA) strongly favor EGFR TKIs as the first-line treatment for
patients with EGFR mutations, even those with high PD-L1. Immunotherapy is typically considered after TKI
failure or in combination with chemotherapy in specific settings, but not usually as the initial monotherapy
in this scenario.

• Brain Metastasis: The solitary, asymptomatic brain lesion needs management. EGFR TKIs, particularly
third-generation agents like Osimertinib, have good central nervous system (CNS) penetration and activity.
Therefore, systemic therapy with an EGFR TKI is often the initial approach to treat the brain metastasis as
well. Close monitoring with MRI is essential. If the lesion progresses despite systemic therapy or becomes
symptomatic, Stereotactic Radiosurgery (SRS) would be considered.

• ECOG 0: The patient’s excellent performance status makes him a suitable candidate for aggressive systemic
therapy.

Best Next Step in Management: The best next step is to initiate first-line systemic therapy with an EGFR
tyrosine kinase inhibitor (TKI).
• Preferred Agent: Osimertinib is generally the preferred first-line EGFR TKI due to its superior efficacy
(progression-free survival and overall survival) and improved CNS penetration compared to
earlier-generation TKIs (like Gefitinib, Erlotinib, Afatinib) demonstrated in the FLAURA trial.

• Management of Brain Metastasis: Start Osimertinib. Monitor the brain lesion closely with serial MRI
scans (e.g., every 3-6 months initially). Consider SRS if the lesion progresses or causes symptoms.

• Supportive Care: Address potential side effects of the TKI (e.g., rash, diarrhea). Manage potential bone
pain with analgesics or palliative radiation if needed.

Commentary by US board-certified practicing oncologist

Strengths: Identifies the key components of staging and the actionable driver mutation. PD-L1 is high but
correctly identifies TKI as preferable over immunotherapy. Correctly identifies osimertinib as having good brain
penetration especially with asymptomatic and small brain lesions. Appropriately highlights FLAURA trial.
Includes supportive care aspects including potential side effects.
Areas for Improvement: Immunotherapy can be considered after TKI progression, though the treatment
paradigm has evolved (i.e., amivantamab + chemotherapy, datopotamab deruxtecan). Although osimertinib is
a correct answer, newer combinations are available and have shown benefit over osimertinib alone (i.e.,
amivantamab + lazertinib, osimertinib + chemotherapy). Serial brain MRI is mentioned but serial rest-of-body
imaging is not. Dosing of osimertinib not mentioned. Bone disease discussed, though no consideration for bone
modifying agents or for whether surgery may be indicated. Shared decision-making would be a beneficial
addition.
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Table 6 | Example of MedGemma 27B clinical reasoning in an oncology setting, specifically prompted for succinct output,
including commentary by a US board-certified practicing oncologist

Prompt

A 62-year old man presents with a 2 cm spiculated right upper lobe peripheral lung nodule and mediastinal
lymphadenopathy. Imaging furthermore shows multiple metastatic lesions in the liver and bones, and a
solitary 1 cm lesion in the right parietal lobe without surrounding vasoedema. A biopsy from the liver
demonstrated adenocarcinoma consistent with a lung primary. Genomic sequencing demonstrated TP53 and
EGFR L858R mutation, and PD-L1 was 70%. On examination, the patient is without any neurologic deficits
and is ECOG 0. What is the best next step in management for this patient? Please be succinct.

MedGemma 27B output

Initiate Osimertinib and monitor the brain lesion with serial MRI.

Commentary by US board-certified practicing oncologist

Strengths: To the point, directly addresses systemic therapy + serial brain MRI.
Areas for Improvement: A little too succinct, does not discuss radiosurgery, and otherwise the same issues as
the lengthy output in the prior example.

task instead of a more flexible open-ended VQA task. Additionally, LLaVA-Med and BiomedGPT-B are
included in the results table using previously reported metrics (Li et al., 2023; Zhang et al., 2023) and
demonstrated very strong performance, with the qualifier that such performance involves supervised
fine-tuning for the specific datasets. Additionally, LLaVA-Tri (Xie et al., 2024) has reported even higher
performance metrics, but the reported methodological details for these metrics are insufficient to
inform direct comparison. In addition to these statistical results, we show several anecdotal examples
of open-ended visual question-answering in Figures 2 and 3.

Chest X-ray report generation: Results of performance on CXR report generation based on the
MIMIC-CXR dataset and the RadGraph F1 metric are shown in Table 10. The results demonstrate
that our pretrained MedGemma models can achieve SOTA-level results by training with MIMIC-CXR
dataset as our only CXR-related dataset. This shows the versatility of Gemma’s architecture in adapting
to complex medical use cases. In addition, expert human evaluation shown in Figure 4 found that 68%
and 49% of generated reports in normal and abnormal studies respectively were equal or superior to
the original reports, with 81% of generated reports overall resulting in the same or superior clinical
decisions in comparison to the original reports. For comparison, in a similar study, 73% of reports
generated by the larger Med-Gemini model would have resulted in the same or superior clinical
decisions in comparison to the original reports (Yang et al., 2024).

Medical agentic behavior: To provide initial insights into the capabilities of MedGemma in the setting
of more realistic use cases beyond single turn question answering, we also evaluated MedGemma
in an agentic role using the AgentClinic benchmark (Schmidgall et al., 2024). In this task, the
model functions as a “physician agent” in simulated clinical encounters, requiring tasks like patient
history taking, exam interpretation, and diagnosis under uncertainty to reach correct answers. Using
the text-only AgentClinic-MedQA and AgentClinic-MIMIC-IV environments (with GPT-4o for the
patient agent and measurement), MedGemma 27B showed superior performance to Gemma 3 27B,
exceeding performance of human physicians on AgentClinic-MedQA, and approaching performance
of much larger models on both datasets. Results are summarized in Table 11. Of note, the 4B variants
(MedGemma and Gemma 3) were not well suited for this task, demonstrating difficulty following
system instructions for the agentic framework as provided by AgentClinic.

General purpose benchmarks: Given the limitations and poor performance that many medically-
specialized models exhibit when faced with non-medical tasks, we also evaluated for possible tradeoffs
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You are an expert radiologist. Please succinctly describe 
the findings for the above chest x-ray. 

The chest X-ray shows a large left pneumothorax with a 
chest tube in place. There is also a possible nodule in the 
right upper lobe. The mediastinum is midline. The heart 
size is normal. There is no evidence of pulmonary edema.

Describe this image and provide the most likely 
condition. Keep your answer brief

The chest X-ray shows a significant opacity in the left 
lower lung field, obscuring the costophrenic angle. This 
suggests a possible pleural effusion or consolidation. The 
right lung appears relatively clear. The heart size is within 
normal limits. The mediastinum is unremarkable.

CXR -14
[left] 00028876_030 (right) 00000823_001

Reference Information: Radiologist Impression
Moderately large left hydropneumothorax (predominantly 
air-containing) with incompletely expanded left lung. If persistent, 
consider ex vacuo pneumothorax/trapped lung condition. Multiple 
right lung nodules, highly suspicious for metastases.

Reference Information: Radiologist Impression
Lower left lung consolidation. Small-medium left pleural effusion. 
Similar though lesser findings right side.

PromptPrompt

What do you think is the most likely condition in this image? 
Keep your answer brief

Prompt

Describe this image and provide the most likely condition. 
Keep your answer brief

Based on the image, the most likely condition is a basal cell 
carcinoma (BCC). The presence of a pearly or waxy bump 
with visible blood vessels is a classic sign.

Prompt

The image shows a close-up of a leg with multiple small, red, 
raised bumps. These are likely insect bites, possibly from 
mosquitoes, fleas, or other biting insects.

Prompt

What other information would you want to know from the 
patient to improve your diagnosis? Keep your answer brief

I would ask:
● When did the bites start?
● Are there any other bites on the body?
● Is there any itching or pain associated with the bites?
● Have you been in any areas where insects are common?
● Do you have any known allergies?

What next steps would you suggest? keep your answer brief

Prompt

Consult a dermatologist for a definitive diagnosis and 
treatment plan.

Reference Information:
Dermatologist suspicion BCC

Reference Information:
Dermatologist suspicion insect bite

Figure 2 | Example of CXR and dermatology image dialogue via open-ended question answering with
MedGemma 4B.
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Describe the findings and most likely diagnosis in this 
image. Be concise.

Prompt

Describe this image and provide the most likely condition. 
Keep your answer brief.

Prompt

https://drive.google.com/file/d
/1eLp2WP44_WFOmvDwwU
7XFl2PXw8SYLH7/view

The image shows a histological section of colon tissue. The 
findings include a mix of glandular structures and stromal 
tissue. There are areas of inflammation and some degree of 
cellular atypia.

Most likely diagnosis: Colorectal adenocarcinoma

The image shows a high-grade invasive carcinoma with 
significant cellular atypia, prominent nucleoli, and increased 
mitotic activity. This indicates a malignant tumor with 
aggressive growth.

Most likely diagnosis: High-grade invasive carcinoma (the 
specific type would require further information about the 
tissue origin).

Reference Information:
Colon Adenocarcinoma

Reference Information:
Invasive Ductal Carcinoma (Breast Cancer)

https://drive.google.com
/file/d/1MMUKWDVV8_
G5FJ8Li09s5pC6E9Eh
6X6P/view

Figure 3 | Example of histopathology open-ended question answering with MedGemma 4B.

Figure 4 | The MedGemma 4B PT model was used to generate radiology reports on the MIMIC-CXR test
set. A single board-certified thoracic radiologist reviewed the MIMIC-CXR report, generated report, and the
corresponding CXR image to judge the quality of the reports. Images were reviewed using the original DICOMs
on a clinical diagnostic viewer. Across all cases, 81% of MedGemma’s CXR reports resulted in the same or
superior clinical decision in comparison to the original reports.
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Table 7 | Medical image classification with zero-shot generative output for chest X-ray. This table presents
the performance on chest X-ray classification for presence of specific conditions, evaluated as a 0-shot, generative
task. For MIMIC-CXR and CheXpert datasets, macro F1 is calculated for atelectasis, cardiomegaly, consolidation,
edema, and pleural effusion. For CXR14, macro F1 is calculated for lung opacity, pneumothorax, and fracture.

