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1. Executive summary 
 
 
 

 
1.1. Purpose and Audience 

 
This notebook provides a hands-on guide for building temporally-aware knowledge 

graphs and performing multi-hop retrieval directly over those graphs. 

 
It's designed for engineers, architects, and analysts working on temporally-aware 

knowledge graphs. Whether you’re prototyping, deploying at scale, or exploring new ways 

to use structured data, you’ll find practical workflows, best practices, and decision 

frameworks to accelerate your work. 

 
This cookbook presents two hands-on workflows you can use, extend, and deploy right 

away: 

 
 Temporally-aware knowledge graph (KG) construction 

 
A key challenge in developing knowledge-driven AI systems is maintaining a database 

that stays current and relevant. While much attention is given to boosting retrieval 

accuracy with techniques like semantic similarity and re-ranking, this guide focuses 

on a fundamental—yet frequently overlooked—aspect: systematically updating and 

validating your knowledge base as new data arrives. 

 
No matter how advanced your retrieval algorithms are, their e ectiveness is limited by 

the quality and freshness of your database. This cookbook demonstrates how to 

routinely validate and update knowledge graph entries as new data arrives, helping 

ensure that your knowledge base remains accurate and up to date. 

 
 Multi-hop retrieval using knowledge graphs 

 
Learn how to combine OpenAI models (such as o3, o4-mini, GPT 4.1, and GPT 4.1- 

mini) with structured graph queries via tool calls, enabling the model to traverse your 

graph in multiple steps across entities and relationships. 



This method lets your system answer complex, multi-faceted questions that require 

reasoning over several linked facts, going well beyond what single-hop retrieval can 

accomplish. 

 
Inside, you'll discover: 

 
Practical decision frameworks for choosing models and prompting techniques at 

each stage 

Plug-and-play code examples for easy integration into your ML and data pipelines 

Links to in-depth resources on OpenAI tool use, fine-tuning, graph backend selection, 

and more 

A clear path from prototype to production, with actionable best practices for scaling 

and reliability 

 
“Note: All benchmarks and recommendations are based on the best available models 

and practices as of June 2025. As the ecosystem evolves, periodically revisit your 

approach to stay current with new capabilities and improvements.” 

 
1.2. Key takeaways 

 
Creating a Temporally-Aware Knowledge Graph with a Temporal Agent 

 Why make your knowledge graph temporal? 

 
Traditional knowledge graphs treat facts as static, but real-world information evolves 

constantly. What was true last quarter may be outdated today, risking errors or 

misinformed decisions if the graph does not capture change over time. Temporal 

knowledge graphs allow you to precisely answer questions like “What was true on a 

given date?” or analyse how facts and relationships have shifted, ensuring decisions 

are always based on the most relevant context. 

 
 What is a Temporal Agent? 

 
A Temporal Agent is a pipeline component that ingests raw data and produces time- 

stamped triplets for your knowledge graph. This enables precise time-based querying, 

timeline construction, trend analysis, and more. 



 How does the pipeline work? 

 
The pipeline starts by semantically chunking your raw documents. These chunks are 

decomposed into statements ready for our Temporal Agent, which then creates time- 

aware triplets. An Invalidation Agent can then perform temporal validity checks, 

spotting and handling any statements that are invalidated by new statements that 

are incident on the graph. 

 

Multi-Step Retrieval Over a Knowledge Graph 

 Why use multi-step retrieval? 

 
Direct, single-hop queries frequently miss salient facts distributed across a graph's 

topology. Multi-step (multi-hop) retrieval enables iterative traversal, following 

relationships and aggregating evidence across several hops. This methodology 

surfaces complex dependencies and latent connections that would remain hidden 

with one-shot lookups, providing more comprehensive and nuanced answers to 

sophisticated queries. 

 
 Planners 

 
Planners orchestrate the retrieval process. Task-orientated planners decompose 

queries into concrete, sequential subtasks. Hypothesis-orientated planners, by 

contrast, propose claims to confirm, refute, or evolve. Choosing the optimal strategy 

depends on where the problem lies on the spectrum from deterministic reporting 

(well-defined paths) to exploratory research (open-ended inference). 

 
 Tool Design Paradigms 

 
Tool design spans a continuum: Fixed tools provide consistent, predictable outputs 

for specific queries (e.g., a service that always returns today’s weather for San 

Francisco). At the other end, Free-form tools o er broad flexibility, such as code 

execution or open-ended data retrieval. Semi-structured tools fall between these 

extremes, restricting certain actions while allowing tailored flexibility—specialized 

sub-agents are a typical example. Selecting the appropriate paradigm is a trade-o 

between control, adaptability, and complexity. 

 
 Evaluating Retrieval Systems 

 
High-fidelity evaluation hinges on expert-curated "golden" answers, though these are 

costly and labor-intensive to produce. Automated judgments, such as those from 



LLMs or tool traces, can be quickly generated to supplement or pre-screen, but may 

lack the precision of human evaluation. As your system matures, transition towards 

leveraging real user feedback to measure and optimize retrieval quality in production. 

 
A proven workflow: Start with synthetic tests, benchmark on your curated human- 

annotated "golden" dataset, and iteratively refine using live user feedback and ratings. 

 

Prototype to Production 

 Keep the graph lean 

 
Established archival policies and assign numeric relevance scores to each edge (e.g., 

recency x trust x query-frequency). Automate the archival or sparsification of low- 

value nodes and edges, ensuring only the most critical and frequently accessed facts 

remain for rapid retrieval. 

 
 Parallelize the ingestion pipeline 

 
Transition from a linear document → chunk → extraction → resolution pipeline to a 

staged, asynchronous architecture. Assign each processing phase its own queue and 

dedicated worker pool. Apply clustering or network-based batching for invalidation 

jobs to maximize e ciency. Batch external API requests (e.g., OpenAI) and database 

writes wherever possible. This design increases throughput, introduces backpressure 

for reliability, and allows you to scale each pipeline stage independently. 

 
 Integrate Robust Production Safeguards 

 
Enforce rigorous output validation: standardise temporal fields (e.g., ISO 8601 date 

formatting), constrain entity types to your controlled vocabulary, and apply 

lightweight model-based sanity checks for output consistency. Employ structured 

logging with traceable identifiers and monitor real-time quality and performance 

metrics in real lime to proactively detect data drift, regressions, or pipeline 

anomalised before they impact downstream applications. 

 

 

 

 

 

 

 



2. How to Use This Cookbook 
 
 
 

 
This cookbook is designed for flexible engagement:  
 
Use it as a comprehensive technical guide—read from start to finish for a deep 
understanding of temporally-aware knowledge graph systems. 
 Skim for advanced concepts, methodologies, and implementation patterns if you 
prefer a high-level overview. 
 Jump into any of the three modular sections; each is self-contained and directly 
applicable to real-world scenarios. 
 

Inside, you'll find: 
 

- Creating a Temporally-Aware Knowledge Graph with a Temporal Agent 
 
Build a pipeline that extracts entities and relations from unstructured text, resolves 
temporal conflicts, and keeps your graph up-to-date as new information arrives. 
 

- Multi-Step Retrieval Over a Knowledge Graph 
 
Use structured queries and language model reasoning to chain multiple hops across your 
graph and answer complex questions. 
 

- Prototype to Production 
 
Move from experimentation to deployment. This section covers architectural tips, 
integration patterns, and considerations for scaling reliable  AI Agents.



!python -V 

%pip install --upgrade pip 

%pip install -qU chonkie datetime ipykernel jinja2 matplotlib networkx numpy openai plotly 

%pip install -q "datasets<3.0" 

Python 3.12.8 

Requirement already satisfied: pip in ./.venv/lib/python3.12/site-packages (25.1.1) 

Note: you may need to restart the kernel to use updated packages. 

 

2.2. Pre-requisites 
 

Before diving into building temporal agents and knowledge graphs, let's set up your 

environment. Install all required dependencies with pip, and set your OpenAI API key as an 

environment variable. Python 3.12 or later is required. 

 

 
Note: you may need to restart the kernel to use updated packages. Note: you may need 

to restart the kernel to use updated packages. 

 
 

 
 
 
 
 
 
 
 
 
 
 



import os 

if "OPENAI_API_KEY" not in os.environ: 

import getpass 

os.environ["OPENAI_API_KEY"] = getpass.getpass("Paste your OpenAI API key here: ") 

 

3. Creating a Temporally-Aware 
Knowledge Graph with a Temporal 
Agent 

 
 
 

 
Accurate data is the foundation of any good business decision. OpenAI’s latest models 

like o3, o4-mini, and the GPT 4.1 family are enabling businesses to build state-of-the-art 

retrieval systems for their most important workflows. However, information evolves 

rapidly: facts ingested confidently yesterday may already be outdated today. 

 



 
 
 

Without the ability to track when each fact was valid, retrieval systems risk returning 

answers that are outdated, non-compliant, or misleading. The consequences of missing 

temporal context can be severe in any industry, as illustrated by the following examples. 

 

Industry Example question Risk if database is not temporal 
 
 

Financial Services "How has Moody’s long‑term rating for 

BankYY evolved since Feb 2023?" 

Mispricing credit risk by mixing 

historical & current ratings 
 

 

 

"Who was the CFO of Retailer ZZ when 

the FY‑22 guidance was issued?" 

Governance/insider‑trading analysis 

may blame the wrong executive 
 

 

 

"Was Fund AA sanctioned under 

Article BB at the time it bought 

Stock CC in Jan 2024?" 

Compliance report could miss an 

infraction if rules changed later 

 
 

 

Manufacturing / 
Automotive 

"Which ECU firmware was deployed in 

model Q3 cars shipped between 

2022‑05 and 2023‑03?" 

Misdiagnosing field failures due to 

firmware drift 

 
 

 

"Which robot‑controller software 

revision ran on Assembly Line 7 during 

Lot 8421?" 

Root‑cause analysis may blame the 

wrong software revision 

 
 

 

"What torque specification applied to 

steering‑column bolts in builds 

produced in May 2024?" 

Safety recall may miss a ected 

vehicles 

 
While we've called out some specific examples here, this theme is true across many 



industries including pharmaceuticals, law, consumer goods, and more. 

Looking beyond standard retrieval 

A temporally-aware knowledge graph allows you to go beyond static fact lookup. It 

enables richer retrieval workflows such as factual Q&A grounded in time, timeline 

generation, change tracking, counterfactual analysis, and more. We dive into these in 

more detail in our retrieval section later in the cookbook. 

 

 

 
3.1. Introducing our Temporal Agent 

 



[Subject] - [Predicate] - 

Prediction 

 
"London" - "isCapitalOf" - "United Kingdom" 

A temporal agent is a specialized pipeline that converts raw, free-form statements into 

time-aware triplets ready for ingesting into a knowledge graph that can then be queried 

with the questions of the character “What was true at time T?”. 

 
Triplets are the basic building blocks of knowledge graphs. It's a way to represent a single 

fact or piece of knowledge using three parts (hence, "triplet"): 

 
Subject - the entity you are talking about 

Predicate - the type of relationship or property 

 Object - the value or other entity that the subject is connected to 

 
You can thinking of this like a sentence with a structure 

. As a more clear example: 

 

 
The Temporal Agent implemented in this cookbook draws inspiration from Zep and 

Graphiti, while introducing tighter control over fact invalidation and a more nuanced 

approach to episodic typing. 

 

3.1.1. Key enhancements introduced in this cookbook 

 Temporal validity extraction 

 
Builds on Graphiti's prompt design to identify temporal spans and episodic context 

without requiring auxiliary reference statements. 

 
 Fact invalidation logic 

 
Introduces bidirectionality checks and constrains comparisons by episodic type. This 

retains Zep's non-lossy approach while reducing unnecessary evaluations. 

 Temporal & episodic typing 

 
Di erentiates between Fact , Opinion , , as well as between temporal 

classes , Dynamic , Atemporal . 

 
 Multi‑event extraction 

 
Handles compound sentences and nested date references in a single pass. 

[Object] 

Static 



This process allows us to update our sources of truth e  ciently and reliably: 
 
 
 
 

 

 
 

“Note: While the implementation in this cookbook is focused on a graph-based 

implementation, this approach is generalizable to other knowledge base structures 

e.g., pgvector-based systems.” 
 

 

 

3.1.2. The Temporal Agent Pipeline 

The Temporal Agent processes incoming statements through a three-stage pipeline: 

 
 Temporal Classification 

 
Labels each statement as Atemporal, Static, or Dynamic: 

 
Atemporal statements never change (e.g., “The speed of light in a vaccuum is 



t_created 

≈3×10⁸ m s⁻¹”). 

Static statements are valid from a point in time but do not change afterwards 

(e.g., "Person YY was CEO of Company XX on October 23rd 2014."). 

 Dynamic statements evolve (e.g., "Person YY is CEO of Company XX."). 
 

 Temporal Event Extraction 

 
Identifies relative or partial dates (e.g., “Tuesday”, “three months ago”) and resolves 

them to an absolute date using the document timestamp or fallback heuristics (e.g., 

default to the 1st or last of the month if only the month is known). 

 
 Temporal Validity Check 

 
Ensures every statement includes a timestamp and, when applicable, a 

timestamp. The agent then compares the candidate triplet to existing 

knowledge graph entries to: 

 
Detect contradictions and mark outdated entries with 

Link newer statements to those they invalidate with 
 
 
 

 

t_expired 

t_invalid 

invalidated_by 



 

 

 
3.1.3. Selecting the right model for a Temporal Agent 

When building systems with LLMs, it is a good practice to start with larger models then 

later look to optimize and shrink. 

 
The GPT 4.1 series is particularly well-suited for building Temporal Agents due to its strong 

instruction-following ability. On benchmarks like Scale’s MultiChallenge, GPT 4.1 

outperforms GPT 4o by $10.5%_{abs}$, demonstrating superior ability to maintain 

context, reason in-conversation, and adhere to instructions - key traits for extracting time- 

stamped triplets. These capabilities make it an excellent choice for prototyping agents 

that rely on time-aware data extraction. 

 
Recommended development workflow 

 Prototype with GPT 4.1 

 
Maximize correctness and reduce prompt-debug time while you build out the core 

pipeline logic. 

 
 Swap to GPT 4.1-mini or GPT 4.1-nano 

 
Once prompts and logic are stable, switch to smaller variants for lower latency and 



cost-e ective inference. 

 
 Distill onto GPT 4.1-mini or GPT 4.1-nano 

 
Use OpenAI's Model Distillation to train smaller models with high-quality outputs 

from a larger 'teacher' model such as GPT 4.1, preserving (or even improving) 

performance relative to GPT 4.1. 
 

 

 
Model 

Relative 

cost 

Relative 

latency 
 

Intelligence Ideal Role in Workflow 

GPT 4.1 ★★★ ★★ ★★★ 

(highest) 

Ground-truth prototyping, generating data 

for distillation 

GPT 4.1- ★★ ★ ★★ Balanced cost-performance, mid to large 

mini    scale production systems 

GPT 4.1- ★ (lowest) ★ (fastest) ★ Cost-sensitive and ultra-large scale bulk 

nano    processing 
 

 
“In practice, this looks like: prototype with GPT 4.1 → measure quality → step down the 

ladder until the trade-o s no longer meet your needs.” 

 

 
3.2. Building our Temporal Agent Pipeline 

 

 

 
Before diving into the implementation details, it's useful to understand the ingestion 

pipeline at a high level: 

 
 Load transcripts 

 Creating a Semantic Chunker 

 Laying the Foundations for our Temporal Agent 

 Statement Extraction 

 Temporal Range Extraction 

 Creating our Triplets 

 Temporal Events 



 Defining our Temporal Agent 

 Entity Resolution 

 Invalidation Agent 

 Building our pipeline 
 
 

Architecture diagram 
 
 

 



 

 

 
3.2.1. Load transcripts 

For the purposes of this cookbook, we have selected the "Earnings Calls Dataset" (jlh- 

ibm/earnings_call) which is made available under the Creative Commons Zero v1.0 license. 

This dataset contains a collection of 188 earnings call transcripts originating in the period 

2016 2020 in relation to the NASDAQ stock market. We believe this dataset is a good 

choice for this cookbook as extracting information from - and subsequently querying 

information from - earnings call transcripts is a common problem in many financial 

institutions around the world. 



from datasets import load_dataset 

hf_dataset_name = "jlh-ibm/earnings_call" 

subset_options = ["stock_prices", "transcript-sentiment", "transcripts"] 

hf_dataset = load_dataset(hf_dataset_name, subset_options[2]) 

my_dataset = hf_dataset["train"] 

 
row = my_dataset[0] 

row["company"], row["date"], row["transcript"][:200] 

from collections import Counter 

company_counts = Counter(my_dataset["company"]) 

company_counts 

Moreover, the often variable character of statements and topics from the same company 

across multiple earnings calls provides a useful vector through which to demonstrate the 

temporal knowledge graph concept. 