Small Models Large Models

Dataset Metric MedGemma 4B Gemma 3 4B Gemma 3 27B Gemini v2.5
Flash

Gemini v2.5
Pro o3 SOTA VLM §

MIMIC-CXR
Med-Gemini test set* macro F1

(5 conditions)
88.9 81.2 71.7 81.0 85.8 N/A

90.7
Med-Gemini

(Yang et al., 2024)

MIMIC-CXR
MAIRA test set 40.5 26.7 25.0 32.2 31.9 N/A

51.6
Med-PaLM M
(Tu et al., 2024)

CheXpert (OOD) macro F1
(5 conditions) 48.1 32.6 26.2 37.4 37.0 40.9

49.0†
RadVLM

(Deperrois et al., 2025)

CXR14 (OOD)* macro F1
(3 conditions) 50.1 32.0 31.4 36.6 39.2 32.0

46.7
Med-Gemini

(Yang et al., 2024)

* Radiologist adjudicated labels are used (Yang et al., 2024) Section A.1.1., so metrics may not be directly comparable to those
reported in the literature for external models.
† RadVLM macro F1 was calculated based on the individual F1 scores reported, estimated from the associated bar chart
§ Prior reported results

Table 8 | Medical image classification with zero-shot generative output for histopathology, dermatology,
and retina. Performance on internal classification tasks for histopathology, dermatology, and retinal fundus
images; formulated as zero-shot, multiple choice tasks for a generative model.

Small Models Large Models

Modality Dataset Metric MedGemma 4B Gemma 3 4B Gemma 3 27B Gemini v2.5
Flash

Gemini v2.5
Pro

Histopath. PathMCQA accuracy 69.8 37.1 42.2 46.9 42.7

Skin US-Derm MCQA accuracy 71.8 52.5 66.9 78.4 81.0

Retina EyePACS accuracy 64.9 14.4 20.3 17.5 27.7

of specialization. Models were evaluated on MMLU Pro, Global MMLU Lite, and MMMU benchmark
datasets, with performance comparisons between MedGemma and Gemma 3 variants shown in
(Table 12). MedGemma demonstrated only minor decreases in performance relative to the general
models of the same size, further suggesting potential utility for downstream applications that require
both specialized as well as generalized capabilities such as instruction following or diverse user
interactions.

Observed themes: Several key themes emerged from our analysis. While larger, more computationally
expensive models generally performed better, medically-specialized models like MedGemma exhibited
a distinct advantage relative to their parameter size. This size-to-performance benefit was especially
pronounced in medical vision-based tasks, where smaller clinical models, in some instances, even
surpassed the performance of significantly larger general-purpose models. Notably, there was a 500-
fold difference in computational cost between MedGemma 4B and the most expensive comparator
model, a crucial consideration for practical application development where both development and
compute usage are constraints.

We also observed that performance on older, established benchmarks tended to improve with
newer models. While this observation reflects genuine advancements in model capabilities, it also
raises the possibility of test data leakage, as these benchmarks are publicly available and frequently
used in model development and evaluation.
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Table 9 | Medical VQA results for SLAKE and VQA-RAD. We include comparisons to other generative models.
Additionally, the original VQA-RAD test set includes some duplicated images in the train and test sets (with
different questions). As such we have previously described our own splits to avoid this contamination, but
precludes direct comparison to externally reported metrics for this dataset.

SLAKE (English) VQA-RAD
Test split from (Xu et al., 2023)

MedXpertQA

Model overall
token f1

open-ended
token recall

closed-ended
accuracy

overall
token f1

closed Q&A
accuracy

Small Models

MedGemma 4B 72.3 63.3 87.6 49.9 69.1
Gemma 3 4B 40.2 33.3 53.0 33.6 48.7
Gemma 3 27B 42.5 30.8 64.5 42.7 59.4
BiomedGPT-B (Zhang et al., 2023)§ 85.2 - 89.9 * *
LLaVA-Med (BioMedCLIP)(Li et al., 2023)§ - 87.1 86.8 * *

Large Models

Med-Gemini (Yang et al., 2024) 75.8 72.2 84.6 50.1 69.7
Gemini 2.5 Flash 54.6 42.2 80.9 53.6 70.2
Gemini 2.5 Pro 53.1 40.4 78.6 54.2 71.4
o3 55.5 45.0 76.3 52.5 71.9

* Reported results not available for the same test split (only for the original VQA-RAD splits).
- Results for this metric not available in associated report.
§ Prior reported results

Table 10 | Automated report generation metrics on the MIMIC-CXR dataset. This table presents the
performance of various models on generating radiology reports for chest X-rays using the publicly available
MIMIC-CXR dataset. The Sections column indicates whether the model generates the FINDINGS (F) or
IMPRESSION (I) section of the report, with metrics sourced from published research. For all of the metrics,
higher is better. Bold values highlight the best results in each section. MedGemma addresses the more
challenging task of creating both sections (F + I) for frontal chest X-rays (anterior-posterior or posterior-anterior
views), aiming to capture the radiologist’s comprehensive interpretation of the study. Note that reported metrics
across all models may not be directly comparable due to differences in exclusion and inclusion criteria for the
test set in the respective citations.

Model Sections Clinical Metric (%)
RadGraph F1 §

CXR-RePaiR (Endo et al., 2021) F only 9.1
M2 Transformer (Miura et al., 2020) F only 22.0
Med-PaLM M, 12B (Tu et al., 2024) F only 25.2
Med-PaLM M, 84B (Tu et al., 2024) F only 26.7
MAIRA-1 (Hyland et al., 2023) F only 24.3
MAIRA-2 (Bannur et al., 2024) F only 34.6

R2Gen (Chen et al., 2020b) F + I 13.4
WCT (Yan et al., 2021) F + I 14.3
CvT-21DistillGPT2 (Nicolson et al., 2023) F + I 15.4
Flamingo-CXR (Tanno et al., 2024) F + I 20.5
Med-Gemini-2D (Yang et al., 2024) F + I 24.4
PaliGemma 2 10B (Steiner et al., 2024) F + I 29.5
MedVersa (Zhou et al., 2024) F + I 30.0

MedGemma 4B PT F + I 29.5

§ Prior reported results except for MedGemma

5. MedGemma Fine-tuning Demonstration

While the MedGemma models achieved strong baseline performance, users who seek to improve
performance in specialized scenarios (e.g. conforming to a specific reporting style, classification with
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Table 11 | Performance on AgentClinic benchmarks.

Model AgentClinic-MedQA
Accuracy(%)

AgentClinic-MIMIC (OOD)
Accuracy(%)

Small Models

MedGemma 27B 56.2 46.0
Gemma 3 27B 50.7 35.2

Large Models

DeepSeek R1 (DeepSeek-AI, 2025) 58.1 43.8
Gemini 2.5 Pro 58.3 48.4
o3 65.8 50.6

Human physician 54.0* N/A

* Human metric based on GPT-4 patient agent as reported in Schmidgall et al. 2024. All other
metrics were recalculated using GPT-4o as patient agent to minimize deviation from original
AgentClinic report.

Table 12 | Accuracy results on general, non-medical benchmarks.

Type Benchmark MedGemma 4B Gemma 3 4B§ MedGemma 27B Gemma 3 27B§

Text-only MMLU Pro 39.1 43.6 60.2 67.5
Global MMLU Lite 55.5 54.5 74.5 75.1

Multi-modal MMMU (val) 47.3 48.8 N/A 64.9
§ Prior reported results

classes difficult to describe using language alone, new domains that the base models haven’t been
trained on) will need to further adapt the models.

We conducted four fine-tuning experiments to demonstrate MedGemma’s capacity to be adapted.
There are three multimodal tasks, (1) MIMIC-CXR clinical report generation, (2) SIIM-ARC CXR pneu-
mothorax classification (Zawacki et al., 2019), and (3) CRC100k histopathology patch classification
(Kather et al., 2018), as well as one text-only task involving long-context electronic health record
(EHR) question answering. In these experiments, we adapted the released models via supervised
fine-tuning (SFT) for the multimodal tasks and RL for the EHR task. We note that the only task that
strictly required the usage of SFT instead of RL is MIMIC-CXR report generation, in order to capture
the implicit reporting style; other tasks can be fine-tuned through either SFT or RL. In our experience,
the performance trade-off between these two methods needs to be established on a case-by-case basis
given the dataset size, distribution shift compared to the original training datasets, and difficulty of
the task.

5.1. Fine-tuning for multimodal tasks

We utilized the instruction-tuned version of MedGemma 4B as the base model for the multimodal
fine-tuning tasks. For MIMIC-CXR report generation tasks, the image and the indication section of the
report were used as the input, and the model was trained to complete the finding and impression
sections of the report. For pneumothorax classification and histopathology patch classification, the
classification task was formulated as a multiple choice question, the image and a multiple choice
question prompt were used as the input, and the model was trained to produce the correct choice. The
model was fine-tuned through SFT which involves full parameter updates by optimizing a standard
cross-entropy loss function for next token prediction. The input image and prompt were excluded
from the loss computation. For SIIM-ARC and CRC100k, since these data sets provide no validation
split, we reserved a random 10% per label of the original training data to form a validation set. For
each task, we conducted a hyperparameter sweep across three learning rates (1e–7, 5e–7, 1e–6) and

16



MedGemma Technical Report

Table 13 | MedGemma fine-tuning results.

Task Dataset Metric
MedGemma 4B

SOTA§
Out-of-box Fine-tuned

CXR report generation MIMIC-CXR RadGraph F1 29.5 30.3
30.0
MedVersa (Zhou et al., 2024)

CXR binary classification
SIIM-ACR
Pneumothorax
(OOD)

Accuracy 85.9 87.8
88.9
Unichest FT (Dai et al., 2024)

F1 59.7 71.5
72.5
Unichest FT (Dai et al., 2024)

Histopathology classification CRC100k (OOD) Weighted F1 32.8 94.5
97.3
Virchow (Vorontsov et al., 2023)

§ Prior reported results

fine-tuned the model for a single epoch. The checkpoints that achieved the highest performance on
the validation set were selected for the final evaluation on the test set.

The results in Table 13 show the effectiveness of further adapting the MedGemma models to
specific use cases. The adapted models more closely approached SOTA models on these tasks (Chen
et al., 2020a; Dai et al., 2024; Zhou et al., 2024). Notably, the fine-tuned MedGemma 4B established
a new SOTA performance with a RadGraph F1 score of 30.3 on the MIMIC-CXR report generation
task.

5.2. Fine-tuning for EHR information retrieval and reasoning

While numerous benchmarks assess the ability of language models to reason over EHRs, including
emrQA (Pampari et al., 2018), emrKBQA (Raghavan et al., 2021), EHRSQL (Lee et al., 2024),
EHRNoteQA (Kweon et al., 2024), and MedAlign (Fleming et al., 2024), we developed a new
benchmark for MedGemma specifically focused on longitudinal, outpatient EHR data. Our benchmark,
which we call EHRQA, is based on a programmatic framework to generate question-answer (QA) pairs
from synthetic, FHIR-formatted records. These records were produced using Synthea (Walonoski
et al., 2018), a tool that simulates complete patient medical histories based on population statistics
and disease progression models. From an initial 100 synthetic records, we selected 81 that fit within a
32k context window, splitting them into training (42), validation (20), and test (19) sets. Each patient
record is comprehensive, containing hundreds to thousands of FHIR entries across various resource
types like Conditions, Medications, and Observations. A key limitation of this dataset, however, is the
absence of clinical notes, which we hope to address in future work.

Our QA generation framework treated each patient’s FHIR record as a collection of ground truth
facts. It expanded upon these facts through a multi-hop reasoning process (Yang et al., 2018) that
integrated information from external medical knowledge bases (SNOMED, RxNorm, LOINC), applied
programmatic reasoning (e.g., temporal, arithmetic), and leveraged inter-dependencies within the
patient’s data programmatically. These derived facts are then converted into natural language QA
pairs using templated questions and large language model (LLM) rephrasing. In collaboration with
clinicians, we developed 42 distinct question types, grouped into 10 categories, to reflect queries from
both healthcare professionals and consumers (see Appendix Table A8 for more details). This process
generated approximately 200 questions per patient. In total, there are 10,437 QA examples in the
training split, 5,133 QA examples in the validation split, and 4,377 QA examples in the test split. All
questions were designed for automated evaluation (e.g., regex matching) and support multiple-choice,
Yes/No, and simple free-response formats. For evaluation, the model is prompted with a condensed,
plain-text representation of the patient’s FHIR data and the corresponding question. Final accuracies
are calculated by averaging the scores across the 10 question categories. The prompts used for
rephrasing and evaluation are available in Appendix Table A9.
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Our initial results revealed a performance gap between MedGemma 27B and larger models. To
address this, we fine-tuned MedGemma 27B using RL on the EHRQA training set. Applying RL to the
MedGemma 27B resulted in a substantial improvement in its EHRQA accuracy, closing the gap with
top-performing models, as shown in Table 14. Notably, the greatest gains were observed in question
categories requiring reasoning across inter-dependent records (Appendix Figure A3). This experiment
underscores the potential of fine-tuning smaller, specialized models like MedGemma for effective use
in EHR applications.

Table 14 | EHRQA accuracy results (OOD)

Small Models Large Models

Type MedGemma 27B
Text-only Gemma 3 27B MedGemma 27B

Text-only (RL) Gemini 2.5 Flash Gemini 2.5 Pro o3

EHRQA 86.3 84.2 93.6 95.0 95.4 92.5

6. MedSigLIP Evaluations

MedSigLIP was evaluated both on zero-shot classification performance and linear probe classification
performance (also referred to as data-efficient classification). Zero-shot classification performance
was assessed as a measure of baseline performance, and linear probe performance was assessed to
gauge performance on target conditions after additional training with logistic regression.

Evaluation datasets spanned four modalities: chest X-ray, dermatology, ophthalmology and
histopathology. For chest X-ray, we followed the evaluation datasets and framework in ELIXR (Xu
et al., 2023). For linear probing, we utilized the same data from CheXpert and CXR14 and evaluated
on seven findings (atelectasis, cardiomegaly, airspace opacity, fracture, pneumothorax, consolida-
tion, pleural effusion, and pulmonary edema). For zero-shot, we compared with ELIXR on the 13
positive findings from CheXpert test set. For dermatology, we evaluated on US-Derm MCQA. The
US-Derm MCQA test set has 79 dermatological conditions that overlap with the classification labels
from the training dataset, thus we pick this 79-condition subset (1612 patients) for our vision based
classification and zero-shot evaluation. For ophthalmology, we used the EyePACS test dataset. For
histopathology, patches were extracted from whole slide images across a variety of tissue types and
tasks as in Yang et al. (2024) and these patches were treated as individual images. See Appendix
Table A2 for a description of the detailed classes for the evaluations.

Zero-shot evaluation approach and metrics: For each class within each condition, one or more text
prompts were used to represent the class. When there were multiple prompts for the same class, the
text embeddings for each prompt were averaged together to obtain a single embedding per class.
Cosine similarity was then calculated between the image embedding and text embeddings for the
class options, softmax was applied to output scores, and the AUC (area under receiver operating
characteristic curve) was calculated. In the case of multiclass conditions, 1-vs-all AUC was calculated.
For dermatology, zero-shot prompts are directly their condition names. Prompts for ophthalmology,
chest X-ray, histopathology are provided in Appendix Tables A3, A4, and A5.

Linear probe evaluation approach and metrics: Linear probe (data efficient) classification was
assessed by extracting image embeddings from MedSigLIP (without use of the text encoder) and
training a logistic regression using the SAGA solver (Defazio et al., 2014) on the train set embeddings,
with the hyper-parameters chosen on the validation set, then evaluating on the test set.
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7. MedSigLIP Results

Zero-shot and linear probe classification results and evaluation tasks for MedSigLIP and corresponding
Health AI Developer Foundations (HAI-DEF) (Kiraly et al., 2024) models are summarized below. For
the HAI-DEF Derm Foundation and Path Foundation models, zero-shot classification was not possible
with the comparator models because of their image-only nature.
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Figure 5 | Average results for data efficient learning on 7 Chest X-ray findings on CheXpert and CXR14
datasets compared to HAI-DEF’s CXR Foundation model based on ELIXR (Xu et al., 2023). Individual
results per condition per dataset can be found in Appendix Figures A1 and A2.

On CXR, MedSigLIP is compared to the HAI-DEF CXR Foundation model, which is based on ELIXR
(Xu et al., 2023), with zero-shot results shown in Table 16 and linear probe classification results
shown in Figure 5. On average, MedSigLIP’s zero-shot CXR performance was 2.0% higher than CXR
Foundation despite MedSigLIP’s lower image resolution (448×448 vs 1280×1280) and multi-domain
expertise, suggesting that MedSigLIP can serve as a strong foundation model. Notably, classification of
fractures, which has historically proven difficult, improved over ELIXR by 7.1%. Across the 7 findings
used for linear probing, MedSigLIP also demonstrated strong performance when training set sample
size is larger or equal to 512 examples, Figure 5.

Dermatology, ophthalmology and histopathology results are summarized in Table 15. For derma-
tology, both MedSigLIP zero-shot and linear probes outperformed linear probes with Derm Foundation
on the task of distinguishing between 79 skin conditions. For ophthalmology, on the 5-class task
of classifying diabetic retinopathy (none, mild, moderate, severe, and proliferative), linear probe
performance exceeded zero-shot performance by 9.8%, though no HAI-DEF model currently exists
for comparison. For histopathology, linear probing achieved a modest improvement over zero-shot
classification using MedSigLIP, and performing close to Path Foundation which has linear probe
performance that is 1.9% better on average.

MedSigLIP offers strong baseline performance across a variety of medical domains as a single
model and generally does well with zero-shot classification even when compared to linear probes with
dedicated, domain-specific models. Further training with task-specific images and logistic regression
can yield stronger results.
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Table 15 | AUCs for dermatology, ophthalmology, and histopathology findings with MedSigLIP and
HAI-DEF image models (Kiraly et al., 2024).

Domain Finding N No. MedSigLIP HAI-DEF (image)§
Classes Resolution Zero-Shot Linear Probe Resolution Linear Probe

Dermatology Skin Conditions 1612 79 448x448 0.851 0.881 448×448 0.843

Ophthalmology Diabetic Retinopathy 3161 5 448x448 0.759 0.857 N/A N/A

Histopathology

Invasive Breast Cancer 5000 3

448×448

0.933 0.930

224×224

0.943
Breast NP 5000 3 0.721 0.727 0.758
Breast TF 5000 3 0.780 0.790 0.832
Cervical Dysplasia 5000 3 0.889 0.864 0.898
Prostate Cancer Needle Core Biopsy 5000 4 0.892 0.886 0.915
Radical Prostatectomy 5000 4 0.896 0.887 0.921
TCGA Study Types 5000 10 0.922 0.970 0.964
Tissue Types 5000 16 0.930 0.972 0.947

Average 0.870 0.878 0.897

§ Prior reported results. HAI-DEF (image) refers to the image-only foundation models in HAI-DEF:
Derm Foundation and Path Foundation models while MedSigLIP is a single model.

Table 16 | Zero-shot AUCs for chest X-ray findings with MedSigLIP and HAI-DEF’s chest X-ray foundation
model based on ELIXR (Xu et al., 2023).

Domain Finding N No. MedSigLIP HAI-DEF (image)§
Classes Resolution Zero-Shot Resolution Zero-Shot

CXR

Enlarged Cardiomediastinum

518 2 448×448

0.858

1280×1280

0.800
Cardiomegaly 0.904 0.891
Lung Opacity 0.931 0.888
Lung Lesion 0.822 0.747
Consolidation 0.880 0.875
Edema 0.891 0.880
Pneumonia 0.864 0.881
Atelectasis 0.836 0.754
Pneumothorax 0.862 0.800
Pleural Effusion 0.914 0.930
Pleural Other 0.650 0.729
Fracture 0.708 0.637
Support Devices 0.852 0.894

Average 0.844 0.824
§ Prior reported results
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8. Discussion

We introduced MedGemma, a new collection of medical vision-language foundation models and
MedSigLIP, a multi-domain medical image encoder. These models were built upon Gemma 3, with
optimization for medical domains. We evaluated across a range of medical benchmarks across
clinical reasoning, biomedical knowledge, report generation, and medical image classification, finding
strong performance for MedGemma and MedSigLIP. Performance improved further after fine-tuning,
highlighting the potential for these open models to be used as a starting point for developing useful
AI applications for healthcare.

With an increasing number of options available to developers building AI applications in healthcare,
MedGemma provides specific advantages over general models. These advantages are largely due
to optimized incorporation of domain specific data for both pre-training and post-training and are
illustrated by the improvements over base Gemma 3 models across all benchmarks evaluated and the
achievement of performance on par with much larger models.

When compared to general API-based models like Gemini, MedGemma is likely the preferred
model if the use case requires any of the following: a frozen model for documentation and reliability,
sensitivity to training or inference costs, ability to run locally or offline, specific medical image and
text capabilities, or full control over model adaptation. Large models like Gemini remain a viable
choice where the user requires optimal broad performance without the above constraints, and large
models may additionally be used in concert with models like MedGemma in agentic settings.

TheMedGemma collection of models enables a wide range of potential downstream applications for
the developer community. The multimodal capabilities, including access to image and text embeddings,
may be particularly useful for medical image retrieval. This could aid in interpretation by referencing
similar past cases as well as enabling development of research cohorts and creating educational
tools. MedGemma allows for the integration of diverse data, linking radiology, histopathology,
ophthalmology, and dermatology images with clinical information. The specialized text capabilities
of the models can also extract key concepts from imaging reports and clinical notes, streamlining
tasks such as matching patients for clinical trials, conducting pharmacovigilance reviews, or analyzing
healthcare quality metrics. The models’ ability to understand medical images and generate reports
can also be fine-tuned to better assist radiologists and other clinicians in their workflow and improve
how findings are communicated to patients. In addition to standalone use, these models can also
serve as powerful tools within agentic frameworks, combining abilities across different modalities for
customized and comprehensive solutions.