 
Despite this dataset's focus on the financial world, we build up the Temporal Agent in a 

general structure, so it will be quick to adapt to similar problems in other industries such 

as pharmaceuticals, law, automotive, and more. 

 
For the purposes of this cookbook we are limiting the processing to two companies - AMD 

and Nvidia - though in practice this pipeline can easily be scaled to any company. 

 
Let’s start by loading the dataset from HuggingFace. 

 

 
 
 
 
 

 
  

Dataset({ 

features: ['company', 'date', 'transcript'], 

num_rows: 150 

}) 

 

  

 

 

 
Database Set-up 

 
my_dataset 



memory = False 

Chunker 

Before we get to processing this data, let’s set up our database. 

 
For convenience within a notebook format, we've chosen SQLite as our database for this 

implementation. In the "Prototype to Production" section, and in Appendix section A.1 

"Storing and Retrieving High-Volume Graph Data" we go into more detail of 

considerations around di erent dataset choices in a production environment. 

 
If you are running this cookbook locally, you may chose to set to save the 

database to storage, the default file path my_database.db will be used to store your 

database or you may pass your own db_path arg into make_connection . 

 
We will set up several tables to store the following information: 

 
Transcripts 

Chunks 

Temporal Events 

Triplets 

Entities (including canonical mappings) 

 

This code is abstracted behind a method which creates the new SQLite 

database. The details of this method can be found in the 

GitHub repository for this cookbook. 

 
 
 
 
 
 

 

3.2.2. Creating a Semantic Chunker 

script in the 

 
Before diving into buidling the class itself, we begin by defining our first data 

models. As is generally considered good practice when working with Python, Pydantic is 

used to ensure type safety and clarity in our model definitions. Pydantic provides a clean, 

declarative way to define data structures whilst automatically validating and parsing input 

data, making our data models both robust and easy to work with. 

 
Chunk model 

This is a core data model that we'll use to store individual segments of text extracted from 

make_connection 

db_interface.py 

from db_interface import make_connection 

sqlite_conn = make_connection(memory=False, refresh=True) 



Chunk 

Chunk 

import uuid 

from typing import Any 

from pydantic import BaseModel, Field 

class Chunk(BaseModel): 

"""A chunk of text from an earnings call.""" 

id: uuid.UUID = Field(default_factory=uuid.uuid4) 

text: str 

metadata: dict[str, Any] 

transcripts, along with any associated metadata. As we process the transcripts by 

breaking them into semantically meaningful chunks, each piece will be saved as a 

separate . 
 

Each contains: 

 
: A unique identifier automatically generated for each chunk. This helps us identify 

and track chunks of text throughout 

: A string field that contains the text content of the chunk 

: A dictionary to allow for flexible metadata storage 
 

 

 

Transcript model 

As the name suggests, we will use the 
 

model to represent the full content of 

an earnings call transcript. It captures several key pieces of information: 

 
: Analogous to , this gives us a unique identifier 

: The full text of the transcript 

: The name of the company that the earnings call was about 

: The date of the earnings call 

: The fiscal quarter that the earnings call was in 
 

: A list of 

transcript 

objects, each representing a meaningful segment of the full 

 

To ensure the field is handled correctly, the validator is used to convert 

the value to datetime format. 

Chunk 

id 

text 

metadata 

Transcript 

id 

text 

company 

date 

quarter 

chunks Chunk 

date to_datetime 



Chunker 

find_quarter 

 

 
Chunker class 

 
Now, we define the class to split each transcript into semantically meaningful 

chunks. Instead of relying on arbitrary rules like character count or line break, we apply 

semantic chunking to preserve more of the contextual integrity of the original transcript. 

This ensures that each chunk is a self-contained unit that keeps contextually linked ideas 

together. This is particularly helpful for downstream tasks like statement extraction, where 

context heavily influences accuracy. 

 
The chunker class contains two methods: 

 

This method attempts to extract the fiscal quarter (e.g., "Q1 2023") directly from the 

transcript text using a simple regular expression. In this case, this is straightforward 

as the data format of quarters in the transcripts is consistent and well defined. 

However, in real world scenarios, detecting the quarter reliably may require more 

work. Across multiple sources or document types the detailing of the quarter is likely 

to be di erent. LLMs are great tools to help alleviate this issue. Try using GPT 4.1-mini 

from datetime import datetime 

from pydantic import field_validator 

class Transcript(BaseModel): 

"""A transcript of a company earnings call.""" 

id: uuid.UUID = Field(default_factory=uuid.uuid4) 

text: str 

company: str 

date: datetime 

quarter: str | None = None 

chunks: list[Chunk] | None = None 

@field_validator("date", mode="before") 

@classmethod 

def to_datetime(cls, d: Any) -> datetime: 

"""Convert input to a datetime object.""" 

if isinstance(d, datetime): 

return d 

if hasattr(d, "isoformat"): 

return datetime.fromisoformat(d.isoformat()) 

return datetime.fromisoformat(str(d)) 



generate_transcripts_and_chunks 

with a prompt specifically to extract the quarter given wider context from the 

document. 

 

This is the core method that takes in a dataset (as an iterable of dictionaries) and 

returns a list of objects each populated with semantically derived 

s. It performs the following steps: 
 

 Transcript creation: Initializes 

company, and date fields 

 Filtering: Uses the 

objects using the provided text, 
 

 
from chonkie along with OpenAI's text- 

embedding-3-small model to split the transcript into logical segments 
 

 Chunk assignment: Wraps each semantic segment into a 

attaching relevant metadata like start and end indices 

 
The chunker falls in to this part of our pipeline: 

model, 

 
 
 
 

 

Transcript 

Chunk 

Transcript 

SemanticChunker 

Chunk 



 



 
import re 

from concurrent.futures import ThreadPoolExecutor, as_completed 

from typing import Any 

 
from chonkie import OpenAIEmbeddings, SemanticChunker 

from tqdm import tqdm 

 

 
class Chunker: 

""" 

Takes in transcripts of earnings calls and extracts quarter information and splits 

the transcript into semantically meaningful chunks using embedding-based similarity. 

""" 

 
def   init  (self, model: str = "text-embedding-3-small"): 

self.model = model 

 
def find_quarter(self, text: str) -> str | None: 

"""Extract the quarter (e.g., 'Q1 2023') from the input text if present, otherwise 

# In this dataset we can just use regex to find the quarter as it is consistently d 

search_results = re.findall(r"[Q]\d\s\d{4}", text) 

 
if search_results: 

quarter = str(search_results[0]) 

return quarter 

 
return None 

 
 
 

def generate_transcripts_and_chunks( 

self, 

dataset: Any, 

company: list[str] | None = None, 

text_key: str = "transcript", 

company_key: str = "company", 

date_key: str = "date", 

threshold_value: float = 0.7, 

min_sentences: int = 3, 

num_workers: int = 50, 

) -> list[Transcript]: 

"""Populate Transcript objects with semantic chunks.""" 

# Populate the Transcript objects with the passed data on the transcripts 

transcripts = [ 

Transcript( 

text=d[text_key], 

company=d[company_key], 

date=d[date_key], 

quarter=self.find_quarter(d[text_key]), 

) 



raw_data = list(my_dataset) 

chunker = Chunker() 

transcripts = chunker.generate_transcripts_and_chunks(raw_data) 

for d in dataset 

] 

 
if company: 

transcripts = [t for t in transcripts if t.company in company] 

 
def _process(t: Transcript) -> Transcript: 

if not hasattr(_process, "chunker"): 

embed_model = OpenAIEmbeddings(self.model) 

_process.chunker = SemanticChunker( 

embedding_model=embed_model, 

threshold=threshold_value, 

min_sentences=max(min_sentences, 1), 

) 

semantic_chunks = _process.chunker.chunk(t.text) 

t.chunks = [ 

Chunk( 

text=c.text, 

metadata={ 

"start_index": getattr(c, "start_index", None), 

"end_index": getattr(c, "end_index", None), 

}, 

) 

for c in semantic_chunks 

] 

return t 

 
# Create the semantic chunks and add them to their respective Transcript object usi 

with ThreadPoolExecutor(max_workers=num_workers) as pool: 

futures = [pool.submit(_process, t) for t in transcripts] 

transcripts = [ 

f.result() 

for f in tqdm( 

as_completed(futures), 

total=len(futures), 

desc="Generating Semantic Chunks", 

) 

] 

 
return transcripts 

 
 

 

 

Alternatively, we can load just the and pre-chunked transcripts from pre- 
 

 

AMD NVDA 



import pickle 

from pathlib import Path 

def load_transcripts_from_pickle(directory_path: str = "transcripts/") -> list[Transcript]: 

"""Load all pickle files from a directory into a dictionary.""" 

loaded_transcripts = [] 

dir_path = Path(directory_path).resolve() 

for pkl_file in sorted(dir_path.glob("*.pkl")): 

try: 

with open(pkl_file, "rb") as f: 

transcript = pickle.load(f) 

# Ensure it's a Transcript object 

if not isinstance(transcript, Transcript): 

transcript = Transcript(**transcript) 

loaded_transcripts.append(transcript) 

print(f"  Loaded transcript from {pkl_file.name}") 
except Exception as e: 

print(f"  Error loading {pkl_file.name}: {e}") 

return loaded_transcripts 

 
# transcripts = load_transcripts_from_pickle() 

 
chunks = transcripts[0].chunks 

if chunks is not None: 

for i, chunk in enumerate(chunks[21:23]): 

print(f"Chunk {i+21}:") 

print(f" ID: {chunk.id}") 

print(f" Text: {repr(chunk.text[:200])}{'...' if len(chunk.text) > 100 else ''}") 

print(f" Metadata: {chunk.metadata}") 

print() 

else: 

print("No chunks found for the first transcript.") 

processed files in 

 

 

 
Now we can inspect a couple of chunks: 

 

 
With this, we have successfully split our transcripts into semantically sectioned chunks. 

transcripts/ 



TemporalAgent 

definition 

date_handling_guidance 

 
LABEL_DEFINITIONS: dict[str, dict[str, dict[str, str]]] = { 

"episode_labelling": { 

"FACT": dict( 

definition=( 

"Statements that are objective and can be independently " 

"verified or falsified through evidence." 

), 

date_handling_guidance=( 

We can now move onto the next steps in our pipeline. 

 

3.2.3. Laying the Foundations for our Temporal Agent 

 
Before we move onto defining the class, we will first define the prompts 

and data models that are needed for it to function. 

Formalizing our label definitions 

For our temporal agent to be able to accurately extract the statement and temporal types 

we need to provide it with su  ciently detailed and specific context. For convenience, we 

define these within a structured format below. 

 
Each label contains three crucial pieces of information that we will later pass to our LLMs 

in prompts. 

 

Provides a concise description of what the label represents. It establishes the 

conceptual boundaries of the statement or temporal type and ensures consistency in 

interpretation across examples. 

 

Explains how to interpret the temporal validity of a statement associated with the 

label. It describes how the 

processing instances of that label. 

and dates should be derived when 

 
 

 

Includes illustrative examples of how real-world statements would be labelled and 

temporally annotated under this label. These will be used as few-shot examples to the 

LLMs downstream. 
 

 

date_handling_examples 

valid_at invalid_at 



"These statements can be made up of multiple static and " 

"dynamic temporal events marking for example the start, end, " 

"and duration of the fact described statement." 

), 

date_handling_example=( 

"'Company A owns Company B in 2022', 'X caused Y to happen', " 

"or 'John said X at Event' are verifiable facts which currently " 

"hold true unless we have a contradictory fact." 

), 

), 

"OPINION": dict( 

definition=( 

"Statements that contain personal opinions, feelings, values, " 

"or judgments that are not independently verifiable. It also " 

"includes hypothetical and speculative statements." 

), 

date_handling_guidance=( 

"This statement is always static. It is a record of the date the " 

"opinion was made." 

), 

date_handling_example=( 

"'I like Company A's strategy', 'X may have caused Y to happen', " 

"or 'The event felt like X' are opinions and down to the reporters " 

"interpretation." 

), 

), 

"PREDICTION": dict( 

definition=( 

"Uncertain statements about the future on something that might happen, " 

"a hypothetical outcome, unverified claims. It includes interpretations " 

"and suggestions. If the tense of the statement changed, the statement " 

"would then become a fact." 

), 

date_handling_guidance=( 

"This statement is always static. It is a record of the date the " 

"prediction was made." 

), 

date_handling_example=( 

"'It is rumoured that Dave will resign next month', 'Company A expects " 

"X to happen', or 'X suggests Y' are all predictions." 

), 

), 

}, 

"temporal_labelling": { 

"STATIC": dict( 

definition=( 

"Often past tense, think -ed verbs, describing single points-in-time. " 

"These statements are valid from the day they occurred and are never " 

"invalid. Refer to single points in time at which an event occurred, " 

"the fact X occurred on that date will always hold true." 

), 



date_handling_guidance=( 

"The valid_at date is the date the event occurred. The invalid_at date " 

"is None." 

), 

date_handling_example=( 

"'John was appointed CEO on 4th Jan 2024', 'Company A reported X percent " 

"growth from last FY', or 'X resulted in Y to happen' are valid the day " 

"they occurred and are never invalid." 

), 

), 

"DYNAMIC": dict( 

definition=( 

"Often present tense, think -ing verbs, describing a period of time. " 

"These statements are valid for a specific period of time and are usually " 

"invalidated by a Static fact marking the end of the event or start of a " 

"contradictory new one. The statement could already be referring to a " 

"discrete time period (invalid) or may be an ongoing relationship (not yet 

"invalid)." 

), 

date_handling_guidance=( 

"The valid_at date is the date the event started. The invalid_at date is " 

"the date the event or relationship ended, for ongoing events this is None. 

), 

date_handling_example=( 

"'John is the CEO', 'Company A remains a market leader', or 'X is continuou 

"causing Y to decrease' are valid from when the event started and are inval 

"by a new event." 

), 

), 

"ATEMPORAL": dict( 

definition=( 

"Statements that will always hold true regardless of time therefore have no 

"temporal bounds." 

), 

date_handling_guidance=( 

"These statements are assumed to be atemporal and have no temporal bounds. 

"their valid_at and invalid_at are None." 

), 

date_handling_example=( 

"'A stock represents a unit of ownership in a company', 'The earth is round 

"'Europe is a continent'. These statements are true regardless of time." 

), 

), 

}, 

} 

 

 
3.2.4. Statement Extraction 



StatementType TemporalType 

TemporalType 

"Statement Extraction" refers to the process of splitting our semantic chunks into the 

smallest possible "atomic" facts. Within our Temporal Agent, this is achieved by: 

 
 Finding every standalone, declarative claim 

 
Extract statements that can stand on their own as complete subject-predicate-object 

expressions without relying on surrounding context. 

 
 Ensuring atomicity 

 
Break down complex or compound sentences into minimal, indivisible factual units, 

each expressing a single relationship. 

 
 Resolving references 

 
Replace pronouns or abstract references (e.g., "he" or "The Company") with specific 

entities (e.g., "John Smith", "AMD") using the main subject for disambiguation. 

 
 Preserving temporal and quantitative precision 

 
Retain explicit dates, durations, and quantities to anchor each fact precisely in time 

and scale. 

 
 Labelling each extracted statement 

 
Every statement is annotated with a and a . 

 

 
Temporal Types 

The enum provides a standardized set of temporal categories that make it 

easier to classify and work with statements extracted from earnings call transcripts. 

Each category captures a di erent kind of temporal reference: 

Atemporal: Statements that are universally true and invariant over time (e.g., “The 

speed of light in a vacuum is ≈3×10⁸ m s⁻¹.”). 

Static: Statements that became true at a specific point in time and remain 

unchanged thereafter (e.g., “Person YY was CEO of Company XX on October 23rd, 

2014.”). 

Dynamic: Statements that may change over time and require temporal context to 

interpret accurately (e.g., “Person YY is CEO of Company XX.”). 



StatementType 

TemporalType 

class StatementType(StrEnum): 

"""Enumeration of statement types for statements.""" 

FACT = "FACT" 

OPINION = "OPINION" 

PREDICTION = "PREDICTION" 

 
 

Statement Types 

Similarly, the 

 
 

enum classifies the nature of each extracted statement, 

capturing its epistemic characteristics. 

 
Fact: A statement that asserts a verifiable claim considered true at the time it was 

made. However, it may later be superseded or contradicted by other facts (e.g., 

updated information or corrections). 

Opinion: A subjective statement reflecting a speaker’s belief, sentiment, or judgment. 

By nature, opinions are considered temporally true at the moment they are expressed. 

 Prediction: A forward-looking or hypothetical statement about a potential future 

event or outcome. Temporally, a prediction is assumed to hold true from the time of 

utterance until the conclusion of the inferred prediction window. 

 

 
Raw Statement 

 

The model represents an individual statement extracted by an LLM, 

annotated with both its semantic type ( ) and temporal classification 

( ). These raw statements serve as intermediate representations and are 

intended to be transformed into objects in later processing stages. 

 
Core fields: 

from enum import StrEnum 

class TemporalType(StrEnum): 

"""Enumeration of temporal types of statements.""" 

ATEMPORAL = "ATEMPORAL" 

STATIC = "STATIC" 

DYNAMIC = "DYNAMIC" 

StatementType 

RawStatement 

TemporalEvent 



from pydantic import field_validator 

class RawStatement(BaseModel): 

"""Model representing a raw statement with type and temporal information.""" 

statement: str 

statement_type: StatementType 

temporal_type: TemporalType 

@field_validator("temporal_type", mode="before") 

@classmethod 

def _parse_temporal_label(cls, value: str | None) -> TemporalType: 

if value is None: 

return TemporalType.ATEMPORAL 

cleaned_value = value.strip().upper() 

try: 

return TemporalType(cleaned_value) 

except ValueError as e: 

raise ValueError(f"Invalid temporal type: {value}. Must be one of {[t.value for 

@field_validator("statement_type", mode="before") 

@classmethod 

def _parse_statement_label(cls, value: str | None = None) -> StatementType: 

if value is None: 

return StatementType.FACT 

cleaned_value = value.strip().upper() 

try: 

return StatementType(cleaned_value) 

except ValueError as e: 

raise ValueError(f"Invalid temporal type: {value}. Must be one of {[t.value for 

class RawStatementList(BaseModel): 

: The textual content of the extracted statement 

: The type of statement (Fact, Opinion, Prediction), based on the 

enum 

: The temporal classification of the statement (Static, Dynamic, 

Atemporal), drawn from the enum 

 
The model includes field-level validators to ensure that all type annotations conform to 

their respective enums, providing a layer of robustness against invalid input. 

 
The companion model RawStatementList contains the output of the statement extraction 

step: a list of RawStatement instances. 

 

statement 

statement_type 

StatementType 

temporal_type 

TemporalType 



statement_type temporal_type 

 

 
Statement Extraction Prompt 

 
This is the core prompt that powers our Temporal Agent's ability to extract and label 

atomic statements. It is written in Jinja allowing us to modularly compose dynamic inputs 

without rewriting the core logic. 

 
Anatomy of the prompt 

 
 Set up the extraction task 

 
We instruct the assistant to behave like a domain expert in finance and clearly define 

the two subtasks: (i) extracting atomic, declarative statements, and (ii) labelling each 

with a and a . 

 
 Enforces strict extraction guidelines 

 
The rules for extraction help to enforce consistency and clarity. Statements must: 

 
Be structured as clean subject-predicate-object triplets 

Be self-contained and context-independent 

Resolve co-references (e.g., "he" → "John Smith") 

Include temporal/quantitative qualifiers where present 

 Be split when multiple events or temporalities are described 
 

 Supports plug-and-play definitions 

 

The block makes it easy to inject structured definitions such 

as statement categories, temporal types, and domain-specific terms. 

 
 Includes few-shot examples 

 
We provide an annotated example chunk and the corresponding JSON output to 

demonstrate to the model how it should behave. 
 

 

statements: list[RawStatement] 

"""Model representing a list of raw statements.""" 

{% if definitions %} 



statement_extraction_prompt = ''' 

{% macro tidy(name) -%} 

{{ name.replace('_', ' ')}} 

{%- endmacro %} 

 
You are an expert finance professional and information-extraction assistant. 

 
===Inputs=== 

{% if inputs %} 

{% for key, val in inputs.items() %} 

- {{ key }}: {{val}} 

{% endfor %} 

{% endif %} 

 
===Tasks=== 

1. Identify and extract atomic declarative statements from the chunk given the extraction g 

2. Label these (1) as Fact, Opinion, or Prediction and (2) temporally as Static or Dynamic 

 
===Extraction Guidelines=== 

- Structure statements to clearly show subject-predicate-object relationships 

- Each statement should express a single, complete relationship (it is better to have multi 

- Avoid complex or compound predicates that combine multiple relationships 

- Must be understandable without requiring context of the entire document 

- Should be minimally modified from the original text 

- Must be understandable without requiring context of the entire document, 

- resolve co-references and pronouns to extract complete statements, if in doubt use ma 

"your nearest competitor" -> "main_entity's nearest competitor" 

- There should be no reference to abstract entities such as 'the company', resolve to t 

- expand abbreviations and acronyms to their full form 

 
- Statements are associated with a single temporal event or relationship 

- Include any explicit dates, times, or quantitative qualifiers that make the fact precise 

- If a statement refers to more than 1 temporal event, it should be broken into multiple st 

- If there is a static and dynamic version of a relationship described, both versions shoul 

 
{%- if definitions %} 

{%- for section_key, section_dict in definitions.items() %} 

==== {{ tidy(section_key) | upper }} DEFINITIONS & GUIDANCE ==== 

{%- for category, details in section_dict.items() %} 

{{ loop.index }}. {{ category }} 

- Definition: {{ details.get("definition", "") }} 

{% endfor -%} 

{% endfor -%} 

{% endif -%} 

 
===Examples=== 

Example Chunk: """ 

TechNova Q1 Transcript (Edited Version) 

Attendees: 

* Matt Taylor 

ABC Ltd - Analyst 



* Taylor Morgan 

BigBank Senior - Coordinator 
 

On April 1st, 2024, John Smith was appointed CFO of TechNova Inc. He works alongside the 

Analysts believe this strategy may boost profitability, though others argue it risks empl 

According to TechNova’s Q1 report, the company achieved a 10% increase in revenue compare 

Since June 2024, TechNova Inc has been negotiating strategic partnerships in Asia. Meanwh 

Competitor SkyTech announced last month they have developed a new AI chip and launched th 

""" 

 
Example Output: { 

"statements": [ 

{ 

"statement": "Matt Taylor works at ABC Ltd.", 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "Matt Taylor is an Analyst.", 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "Taylor Morgan works at BigBank.", 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "Taylor Morgan is a Senior Coordinator.", 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "John Smith was appointed CFO of TechNova Inc on April 1st, 2024.", 

"statement_type": "FACT", 

"temporal_type": "STATIC" 

}, 

{ 

"statement": "John Smith has held position CFO of TechNova Inc from April 1st, 2024." 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "Olivia Doe is the Senior VP of TechNova Inc.", 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "John Smith works with Olivia Doe.", 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 



}, 

{ 

"statement": "John Smith is overseeing TechNova Inc's global restructuring initiative 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "Analysts believe TechNova Inc's strategy may boost profitability.", 

"statement_type": "OPINION", 

"temporal_type": "STATIC" 

}, 

{ 

"statement": "Some argue that TechNova Inc's strategy risks employee morale.", 

"statement_type": "OPINION", 

"temporal_type": "STATIC" 

}, 

{ 

"statement": "An investor stated 'I think John has the right vision' on an unspecifie 

"statement_type": "OPINION", 

"temporal_type": "STATIC" 

}, 

{ 

"statement": "TechNova Inc achieved a 10% increase in revenue in Q1 2024 compared to 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "It is expected that TechNova Inc will launch its AI-driven product line 

"statement_type": "PREDICTION", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "TechNova Inc started negotiating strategic partnerships in Asia in June 

"statement_type": "FACT", 

"temporal_type": "STATIC" 

}, 

{ 

"statement": "TechNova Inc has been negotiating strategic partnerships in Asia since 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "TechNova Inc has been expanding its presence in Europe since July 2024. 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "TechNova Inc started expanding its presence in Europe in July 2024.", 

"statement_type": "FACT", 

"temporal_type": "STATIC" 



class RawTemporalRange(BaseModel): 

"""Model representing the raw temporal validity range as strings.""" 

valid_at: str | None = Field(..., json_schema_extra={"format": "date-time"}) 

invalid_at: str | None = Field(..., json_schema_extra={"format": "date-time"}) 

 
 

3.2.5. Temporal Range Extraction 

 
Raw temporal range 

 

The model holds the raw extraction of and date 

strings for a statement. These both use the date-time supported string property. 

 
represents the start of the validity period for a statement 

represents the end of the validity period for a statement 
 

 

**Output format** 

Return only a list of extracted labelled statements in the JSON ARRAY of objects that match 

{{ json_schema }} 

''' 

}, 

{ 

"statement": "TechNova Inc is going to pilot a remote-first work policy across all de 

"statement_type": "FACT", 

"temporal_type": "STATIC" 

}, 

{ 

"statement": "SkyTech is a competitor of TechNova.", 

"statement_type": "FACT", 

"temporal_type": "DYNAMIC" 

}, 

{ 

"statement": "SkyTech developed new AI chip.", 

"statement_type": "FACT", 

"temporal_type": "STATIC" 

}, 

{ 

"statement": "SkyTech launched cloud-based learning platform.", 

"statement_type": "FACT", 

"temporal_type": "STATIC" 

} 

] 

} 

===End of Examples=== 

RawTemporalRange valid_at invalid_at 

valid_at 

invalid_at 



valid_at 

datetime 

valid_at invalid_at 

from utils import parse_date_str 

class TemporalValidityRange(BaseModel): 

"""Model representing the parsed temporal validity range as datetimes.""" 

valid_at: datetime | None = None 

invalid_at: datetime | None = None 

@field_validator("valid_at", "invalid_at", mode="before") 

@classmethod 

def _parse_date_string(cls, value: str | datetime | None) -> datetime | None: 

if isinstance(value, datetime) or value is None: 

return value 

return parse_date_str(value) 

 

 
Temporal validity range 

 
While the RawTemporalRange model preserves the originally extracted date strings, the 

TemporalValidityRange model transforms these into standardized 

downstream processing. 

objects for 

 

It parses the raw and values, converting them from strings into 

timezone-aware instances. This is handled through a field-level validator. 

 

 
Date extraction prompt 

 
Let's now create the prompt that guides our Temporal Agent in accurately determining the 

temporal validity of statements. 

 
Anatomy of the prompt 

 
This prompt helps the Temporal Agent precisely understand and extract temporal validity 

ranges. 

 
 Clearly Defines the Extraction Task 

 
The prompt instructs our model to determine when a statement became true 

( ) and optionally when it stopped being true ( ). 

 
 Uses Contextual Guidance 

datetime 

invalid_at 



valid_at 

invalid_at 

date_extraction_prompt = """ 

{# 

This prompt (template) is adapted from [getzep/graphiti] 

Licensed under the Apache License, Version 2.0 

Original work: 

https://github.com/getzep/graphiti/blob/main/graphiti_core/prompts/extract_edge_dates.p 

Modifications made by Tomoro on 2025-04-14 

See the LICENSE file for the full Apache 2.0 license text. 

#} 

{% macro tidy(name) -%} 

{{ name.replace('_', ' ')}} 

{%- endmacro %} 

INPUTS: 

{% if inputs %} 

By dynamically incorporating and 

, the prompt guides the model in interpreting temporal 

nuances based on the nature of each statement (like distinguishing facts from 

predictions or static from dynamic contexts). 

 
 Ensures Consistency with Clear Formatting Rules 

 
To maintain clarity and consistency, the prompt requires all dates to be converted into 

standardized ISO 8601 date-time formats, normalized to UTC. It explicitly anchors 

relative expressions (like "last quarter") to known publication dates, making temporal 

information precise and reliable. 

 
 Aligns with Business Reporting Cycles 

 
Recognizing the practical need for quarter-based reasoning common in business and 

financial contexts, the prompt can interpret and calculate temporal ranges based on 

business quarters, minimizing ambiguity. 

 
 Adapts to Statement Types for Semantic Accuracy 

 
Specific rules ensure the semantic integrity of statements—for example, opinions 

might only have a start date ( ) reflecting the moment they were expressed, 

while predictions will clearly define their forecast window using an end date 

( ). 
 
 
 

{{ inputs.temporal_type }} {{ 

inputs.statement_type }} 



{% for key, val in inputs.items() %} 

- {{ key }}: {{val}} 

{% endfor %} 

{% endif %} 

 
TASK: 

- Analyze the statement and determine the temporal validity range as dates for the temporal 

- Use the temporal information you extracted, guidelines below, and date of when the statem 

- Only set dates if they explicitly relate to the validity of the relationship described in 

- If the relationship is not of spanning nature and represents a single point in time, but 

 
{{ inputs.get("temporal_type") | upper }} Temporal Type Specific Guidance: 

{% for key, guide in temporal_guide.items() %} 

- {{ tidy(key) | capitalize }}: {{ guide }} 

{% endfor %} 

 
{{ inputs.get("statement_type") | upper }} Statement Type Specific Guidance: 

{%for key, guide in statement_guide.items() %} 

- {{ tidy(key) | capitalize }}: {{ guide }} 

{% endfor %} 

 
Validity Range Definitions: 

- `valid_at` is the date and time when the relationship described by the statement became t 

- `invalid_at` is the date and time when the relationship described by the statement stoppe 

 
General Guidelines: 

1. Use ISO 8601 format (YYYY-MM-DDTHH:MM:SS.SSSSSSZ) for datetimes. 

2. Use the reference or publication date as the current time when determining the valid_a 

3. If the fact is written in the present tense without containing temporal information, u 

4. Do not infer dates from related events or external knowledge. Only use dates that are 

5. Convert relative times (e.g., “two weeks ago”) into absolute ISO 8601 datetimes based 

6. If only a date is mentioned without a specific time, use 00:00:00 (midnight) for that 

7. If only year or month is mentioned, use the start or end as appropriate at 00:00:00 e. 

8. Always include the time zone offset (use Z for UTC if no specific time zone is mention 

{% if inputs.get('quarter') and inputs.get('publication_date') %} 

9. Assume that {{ inputs.quarter }} ends on {{ inputs.publication_date }} and infer dates 

{% endif %} 

 
Statement Specific Rules: 

- when `statement_type` is **opinion** only valid_at must be set 

- when `statement_type` is **prediction** set its `invalid_at` to the **end of the predicti 

Never invent dates from outside knowledge. 

**Output format** 

Return only the validity range in the JSON ARRAY of objects that match the schema below: 

{{ json_schema }} 

""" 



3.2.6. Creating our Triplets 

 
We will now build up the definitions and prompts to create the our triplets. As discussed 

above, these are a combination of: 

 
Subject - the entity you are talking about 

Predicate - the type of relationship or property 

 Object - the value or other entity that the subject is connected to 

Let's start with our predicate. 

Predicate 

 

The enum provides a standard set of predicates that clearly describe 

relationships extracted from text. 

 
We've defined the set of predicates below to be appropriate for earnings call transcripts. 

Here are some examples for how each of these predicates could fit into a triplet in our 

knowledge graph: Here are more anonymized, generalized examples following your 

template: 

 
: [Company ABC]-[IS_A]-[Software Provider] 

: [Corporation XYZ]-[HAS_A]-[Innovation Division] 

: [Factory 123]-[LOCATED_IN]-[Germany] 

: [Jane Doe]-[HOLDS_ROLE]-[CEO at Company LMN] 

: [Company DEF]-[PRODUCES]-[Smartphone Model X] 

: [Retailer 789]-[SELLS]-[Furniture] 

: [Company UVW]-[LAUNCHED]-[New Subscription Service] 

: [Startup GHI]-[DEVELOPED]-[Cloud-Based Tool] 

: [New Technology]-[ADOPTED_BY]-[Industry ABC] 

: [Investment Firm JKL]-[INVESTS_IN]-[Clean Energy Startups] 

: [Company PQR]-[COLLABORATES_WITH]-[University XYZ] 

: [Manufacturer STU]-[SUPPLIES]-[Auto Components to Company VWX] 

: [Corporation LMN]-[HAS_REVENUE]-[€500 Million] 

Predicate 

IS_A 

HAS_A 

LOCATED_IN 

HOLDS_ROLE 

PRODUCES 

SELLS 

LAUNCHED 

DEVELOPED 

ADOPTED_BY 

INVESTS_IN 

COLLABORATES_WITH 

SUPPLIES 

HAS_REVENUE 



class Predicate(StrEnum): 

"""Enumeration of normalised predicates.""" 