In this report, we evaluated the performance of MedGemma and MedSigLIP on a broad set of
established benchmarks in order to provide a snapshot of the model capabilities. However, we note
that limitations exist for these benchmarks. For one, automated benchmarks represent only the first
step towards validating real-world utility (Alaa et al., 2025; Mahmood, 2025). Additionally, some
benchmarks may be near saturation in terms of model performance, with minimal headroom for
improvements, thus hindering the measurement of progress. As such, further work is warranted to
continue evaluation of these models on new, high quality (and more challenging) benchmarks aimed
at better reflecting real-world utility (e.g. Bedi et al., 2025). More work is also needed to understand
the performance capabilities and requirements in regard to actual application development, including
their incorporation into agentic frameworks. These efforts will inform optimal use cases as well as
development of future model versions with extended capabilities.

We openly released MedGemma and MedSigLIP to facilitate their widespread evaluation, im-
provement, and adaptation by the community. Openness is critical in many healthcare applications,
as it provides developers with predictability and the flexibility for extensive model adaptation and
evaluation. We hope that our approach accelerates the development of AI applications across a broad
array of healthcare use cases.
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9. Conclusion

In this work, we showed that MedGemma models demonstrate robust capabilities across a variety of
vision-language and text-only medical tasks. We also showed that MedSigLIP demonstrates robust
multi-domain capabilities, and can thus serve as a strong medical foundation model. The breadth and
efficiency of these models offers exciting possibilities to address a range of use cases. At the same
time, thoughtful validation of safety, performance, and reliability for any downstream applications
remains a critical aspect to advance the use of multimodal AI models in medicine. By providing these
MedGemma and MedSigLIP models to the developer community with a permissive license, we hope
to see them enable useful and innovative medical applications.

10. Model availability

The models have been released openly at the main Google Health AI Developer Foundations site
at https://goo.gle/hai-def. Further details specifically about the MedGemma collection of
models can be found at https://goo.gle/medgemma.
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Appendix

A. Manual Evaluation of Radiology reports

Table A1 provides the detailed rubric definitions provided to the radiologist for scoring the generated
CXR reports.

Table A1 | Human evaluation rubric comparing AI generated radiology reports to original reports.

Rubric Score Rubric Definition

AI » Original Report AI report captures key clinically relevant findings that are not found in original report.
AI report would result in correct patient management and original report would not.

AI > Original Report AI report captures more relevant findings, but both would result in the same correct
patient management.

AI ∼ Original Report Both reports capture similar findings in the image and would result in correct pa-
tient management.

AI < Original Report Original report captures more relevant findings, but both would result in the same
correct patient management.

AI « Original Report Original report captures key clinically relevant findings that are not found in AI report.
original report would result in correct patient management and AI report would not.

X Neither report would result in correct patient management.
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B. Evaluation Prompts

For evaluating MedSigLIP zero-shot tasks, Tabes A2 to A5 list the prompts used.

For evaluating MedGemma, the default temperature of 0.0 was used. All other models made use
of their default system temperature. Two different system prompts were used in providing results for
other LLMs directly evaluated:

• You are a helpful radiology assistant. For radiology-based tasks.
• You are a helpful medical assistant. For all other medical tasks.

Per-dataset prompts used are shown in Appendix Tables A6, A7.

Table A2 | MedSigLIP Class Definitions

Classes for the findings that MedSigLIP was evaluated on.

Domain Finding Num Classes Class Names

Radiology CXR 2 Positive/negative for Cardiomegaly, Consolida-
tion, Edema, Enlarged cardiomediastinum, Frac-
ture, Lung lesion, Lung opacity, Pleural effu-
sion, Pleural other, Pneumonia, Pneumotho-
rax,Support devices.

Histopathology

Invasive Breast Cancer 3 Benign, Invasive Carcinoma, DCIS
Breast NP 3 NP1, NP2, NP3
Breast TF 3 TF1, TF2, TF3
Cervical Dysplasia 3 Normal, CIN Grade 1, CIN Grade 2+
Prostate Cancer Needle Core Biopsy 4 Benign, GP3, GP4, GP5
Radical Prostatectomy 4 Benign, GP3, GP4, GP5
TCGA Study Types 10 BLCA, BRCA, COAD, HNSC, KIRC, LIHC, LUAD,

LUSC, OV, STAD
Tissue Types 16 Appendix, Breast, Cervix, Colon, Fallopian Tube,

Gallbladder, Liver, Lymph node, Ovary, Placenta,
Prostate, Skin, Thyroid, Upper GI, Uterus, Vas
deferens

Dermatology Skin Conditions 79 Acanthosis nigricans, Acne, Acne keloidalis, Actinic Keratosis, Allergic
Contact Dermatitis, Alopecia Areata, Amyloidosis of skin, Androgenetic
Alopecia, Angiokeratoma of skin, Atypical Nevus, Basal Cell Carcinoma,
Bullous Pemphigoid, Burn of skin, Candida, Clavus, Comedone, Condy-
loma acuminatum, Cutaneous T Cell Lymphoma, Cutaneous lupus, Cuta-
neous sarcoidosis, Cyst, Dermatofibroma, Drug Rash, Eczema, Erythema
ab igne, Erythema multiforme, Folliculitis, Folliculitis decalvans, Fordyce
spots, Granuloma annulare, Hemangioma, Herpes Zoster, Hidradenitis,
Idiopathic guttate hypomelanosis, Infected skin lesions, Inflicted skin le-
sions, Insect Bite, Intertrigo, Irritant Contact Dermatitis, Keratosis pilaris,
Knuckle pads, Lentigo, Lichen Simplex Chronicus, Lichen planopilaris,
Lichen planus/lichenoid eruption, Lichen sclerosus, Lipodermatosclero-
sis, Lipoma, Livedo reticularis, Melanocytic Nevus, Melanoma, Melasma,
Milia, Nevus sebaceous, O/E - ecchymoses present, Onychomycosis, Peri-
oral Dermatitis, Photodermatitis, Pigmented purpuric eruption, Pityria-
sis lichenoides, Pityriasis rosea, Post-Inflammatory hyperpigmentation,
Prurigo nodularis, Psoriasis, Pyoderma Gangrenosum, Pyogenic granu-
loma, Rosacea, SCC/SCCIS, SK/ISK, Scabies, Scar Condition, Seborrheic
Dermatitis, Skin Tag, Stasis Dermatitis, Tinea, Tinea Versicolor, Urticaria,
Verruca vulgaris, Vitiligo

Ophthalmology Diabetic Retinopathy (DR) 5 No DR, Mild DR, Moderate DR, Severe DR, Pro-
liferative DR
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Table A3 | Zero shot prompts for ophthalmology

Ophthalmology

Finding Severity

Diabetic retinopathy

diabetic retinopathy severity: none.
diabetic retinopathy severity: mild.
diabetic retinopathy severity: moderate.
diabetic retinopathy severity: severe.
diabetic retinopathy severity: proliferative.
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Table A4 | Zero shot prompts for CXR

Chest X-ray

Finding Condition Absent Condition Present

Atelectasis no atelectasis
no acute cardiopulmonary process

adjacent atelectasis
bibasilar atelectasis
there is atelectasis

Cardiomegaly

heart size is normal
cardiac size is within normal limits
cardiothoracic ratio within normal limits
no acute cardiopulmonary process
normal study
no evidence of cardiomegaly

mild cardiomegaly
moderate cardiomegaly
severe cardiomegaly
enlarged cardiac silhouette

Consolidation
no focal consolidation
no acute cardiopulmonary process
normal study

alveolar consolidation
densely consolidated
lobe consolidation
airspace consolidation
bibasilar consolidations
suggestive of consolidation

Edema
no pulmonary edema
no acute cardiopulmonary process
normal study

mild pulmonary edema
moderate pulmonary edema
severe pulmonary edema

Enlarged cardiomediastinum no acute cardiopulmonary process
cardiomediastinal silhouette is normal widened cardiomediastinum

Fracture no acute cardiopulmonary process
normal study

rib fractures
rib fracture

Lung lesion no acute cardiopulmonary process
lytic lesion
cavitary lesion
parenchymal lesion

Lung opacity

no focal opacity
lung volumes are normal
normal study
normal lung volumes
lungs are clear
no focal consolidation
no evidence of airspace consolidation
no infiltrate
no airspace opacity
pulmonary parenchyma is clear

bilateral opacities
basal opacity
opacification is present
bibasilar opacities
increased opacification
consolidative opacity
parenchymal opacities
airspace opacification cannot be excluded
there is airspace opacification

Pleural effusion
no evidence of pleural effusion
no acute cardiopulmonary process
normal study

left pleural effusion
right pleural effusion
bilateral pleural effusions

Pleural other no acute cardiopulmonary process blunting of costophrenic angle
pleural thickening

Pneumonia lungs are clear
no acute cardiopulmonary process suggestive of pneumonia

Pneumothorax
no pneumothorax
no acute cardiopulmonary process
normal study

apical pneumothorax

Support devices no acute cardiopulmonary process

monitoring and support devices
NG tube
ET tube
catheter
PIC line
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Table A5 | Zero shot prompts for histopathology tasks

Condition Class Prompt

Invasive Breast Cancer
1

• region of an HE histopathology image showing be-
nign breast tissue

• HE-stained image demonstrating normal breast tis-
sue architecture

• histopathology image with breast lobules and ducts
consistent with benign breast tissue

• microscopic view of breast tissue with regular uni-
formly spaced glands indicative of benign breast tis-
sue

• HE histopathology image showing normal breast
stroma and absence of cellular atypia characteris-
tic of benign breast tissue

2
• region of an HE histopathology image showing inva-
sive breast carcinoma

• HE-stained region demonstrating features of invasive
breast carcinoma

• histopathology image with areas of dense cellular-
ity and atypical cells consistent with invasive breast
carcinoma

• microscopic view of breast tissue with disorganized
glandular architecture consistent with invasive carci-
noma

• HE histopathology image with regions of stromal
invasion by malignant cells indicating invasive breast
carcinoma

3
• region of an HE histopathology image showing ductal
carcinoma in situ (DCIS)

• HE-stained image demonstrating abnormal cells con-
fined within the breast duct

• histopathology image: atypical cells within the duct
consistent with DCIS

• microscopic view of breast tissue showing abnormal
cellular proliferation within a duct consistent with
DCIS

• HE histopathology section with non-invasive intra-
ductal malignant cells suggestive of DCIS

Breast NP

(Continued on next page)
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(Continued)
Condition Class Prompt

1
• HE histopathology image demonstrating invasive
breast carcinoma with low-grade nuclear features
(nucleopleomorphism score 1)

• region of invasive breast carcinoma exhibiting rel-
atively uniform nuclei with inconspicuous nucleoli
consistent with a low nucleopleomorphism score

• microscopic view of invasive breast carcinoma show-
ing limited variation in nuclear shape and size (nu-
cleopleomorphism score 1)