IS_A = "IS_A" 

HAS_A = "HAS_A" 

LOCATED_IN = "LOCATED_IN" 

HOLDS_ROLE = "HOLDS_ROLE" 

PRODUCES = "PRODUCES" 

SELLS = "SELLS" 

LAUNCHED = "LAUNCHED" 

DEVELOPED = "DEVELOPED" 

ADOPTED_BY = "ADOPTED_BY" 

INVESTS_IN = "INVESTS_IN" 

COLLABORATES_WITH = "COLLABORATES_WITH" 

SUPPLIES = "SUPPLIES" 

HAS_REVENUE = "HAS_REVENUE" 

INCREASED = "INCREASED" 

DECREASED = "DECREASED" 

RESULTED_IN = "RESULTED_IN" 

TARGETS = "TARGETS" 

PART_OF = "PART_OF" 

DISCONTINUED = "DISCONTINUED" 

SECURED = "SECURED" 

 
PREDICATE_DEFINITIONS = { 

"IS_A": "Denotes a class-or-type relationship between two entities (e.g., 'Model Y IS_A 

"HAS_A": "Denotes a part-whole relationship between two entities (e.g., 'Model Y HAS_A 

"LOCATED_IN": "Specifies geographic or organisational containment or proximity (e.g., h 

"HOLDS_ROLE": "Connects a person to a formal office or title within an organisation (CE 

"PRODUCES": "Indicates that an entity manufactures, builds, or creates a product, servi 

"SELLS": "Marks a commercial seller-to-customer relationship for a product or service ( 

: [Company YZA]-[INCREASED]-[Market Share] 

: [Firm BCD]-[DECREASED]-[Operating Expenses] 

: [Cost Reduction Initiative]-[RESULTED_IN]-[Improved Profit Margins] 

: [Product Launch Campaign]-[TARGETS]-[Millennial Consumers] 

: [Subsidiary EFG]-[PART_OF]-[Parent Corporation HIJ] 

: [Company KLM]-[DISCONTINUED]-[Legacy Product Line] 

: [Startup NOP]-[SECURED]-[Series B Funding] 
 

 

 
We also assign a definition to each predicate, which we will then pass to the extraction 

prompt downstream. 

 

INCREASED 

DECREASED 

RESULTED_IN 

TARGETS 

PART_OF 

DISCONTINUED 

SECURED 



PREDICATE_DEFINITIONS = {} 

 

 
Defining your own predicates 

 
When working with di erent data sources, you'll want to define your own predicates that 

are specific to your use case. 

 
To define your own predicates: 

 
 First, run your pipeline with on a representative sample 

of your documents. This initial run will derive a noisy graph with many non- 

standardized and overlapping predicates 

 Next, drop some of your intial results into ChatGPT or manually review them to merge 

similar predicate classes. This process helps to eliminate duplicates such as 

and 

 Finally, carefully review and refine this list of predicates to ensure clarity and 

precision. These finalized predicate definitions will then guide your extraction process 

and ensure a consistent extraction pipeline 

 
Raw triplet 

 
With predicates now well-defined, we can begin building up the data models for our 

triplets. 
 

The model represents a basic subject-predicate-object relationship that is 

extracted directly from textual data. This serves as a precursor for the more detailed 

triplet representation in which we introduce later. 

} 

"LAUNCHED": "Captures the official first release, shipment, or public start of a produc 

"DEVELOPED": "Shows design, R&D, or innovation origin of a technology, product, or capa 

"ADOPTED_BY": "Indicates that a technology or product has been taken up, deployed, or i 

"INVESTS_IN": "Represents the flow of capital or resources from one entity into another 

"COLLABORATES_WITH": "Generic partnership, alliance, joint venture, or licensing relati 

"SUPPLIES": "Captures vendor–client supply-chain links or dependencies (provides to, so 

"HAS_REVENUE": "Associates an entity with a revenue amount or metric—actual, reported, 

"INCREASED": "Expresses an upward change in a metric (revenue, market share, output) re 

"DECREASED": "Expresses a downward change in a metric relative to a prior period or bas 

"RESULTED_IN": "Captures a causal relationship where one event or factor leads to a spe 

"TARGETS": "Denotes a strategic objective, market segment, or customer group that an en 

"PART_OF": "Expresses hierarchical membership or subset relationships (division, subsid 

"DISCONTINUED": "Indicates official end-of-life, shutdown, or termination of a product, 

"SECURED": "Marks the successful acquisition of funding, contracts, assets, or rights b 

IS_CEO 

IS_CEO_OF 

RawTriplet 

Triplet 



Company 

class Triplet(BaseModel): 

"""Model representing a subject-predicate-object triplet.""" 

id: uuid.UUID = Field(default_factory=uuid.uuid4) 

event_id: uuid.UUID | None = None 

subject_name: str 

subject_id: int | uuid.UUID 

predicate: Predicate 

object_name: str 

object_id: int | uuid.UUID 

value: str | None = None 

@classmethod 

def from_raw(cls, raw_triplet: "RawTriplet", event_id: uuid.UUID | None = None) -> "Tri 

Core fields: 

 
: The textual representation of the subject entity 

: Numeric identifier for the subject entity 
 

: The relationship type, specified by the enum 

: The textual representation of the object entity 

: Numeric identifier for the object entity 
 
 

 

→ 

: Numeric value associated to relationship, may be None e.g. → 

with 

 

 

 
Triplet 

 

The model extends the by incorporating unique identifiers and 

optionally linking each triplet to a specific event. These identifiers help with integration 

into structured knowledge bases like our temporal knowledge graph. 

 

class RawTriplet(BaseModel): 

"""Model representing a subject-predicate-object triplet.""" 

subject_name: str 

subject_id: int 

predicate: Predicate 

object_name: str 

object_id: int 

value: str | None = None 

subject_name 

subject_id 

predicate Predicate 

object_name 

object_id 

value HAS_A 

Revenue value='$100 mill' 

Triplet RawTriplet 



manufacturing semiconductors 

class RawEntity(BaseModel): 

"""Model representing an entity (for entity resolution).""" 

entity_idx: int 

name: str 

type: str = "" 

description: str = "" 

 

 
RawEntity 

 

The model represents an Entity as extracted from the Statement . This serves 

as a precursor for the more detailed triplet representation in Entity which we introduce 

next. 

 
Core fields: 

 
: An integer to di  erentiate extracted entites from the statement (links to 

) 

: The name of the entity extracted e.g. 

: The type of entity extracted e.g. 

: The textual description of the entity e.g. 
 

 
 

 
Entity 

 

The model extends the by incorporating unique identifiers and 

optionally linking each entity to a specific event. Additionally, it contains 

which will be populated during entity resolution with the canonical entity's id to remove 

"""Create a Triplet instance from a RawTriplet, optionally associating it with an e 

return cls( 

id=uuid.uuid4(), 

event_id=event_id, 

subject_name=raw_triplet.subject_name, 

subject_id=raw_triplet.subject_id, 

predicate=raw_triplet.predicate, 

object_name=raw_triplet.object_name, 

object_id=raw_triplet.object_id, 

value=raw_triplet.value, 

) 

RawEntity 

entity_idx 

RawTriplet 

name AMD 

type Company 

description Technology company know for 

Entity RawEntity 

resolved_id 



class Entity(BaseModel): 

""" 

Model representing an entity (for entity resolution). 

'id' is the canonical entity id if this is a canonical entity. 

'resolved_id' is set to the canonical id if this is an alias. 

""" 

id: uuid.UUID = Field(default_factory=uuid.uuid4) 

event_id: uuid.UUID | None = None 

name: str 

type: str 

description: str 

resolved_id: uuid.UUID | None = None 

@classmethod 

def from_raw(cls, raw_entity: "RawEntity", event_id: uuid.UUID | None = None) -> "Entit 

"""Create an Entity instance from a RawEntity, optionally associating it with an ev 

return cls( 

id=uuid.uuid4(),  

event_id=event_id, 

name=raw_entity.name, 

type=raw_entity.type, 

description=raw_entity.description, 

resolved_id=None, 

) 

class RawExtraction(BaseModel): 

"""Model representing a triplet extraction.""" 

triplets: list[RawTriplet] 

entities: list[RawEntity] 

duplicate naming of entities in the database. These updated identifiers help with 

integration and linking of entities to events and triplets . 

 

 
Raw extraction 

 

Both and are extracted at the same time per to reduce 

LLM calls and to allow easy referencing of Entities through Triplets. 

 

 
Triplet Extraction Prompt 

 
The prompt below guides our Temporal Agent to e ectively extract triplets and entities 

RawTriplet RawEntity Statement 



Entities 

Triplets 

from provided statements. 

Anatomy of the prompt 

Avoids temporal details 
 

The agent is specifically instructed to ignore temporal relationships, as these are 

captured separately within the TemporalValidityRange . Defined are 

deliberately designed to be time-neutral—for instance, HAS_A covers both present 

( ) and past ( ) contexts. 

 
Maintains structured outputs 

 

The prompt yields structured 

examples that clearly illustrate: 

outputs, supported by detailed 

How to extract information from a given 

How to link with corresponding 

How to handle extracted 

How to manage multiple involving the same 
 
 
 
 

triplet_extraction_prompt = """ 

You are an information-extraction assistant. 

 
**Task:** You are going to be given a statement. Proceed step by step through the guideline 

 
**Statement:** "{{ statement }}" 

 
**Guidelines** 

First, NER: 

- Identify the entities in the statement, their types, and context independent descriptions 

- Do not include any lengthy quotes from the reports 

- Do not include any calendar dates or temporal ranges or temporal expressions 

- Numeric values should be extracted as separate entities as an instance_of _Numeric_, wher 

 
Second, Triplet extraction: 

- Identify the subject entity of that predicate – the main entity carrying out the action o 

- Identify the object entity of that predicate – the entity, value, or concept that the pre 

- Identify a predicate between the entities expressed in the statement, such as 'is', 'work 

- Extract the corresponding (subject, predicate, object, date) knowledge triplet. 

- Exclude all temporal expressions (dates, years, seasons, etc.) from every field. 

- Repeat until all predicates contained in the statement have been extracted form the state 

 
{%- if predicate_instructions -%} 

Predicates 

HAS_A HAD_A 

RawExtraction 

Statement 

Triplets 

values 

Entity 



 
 

Predicate Instructions: 

Please try to stick to the following predicates, do not deviate unless you can't find a rel 

{%- for pred, instruction in predicate_instructions.items() -%} 

- {{ pred }}: {{ instruction }} 

{%- endfor -%} 
 

{%- endif -%} 

 
Output: 

List the entities and triplets following the JSON schema below. Return ONLY with valid JSON 

Do not include any commentary or explanation. 

{{ json_schema }} 

 
===Examples=== 

Example 1 Statement: "Google's revenue increased by 10% from January through March." 

Example 1 Output: { 

"triplets": [ 

{ 

"subject_name": "Google", 

"subject_id": 0, 

"predicate": "INCREASED", 

"object_name": "Revenue", 

"object_id": 1, 

"value": "10%", 

} 

], 

"entities": [ 

{ 

"entity_idx": 0, 

"name": "Google", 

"type": "Organization", 

"description": "Technology Company", 

}, 

{ 

"entity_idx": 1, 

"name": "Revenue", 

"type": "Financial Metric", 

"description": "Income of a Company", 

} 

] 

} 

 
Example 2 Statement: "Amazon developed a new AI chip in 2024." 

Example 2 Output: 

{ 

"triplets": [ 

{ 

"subject_name": "Amazon", 

"subject_id": 0, 

"predicate": "DEVELOPED", 



"object_name": "AI chip", 

"object_id": 1, 

"value": None, 

}, 

], 

"entities": [ 

{ 

"entity_idx": 0, 

"name": "Amazon", 

"type": "Organization", 

"description": "E-commerce and cloud computing company" 

}, 

{ 

"entity_idx": 1, 

"name": "AI chip", 

"type": "Technology", 

"description": "Artificial intelligence accelerator hardware" 

} 

] 

} 

 
Example 3 Statement: "It is expected that TechNova Inc will launch its AI-driven product li 

Example 3 Output:{ 

"triplets": [ 

{ 

"subject_name": "TechNova", 

"subject_id": 0, 

"predicate": "LAUNCHED", 

"object_name": "AI-driven Product", 

"object_id": 1, 

"value": "None, 

} 

], 

"entities": [ 

{ 

"entity_idx": 0, 

"name": "TechNova", 

"type": "Organization", 

"description": "Technology Company", 

}, 

{ 

"entity_idx": 1, 

"name": "AI-driven Product", 

"type": "Product", 

"description": "General AI products", 

} 

] 

} 

 
Example 4 Statement: "The SVP, CFO and Treasurer of AMD spoke during the earnings call." 

Example 4 Output: { 



TemporalEvent 

InvalidationAgent 

Chunk 

InvalidationAgent 

Triplets 

invalid_at 

TemporalEvent 

Statement 

 
 

3.2.7. Temporal Event 

 
The model brings together the Statement and all related information into 

one handy class. It's a primary output of the TemporalAgent and plays an important role 

within the . 

 
Main fields include: 

 
: A unique identifier for the event 

: Points to the specific associated with the event 
 

: The specific 

relationship or event 

extracted from the detailing a 

: A representation of the 

gauge event similarity 

used by the to 

: Unique identifiers for the individual extracted from the 
 

: Timestamp indicating when the event becomes valid 

: Timestamp indicating when the event becomes invalid 

: Describes temporal characteristics from the 

: Categorizes the statement according to the original 

: Date the event was first created. 
 

: Date the event was marked invalid (set to if is 

already set when building the ) 
 
 

 

applicable 

: ID of the responsible for invalidating this event, if 

 

 

 

===End of Examples=== 

""" 

} 

"triplets": [], 

"entities":[]. 

 
import json 

id 

chunk_id 

statement RawStatement Chunk 

embedding statement 

triplets 

valid_at 

invalid_at 

temporal_type RawStatement 

statement_type RawStatement 

created_at 

expired_at created_at 

invalidated_by TemporalEvent 



TemporalAgent 

extract_transcript_events 

RawStatement Chunk 

 
from pydantic import model_validator 

 
 
 

class TemporalEvent(BaseModel): 

"""Model representing a temporal event with statement, triplet, and validity informatio 

 
id: uuid.UUID = Field(default_factory=uuid.uuid4) 

chunk_id: uuid.UUID 

statement: str 

embedding: list[float] = Field(default_factory=lambda: [0.0] * 256) 

triplets: list[uuid.UUID] 

valid_at: datetime | None = None 

invalid_at: datetime | None = None 

temporal_type: TemporalType 

statement_type: StatementType 

created_at: datetime = Field(default_factory=datetime.now) 

expired_at: datetime | None = None 

invalidated_by: uuid.UUID | None = None 

 
@property 

def triplets_json(self) -> str: 

"""Convert triplets list to JSON string.""" 

return json.dumps([str(t) for t in self.triplets]) if self.triplets else "[]" 

 
@classmethod 

def parse_triplets_json(cls, triplets_str: str) -> list[uuid.UUID]: 

"""Parse JSON string back into list of UUIDs.""" 

if not triplets_str or triplets_str == "[]": 

return [] 

return [uuid.UUID(t) for t in json.loads(triplets_str)] 

 
@model_validator(mode="after") 

def set_expired_at(self) -> "TemporalEvent": 

"""Set expired_at if invalid_at is set and temporal_type is DYNAMIC.""" 

self.expired_at = self.created_at if (self.invalid_at is not None) and (self.tempor 

return self 

 

 
3.2.8. Defining our Temporal Agent 

 
Now we arrive at a central point in our pipeline: The class. This brings 

together the steps we've built up above - chunking, data models, and prompts. Let's take a 

closer look at how this works. 

 
The core function, , handles all key processes: 

 
 It extracts a from each . 



TemporalEvent 

Triplet 

  

 

 From each 

related 
 

and 

, it identifies the 

objects. 

along with lists of 

 Finally, it bundles all this information neatly into a 

. 

 
Here's what you'll get: 

for each 

 
: The transcript currently being analyzed. 

: A comprehensive list of all generated objects. 

: A complete collection of objects extracted across all events. 
 

: A detailed list of all 

be further refined in subsequent steps. 

objects pulled from the events, which will 

 
The diagram below visualizes this portion of our pipeline: 

 
 

 

RawStatement TemporalValidityRange 

Triplet Entity 

TemporalEvent 

RawStatement 

transcript 

all_events 

all_triplets 

all_entities Entity 



 
 
 
 
 



import asyncio 

from typing import Any 

 
from jinja2 import DictLoader, Environment 

from openai import AsyncOpenAI 

from tenacity import retry, stop_after_attempt, wait_random_exponential 
 
 
 

class TemporalAgent: 

"""Handles temporal-based operations for extracting and processing temporal events from 

 
def   init  (self) -> None: 

"""Initialize the TemporalAgent with a client.""" 

self._client = AsyncOpenAI() 

self._model = "gpt-4.1-mini" 

 
self._env = Environment(loader=DictLoader({ 

"statement_extraction.jinja": statement_extraction_prompt, 

"date_extraction.jinja": date_extraction_prompt, 

"triplet_extraction.jinja": triplet_extraction_prompt, 

})) 

self._env.filters["split_and_capitalize"] = self.split_and_capitalize 

@staticmethod 

def split_and_capitalize(value: str) -> str: 

"""Split dict key string and reformat for jinja prompt.""" 

return " ".join(value.split("_")).capitalize() 

 
async def get_statement_embedding(self, statement: str) -> list[float]: 

"""Get the embedding of a statement.""" 

response = await self._client.embeddings.create( 

model="text-embedding-3-large", 

input=statement, 

dimensions=256, 

) 

return response.data[0].embedding 

 
@retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attem 

async def extract_statements( 

self, 

chunk: Chunk, 

inputs: dict[str, Any], 

) -> RawStatementList: 

"""Determine initial validity date range for a statement. 

 
Args: 

chunk (Chunk): The chunk of text to analyze. 

inputs (dict[str, Any]): Additional input parameters for extraction. 

 
Returns: 

Statement: Statement with updated temporal range. 



""" 

inputs["chunk"] = chunk.text 

 
template = self._env.get_template("statement_extraction.jinja") 

prompt = template.render( 

inputs=inputs, 

definitions=LABEL_DEFINITIONS, 

json_schema=RawStatementList.model_fields, 

) 

 
response = await self._client.responses.parse( 

model=self._model, 

temperature=0, 

input=prompt, 

text_format=RawStatementList, 

) 
 
 
 

raw_statements = response.output_parsed 

statements = RawStatementList.model_validate(raw_statements) 

return statements 

 
@retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attem 

async def extract_temporal_range( 

self, 

statement: RawStatement, 

ref_dates: dict[str, Any], 

) -> TemporalValidityRange: 

"""Determine initial validity date range for a statement. 

 
Args: 

statement (Statement): Statement to analyze. 

ref_dates (dict[str, Any]): Reference dates for the statement. 

 
Returns: 

Statement: Statement with updated temporal range. 

""" 

if statement.temporal_type == TemporalType.ATEMPORAL: 

return TemporalValidityRange(valid_at=None, invalid_at=None) 

 
template = self._env.get_template("date_extraction.jinja") 

inputs = ref_dates | statement.model_dump() 

 
prompt = template.render( 

inputs=inputs, 

temporal_guide={statement.temporal_type.value: LABEL_DEFINITIONS["temporal_labe 

statement_guide={statement.statement_type.value: LABEL_DEFINITIONS["episode_lab 

json_schema=RawTemporalRange.model_fields, 

) 

 
response = await self._client.responses.parse( 



model=self._model, 

temperature=0, 

input=prompt, 

text_format=RawTemporalRange, 

) 

 
raw_validity = response.output_parsed 

temp_validity = TemporalValidityRange.model_validate(raw_validity.model_dump()) if 

 
if temp_validity.valid_at is None: 

temp_validity.valid_at = inputs["publication_date"] 

if statement.temporal_type == TemporalType.STATIC: 

temp_validity.invalid_at = None 

 
return temp_validity 

 
@retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attem 

async def extract_triplet( 

self, 

statement: RawStatement, 

max_retries: int = 3, 

) -> RawExtraction: 

"""Extract triplets and entities from a statement as a RawExtraction object.""" 

template = self._env.get_template("triplet_extraction.jinja") 

prompt = template.render( 

statement=statement.statement, 

json_schema=RawExtraction.model_fields, 

predicate_instructions=PREDICATE_DEFINITIONS, 

) 

 
for attempt in range(max_retries): 

try: 

response = await self._client.responses.parse( 

model=self._model, 

temperature=0, 

input=prompt, 

text_format=RawExtraction, 

) 

raw_extraction = response.output_parsed 

extraction = RawExtraction.model_validate(raw_extraction) 

return extraction 

except Exception as e: 

if attempt == max_retries - 1: 

raise 

print(f"Attempt {attempt + 1} failed with error: {str(e)}. Retrying...") 

await asyncio.sleep(1) 

 
raise Exception("All retry attempts failed to extract triplets") 

 
async def extract_transcript_events( 

self, 



transcript: Transcript, 

) -> tuple[Transcript, list[TemporalEvent], list[Triplet], list[Entity]]: 

""" 

For each chunk in the transcript: 

- Extract statements 

- For each statement, extract temporal range and Extraction in parallel 

- Build TemporalEvent for each statement 

- Collect all events, triplets, and entities for later DB insertion 

Returns the transcript, all events, all triplets, and all entities. 

""" 

if not transcript.chunks: 

return transcript, [], [], [] 

doc_summary = { 

"main_entity": transcript.company or None, 

"document_type": "Earnings Call Transcript", 

"publication_date": transcript.date, 

"quarter": transcript.quarter, 

"document_chunk": None, 

} 

all_events: list[TemporalEvent] = [] 

all_triplets: list[Triplet] = [] 

all_entities: list[Entity] = [] 

 
async def _process_chunk(chunk: Chunk) -> tuple[Chunk, list[TemporalEvent], list[Tr 

statements_list = await self.extract_statements(chunk, doc_summary) 

events: list[TemporalEvent] = [] 

chunk_triplets: list[Triplet] = [] 

chunk_entities: list[Entity] = [] 

 
async def _process_statement(statement: RawStatement) -> tuple[TemporalEvent, l 

temporal_range_task = self.extract_temporal_range(statement, doc_summary) 

extraction_task = self.extract_triplet(statement) 

temporal_range, raw_extraction = await asyncio.gather(temporal_range_task, 

# Create the event first to get its id 

embedding = await self.get_statement_embedding(statement.statement) 

event = TemporalEvent( 

chunk_id=chunk.id, 

statement=statement.statement, 

embedding=embedding,  

triplets=[], 

valid_at=temporal_range.valid_at, 

invalid_at=temporal_range.invalid_at, 

temporal_type=statement.temporal_type, 

statement_type=statement.statement_type, 

) 

# Map raw triplets/entities to Triplet/Entity with event_id 

triplets = [Triplet.from_raw(rt, event.id) for rt in raw_extraction.triplet 

entities = [Entity.from_raw(re, event.id) for re in raw_extraction.entities 

event.triplets = [triplet.id for triplet in triplets] 

return event, triplets, entities 



temporal_agent = TemporalAgent() 

# transcripts: list[Transcript] = chunker.generate_transcripts_and_chunks(dataset) 

# Process only the first transcript 

results = await temporal_agent.extract_transcript_events(transcripts[0]) 

 
 

 

 
# Parse and display the results in a nice format 

transcript, events, triplets, entities = results 

 
print("=== TRANSCRIPT PROCESSING RESULTS ===\n") 

 

print(f"📄  Transcript ID: {transcript.id}") 

print(f"📊 Total Chunks: {len(transcript.chunks) if transcript.chunks is not None else 0}") 

print(f"🎯 Total Events: {len(events)}") 

print(f"🔗  Total Triplets: 

{len(triplets)}") print(f"🏷 Total Entities: 
{len(entities)}") 

 
print("\n=== SAMPLE EVENTS ===") 

for i, event in enumerate(events[:3]): # Show first 3 events 

print(f"\n📝 Event {i+1}:") 

print(f" Statement: {event.statement[:100]}...") 

print(f" Type: {event.temporal_type}") 

print(f" Valid At: {event.valid_at}") 

print(f" Triplets: {len(event.triplets)}") 

 
print("\n=== SAMPLE TRIPLETS ===") 

for i, triplet in enumerate(triplets[:5]): # Show first 5 triplets 

print(f"\n🔗 Triplet {i+1}:") 

print(f" Subject: {triplet.subject_name} (ID: {triplet.subject_id})") 

chunk_results = await asyncio.gather(*(_process_chunk(chunk) for chunk in transcrip 

transcript.chunks = [chunk for chunk, _, _, _ in chunk_results] 

for _, events, triplets, entities in chunk_results: 

all_events.extend(events) 

all_triplets.extend(triplets) 

all_entities.extend(entities) 

return transcript, all_events, all_triplets, all_entities 

if statements_list.statements: 

results = await asyncio.gather(*(_process_statement(stmt) for stmt in state 

for event, triplets, entities in results: 

events.append(event) 

chunk_triplets.extend(triplets) 

chunk_entities.extend(entities) 

return chunk, events, chunk_triplets, chunk_entities 



 
 

3.2.9. Entity Resolution 

 
Before diving into Temporal Invalidation, we need to first tackle entity resolution. This 

process is crucial to ensure that each real-world entity has a single, authoritative 

representation, eliminating duplicates and maintaining data consistency. For instance, 

and clearly refer to the same entity, so they should be 

represented under a unified canonical entity. 

Here's our approach to entity resolution: 

We use the class to batch entities by type ( ), which 

helps us make context-specific comparisons—like distinguishing companies from 

individuals. 

 
To address noisy data e ectively, we leverage RapidFuzz to cluster entities based on 

name similarity. This method involves a simple, case-insensitive, punctuation-free 

comparison using a partial match ratio, allowing tolerance for minor typos and 

substring matches. 

 
Within each fuzzy-matched cluster, we select the medoid—the entity most 

representative of the cluster based on overall similarity. This prevents bias toward the 

most frequently occurring or earliest listed entity. The medoid then serves as the 

initial canonical entity, providing a semantically meaningful representation of the 

group. 

 
Before adding a new canonical entity, we cross-check the medoid against existing 

canonicals, considering both fuzzy matching and acronyms. For example, 

may yield , closely matching the acronym . This step 

print("\n=== SAMPLE ENTITIES ===") 

          

   

print(f" Name: {entity.name}") 

print(f" Type: {entity.type}") 

print(f" Description: {entity.description}") 

if entity.resolved_id: 

print(f" Resolved ID: {entity.resolved_id}") 

print(f" Predicate: {triplet.predicate}") 

print(f" Object: {triplet.object_name} (ID: {triplet.object_id})") 

if triplet.value: 

print(f" Value: {triplet.value}") 

AMD Advanced Micro Devices 

EntityResolution Entity.type 

Advanced 

Micro Devices Inc. AMDI AMD 



Entity.name 

import sqlite3 

import string 

from rapidfuzz import fuzz 

from db_interface import ( 

get_all_canonical_entities, 

insert_canonical_entity, 

remove_entity, 

update_entity_references, 

) 

class EntityResolution: 

""" 

Entity resolution class. 

""" 

 
def init (self, conn: sqlite3.Connection): 

self.conn = conn 

self.global_canonicals: list[Entity] = get_all_canonical_entities(conn) 

self.threshold = 80.0 

self.acronym_thresh = 98.0 

def resolve_entities_batch( 

self, batch_entities: list[Entity], 

) -> None: 

""" 

Orchestrate the scalable entity resolution workflow for a batch of entities. 

""" 

helps prevent unnecessary creation of duplicate canonical entities. 

 
If a global match isn't found, the medoid becomes a new canonical entity, with all 

entities in the cluster linked to it via a resolved ID. 

 
 Finally, we perform an additional safeguard check to resolve potential acronym 

duplication across all canonical entities, ensuring thorough cleanup. 

 
To further enhance entity resolution, you could consider advanced techniques such as: 

 

Using embedding-based similarity on 

improving disambiguation beyond simple text similarity. 

alongside , 

Employing a large language model (LLM) to intelligently group entities under their 

canonical forms, enhancing accuracy through semantic understanding. 

 

Entity.description 



type_groups = {t: [e for e in batch_entities if e.type == t] for t in set(e.type fo 

 
for entities in type_groups.values(): 

clusters = self.group_entities_by_fuzzy_match(entities) 

 
for group in clusters.values(): 

if not group: 

continue 

local_canon = self.set_medoid_as_canonical_entity(group) 

if local_canon is None: 

continue 

 
match = self.match_to_canonical_entity(local_canon, self.global_canonicals) 

if " " in local_canon.name: # Multi-word entity 

acronym = "".join(word[0] for word in local_canon.name.split()) 

acronym_match = next( 

(c for c in self.global_canonicals if fuzz.ratio(acronym, c.name) > 

) 

if acronym_match: 

match = acronym_match 

 
if match: 

canonical_id = match.id 

else: 

insert_canonical_entity( 

self.conn, 

{ 

"id": str(local_canon.id), 

"name": local_canon.name, 

"type": local_canon.type, 

"description": local_canon.description, 

}, 

) 

canonical_id = local_canon.id 

self.global_canonicals.append(local_canon) 

 
for entity in group: 

entity.resolved_id = canonical_id 

self.conn.execute( 

"UPDATE entities SET resolved_id = ? WHERE id = ?", 

(str(canonical_id), str(entity.id)) 

) 

 
# Clean up any acronym duplicates after processing all entities 

self.merge_acronym_canonicals() 

 

 
def group_entities_by_fuzzy_match( 

self, entities: list[Entity], 

) -> dict[str, list[Entity]]: 



""" 

Group entities by fuzzy name similarity using rapidfuzz"s partial_ratio. 

Returns a mapping from canonical name to list of grouped entities. 

""" 

def clean(name: str) -> str: 

return name.lower().strip().translate(str.maketrans("", "", string.punctuation) 

 
name_to_entities: dict[str, list[Entity]] = {} 

cleaned_name_map: dict[str, str] = {} 

for entity in entities: 

name_to_entities.setdefault(entity.name, []).append(entity) 

cleaned_name_map[entity.name] = clean(entity.name) 

unique_names = list(name_to_entities.keys()) 

 
clustered: dict[str, list[Entity]] = {} 

used = set() 

for name in unique_names: 

if name in used: 

continue 

clustered[name] = [] 

for other_name in unique_names: 

if other_name in used: 

continue 

score = fuzz.partial_ratio(cleaned_name_map[name], cleaned_name_map[other_n 

if score >= self.threshold: 

clustered[name].extend(name_to_entities[other_name]) 

used.add(other_name) 

return clustered 
 
 
 

def set_medoid_as_canonical_entity(self, entities: list[Entity]) -> Entity | None: 

""" 

Select as canonical the entity in the group with the highest total similarity (sum 

Returns the medoid entity or None if the group is empty. 

""" 

if not entities: 

return None 

 
def clean(name: str) -> str: 

return name.lower().strip().translate(str.maketrans("", "", string.punctuation) 

 
n = len(entities) 

scores = [0.0] * n 

for i in range(n): 

for j in range(n): 

if i != j: 

s1 = clean(entities[i].name) 

s2 = clean(entities[j].name) 

scores[i] += fuzz.partial_ratio(s1, s2) 

max_idx = max(range(n), key=lambda idx: scores[idx]) 

return entities[max_idx] 



 

 
def match_to_canonical_entity(self, entity: Entity, canonical_entities: list[Entity]) - 

""" 

Fuzzy match a single entity to a list of canonical entities. 

Returns the best matching canonical entity or None if no match above self.threshold 

""" 

def clean(name: str) -> str: 

return name.lower().strip().translate(str.maketrans("", "", string.punctuation) 

 
best_score: float = 0 

best_canon = None 

for canon in canonical_entities: 

score = fuzz.partial_ratio(clean(entity.name), clean(canon.name)) 

if score > best_score: 

best_score = score 

best_canon = canon 

if best_score >= self.threshold: 

return best_canon 

return None 
 
 
 

def merge_acronym_canonicals(self) -> None: 

""" 

Merge canonical entities where one is an acronym of another. 

""" 

multi_word = [e for e in self.global_canonicals if " " in e.name] 

single_word = [e for e in self.global_canonicals if " " not in e.name] 

 
acronym_map = {} 

for entity in multi_word: 

acronym = "".join(word[0].upper() for word in entity.name.split()) 

acronym_map[entity.id] = acronym 

 
for entity in multi_word: 

acronym = acronym_map[entity.id] 

for single_entity in single_word: 

score = fuzz.ratio(acronym, single_entity.name) 

if score >= self.threshold: 

update_entity_references(self.conn, str(entity.id), str(single_entity.i 

remove_entity(self.conn, str(entity.id)) 

self.global_canonicals.remove(entity) 

break 

 

 
3.2.10. Invalidation agent 

 
Understanding the Invalidation Process 



To e ectively invalidate temporal events, the agent performs checks in both directions: 

 
 Incoming vs. Existing: Are incoming events invalidated by events already present? 

 Existing vs. Incoming: Are current events invalidated by the new incoming events? 

 
This bi-directional assessment results in a clear True/False decision. 

Event Invalidation Prompt 

The prompt has three key components: 

 

 Task Setup 

Defines two roles— 
 

and 
 

—for event comparison. The assessment 

checks if the event is invalidated by the event. 

 Guidelines 

Provides clear criteria on interpreting temporal metadata. Importantly, invalidation 

must rely solely on the relationships explicitly stated between events. External 

information cannot influence the decision. 

 Event Information 

Both events ( 
 

and 
 

) include timestamp details ( 
 

and 

) along with semantic context through either 

both. This context ensures accurate and relevant comparisons. 