• focus on infiltrating tumor cells within an HE-stained
image demonstrating bland nuclear features sugges-
tive of low-grade invasive breast carcinoma

• HE histopathology section of invasive breast carci-
noma with well-formed glands and minimal nuclear
atypia indicating a low nucleopleomorphism score

2
• HE histopathology image demonstrating invasive
breast carcinoma with moderate nuclear pleomor-
phism (score 2)

• region of invasive breast carcinoma exhibiting some
variation in nuclear size and shape with some visible
nucleoli (nucleopleomorphism score 2)

• microscopic view of invasive breast carcinoma show-
ing moderate nuclear atypia including enlarged nu-
clei and prominent nucleoli (nucleopleomorphism
score 2)

• focus on tumor cells with increased nuclear irregu-
larity compared to normal breast tissue consistent
with a nucleopleomorphism score of 2

• HE histopathology section of invasive breast carci-
noma with moderately pleomorphic nuclei and dis-
cernible nucleoli (nucleopleomorphism score 2)

(Continued on next page)
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(Continued)
Condition Class Prompt

3
• HE histopathology image demonstrating invasive
breast carcinoma with high-grade nuclear features
(nucleopleomorphism score 3)

• microscopic view of invasive breast carcinoma show-
ing significant nuclear atypia including marked vari-
ation in size, shape, and prominent nucleoli (nucleo-
pleomorphism score 3)

• region of invasive breast carcinoma exhibiting large
nuclei with considerable variation in size and shape
as well as large irregular nucleoli (nucleopleomor-
phism score 3)

• HE-stained image highlighting markedly pleomor-
phic nuclei of tumor cells consistent with high-grade
invasive breast carcinoma

• focus on an area of invasive breast carcinoma demon-
strating significant nuclear abnormalities and vari-
ability consistent with a nucleopleomorphism score
of 3

Breast TF
1

• well-formed tubules are visible within this region of
invasive breast carcinoma on an HE histopathology
image (tubule formation score 1)

• this microscopic view demonstrates a predominance
of well-defined glandular structures indicating a
tubule formation score of 1 in this breast carcinoma

• the infiltrating carcinoma cells display preserved
tubular architecture resembling normal breast tis-
sue consistent with a tubule formation score of 1

• a tubule formation score of 1 is evident on this HE-
stained image showcasing numerous well-formed
tubules within the breast carcinoma

• this region of invasive breast carcinoma depicted on
an HE histopathology image exhibits a high degree
of tubular differentiation (tubule formation score 1)

(Continued on next page)
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(Continued)
Condition Class Prompt

2
• this HE histopathology image of invasive breast carci-
noma shows a moderate degree of tubule formation
(score 2)

• while some tubular structures are present this mi-
croscopic view highlights a less organized pattern of
growth within the breast carcinoma aligning with a
tubule formation score of 2

• a mix of both well-formed tubules and areas lacking
clear glandular structures suggests a tubule forma-
tion score of 2 in this breast carcinoma

• the presence of some discernible tubules alongside re-
gions of less-defined glandular architecture indicates
a tubule formation score of 2

• this invasive breast carcinoma displays an intermedi-
ate level of tubular differentiation consistent with a
tubule formation score of 2

3
• tubular structures are largely absent within this re-
gion of invasive breast carcinoma indicating a tubule
formation score of 3 on an HE histopathology image

• this breast carcinoma demonstrates disorganized
growth with minimal gland formation consistent
with a tubule formation score of 3

• poorly differentiated tumor cells lacking discernible
tubules predominate in this microscopic view sug-
gestive of a tubule formation score of 3

• a tubule formation score of 3 is evident within this
HE-stained image where the invasive carcinoma
shows a scarcity of well-defined glandular structures

• limited tubule formation characterizes this region
of breast carcinoma resulting in a tubule formation
score of 3

Cervical Dysplasia

(Continued on next page)
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(Continued)
Condition Class Prompt

1
• HE-stained image of a cervical biopsy demonstrating
normal squamous epithelium and underlying stroma

• microscopic view of a cervical biopsy showing regular
stratification of the squamous epithelium without
atypia

• region of a cervical biopsy with well-defined mature
squamous epithelium and unremarkable stroma

• cervical biopsy demonstrating normal endocervical
glands and adjacent squamous epithelium

• HE histopathology of a cervical biopsy showcasing a
section of the transformation zone with no pathologic
findings

2
• HE-stained image of a cervical biopsy demonstrating
features of cervical intraepithelial neoplasia grade 1
(CIN 1) including nuclear atypia in the lower third
of the epithelium

• microscopic view of a cervical biopsy with CIN 1
showing enlarged nuclei and increased nuclear-to-
cytoplasmic ratio in the basal layer of the epithelium

• region of a cervical biopsy exhibiting CIN 1 with mild
nuclear atypia and koilocytic change (perinuclear
halos)

• cervical biopsy demonstrating CIN 1 with subtle nu-
clear abnormalities confined to the lower epithelial
layers

• HE histopathology of a cervical biopsy with a focus
on CIN 1 characterized by slight disorganization of
the squamous epithelium

(Continued on next page)
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(Continued)
Condition Class Prompt

3
• HE-stained image of a cervical biopsy demonstrating
high-grade dysplasia with significant nuclear atypia
and architectural disarray

• microscopic view of a cervical biopsy showcasing
high-grade squamous intraepithelial lesion (HSIL)
with loss of epithelial maturation and cellular disor-
ganization

• region of a cervical biopsy exhibiting high-grade dys-
plasia characterized by increased mitotic activity, nu-
clear pleomorphism, and loss of normal epithelial
polarity

• cervical biopsy demonstrating high-grade dysplasia
with marked cellular atypia

• HE histopathology of a cervical biopsy focusing on
high-grade dysplasia showing prominent nuclear ab-
normalities and disruption of the normal epithelial
architecture

Prostate Cancer Needle Core Biopsy
1

• HE histopathology image showing benign prostate
tissue within a prostate specimen

• prostate image demonstrating normal prostatic
glands and stroma consistent with benign tissue

• microscopic view of prostate with well-defined regu-
larly spaced glands and intervening stroma indicative
of benign prostatic tissue

• focus on a region of benign prostate tissue within
a prostate specimen exhibiting a normal glandular
architecture and stromal component

• HE section of prostate showcasing benign prostatic
glands lined by a bilayer epithelium (basal and lu-
minal cells)

(Continued on next page)
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(Continued)
Condition Class Prompt

2
• HE histopathology image demonstrating Gleason pat-
tern 3 prostate cancer within a prostate specimen

• prostate image highlighting individual well-formed
glands characteristic of Gleason pattern 3 carcinoma

• microscopic view of a prostate with discrete uni-
formly sized and shaped glands consistent with Glea-
son pattern 3 prostate cancer

• focus on Gleason pattern 3 prostate cancer within
prostate specimen showing relatively distinct glan-
dular structures with minimal variability

• HE section of prostate demonstrating areas of Glea-
son pattern 3 adenocarcinoma marked by separate
glands composed of tumor cells infiltrating between
benign glands

3
• HE histopathology image demonstrating Gleason pat-
tern 4 prostate cancer within a prostate specimen

• prostate image highlighting areas of fused glands
or poorly formed glands consistent with Gleason
pattern 4 carcinoma

• microscopic view of prostate showcasing irregular
glandular structures with varying shapes and sizes
indicative of Gleason pattern 4 prostate cancer

• focus on Gleason pattern 4 prostate cancer within a
prostate specimen demonstrating loss of normal glan-
dular architecture and a more disorganized growth
pattern

• HE section of prostate demonstrating regions of
Gleason pattern 4 adenocarcinoma characterized by
fused or poorly formed glands

(Continued on next page)
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(Continued)
Condition Class Prompt

4
• HE histopathology image demonstrating Gleason pat-
tern 5 prostate cancer within a prostate specimen

• prostate image highlighting sheets of tumor cells
lacking any glandular formation characteristic of
Gleason pattern 5 carcinoma

• microscopic view of prostate showing solid areas of
tumor cells representing Gleason pattern 5 prostate
cancer

• focus on Gleason pattern 5 prostate cancer within a
prostate specimen demonstrating poorly differenti-
ated cells and absence of gland formation

• HE section of prostate with regions of Gleason pat-
tern 5 adenocarcinoma characterized by a complete
lack of glandular differentiation and presence of solid
tumor cell clusters

Radical Prostatectomy
1

• HE histopathology image showing benign prostate
tissue

• small region from prostate specimen demonstrating
normal prostatic glands and stroma consistent with
benign tissue

• microscopic view of a prostate specimen with well-
defined regularly spaced glands and intervening
stroma indicative of benign prostatic tissue

• focus on a region of benign prostate tissue exhibiting
a normal glandular architecture and stromal compo-
nent

• HE section showcasing benign prostatic glands lined
by a bilayer epithelium (basal and luminal cells)

(Continued on next page)
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(Continued)
Condition Class Prompt

2
• HE histopathology image demonstrating Gleason pat-
tern 3 prostate cancer

• small region of prostate on histopathology highlight-
ing individual well-formed glands characteristic of
Gleason pattern 3 carcinoma

• microscopic view of a prostate tissue with discrete
uniformly sized and shaped glands consistent with
Gleason pattern 3 prostate cancer

• focus on Gleason pattern 3 prostate cancer showing
relatively distinct glandular structures with minimal
variability

• HE section of prostate tissue demonstrating areas
of Gleason pattern 3 adenocarcinoma marked by
separate infiltrating glands

3
• HE histopathology image demonstrating Gleason pat-
tern 4 prostate cancer

• small region of a prostate on histopathology high-
lighting areas of fused glands, poorly formed glands,
or cribriform architecture consistent with Gleason
pattern 4 carcinoma

• microscopic view of prostate showcasing irregular
glandular structures with varying shapes and sizes
indicative of Gleason pattern 4 prostate cancer

• focus on Gleason pattern 4 prostate cancer demon-
strating loss of normal glandular architecture and a
more disorganized growth pattern

• HE section of prostate tissue demonstrating regions
of Gleason pattern 4 adenocarcinoma characterized
by fused or poorly defined glands

(Continued on next page)
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(Continued)
Condition Class Prompt

4
• HE histopathology image demonstrating Gleason pat-
tern 5 prostate cancer

• small region of prostate on histopathology highlight-
ing presence of sheets of tumor cells lacking any
glandular formation characteristic of Gleason pat-
tern 5 carcinoma

• microscopic view of prostate showing solid areas
of tumor cells with minimal cellular pleomorphism
representing Gleason pattern 5 prostate cancer

• focus on Gleason pattern 5 prostate cancer demon-
strating poorly differentiated cells and absence of
gland formation

• HE section of prostate with regions of Gleason pat-
tern 5 adenocarcinoma characterized by a complete
lack of glandular differentiation and presence of solid
tumor cell clusters