, , or 

 

 

 

event_invalidation_prompt = """ 

Task: Analyze the primary event against the secondary event and determine if the primary ev 

Only set dates if they explicitly relate to the validity of the relationship described in t 

IMPORTANT: Only invalidate events if they are directly invalidated by the other event given 

Only use dates that are directly stated to invalidate the relationship. The invalid_at for 

Invalidation Guidelines: 

Dates are given in ISO 8601 format (YYYY-MM-DDTHH:MM:SS.SSSSSSZ). 

Where invalid_at is null, it means this event is still valid and considered to be ongoin 

Where invalid_at is defined, the event has previously been invalidated by something else 

An event can refine the invalid_at of a finished event to an earlier date only. 

An event cannot invalidate an event that chronologically occurred after it. 

An event cannot be invalidated by an event that chronologically occurred before it. 

An event cannot invalidate itself. 

--- 

Primary Event: 

primary secondary 

primary secondary 

primary secondary valid_at 

invalid_at Statement Triplet 



top_k 

 

 
Requirements to be compared for Invalidation 

We can only invalidate dynamic facts that haven't been marked invalid yet. These facts 

serve as our primary events, while potential candidates for invalidation are our secondary 

events. To streamline the invalidation process, consider these guidelines when evaluating 

secondary events: 

 
 Must be a FACT type and not Atemporal 

 Share at least one canonical entity at the triplet level 

 Belong to the same semantic predicate group at the triplet level (defined below) 

 Temporally overlap and be currently ongoing 

 Have a statement cosine similarity above the threshold (currently set to 0.5) 

 The similarity threshold (0.5) helps us filter noise e ectively by selecting only the 

most relevant results. Low-level semantic similarities are acceptable since our 

goal is refining the data sent to the LLM for further assessment 

 

When invalidation occurs, we annotate the a ected events with 

to clearly indicate cause-and-e ect relationships. 

and 

 
 

Return: "True" if the primary event is invalidated or its invalid_at is refined else "False 

""" 

{% if primary_event -%} 

Statement: {{primary_event}} 

{%- endif %} 

{% if primary_triplet -%} 

Triplet: {{primary_triplet}} 

{%- endif %} 

Valid_at: {{primary_event.valid_at}} 

Invalid_at: {{primary_event.invalid_at}} 

--- 

Secondary Event: 

{% if secondary_event -%} 

Statement: {{secondary_event}} 

{%- endif %} 

{% if secondary_triplet -%} 

Triplet: {{secondary_triplet}} 

{%- endif %} 

Valid_at: {{secondary_event.valid_at}} 

Invalid_at: {{secondary_event.invalid_at}} 

--- 

expired_at 

invalidated_by 



InvalidationAgent 

_top_k = 10 

 

 
When we put all of this together, the workflow for our looks like this: 

 
 Temporal Range Detection 

 
We start by identifying when events happen with get_incoming_temporal_bounds() . 

This function checks the event's 

Atemporal events aren't included here. 

 
 Temporal Event Selection 

and, if it's dynamic, its invalid_at . 

 

We use to filter events by: 

 
Checking if they're static or dynamic. 

Determining if their time ranges overlap with our incoming event. 

 Handling dynamic events carefully, especially "ongoing" ones without an 

, or events with various overlaps. 
 

 Embedding Similarity Filtering 

 

Then, 

similarity: 

compares events based on semantic 

 
It calculates cosine similarity between embeddings. 

 

Events below a similarity threshold ( 

out. 

) are filtered 

We keep only the top-K most similar events ( ). 
 

 Combining Temporal and Semantic Filters 

 

With , we: 

 
Apply temporal filters first. 

Then apply embedding similarity filters. 

PREDICATE_GROUPS: list[list[str]] = [ 

["IS_A", "HAS_A", "LOCATED_IN", "HOLDS_ROLE", "PART_OF"], 

["PRODUCES", "SELLS", "SUPPLIES", "DISCONTINUED", "SECURED"], 

["LAUNCHED", "DEVELOPED", "ADOPTED_BY", "INVESTS_IN", "COLLABORATES_WITH"], 

["HAS_REVENUE", "INCREASED", "DECREASED", "RESULTED_IN", "TARGETS"], 

] 

valid_at 

select_events_temporally() 

invalid_at 

filter_by_embedding_similarity() 

_similarity_threshold = 0.5 

select_temporally_relevant_events_for_invalidation() 



invalidation_step() 

valid_at 

resolve_duplicate_invalidations() 

 This gives us a refined list of events most likely interacting or conflicting with the 

incoming one. 

 Event Invalidation Decision (LLM-based) 

 
The LLM-based (powered by GPT 4.1-mini) determines whether 

the incoming event invalidates another event: 

 
If it does, we update: 

 
to match the secondary event's . 

with the current timestamp. 

with the ID of the secondary event. 
 

 Bidirectional Event Check 

 

We use to check: 

 
If the incoming event invalidates existing events. 

 If existing, later events invalidate the incoming event, especially if the incoming 

one is dynamic and currently valid. 

 Deduplication Logic 

 
Lastly, ensures clean invalidation: 

 
It allows only one invalidation per event. 

Picks the earliest invalidation time to avoid conflicts. 

 This helps manage batch processing e ectively. 

The invalidation below represents this part of our pipeline: 

 
 

invalid_at 

expired_at 

invalidated_by 

bi_directional_event_invalidation() 



 



import asyncio 

import logging 

import pickle 

import sqlite3 

from collections import Counter, defaultdict 

from collections.abc import Coroutine 

from concurrent.futures import ThreadPoolExecutor 

from datetime import datetime 

from typing import Any 

from jinja2 import DictLoader, Environment 

from openai import AsyncOpenAI 

from scipy.spatial.distance import cosine 

from tenacity import retry, stop_after_attempt, wait_random_exponential 

class InvalidationAgent: 

"""Handles temporal-based operations for extracting and processing temporal events from 

 
def   init  (self, max_workers: int = 5) -> None: 

"""Initialize the TemporalAgent with a client.""" 

self.max_workers = max_workers 

self._executor = ThreadPoolExecutor(max_workers=max_workers) 

self.logger = logging.getLogger(  name  ) 

self._client = AsyncOpenAI() 

self._model = "gpt-4.1-mini" 

self._similarity_threshold = 0.5 

self._top_k = 10 

self._env = Environment(loader=DictLoader({ 

"event_invalidation.jinja": event_invalidation_prompt, 

})) 

 
 
 

 



@staticmethod 

def cosine_similarity(v1: list[float], v2: list[float]) -> float: 

"""Calculate cosine similarity between two vectors.""" 

return float(1 - cosine(v1, v2)) 

 
@staticmethod 

def get_incoming_temporal_bounds( 

event: TemporalEvent, 

) -> dict[str, datetime] | None: 

"""Get temporal bounds of all temporal events associated with a statement.""" 

if (event.temporal_type == TemporalType.ATEMPORAL) or (event.valid_at is None): 

return None 

 
temporal_bounds = {"start": event.valid_at, "end": event.valid_at} 

 
if event.temporal_type == TemporalType.DYNAMIC: 

if event.invalid_at: 

temporal_bounds["end"] = event.invalid_at 

return temporal_bounds 

def select_events_temporally( 

self, 

triplet_events: list[tuple[Triplet, TemporalEvent]], 

temp_bounds: dict[str, datetime], 

dynamic: bool = False, 

) -> list[tuple[Triplet, TemporalEvent]]: 

"""Select temporally relevant events (static or dynamic) based on temporal bounds. 

Groups events into before, after, and overlapping categories based on their tempora 

Args: 

triplet_events: List of (Triplet, TemporalEvent) tuples to filter 

temp_bounds: Dict with 'start' and 'end' datetime bounds 

dynamic: If True, filter dynamic events; if False, filter static events 

n_window: Number of events to include before and after bounds 

 
Returns: 

Dict with keys '{type}_before', '{type}_after', '{type}_overlap' where type is 

""" 

 
def _check_overlaps_dynamic(event: TemporalEvent, start: datetime, end: datetime) - 

"""Check if the dynamic event overlaps with the temporal bounds of the incoming 

if event.temporal_type != TemporalType.DYNAMIC: 

return False 

 
event_start = event.valid_at or datetime.min 

event_end = event.invalid_at 

 
# 1. Event contains the start 



if (event_end is not None) and (event_start <= start <= event_end): 

return True 

 
# 2. Ongoing event starts before the incoming start 

if (event_end is None) and (event_start <= start): 

return True 

 
# 3. Event starts within the incoming interval 

if start <= event_start <= end: 

return True 

return False 

 
# Filter by temporal type 

target_type = TemporalType.DYNAMIC if dynamic else TemporalType.STATIC 

filtered_events = [(triplet, event) for triplet, event in triplet_events if event.t 

 
# Sort by valid_at timestamp 

sorted_events = sorted(filtered_events, key=lambda te: te[1].valid_at or datetime.m 

 
start = temp_bounds["start"] 

end = temp_bounds["end"] 

 
if dynamic: 

overlap: list[tuple[Triplet, TemporalEvent]] = [ 

(triplet, event) for triplet, event in sorted_events if _check_overlaps_dyn 

] 

else: 

overlap = [] 

if start != end: 

overlap = [(triplet, event) for triplet, event in sorted_events if event.va 

return overlap 

def filter_by_embedding_similarity( 

self, 

reference_event: TemporalEvent, 

candidate_pairs: list[tuple[Triplet, TemporalEvent]], 

) -> list[tuple[Triplet, TemporalEvent]]: 

"""Filter triplet-event pairs by embedding similarity.""" 

pairs_with_similarity = [ 

(triplet, event, self.cosine_similarity(reference_event.embedding, event.embedd 

] 

 
filtered_pairs = [ 

(triplet, event) for triplet, event, similarity in pairs_with_similarity if sim 

] 

 
sorted_pairs = sorted(filtered_pairs, key=lambda x: self.cosine_similarity(referenc 

return sorted_pairs[: self._top_k] 



def select_temporally_relevant_events_for_invalidation( 

self, 

incoming_event: TemporalEvent, 

candidate_triplet_events: list[tuple[Triplet, TemporalEvent]], 

) -> list[tuple[Triplet, TemporalEvent]] | None: 

"""Select the temporally relevant events based on temporal range of incoming event. 

temporal_bounds = self.get_incoming_temporal_bounds(event=incoming_event) 

if not temporal_bounds: 

return None 

 
# First apply temporal filtering - find overlapping events 

selected_statics = self.select_events_temporally( 

triplet_events=candidate_triplet_events, 

temp_bounds=temporal_bounds, 

) 

selected_dynamics = self.select_events_temporally( 

triplet_events=candidate_triplet_events, 

temp_bounds=temporal_bounds, 

dynamic=True, 

) 

 
# Then filter by semantic similarity 

similar_static = self.filter_by_embedding_similarity(reference_event=incoming_event 

similar_dynamics = self.filter_by_embedding_similarity(reference_event=incoming_eve 

return similar_static + similar_dynamics 

 
@retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attem 

async def invalidation_step( 

self, 

primary_event: TemporalEvent, 

primary_triplet: Triplet, 

secondary_event: TemporalEvent, 

secondary_triplet: Triplet, 

) -> TemporalEvent: 

"""Check if primary event should be invalidated by secondary event. 

 
Args: 

primary_event: Event to potentially invalidate 

primary_triplet: Triplet associated with primary event 

secondary_event: Event that might cause invalidation 

secondary_triplet: Triplet associated with secondary event 

 
Returns: 

TemporalEvent: Updated primary event (may have invalid_at and invalidated_by se 

""" 

template = self._env.get_template("event_invalidation.jinja") 

prompt = template.render( 



primary_event=primary_event.statement, 

primary_triplet=f"({primary_triplet.subject_name}, {primary_triplet.predicate}, 

primary_valid_at=primary_event.valid_at, 

primary_invalid_at=primary_event.invalid_at, 

secondary_event=secondary_event.statement, 

secondary_triplet=f"({secondary_triplet.subject_name}, {secondary_triplet.predi 

secondary_valid_at=secondary_event.valid_at, 

secondary_invalid_at=secondary_event.invalid_at, 

) 

 
response = await self._client.responses.parse( 

model=self._model, 

temperature=0, 

input=prompt, 

) 

 
# Parse boolean response 

response_bool = str(response).strip().lower() == "true" if response else False 

 
if not response_bool: 

return primary_event 

 
# Create updated event with invalidation info 

updated_event = primary_event.model_copy( 

update={ 

"invalid_at": secondary_event.valid_at, 

"expired_at": datetime.now(), 

"invalidated_by": secondary_event.id, 

} 

) 

return updated_event 

 
async def bi_directional_event_invalidation( 

self, 

incoming_triplet: Triplet, 

incoming_event: TemporalEvent, 

existing_triplet_events: list[tuple[Triplet, TemporalEvent]], 

) -> tuple[TemporalEvent, list[TemporalEvent]]: 

"""Validate and update temporal information for triplet events with full bidirectio 

 
Args: 

incoming_triplet: The new triplet 

incoming_event: The new event associated with the triplet 

existing_triplet_events: List of existing (triplet, event) pairs to validate ag 

 
Returns: 

tuple[TemporalEvent, list[TemporalEvent]]: (updated_incoming_event, list_of_cha 

""" 

changed_existing_events: list[TemporalEvent] = [] 

updated_incoming_event = incoming_event 



 
# Filter for dynamic events that can be invalidated 

dynamic_events_to_check = [ 

(triplet, event) for triplet, event in existing_triplet_events if event.tempora 

] 

 
# 1. Check if incoming event invalidates existing dynamic events 

if dynamic_events_to_check: 

tasks = [ 

self.invalidation_step( 

primary_event=existing_event, 

primary_triplet=existing_triplet, 

secondary_event=incoming_event, 

secondary_triplet=incoming_triplet, 

) 

for existing_triplet, existing_event in dynamic_events_to_check 

] 

 
updated_events = await asyncio.gather(*tasks) 

 
for original_pair, updated_event in zip(dynamic_events_to_check, updated_events 

original_event = original_pair[1] 

if (updated_event.invalid_at != original_event.invalid_at) or ( 

updated_event.invalidated_by != original_event.invalidated_by 

): 

changed_existing_events.append(updated_event) 

 
# 2. Check if existing events invalidate the incoming dynamic event 

if incoming_event.temporal_type == TemporalType.DYNAMIC and incoming_event.invalid_ 

# Only check events that occur after the incoming event 

invalidating_events = [ 

(triplet, event) 

for triplet, event in existing_triplet_events 

if (incoming_event.valid_at and event.valid_at and incoming_event.valid_at 

] 

 
if invalidating_events: 

tasks = [ 

self.invalidation_step( 

primary_event=incoming_event, 

primary_triplet=incoming_triplet, 

secondary_event=existing_event, 

secondary_triplet=existing_triplet, 

) 

for existing_triplet, existing_event in invalidating_events 

] 

 
updated_events = await asyncio.gather(*tasks) 

 
# Find the earliest invalidation 

valid_invalidations = [(e.invalid_at, e.invalidated_by) for e in updated_ev 



 
if valid_invalidations: 

earliest_invalidation = min(valid_invalidations, key=lambda x: x[0]) 

updated_incoming_event = incoming_event.model_copy( 

update={ 

"invalid_at": earliest_invalidation[0], 

"invalidated_by": earliest_invalidation[1], 

"expired_at": datetime.now(), 

} 

) 

 
return updated_incoming_event, changed_existing_events 

 
@staticmethod 

def resolve_duplicate_invalidations(changed_events: list[TemporalEvent]) -> list[Tempor 

"""Resolve duplicate invalidations by selecting the most restrictive (earliest) inv 

 
When multiple incoming events invalidate the same existing event, we should apply 

the invalidation that results in the shortest validity range (earliest invalid_at). 

 
Args: 

changed_events: List of events that may contain duplicates with different inval 

 
Returns: 

List of deduplicated events with the most restrictive invalidation applied 

""" 

if not changed_events: 

return [] 

 
# Count occurrences of each event ID 

id_counts = Counter(str(event.id) for event in changed_events) 

resolved_events = [] 

# Group events by ID only for those with duplicates 

events_by_id = defaultdict(list) 

for event in changed_events: 

event_id = str(event.id) 

if id_counts[event_id] == 1: 

resolved_events.append(event) 

else: 

events_by_id[event_id].append(event) 

 
# Deduplicate only those with duplicates 

for _id, event_versions in events_by_id.items(): 

invalidated_versions = [e for e in event_versions if e.invalid_at is not None] 

if not invalidated_versions: 

resolved_events.append(event_versions[0]) 

else: 

most_restrictive = min(invalidated_versions, key=lambda e: (e.invalid_at if 

resolved_events.append(most_restrictive) 

 
return resolved_events 



 
async def _execute_task_pool( 

self, 

tasks: list[Coroutine[Any, Any, tuple[TemporalEvent, list[TemporalEvent]]]], 

batch_size: int = 10 

) -> list[Any]: 

"""Execute tasks in batches using a pool to control concurrency. 