The Cancer Genome Atlas (TCGA) Study Types
1

• microscopic view of bladder specimen demonstrating
bladder cancer

• microscopic view of bladder specimen demonstrating
urothelial cell carcinoma

• microscopic view of bladder specimen demonstrating
urothelial cancer

• microscopic view of bladder specimen demonstrating
urinary bladder tumor

• microscopic view of bladder specimen demonstrating
transitional cell carcinoma

2
• microscopic view of breast specimen demonstrating
breast cancer

• microscopic view of breast specimen demonstrating
invasive breast carcinoma

• microscopic view of breast specimen demonstrating
carcinoma of the breast

3
• microscopic view of colon specimen demonstrating
colon cancer

• microscopic view of colon specimen demonstrating
colorectal cancer

• microscopic view of colon specimen demonstrating
colon adenocarcinoma

(Continued on next page)
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(Continued)
Condition Class Prompt

4
• microscopic view of head and neck squamous cell
carcinoma

5
• microscopic view of kidney specimen demonstrating
kidney renal clear cell carcinoma

• microscopic view of kidney specimen demonstrating
clear cell carcinoma

• microscopic view of kidney specimen demonstrating
renal clear cell carcinoma

• microscopic view of kidney specimen demonstrating
renal cell carcinoma clear cell type

• microscopic view of kidney specimen demonstrating
RCC

• microscopic view of kidney specimen demonstrating
kidney cancer

6
• microscopic view of liver specimen demonstrating
liver hepatocellular carcinoma

• microscopic view of liver specimen demonstrating
liver cancer

• microscopic view of liver specimen demonstrating
liver carcinoma

• microscopic view of liver specimen demonstrating
hepatocellular carcinoma

7
• microscopic view of lung specimen demonstrating
lung adenocarcinoma

• microscopic view of lung specimen demonstrating
NSCLC adenocarcinoma

• microscopic view of lung specimen demonstrating
lung adenocarcinoma

8
• microscopic view of lung specimen demonstrating
lung squamous cell carcinoma

• microscopic view of lung specimen demonstrating
NSCLC squamous carcinoma

• microscopic view of lung specimen demonstrating
squamous cell lung cancer

(Continued on next page)
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(Continued)
Condition Class Prompt

9
• microscopic view of ovary specimen demonstrating
ovarian cancer

• microscopic view of ovary specimen demonstrating
ovarian serous cancer

• microscopic view of ovary specimen demonstrating
serous carcinoma

• microscopic view of ovary specimen demonstrating
ovarian serous cystadenocarcinoma

10
• microscopic view of stomach specimen demonstrat-
ing stomach adenocarcinoma

• microscopic view of stomach specimen demonstrat-
ing stomach cancer

• microscopic view of stomach specimen demonstrat-
ing gastric cancer

• microscopic view of stomach specimen demonstrat-
ing gastric carcinoma

Tissue Types
1

• HE histopathology image from the appendix
• microscopic region of a cross-section of the appendix
• microscopic view of the appendix
• portion of the appendix on histopathology
• HE-stained image of the appendix showing the tubu-
lar structure

2
• HE histopathology image of breast tissue
• microscopic view of breast tissue
• region of breast tissue on histopathology
• HE section of breast tissue

3
• HE histopathology image of the cervix
• microscopic view of the cervix demonstrating epithe-
lial cells

• cervical tissue on histopathology
• region of HE-stained section of the cervix

(Continued on next page)

47



MedGemma Technical Report

(Continued)
Condition Class Prompt

4
• HE histopathology image of the colon
• colonic mucosa region on histopathology
• microscopic view of the colon
• HE-stained image highlighting portion of colon tissue
• colon tissue on histopathology

5
• HE histopathology image of the fallopian tube
• microscopic cross-section of the fallopian tube
• microscopic view of the fallopian tube
• HE-stained section of the fallopian tube
• fallopian tube tissue on histopathology

6
• HE histopathology image of the gallbladder
• microscopic view of the gallbladder
• HE-stained section showing a region of the gallblad-
der

• gallbladder tissue on histopathology

7
• HE histopathology image of the liver
• microscopic view of liver tissue demonstrating hepa-
tocytes arranged in cords

• liver tissue on histopathology

8
• HE histopathology image of a lymph node
• microscopic view of a lymph node
• lymph node demonstrating mixture of immune cells
predominantly lymphocytes

• HE-stained section of a lymph node
• lymph node tissue on histopathology

9
• HE histopathology image of the ovary
• microscopic view of the ovary
• microscopic region of ovarian tissue
• HE-stained section of the ovary
• ovarian tissue on histopathology

(Continued on next page)
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(Continued)
Condition Class Prompt

10
• HE histopathology image of the placenta
• placental tissue showcasing chorionic villi
• microscopic view of the placenta
• HE-stained section of the placenta
• placental tissue on histopathology

11
• HE histopathology image of the prostate
• microscopic view of prostate tissue
• small region of prostate tissue with acini and stroma
• HE-stained section of the prostate
• prostate tissue on histopathology

12
• HE histopathology image of the skin
• microscopic view of the skin
• HE-stained section of the skin
• skin tissue on histopathology

13
• HE histopathology image of the thyroid
• microscopic view of the thyroid
• HE-stained section of the thyroid
• thyroid tissue on histopathology

14
• HE histopathology image of the upper GI tract such
as the stomach

• upper GI mucosa region on histopathology
• microscopic view of the upper GI tract
• HE-stained image highlighting portion of upper GI
tract tissue

• upper GI tract tissue on histopathology
• stomach or small intestine tissue on histopathology

15
• HE histopathology image of the uterus
• microscopic view of the cells of the uterus
• HE-stained section of the uterus
• uterine tissue on histopathology

16
• HE histopathology image of the vas deferens
• microscopic view of the vas deferens
• HE-stained section of the vas deferens
• vas deferens tissue on histopathology
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Table A6 | Zero shot prompts for text-based medical evaluations.

Dataset Prompt

MedQA "Instructions: The following are multiple choice questions about medical knowledge. Solve them in a
step-by-step fashion, starting by summarizing the available information. Output a single option from the
four options as the final answer. Question: " + <QUESTION> + " Response (think step by step and then
end with "Final Answer:" followed by *only* the letter corresponding to the correct answer enclosed in
parentheses)"

PubMedQA "Instructions: The following are multiple choice questions about medical knowledge. Solve them in a
step-by-step fashion, starting by summarizing the available information. Output a single option from the
four options as the final answer. Answer the following question given the context (reply with one of the
options): Context: " + <CONTEXT> " + Question: " + <QUESTION> + " Response (think step by step and
then end with "Final Answer:" followed by *only* the letter corresponding to the correct answer enclosed
in parentheses)"

MedMCQA "Instructions: The following are multiple choice questions about medical knowledge. Solve them in a
step-by-step fashion, starting by summarizing the available information. Output a single option from the
four options as the final answer. Question: " + <QUESTION> + "Response (think step by step and then
end with "Final Answer:" followed by *only* the letter corresponding to the correct answer enclosed in
parentheses)"

MMLU "Instructions: The following are multiple choice questions about medical knowledge. Solve them in a
step-by-step fashion, starting by summarizing the available information. Output a single option from the
four options as the final answer. Question: " + <QUESTION> + " Response (think step by step and then
end with "Final Answer:" followed by *only* the letter corresponding to the correct answer enclosed in
parentheses)"

MedXpertQA <QUESTION> + " Response (think step by step through each of the multiple choice options. You MUST
end your response with ‘Final Answer:’ followed by *only* the letter corresponding to the correct answer
enclosed in parentheses) like ‘Final Answer:(X)’."
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Table A7 | Zero-shot prompts for image classification and VQA evaluations. For all but the medical MedGemma and
Med-Gemini models, the prompts below were prefixed with the following system message (SM): MI: "You are a helpful
medical assistant.", or RI: "You are a helpful radiology assistant.", as indicated.

Dataset(s) SM Prompt/Example

MIMIC-
CXR, CheX-
pert

MI <IMAGE> + " Is there <CONDITION> in this image? You may write out your argument before
stating your final very short, definitive, and concise answer (if possible, a single word or the letter
corresponding to your answer choice) X in the format "Final Answer: X":"

Where <CONDITION> is one of the following:
• For MIMIC-CXR & CheXpert: atelectasis, cardiomegaly, consolidation, edema,

pleural effusion.
• For CXR14: lung opacity, pneumothorax.

Exception for CXR14: The fracture condition uses the question "Are there any fractures in the
image?".

PathMCQA MI "<QUESTION>"

Example for <QUESTION>:
"What is the predominant diagnostic finding in this cervical biopsy image? Please select the correct
option from the following choices: A) Normal or benign tissue B) Mild dysplasia (CIN1) C) Moderate
or severe dysplasia (CIN 2+)"

US-Derm
MCQA

MI <IMAGE> + "<QUESTION> You may write out your argument before deciding on the most likely
condition X (with X being one of: A, B, C, or D) in the format: "The most likely diagnosis is: X":"

Example for <QUESTION>:
"Question: Given the following image, what is the most likely dermatology condition? Options: (A)
Granuloma annulare. (B) Melanocytic Nevus. (C) Erythema annulare centrifugum. (D) Morphea/S-
cleroderma."

EyePACS MI <IMAGE> + "Given this fundus image, determine the most likely diabetic retinopathy (DR) stage
present, even if you are unsure:
A: No DR
B: mild DR
C: moderate DR
D: severe DR
E: proliferative DR

You may write out your argument before stating your final, very short, definitive, and concise answer
(no more than a few words) and letter corresponding to your answer choice X in the format "The
most likely diagnosis is: X":"

SLAKE MI <IMAGE> + <QUESTION> + "You may write out your argument before stating your final very short,
definitive, and concise answer (if possible, a single word or the letter corresponding to your answer
choice) X in the format "Final Answer: X": "

VQA-Rad RI <IMAGE> + "Given this radiology image, which can be a frontal chest X-ray, a single slice head or
abdominal CT or MR image, provide a very short, definitive, and concise answer (if possible, a single
word) to the following question: <QUESTION>"

MedXpertQA
(multi-
modal
questions)

MI "Figure A" + <IMAGE_A> + "Figure B" + <IMAGE_B> + ... + "<QUESTION> Think
step by step through each of the multiple choice options. You MUST end your response with ’Final
Answer:’ followed by only the letter corresponding to the correct answer enclosed in parentheses)."

CXR report
generation

- <IMAGE> "<INDICATION> findings:"

Where <INDICATION> is the indication section of the report as prefix.
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C. Comparison of CXR data-efficient learning

To compare with previous research on CXR image encoder-based data-efficient learning, we compared
MedSigLIP to ELIXR (Xu et al., 2023). Performance of MedSigLIP and ELIXR are compared for various
CXR findings at different training set sizes on CheXpert (Figure A1) and CXR14 (Figure A2).
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Figure A1 | Individual results for CXR data efficient learning on CheXpert datasets comparing to ELIXR (Xu
et al., 2023)
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Figure A2 | Individual results for CXR data efficient learning on CXR14 datasets comparing to ELIXR (Xu
et al., 2023)
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D. Additional details about EHRQA

EHRQA detailed results appear in Figure A3, where the base MedGemma 27B text model is compared
against the fine-tuned MedGemma 27B model and Gemini 2.5 Pro. Details of EHRQA question
categories are shown in Table A8 and prompts for question rewrites and evaluation are shown in
Table A9.