 
Args: 

tasks: List of coroutines to execute 

batch_size: Number of tasks to process concurrently 

 
Returns: 

List of results from all tasks 

""" 

all_results = [] 

for i in range(0, len(tasks), batch_size): 

batch = tasks[i:i + batch_size] 

batch_results = await asyncio.gather(*batch, return_exceptions=True) 

all_results.extend(batch_results) 

 
# Small delay between batches to prevent overload 

if i + batch_size < len(tasks): 

await asyncio.sleep(0.1) 

return all_results 

async def process_invalidations_in_parallel( 

self, 

incoming_triplets: list[Triplet], 

incoming_events: list[TemporalEvent], 

existing_triplets: list[Triplet], 

existing_events: list[TemporalEvent], 

) -> tuple[list[TemporalEvent], list[TemporalEvent]]: 

"""Process invalidations for multiple triplets in parallel. 

 
Args: 

incoming_triplets: List of new triplets to process 

incoming_events: List of events associated with incoming triplets 

existing_triplets: List of existing triplets from DB 

existing_events: List of existing events from DB 

 
Returns: 

tuple[list[TemporalEvent], list[TemporalEvent]]: 

- List of updated incoming events (potentially invalidated) 

- List of existing events that were updated (deduplicated) 

""" 

# Create mappings for faster lookups 

event_map = {str(e.id): e for e in existing_events} 

incoming_event_map = {str(t.event_id): e for t, e in zip(incoming_triplets, incomin 



 
# Prepare tasks for parallel processing 

tasks = [] 

for incoming_triplet in incoming_triplets: 

incoming_event = incoming_event_map[str(incoming_triplet.event_id)] 

 
# Get related triplet-event pairs 

related_pairs = [ 

(t, event_map[str(t.event_id)]) 

for t in existing_triplets 

if (str(t.subject_id) == str(incoming_triplet.subject_id) or str(t.object_i 

and str(t.event_id) in event_map 

] 

 
# Filter for temporal relevance 

all_relevant_events = self.select_temporally_relevant_events_for_invalidation( 

incoming_event=incoming_event, 

candidate_triplet_events=related_pairs, 

) 

 
if not all_relevant_events: 

continue 

 
# Add task for parallel processing 

task = self.bi_directional_event_invalidation( 

incoming_triplet=incoming_triplet, 

incoming_event=incoming_event, 

existing_triplet_events=all_relevant_events, 

) 

tasks.append(task) 

 
# Process all invalidations in parallel with pooling 

if not tasks: 

return [], [] 

 
# Use pool size based on number of workers, but cap it 

pool_size = min(self.max_workers * 2, 10) # Adjust these numbers based on your nee 

results = await self._execute_task_pool(tasks, batch_size=pool_size) 

 
# Collect all results (may contain duplicates) 

updated_incoming_events = [] 

all_changed_existing_events = [] 

 
for result in results: 

if isinstance(result, Exception): 

self.logger.error(f"Task failed with error: {str(result)}") 

continue 

updated_event, changed_events = result 

updated_incoming_events.append(updated_event) 

all_changed_existing_events.extend(changed_events) 



# Resolve duplicate invalidations for existing events 

deduplicated_existing_events = self.resolve_duplicate_invalidations(all_changed_exi 

 
# Resolve duplicate invalidations for incoming events (in case multiple triplets fr 

deduplicated_incoming_events = self.resolve_duplicate_invalidations(updated_incomin 

 
return deduplicated_incoming_events, deduplicated_existing_events 

 
@staticmethod 

def batch_fetch_related_triplet_events( 

conn: sqlite3.Connection, 

incoming_triplets: list[Triplet], 

) -> tuple[list[Triplet], list[TemporalEvent]]: 

""" 

Batch fetch all existing triplets and their events from the DB that are related to 

Related means: 

- Share a subject or object entity 

- Predicate is in the same group 

- Associated event is a FACT 

Returns two lists: triplets and events (with mapping via event_id). 

""" 

# 1. Build sets of all relevant entity IDs and predicate groups 

entity_ids = set() 

predicate_to_group = {} 

for group in PREDICATE_GROUPS: 

group_list = list(group) 

for pred in group_list: 

predicate_to_group[pred] = group_list 

relevant_predicates = set() 

for triplet in incoming_triplets: 

entity_ids.add(str(triplet.subject_id)) 

entity_ids.add(str(triplet.object_id)) 

group = predicate_to_group.get(str(triplet.predicate), []) 

if group: 

relevant_predicates.update(group) 

 
# 2. Prepare SQL query 

entity_placeholders = ",".join(["?"] * len(entity_ids)) 

predicate_placeholders = ",".join(["?"] * len(relevant_predicates)) 

query = f""" 

SELECT 

t.id, 

t.subject_name, 

t.subject_id, 

t.predicate, 

t.object_name, 

t.object_id, 

t.value, 

t.event_id, 

e.chunk_id, 

e.statement, 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
""" 

e.triplets, 

e.statement_type, 

e.temporal_type, 

e.valid_at, 

e.invalid_at, 

e.created_at, 

e.expired_at, 

e.invalidated_by, 

e.embedding 

FROM triplets t 

JOIN events e ON t.event_id = e.id 

WHERE 

(t.subject_id IN ({entity_placeholders}) OR t.object_id IN ({entity_placeho 

AND t.predicate IN ({predicate_placeholders}) 

AND e.statement_type = ? 

params = list(entity_ids) + list(entity_ids) + list(relevant_predicates) + [Stateme 

cursor = conn.cursor() 

cursor.execute(query, params) 

rows = cursor.fetchall() 

 
triplets = [] 

events = [] 

events_by_id = {} 

for row in rows: 

triplet = Triplet( 

id=row[0], 

subject_name=row[1], 

subject_id=row[2], 

predicate=Predicate(row[3]), 

object_name=row[4], 

object_id=row[5], 

value=row[6], 

event_id=row[7], 

) 

event_id = row[7] 

triplets.append(triplet) 

if event_id not in events_by_id: 

events_by_id[event_id] = TemporalEvent( 

id=row[7], 

chunk_id=row[8], 

statement=row[9], 

triplets=TemporalEvent.parse_triplets_json(row[10]), 

statement_type=row[11], 

temporal_type=row[12], 

valid_at=row[13], 

invalid_at=row[14], 

created_at=row[15], 

expired_at=row[16], 

invalidated_by=row[17], 



 

 
We can create a batch processing function for invalidation for a set of Temporal Events. 

This is where we filter our Statements to type FACT before passing into the invalidation 

agent to process. 
 
 
 
 

async def batch_process_invalidation( 

conn: sqlite3.Connection, all_events: list[TemporalEvent], all_triplets: list[Triplet], 

) -> tuple[list[TemporalEvent], list[TemporalEvent]]: 

"""Process invalidation for all FACT events that are temporal. 

 
Args: 

conn: SQLite database connection 

all_events: List of all extracted events 

all_triplets: List of all extracted triplets 

invalidation_agent: The invalidation agent instance 

 
Returns: 

tuple[list[TemporalEvent], list[TemporalEvent]]: 

- final_events: All events (updated incoming events) 

- events_to_update: Existing events that need DB updates 

""" 

def _get_fact_triplets( 

all_events: list[TemporalEvent], 

all_triplets: list[Triplet], 

) -> list[Triplet]: 

""" 

Return only those triplets whose associated event is of statement_type FACT. 

""" 

fact_event_ids = { 

event.id for event in all_events if (event.statement_type == StatementType.FACT 

} 

return [triplet for triplet in all_triplets if triplet.event_id in fact_event_ids] 

# Prepare a list of triplets whose associated event is a FACT and not ATEMPORAL 

fact_triplets = _get_fact_triplets(all_events, all_triplets) 

if not fact_triplets: 

return all_events, [] 

 
# Create event map for quick lookup 

all_events_map = {event.id: event for event in all_events} 

 
# Build aligned lists of valid triplets and their corresponding events 

fact_events: list[TemporalEvent] = [] 

embedding=pickle.loads(row[18]) if row[18] else [0] * 1536, 

) 

events = list(events_by_id.values()) 

return triplets, events 



valid_fact_triplets: list[Triplet] = [] 

for triplet in fact_triplets: 

# Handle potential None event_id and ensure type safety 

if triplet.event_id is not None: 

event = all_events_map.get(triplet.event_id) 

if event: 

fact_events.append(event) 

valid_fact_triplets.append(triplet) 

else: 

print(f"Warning: Could not find event for fact_triplet with event_id {tripl 

else: 

print(f"Warning: Fact triplet {triplet.id} has no event_id, skipping invalidati 

 
if not valid_fact_triplets: 

return all_events, [] 

 
# Batch fetch all related existing triplets and events 

existing_triplets, existing_events = invalidation_agent.batch_fetch_related_triplet_eve 

 
# Process all invalidations in parallel 

updated_incoming_fact_events, changed_existing_events = await invalidation_agent.proces 

incoming_triplets=valid_fact_triplets, 

incoming_events=fact_events, 

existing_triplets=existing_triplets, 

existing_events=existing_events, 

) 

 
# Create mapping for efficient updates 

updated_incoming_event_map = {event.id: event for event in updated_incoming_fact_events 

 
# Reconstruct final events list with updates applied 

final_events = [] 

for original_event in all_events: 

if original_event.id in updated_incoming_event_map: 

final_events.append(updated_incoming_event_map[original_event.id]) 

else: 

final_events.append(original_event) 

return final_events, changed_existing_events 

 
3.2.11. Putting it all together 

 
Now that we have built out each individual component of the Temporal Knowledge Graph 

workflow, we can integrate them into a cohesive workflow. 

 
Given a chunked transcript, the Temporal Agent sequentially processes each chunk, 

initially extracting relevant statements. These statements are then classified and enriched 



through subsequent extraction phases, resulting in Temporal Events, structured Triplets, 

and identified Entities. 

 
The extracted Entities are cross-referenced with existing records in the database, 

ensuring accurate resolution and avoiding redundancy. Following entity resolution, the 

Dynamic Facts undergo validation via the Invalidation Agent to verify temporal 

consistency and validity. 

 
After successful processing and validation, the refined data is systematically stored into 

their respective tables within the SQLite database, maintaining an organized and 

temporally accurate knowledge graph. 

 
To help visually ground the code presented below, we can look again at the pipeline 

diagram: 
 
 

 



import sqlite3 

from db_interface import ( 

 
 
 

 



has_events, 

insert_chunk, 

insert_entity, 

insert_event, 

insert_transcript, 

insert_triplet, 

update_events_batch, 

) 

from utils import safe_iso 
 
 
 

async def ingest_transcript( 

transcript: Transcript, 

conn: sqlite3.Connection, 

temporal_agent: TemporalAgent, 

invalidation_agent: InvalidationAgent, 

entity_resolver: EntityResolution) -> None: 

""" 

Ingest a Transcript object into the database, extracting and saving all chunks, events, 

""" 

insert_transcript( 

conn, 

{ 

"id": str(transcript.id), 

"text": transcript.text, 

"company": transcript.company, 

"date": transcript.date, 

"quarter": transcript.quarter, 

}, 

) 

 
transcript, all_events, all_triplets, all_entities = await temporal_agent.extract_trans 

entity_resolver.resolve_entities_batch(all_entities) 

name_to_canonical = {entity.name: entity.resolved_id for entity in all_entities if enti 

 
# Update triplets with resolved entity IDs 

for triplet in all_triplets: 

if triplet.subject_name in name_to_canonical: 

triplet.subject_id = name_to_canonical[triplet.subject_name] 

if triplet.object_name in name_to_canonical: 

triplet.object_id = name_to_canonical[triplet.object_name] 

 

 
# Invalidation processing with properly resolved triplet IDs 

events_to_update: list[TemporalEvent] = [] 

if has_events(conn): 

all_events, events_to_update = await batch_process_invalidation(conn, all_events, a 

 
# ALL DB operations happen in single transaction 

with conn: 

# Update existing events first (they're already in DB) 



if events_to_update: 

update_events_batch(conn, events_to_update) 

print(f"Updated {len(events_to_update)} existing events") 

 
# Insert new data 

for chunk in transcript.chunks or []: 

chunk_dict = chunk.model_dump() 

insert_chunk( 

conn, 

{ 

"id": str(chunk_dict["id"]), 

"transcript_id": str(transcript.id), 

"text": chunk_dict["text"], 

"metadata": json.dumps(chunk_dict["metadata"]), 

}, 

) 

for event in all_events: 

event_dict = { 

"id": str(event.id), 

"chunk_id": str(event.chunk_id), 

"statement": event.statement, 

"embedding": pickle.dumps(event.embedding) if event.embedding is not None e 

"triplets": event.triplets_json, 

"statement_type": event.statement_type.value if hasattr(event.statement_typ 

"temporal_type": event.temporal_type.value if hasattr(event.temporal_type, 

"created_at": safe_iso(event.created_at), 

"valid_at": safe_iso(event.valid_at), 

"expired_at": safe_iso(event.expired_at), 

"invalid_at": safe_iso(event.invalid_at), 

"invalidated_by": str(event.invalidated_by) if event.invalidated_by else No 

} 

 
insert_event(conn, event_dict) 

for triplet in all_triplets: 

try: 

insert_triplet( 

conn, 

{ 

"id": str(triplet.id), 

"event_id": str(triplet.event_id), 

"subject_name": triplet.subject_name, 

"subject_id": str(triplet.subject_id), 

"predicate": triplet.predicate, 

"object_name": triplet.object_name, 

"object_id": str(triplet.object_id), 

"value": triplet.value, 

}, 

) 

except KeyError as e: 

print(f"KeyError: {triplet.subject_name} or {triplet.object_name} not found 

print(f"Skipping triplet: Entity '{e.args[0]}' is unresolved.") 



 
# Initialize core components 

sqlite_conn = make_connection(memory=False, refresh=True) 

temporal_agent = TemporalAgent() 

invalidation_agent = InvalidationAgent() 

entity_resolver = EntityResolution(sqlite_conn) 

 
# Ingest single transcript 

await ingest_transcript(transcripts[0], sqlite_conn, temporal_agent, invalidation_agent, en 

 
# View what tables have been created and populated 

sqlite_conn.execute("SELECT name FROM sqlite_master WHERE type='table';").fetchall() 

# View triplets table 

from db_interface import view_db_table 

triplets_df = view_db_table(sqlite_conn, "triplets", max_rows=10) 

display(triplets_df) 

import time 

from tqdm import tqdm 

 
 

 

 

 

 
We can then ingest the rest of the Transcripts. Note that this code has not been optimised 

to be production ready and on average takes 2 5 mins per Transcript. This bulk ingestion 

using the data in /transcripts (~30 files) will take up to 2 hours to run. Optimizing this is a 

critical step in scaling to production. We outline some methods you can use to approach 

this in the Appendix in A.3 "Implementing Concurrency in the Ingestion Pipeline", 

including batch chunking, entity clustering, and more. 

 

return None 

continue 

# Deduplicate entities by id before insert 

unique_entities = {} 

for entity in all_entities: 

unique_entities[str(entity.id)] = entity 

for entity in unique_entities.values(): 

insert_entity(conn, {"id": str(entity.id), "name": entity.name, "resolved_id": 



 
# Bulk ingestion (not recommended) 

sqlite_conn = make_connection(memory=False, refresh=True, db_path="my_database.db") 

transcripts = load_transcripts_from_pickle() 

 

 
async def bulk_transcript_ingestion(transcripts: list[Transcript], sqlite_conn: sqlite3.Con 

"""Handle transcript ingestion with duplicate checking, optional overwriting, and progr 

 
Args: 

transcripts (List[Transcript]): List of transcripts to ingest 

sqlite_conn (sqlite3.Connection): SQLite database connection 

overwrite (bool, optional): Whether to overwrite existing transcripts. Defaults to 

""" 

temporal_agent = TemporalAgent() 

invalidation_agent = InvalidationAgent() 

entity_resolver = EntityResolution(sqlite_conn) 

 
pbar = tqdm(total=len(transcripts), desc="Ingesting transcripts") 

 
for transcript in transcripts: 

start_time = time.time() 

try: 

await ingest_transcript(transcript, sqlite_conn, temporal_agent, invalidation_a 

# Calculate and display ingestion time 

end_time = time.time() 

ingestion_time = end_time - start_time 

 
# Update progress bar with completion message 

pbar.write( 

f"Ingested transcript {transcript.id} " 

f"in {ingestion_time:.2f} seconds" 

) 

 
except Exception as e: 

pbar.write(f"Error ingesting transcript {transcript.id}: {str(e)}") 

 
finally: 

# Update progress bar 

pbar.update(1) 

 
pbar.close() 

 
 
 

 
“Note: Running the below cell for all transcripts in this dataset can take approximately 1 

hour” 
 

 



 
 

 

 

date  

 

 

transcript_df = view_db_table(sqlite_conn, "transcripts", max_rows=None) 

display(transcript_df) 

Q2 2016 

\n\nThomson Reuters StreetEvents 

Event Transcr... 