Figure A3 | EHRQA detailed results, comparing MedGemma 27B (text-only) before and after RL-tuning, along with
Gemini 2.5 Pro
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Table A8 | EHRQA Question Categories with Original (Template-Generated) and LLM-Rephrased Examples.

Category Description Example: Templated Example: LLM
rephrased

Condition exis-
tence (transitive)

Questions related to
whether a patient has a
history of a general class
of medical conditions.

Has the patient had a
medical condition in gin-
gival structure in the
past?

Has the patient had a
past medical condition
affecting the gums?

Condition exis-
tence

Questions related to
whether a patient has
a history of a given medi-
cal condition.

Has the patient had acute
bronchitis in the past?

Has the patient had acute
bronchitis previously?

Immunization
date

Questions related to the
existence of patient im-
munizations and their
immunization dates.

When did the patient
last receive Hep B, adult
immunization?

When was the patient’s
last adult hepatitis B vac-
cination administered?

Medication cur-
rent

Questions related to
whether the patient has
active prescriptions for a
given medication.

Does the patient have
a prescription for {28
(norethindrone 0.35 MG
Oral Tablet) } Pack?

Does the patient have
an active prescription
for norethindrone oral
tablet?

Medication exis-
tence

Questions related to
whether the patient has
ever taken a given medi-
cation or type of medica-
tion.

Did the patient have a
prescription for insulin
isophane, human 70 UN-
T/ML / insulin, regular,
human 30 UNT/ML In-
jectable Suspension in the
past?

Did the patient have a
prescription for human
insulin isophane / human
insulin regular injectable
suspension in the past?

Medication pre-
scriber

Questions related to the
prescriber of a given med-
ication for a patient.

Who prescribed ac-
etaminophen 325 MG
Oral Tablet on the date
2022-06-30?

Who prescribed ac-
etaminophen on June
30, 2022?

Medication pre-
scription date

Questions related to the
medication prescription
dates.

When was ac-
etaminophen 325 MG
Oral Tablet first pre-
scribed?

When was ac-
etaminophen oral tablet
first prescribed?

Medication for
condition

Questions on the relation-
ships between medication
and medical condition
history.

Which condition were
the medications ac-
etaminophen 300 MG
/ hydrocodone bitartrate
5 MG Oral Tablet pre-
scribed for?

For what condition was
acetaminophen/hy-
drocodone prescribed?

Observation (de-
pendent)

Questions related to pa-
tient lab observations
related to some medical
event.

What was the patient’s
first recorded value for
Pain severity - 0-10 verbal
numeric rating [Score]
- Reported after they
were first prescribed Ac-
etaminophen 325 MG
Oral Tablet?

What was the patient’s
initial reported pain score
after the first prescription
of acetaminophen 325
mg oral tablet?

Observation
value

Questions related to pa-
tient lab observations and
their values.

What is the patient’s most
recent recorded value for
Heart rate?

What is the patient’s most
recent heart rate read-
ing?
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Table A9 | Prompts for EHRQA construction and evaluation.

Purpose Prompt

General question rewrite You are a helpful medical editing assistant.
You will be presented with a question which pertains to the medical record for a patient.
Rewrite the question in a way that soundsmore natural, omitting unnecessary (in particular
parenthesized) details but retaining enough detail to leave the question unambiguous.
- Use correct capitalization and language appropriate for a medical professional.
- Avoid contractions in the question, but use common-language terminology where that is
possible without causing ambiguity.
- Keep in mind that the question may be a multiple choice question followed by several
answer choices.
- Be sure the rewritten questions ask about the same topic as the original. For instance, if
there is a question about who prescribed a medication, the re-written question should do
the same.
ORIGINAL QUESTION: <ORIGINAL_QUESTION>
REWRITTEN QUESTION:

Medication question rewrite You are a helpful medical editing assistant.
You will be presented with a question which pertains to the medical record for a patient.
Rewrite the question in a way that soundsmore natural, omitting unnecessary (in particular
parenthesized) details but retaining enough detail to leave the question unambiguous.
- Use correct capitalization and language appropriate for a medical professional.
- Avoid contractions in the question, but use common-language terminology where that is
possible without causing ambiguity.
- Keep in mind that the question may be a multiple choice question followed by several
answer choices.
- If the brand name is mentioned in the original question, rewrite the question using that
brand name only.
- Remove the medication strength/dosage information in the medication name.
- Use common names for medication classes if available.
EXAMPLES: <FEW_SHOT_EXAMPLES>
ORIGINAL QUESTION: <ORIGINAL_QUESTION>
REWRITTEN QUESTION:

Evaluation You are a medical assistant specializing in answer questions about a patient electronic
health records (EHR). You will be provided with a patient’s full EHR data and a question
for you to answer.
======= Patient EHR Data =======
<PATIENT_CONTEXT>
======= End Patient EHR Data =======
Based on the data provided in the patient’s EHR, please answer concisely with no expla-
nation. If the question is a multiple choice question, answer with only the letter of the
correct choice, such as "B". If the question is a free response question, answer with the
correct data. In either case, remember to not provide an explanation.
Question: <QUESTION>
Answer choices: ANSWER_CHOICES
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E. Additional medical reasoning examples

Tables A10, A11, A12 and A13 show additional medical reasoning examples, with clinical commentary,
in the same form as Tables 5 and 6.

Table A10 | Example of MedGemma 27B open clinical reasoning in a cardiology setting, including commentary by a US
board-certified practicing cardiologist

Prompt

A 55-year old woman with active smoking history, type II diabetes, hypertension, history of coronary artery
disease was recently hospitalized for heart failure with an ejection fraction of 35%. She is presenting for
follow-up post discharge. Her discharge medications included lisinopril 10 mg daily, carvedilol 2.5 mg twice
daily, and eplerenone 25 mg daily, in addition to her usual medications for diabetes. In clinic, she reports
feeling symptomatic with dyspnea after going up 1 flight of stairs though is asymptomatic at rest.
Vital signs at rest: BP 130/90, HR 75, RR 10, Temperature 97.2F, SpO2 98% on room air. Labs are remarkable
for Na 132 mEq/L, K 4.9 mEq/L, BUN 22 mg/dL, Cr 1.04 mg/dL.
The patient reports having a friend on Entresto. Please review whether Entresto is indicated in this patient and
why or why not.

Continued on next page
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Table A10 – Continued from previous page

MedGemma 27B output

Okay, let’s review the indication for Entresto (sacubitril/valsartan) in this patient.
Patient Summary:
• Diagnosis: Heart Failure with Reduced Ejection Fraction (HFrEF), EF 35%.
• Symptoms: Dyspnea on exertion (1 flight of stairs), NYHA Class II-III.
• Current HFrEF Medications: Lisinopril (ACE inhibitor), Carvedilol (Beta-blocker), Eplerenone (MRA).
• Comorbidities: Smoking, Type II Diabetes, Hypertension, CAD.
• Relevant Labs: K 4.9 mEq/L (high-normal), Cr 1.04 mg/dL (mildly elevated/high-normal).
• Vitals: BP 130/90 mmHg (acceptable for initiation).
Entresto Indication Review:
Entresto (sacubitril/valsartan) is indicated for the reduction of cardiovascular death and hospitalization for
heart failure in adult patients with chronic heart failure (NYHA class II-IV) with reduced ejection fraction
(LVEF ≤ 40%).
Analysis for this Patient:
1. Ejection Fraction: The patient’s EF is 35%, which meets the criteria (≤ 40%).
2. Symptom Status: The patient is symptomatic (dyspnea on exertion) despite being on foundational
guideline-directed medical therapy (GDMT) including an ACE inhibitor (lisinopril), a beta-blocker
(carvedilol), and an MRA (eplerenone). This is the target population for Entresto.

3. Contraindications:
• ACE Inhibitor Use: Entresto should not be used concurrently with an ACE inhibitor (like lisinopril) due
to increased risk of angioedema, hypotension, and hyperkalemia. The lisinopril would need to be
stopped, typically with a 36-hour washout period, before starting Entresto.

• Angioedema History: No history of angioedema related to ACE inhibitors or ARBs is mentioned.
• Hypotension: Her current BP of 130/90 mmHg is generally acceptable for initiating Entresto, although
close monitoring is needed.

• Renal Function: Her creatinine is 1.04 mg/dL. While Entresto can cause a small increase in creatinine,
this level is not a contraindication, but renal function should be monitored.

• Potassium: Her potassium is 4.9 mEq/L (high-normal). This requires close monitoring, as Entresto can
increase potassium levels, especially in combination with an MRA like eplerenone.

Conclusion:
Yes, Entresto is indicated for this patient.
Reasoning: She has symptomatic HFrEF (EF 35%) despite being on appropriate foundational therapy (ACE
inhibitor, beta-blocker, MRA). Clinical trials have demonstrated that switching from an ACE inhibitor (like
lisinopril) to Entresto significantly reduces morbidity and mortality in this patient population.
Important Considerations:
• Lisinopril Discontinuation: The lisinopril must be stopped before starting Entresto.
• Monitoring: Close monitoring of blood pressure, heart rate, renal function (creatinine/eGFR), and
potassium levels is crucial, especially after initiation and dose titration.

• Dosing: Entresto is typically started at a low dose (e.g., 24/25 mg BID) and titrated upwards to the target
dose (e.g., 49/51 mg BID or 97/103 mg BID) as tolerated, based on guideline recommendations.

This represents a significant therapeutic opportunity to improve her heart failure outcomes.

Commentary by a US board-certified practicing cardiologist

Strengths: Correctly states that entresto is indicated for the reduction of CV death and HF hospitalization.
Appropriately checks renal function, electrolytes, angioedema and BP. Lists washout and monitoring.
Areas for Improvement: Dose is incorrect for the lowest dose of entresto. Minor nit that entresto has now
been shown in meta-analysis to reduce all cause mortality in EF<40% (not just cardiac mortality as stated)
(Evbayekha et al., 2025). Creatinine is mentioned but estimated GFR is the more useful measure. Minor but no
mention of carvedilol dose. The dose is very low and should be increased. If it is increased, there will be less
BP room for entresto so would need to titrate both carefully but can be done rapidly (Strong HF trial). The
other thing that could have been mentioned is empaglaflozin which is not included in this list. But the question
is specific to entresto so understandable.

58



MedGemma Technical Report

Table A11 | Example of MedGemma 27B open clinical reasoning in a cardiology setting with succinct output, including
commentary by a US board-certified practicing cardiologist

Prompt

Same as in Table A10 with the suffix: Please be succinct.

MedGemma 27B output

Yes, Entresto is indicated.
Rationale: This patient has symptomatic Heart Failure with reduced Ejection Fraction (HFrEF) (EF 35%,
NYHA Class II) despite being on foundational guideline-directed medical therapy (ACE inhibitor, beta-blocker,
MRA). Entresto (sacubitril/valsartan) is recommended to replace the ACE inhibitor (lisinopril) in such patients
to further reduce cardiovascular death and heart failure hospitalizations. Her current BP and potassium levels
are acceptable for initiation, although close monitoring is required.

Clinical commentary by a US board-certified practicing cardiologist

Strengths: A more useful answer - short and to the point, including the rationale for the treatment.
Areas for Improvement: Does not include renal function in the list of things to monitor (just BP and
potassium). Same note as above that entresto has now been shown in meta-analysis to reduce all cause
mortality in EF<40% rather than just cardiac mortality as stated.

Table A12 | Example of MedGemma 27B open clinical reasoning in an infectious disease setting, including commentary
by a UK Specialist Registrar in infectious diseases

Prompt

A 17-year old otherwise healthy man presents in the emergency room for fatigue and spiking fevers. Two
weeks prior, he reports having felt flu-like symptoms with fever, nausea, vomiting, and cough. Symptoms
persisted but have worsened, with new onset shortness of breath, headache, and abdominal discomfort. There
have been no sick contacts at home. He has been backpacking across various regions in the United States, most
recently in Hawaii.
On evaluation, vital signs are remarkable for SBP 115/85, HR 110, RR 14, Temperature 102.2F, SpO2 90% on
room air. Exam is remarkable for bilateral crackles and icterus.
Labs show the following:
• WBC: 18.2 × 103/mcL, Hb: 15.5 g/dL, Plt: 120 × 103/mcL
• Na: 142 mEq/L, K: 5.1 mEq/L, Cl: 101 mEq/L, CO2: 26 mEq/L, BUN: 46 mg/dL, Cr: 2.2 mg/dL
• ALP: 84 U/L, ALT: 175 U/L, AST: 140 U/L, Total bilirubin: 2.0 mg/dL
CXR shows bilateral pulmonary infiltrates. A follow-up echocardiogram shows EF 40%. A respiratory viral
panel was negative. Blood, sputum, and urine cultures are taken.
What would be the next best steps in terms of diagnostic testing to establish the etiology of his symptoms?

Continued on next page
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Table A12 – Continued from previous page

MedGemma 27B output

Rationale Breakdown:
1. Clinical Presentation Analysis: The patient presents with a severe, multi-system illness characterized by
fever, fatigue, shortness of breath, headache, abdominal discomfort, jaundice (icterus), hypoxia,
leukocytosis, thrombocytopenia, acute kidney injury (elevated BUN/Cr), hepatitis (elevated
ALT/AST/bilirubin), and possible myocarditis (reduced EF on echo). The illness began with flu-like
symptoms two weeks ago and has progressively worsened.

2. Key Clues:
• Travel History: Recent travel to Hawaii is a significant clue, pointing towards infections endemic to that
region.

• Multi-organ Involvement: The combination of pulmonary infiltrates, jaundice, AKI, and myocarditis
suggests a systemic process, often infectious.

• Specific Lab Findings: Leukocytosis with thrombocytopenia, elevated liver enzymes, and bilirubin are
important diagnostic pointers.

3. Differential Diagnosis (Focusing on Hawaii-Endemic Infections):
• Leptospirosis: Highly consistent with the presentation. Causes fever, headache, myalgia, conjunctival
suffusion (not mentioned but common), jaundice, renal failure, pulmonary hemorrhage/ARDS, and
myocarditis. Thrombocytopenia is common; leukocytosis can occur. Hawaii is an endemic area.

• Dengue Fever: Endemic in Hawaii. Causes fever, headache, myalgia, rash (not mentioned), leukopenia
(patient has leukocytosis), thrombocytopenia. Severe dengue can cause organ impairment, but the
specific combination of jaundice, AKI, and myocarditis with leukocytosis makes it less likely than
leptospirosis.

• Hantavirus Pulmonary Syndrome (HPS): Endemic in Hawaii. Causes fever, myalgia, headache,
followed by respiratory failure and pulmonary edema. Thrombocytopenia and leukocytosis are typical.
However, significant jaundice and myocarditis are less characteristic of HPS.

• Rickettsial Infections (e.g., Murine Typhus, Scrub Typhus): Endemic in Hawaii. Can cause fever,
headache, rash, myalgia, sometimes pneumonia, hepatitis, AKI.

• Other possibilities: Influenza (severe complications), other viral hepatitis (EBV, CMV), bacterial sepsis,
melioidosis (rare but reported).

4. Prioritizing Diagnostic Tests: Based on the clinical picture and travel history, Leptospirosis is the most
likely diagnosis. Therefore, specific testing for Leptospirosis should be prioritized. Dengue and Hantavirus
are also important considerations due to endemicity and overlapping features.

5. Specific Diagnostic Tests:
• Leptospirosis:

– Serology: ELISA for IgM antibodies is often the first step for faster results. Microscopic Agglutination
Test (MAT) is the gold standard but takes longer. Paired sera (acute and convalescent) are often
needed for definitive diagnosis.

– PCR: Detects Leptospira DNA in blood (early) or urine (can be positive later, especially after the first
week). Given the patient is 2 weeks into symptoms, urine PCR might be useful.

• Dengue:
– Serology: IgM/IgG antibodies.
– NS1 Antigen: Detectable early in illness.
– PCR: Detects viral RNA early in illness.

• Hantavirus:
– Serology: IgM/IgG antibodies.
– PCR: Detects viral RNA early in illness.

• Other Tests: While awaiting results for the primary suspects, continue monitoring organ function (liver,
kidney), coagulation, and review pending cultures. Consider additional tests like EBV/CMV serology,
HIV testing, and Rickettsial serology/PCR if the initial workup is negative or the clinical picture evolves.

6. Conclusion: The most crucial next steps are to order specific diagnostic tests for the most likely endemic
infections given the patient’s presentation and travel history, particularly Leptospirosis, Dengue, and
Hantavirus.

Final Answer: The final answer is
Order specific serological and PCR testing for Leptospirosis, Dengue, and Hantavirus

Continued on next page

60



MedGemma Technical Report

Table A12 – Continued from previous page

Commentary by a UK Specialist Registrar in infectious diseases

Strengths: Well-structured answer, making the information easy to parse. Correctly has the most likely
diagnosis (lepto) as the focus of the answer. The suggested diagnostic testing enables confirmation of the
specific diagnoses listed in the differential.
Areas for Improvement: Dengue fever, hantavirus and melioidosis don’t seem to occur in Hawaii much, if at
all (and at least, they are not endemic, as stated in the answer). The suggested diagnostic testing perhaps
narrows towards specific diagnoses too quickly, whereas in reality broader testing may still be necessary (e.g.
CSF analysis given headache, further chest imaging via CT, etc.) alongside more specific confirmatory tests. It
could mention that many of these diagnostic tests are relatively unusual in most hospitals, often requiring
samples to be sent via courier to specialized labs, and therefore there is a significant time lag associated with
getting results. This may necessitate empiric treatment whilst awaiting for results, which is an important
clinical consideration.

Table A13 | Example of MedGemma 27B open clinical reasoning in an infectious disease setting with succinct output,
including commentary by a UK Specialist Registrar in infectious diseases

Prompt

Same as in Table A12 with the suffix: Please be succinct.

MedGemma 27B output

Next best steps in diagnostic testing:
1. Leptospirosis serology (IgM ELISA/MAT).
2. Hantavirus serology (IgM).
3. Dengue serology (IgM/IgG, NS1 antigen).
4. Blood and urine cultures.
5. Urinalysis.
6. Cardiac enzymes (Troponin).
7. Coagulation studies.

Commentary by a UK Specialist Registrar in infectious diseases

Strengths: Correctly lists confirmatory diagnostic tests for each suggested differential. Covers both specific
confirmatory tests (to pinpoint a particular condition) and more generalized diagnostics (e.g. coagulation
studies) that would yield more useful information to guide next steps in case the confirmatory diagnostic tests
are negative.
Areas for Improvement: Same feedback as before regarding the epidemiology of hantavirus/dengue in
Hawaii - seems to be rare, if at all present. Repeats several items already listed as being performed in the query
(e.g. blood, urine cultures). Unclear why it limits the infectious disease testing to a single antibody (IgM) for
each potential cause - it would be normal to perform IgM and IgG as both are useful in distinguishing between
an acute infection versus a prior infection. No mention of molecular (genetic) testing which is increasingly
used for diagnosis.
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F. MedGemma 27B multimodal model

In addition to the MedGemma 4B multimodal and 27B text-only variants described earlier in this report, we
are also releasing a MedGemma 27B multimodal variant. The training methodology for this variant was the
same as for the MedGemma 4B multimodal model with the addition of two training datasets: EHRQA (details
in Section 5.2), to improve the model’s inherent EHR understanding, and Chest ImaGenome (Goldberger et al.,
2000; Wu et al., 2021), to enable anatomy localization on chest X-ray images.

The MedGemma 27B multimodal variant provides all of the capabilities of the 4B multimodal variant
but with significantly improved language capabilities as well as improved EHR understanding and anatomy
localization. Formal evaluation of this variant is ongoing but preliminary results can be found in Table A14.

Table A14 | Preliminary results for MedGemma 27B multimodal model

Task Metric MedGemma 4B
Multimodal

MedGemma 27B
Text-only

MedGemma 27B
Multimodal

Text evaluation

MedQA (4-op) Accuracy 64.4 87.7 85.3
MedMCQA Accuracy 55.7 74.2 70.2
PubMedQA Accuracy 73.4 76.8 77.2
MMLU Med Accuracy 70.0 87.0 86.2
MedXpertQA (text only) Accuracy 14.2 25.7 23.7
AfriMed-QA Accuracy 52.0 84.0 72.0

Electronic health record information retrieval

EHRQA Accuracy 67.6 86.3 90.5

Medical image classification

MIMIC CXR Average F1 for top 5 conditions 88.9 N/A 90.0
CheXpert CXR Average F1 for top 5 conditions 48.1 N/A 49.9
DermMCQA Accuracy 71.8 N/A 71.7

Visual question answering

SlakeVQA Tokenized F1 72.3 N/A 70.0
VQA-Rad Tokenized F1 49.9 N/A 46.7
PathMCQA Accuracy 69.8 N/A 71.6

Knowledge and reasoning

MedXpertQA (text + MM) Accuracy 18.8 N/A 26.8

Report generation

MIMIC CXR Radgraph F1 29.5† N/A 27.0†

† Results from the pretrained checkpoints.
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