Event Transcr...  

 

 

 
 

 

2016  

NVDA 

 

# View transcripts table 

from db_interface import view_db_table 

2016 07-  

NVDA 

74d42583-b614 4771 80c8- 

1ddf964a4f1c 

Q3 2017 

21T00:00:00 

NVDA \n\nThomson Reuters StreetEvents 

Event Transcr... 

 

\n\nRefinitiv StreetEvents Event 

Transcript\nE... 

2018 05- 

 

\n\nThomson Reuters StreetEvents 74380d19 203a-48f6-a1c8- 

 

\n\nThomson Reuters StreetEvents 

Event Transcr... 

19T00:00:00 

Q2 2021  

26e523aa-7e15 4741 986a- 

 

Q4 2016 

 

 

 2019 

Q2 2017 2017 07- 

 

\n\nThomson Reuters StreetEvents 

Event Transcr... 

 
1ba2fc55-a121 43d4 85d7- 

e221851f2c7f 

2017 01-  

text  

 

Q3 2018 

31T00:00:00 

NVDA \n\nThomson Reuters StreetEvents 

Event Transcr... 

 

 
We recommend loading the pre-processed AMD and NVDA data from file by creating a 

new SQLite connection using the code below. This will create the database needed for 

building the graph and retriever. 

 
You can find this data on HuggingFace. 

 
 
 
 
 

 
 

  

Loading transcripts... 

Loading chunks... 

Loading events... 

Loading triplets... 

Loading entities... 

✅ All tables written to SQLite. 

 

  

 

# await bulk_transcript_ingestion(transcripts, sqlite_conn) 

 
from cb_functions import load_db_from_hf 

sqlite_conn = load_db_from_hf() 



 
import numpy 

import pandas 

import scipy 

 
print("numpy :", numpy. version ) 

print("pandas:", pandas. version ) 

print("scipy :", scipy.  version  ) 

id text company date quarter 
 

 

fe212bc0 9b3d-44ed-91ca- \n\nThomson Reuters StreetEvents NVDA 2019 02- Q4 2019 
7 

bfb856b21aa6 Event Transcr... 14T00:00:00 
 

 

7c0a6f9c-9279 4714-b25e- \n\nThomson Reuters StreetEvents AMD 2019 04- Q1 2019 
8 

8be20ae8fb99 Event Transcr... 30T00:00:00 

 

 
 
 
 

 
 

 

   

 
 

3.3. Knowledge Graphs 
 

3.3.1 Building our Knowledge Graph with NetworkX 

 
When constructing the knowledge graph, canonical entity identifiers derived from triplets 

ensure accurate mapping of entity names, allowing storage of detailed temporal metadata 

directly on edges. Specifically, the implementation utilizes attributes: 

 
valid_at, invalid_at, and temporal_type for Temporal Validity, representing real-world 

accuracy at specific historical moments—critical for analysis of historical facts. 

 Optionally, attributes created_at and expired_at may also be used for Transactional 

Validity, enabling audit trails and source attribution by tracking when information was 

recorded, updated, or corrected. 

 
Transactional validity is particularly beneficial in scenarios such as: 

 
Finance: Determining the accepted financial facts about Company X’s balance sheet 

on a specific historical date, based on contemporaneously accepted knowledge. 

Law: Identifying applicable legal frameworks as understood at a contract signing 

date, or compliance obligations recognized at past dates. 

Journalism: Assessing if previously reported information has become outdated, 

ensuring press releases and reporting remain accurate and credible over time. 

 



import networkx as nx 

# Print descriptive notes about the graph 

print(f"Graph has {G.number_of_nodes()} nodes and {G.number_of_edges()} edges") 

# Get some basic graph statistics 

print(f"Graph density: {G.number_of_edges() / (G.number_of_nodes() * (G.number_of_nodes() - 

# Sample some nodes to see their attributes 

sample_nodes = list(G.nodes(data=True))[:5] 

print("\nSample nodes (first 5):") 

for node_id, attrs in sample_nodes: 

print(f" {node_id}: {attrs}") 

# Sample some edges to see their attributes 

sample_edges = list(G.edges(data=True))[:5] 

print("\nSample edges (first 5):") 

for u, v, attrs in sample_edges: 

print(f" {u} -> {v}: {attrs}") 

# Get degree statistics 

degrees = [d for _, d in G.degree()] 

print("\nDegree statistics:") 

print(f" Min degree: {min(degrees)}") 

print(f" Max degree: {max(degrees)}") 

print(f" Average degree: {sum(degrees) / len(degrees):.2f}") 

 
 
 
 
 
 
 
 
 
 

 
Loading transcripts... 

✅ All tables written to SQLite. 
Loading chunks... 

✅ All tables written to SQLite. 
Loading events... 

✅ All tables written to SQLite. 
Loading triplets... 

✅ All tables written to SQLite. 
Loading entities... 

✅ All tables written to SQLite. 
2282 nodes, 13150 edges 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

  
 

 

 
 

 

 

  

 

from cb_functions import build_graph, load_db_from_hf 

conn = load_db_from_hf() 

G = build_graph(conn) 

print(G.number_of_nodes(), "nodes,", G.number_of_edges(), "edges") 



 
 

 
# Create a visualization of the knowledge graph 

import matplotlib.pyplot as plt 

import networkx as nx 

import numpy as np 

 
# Create a smaller subgraph for visualization (reduce data for clarity) 

# Get nodes with highest degrees for a meaningful visualization 

degrees = dict(G.degree()) 

top_nodes = sorted(degrees.items(), key=lambda x: x[1], reverse=True)[:20] # Reduced from 

visualization_nodes = [node for node, _ in top_nodes] 

 
# Create subgraph with these high-degree nodes 

graph = G.subgraph(visualization_nodes) 

print(f"Visualization subgraph: {graph.number_of_nodes()} nodes, {graph.number_of_edges()} 

 
# Create the plot with better styling 

fig, ax = plt.subplots(figsize=(18, 14)) 

fig.patch.set_facecolor("white") 

 
# Use hierarchical layout for better structure 

try: 

# Try hierarchical layout first 

pos = nx.nx_agraph.graphviz_layout(graph, prog="neato") 

except (ImportError, nx.NetworkXException): 

# Fall back to spring layout with better parameters 

pos = nx.spring_layout(graph, k=5, iterations=100, seed=42) 

 
# Calculate node properties 

node_degrees = [degrees[node] for node in graph.nodes()] 

max_degree = max(node_degrees) 

min_degree = min(node_degrees) 

 
# Create better color scheme 

colors = plt.cm.plasma(np.linspace(0.2, 0.9, len(node_degrees))) 

node_colors = [colors[i] for i in range(len(node_degrees))] 

 
# Draw nodes with improved styling 

node_sizes = [max(200, min(2000, deg * 50)) for deg in node_degrees] # Better size scaling 

nx.draw_networkx_nodes(graph, pos, 

node_color=node_colors, 

node_size=node_sizes, 

alpha=0.9, 

# Check if graph is connected (considering it as undirected for connectivity) 

undirected_G = G.to_undirected() 

print("\nConnectivity:") 

print(f" Number of connected components: {len(list(nx.connected_components(undirected_G))) 

print(f" Is weakly connected: {nx.is_weakly_connected(G)}") 



edgecolors="black", 

linewidths=1.5, 

ax=ax) 

 
# Draw edges with better styling 

edge_weights = [] 

for _, _, _ in graph.edges(data=True): 

edge_weights.append(1) 

 
nx.draw_networkx_edges(graph, pos, 

alpha=0.4, 

edge_color="#666666", 

width=1.0, 

arrows=True, 

arrowsize=15, 

arrowstyle="->", 

ax=ax) 

 
# Add labels for all nodes with better formatting 

labels = {} 

for node in graph.nodes(): 

node_name = graph.nodes[node].get("name", str(node)) 

# Truncate long names 

if len(node_name) > 15: 

node_name = node_name[:12] + "..." 

labels[node] = node_name 

 
nx.draw_networkx_labels(graph, pos, labels, 

font_size=9, 

font_weight="bold", 

font_color="black", # changed from 'white' to 'black' 

ax=ax) 

 
# Improve title and styling 

ax.set_title("Temporal Knowledge Graph Visualization\n(Top 20 Most Connected Entities)", 

fontsize=18, fontweight="bold", pad=20) 

ax.axis("off") 

 
# Add a better colorbar 

sm = plt.cm.ScalarMappable(cmap=plt.cm.plasma, 

norm=plt.Normalize(vmin=min_degree, vmax=max_degree)) 

sm.set_array([]) 

cbar = plt.colorbar(sm, ax=ax, shrink=0.6, aspect=30) 

cbar.set_label("Node Degree (Number of Connections)", rotation=270, labelpad=25, fontsize=1 

cbar.ax.tick_params(labelsize=10) 

 
# Add margin around the graph 

ax.margins(0.1) 

 
plt.tight_layout() 

plt.show() 



 
# Print some information about the visualized nodes 

print("\nTop entities in visualization:") 

for i, (node, degree) in enumerate(top_nodes[:10]): 

node_name = G.nodes[node].get("name", "Unknown") 

print(f"{i+1:2d}. {node_name} (connections: {degree})") 

 
# Create an improved function for easier graph visualization 

def visualise_graph(G, num_nodes=20, figsize=(16, 12)): 

""" 

Visualize a NetworkX graph with improved styling and reduced data. 

 
Args: 

G: NetworkX graph 

num_nodes: Number of top nodes to include in visualization (default: 20) 

figsize: Figure size tuple 

""" 

degrees = dict(G.degree()) 

top_nodes = sorted(degrees.items(), key=lambda x: x[1], reverse=True)[:num_nodes] 

visualization_nodes = [node for node, _ in top_nodes] 

 
# Create subgraph 

subgraph = G.subgraph(visualization_nodes) 

 
# Create the plot 

fig, ax = plt.subplots(figsize=figsize) 

fig.patch.set_facecolor("white") 

 
# Layout with better parameters 

try: 

pos = nx.nx_agraph.graphviz_layout(subgraph, prog="neato") 

except (ImportError, nx.NetworkXException): 

pos = nx.spring_layout(subgraph, k=4, iterations=100, seed=42) 

 
# Node properties 

node_degrees = [degrees[node] for node in subgraph.nodes()] 

max_degree = max(node_degrees) 

min_degree = min(node_degrees) 

 
# Better color scheme 

colors = plt.cm.plasma(np.linspace(0.2, 0.9, len(node_degrees))) 

node_colors = list(colors) 

 
# Draw nodes 

node_sizes = [max(200, min(2000, deg * 50)) for deg in node_degrees] 

nx.draw_networkx_nodes(subgraph, pos, 

node_color=node_colors, 

node_size=node_sizes, 

alpha=0.9, 

edgecolors="black", 

linewidths=1.5, 



# Get node information on NVIDIA, filtering for what they have developed 

# Find the node key for NVIDIA (case-insensitive match on name) 

nvidia_node = None 

for node, data in graph.nodes(data=True): 

ax=ax) 

 
# Draw edges 

nx.draw_networkx_edges(subgraph, pos, 

alpha=0.4, 

edge_color="#666666", 

width=1.0, 

arrows=True, 

arrowsize=15, 

ax=ax) 

 
# Labels 

labels = {} 

for node in subgraph.nodes(): 

node_name = subgraph.nodes[node].get("name", str(node)) 

if len(node_name) > 15: 

node_name = node_name[:12] + "..." 

labels[node] = node_name 

 
nx.draw_networkx_labels(subgraph, pos, labels, 

font_size=9, 

font_weight="bold", 

font_color="black", # changed from 'white' to 'black' 

ax=ax) 

 
ax.set_title(f"Temporal Knowledge Graph\n(Top {num_nodes} Most Connected Entities)", 

fontsize=16, fontweight="bold", pad=20) 

ax.axis("off") 

 
# Colorbar 

sm = plt.cm.ScalarMappable(cmap=plt.cm.plasma, 

norm=plt.Normalize(vmin=min_degree, vmax=max_degree)) 

sm.set_array([]) 

cbar = plt.colorbar(sm, ax=ax, shrink=0.6) 

cbar.set_label("Connections", rotation=270, labelpad=20) 

 
ax.margins(0.1) 

plt.tight_layout() 

plt.show() 

 
return subgraph 

 
 
 

 



 
 

3.3.2 NetworkX versus Neo4j in Production 

 
To e ectively implement and utilize the knowledge graph we utilise NetworkX for the 

purposes of this cookbook for several reasons. 

 
 Python integration: NetworkX seamlessly integrates with Python, facilitating rapid 

prototyping and iterative development 

 Ease of setup: It requires minimal initial setup, not requiring a client-server setup 

featured in alternatives. This makes it ideal for users who wish to run this cookbook 

themselves 

 Compatibility with In-Memory Databases: NetworkX can e  ciently manage graphs 

with fewer than c.100,000 nodes, which is appropriate for this cookbook's data scale 

 
However, it should be noted that NetworkX lacks built-in data persistence and is therefore 

not typically recommended for production builds. 

 
For production builds, Neo4j emerges as a more optimal choice due to a wider set of 

production-centric features, including: 

# Show all edges where NVIDIA is the subject and the predicate is 'DEVELOPED' or 'LAUNC 

print("\nEdges where NVIDIA developed or launched something:") 

for _, v, _, d in graph.out_edges(nvidia_node, data=True, keys=True): 

pred = d.get("predicate", "").upper() 

if pred in {"LAUNCHED"}:#, "LAUNCHED", "PRODUCES", "CREATED", "INTRODUCED"}: 

print(f" {nvidia_node} -[{pred}]-> {v} | {d}") 

# Optionally, print the statement if available 

if "statement" in d: 

print(f" Statement: {d['statement']}") 

else: 

print("NVIDIA node not found in the graph.") 

if nvidia_node is not None: 

print(f"Node key for NVIDIA: {nvidia_node}") 

print("Node attributes:") 

for k, v in graph.nodes[nvidia_node].items(): 

print(f" {k}: {v}") 

if "nvidia" in str(data.get("name", "")).lower(): 

nvidia_node = node 

break 



Native Graph Storage and Processing: Optimized for graph data with high- 

performance and e cient handling 

Optimized Query Engine: Leverages the Cypher query language, explicitly designed 

for e cient graph traversal 

Scalability and Persistence: E ectively manages extensive graph datasets, ensuring 

data persistence, reliability, and durability 

Production Tooling: O ers integrated tooling such as Neo4j Bloom for vislualization 

and Neo4j Browser for exploration, enhancing user interaction and analysis 

Advanced Access Control: Provides granular security options to control data access 

 

 
3.4. Evaluation and Suggested Feature Additions 

 
The approach presented above o ers a foundational implementation of a Temporal Agent 

for knowledge graph construction. However, it does not fully address complexities or all 

possible edge cases encountered in real-world applications. Below, we outline several 

possible enhancements that could be used to further improve the robustness and 

applicability of this implementation. In the later "Prototype to Production" section, we 

expand on these enhancements by suggesting additional considerations essential for 

deploying such agents e ectively in production environments. Further details on scaling 

to production are included in the Appendix. 

 

3.4.1. Temporal Agent 

 
Statement Extraction and Temporal Events 

Duplicate Temporal Events 

In this cookbook, the Temporal Agent does not identify or merge duplicate Temporal 

Events arising from statements referring to the same event, especially when originating 

from di erent sources. These events are saved separately rather than unified into a single, 

consolidated event. 

 
Static and Dynamic Representation 

 
There's an opportunity to enrich the dataset by consistently capturing both Static and 

Dynamic representations of events, even when explicit statements aren't available. 



 
temporal_event = { 

"summary": "The event ran from April to September", 

"label": "dynamic", 

"valid_at": { 

"date": "2025-04-01", 

"literal": False, 

"abstract_date": "2025-04" 

}, 

"invalid_at": { 

"date": "2025-09-30", 

"literal": False, 

"abstract_date": "2025-09" 

} 

} 

For Dynamic events without corresponding Static statements, creating explicit Static 

entries marking the start ( ) and end ( ) can enhance temporal clarity, 

particularly for the purposes of retrieval tasks. 

 
Conversely, Static events lacking Dynamic counterparts can have Dynamic relationships 

inferred, though this would require careful checks for potential invalidation within 

statement cohorts. 

 
Date Extraction 

The implementation in this cookbook does not explictly record assumptions made during 

date disambiguation. 

 
In the absence of an explicit publication date, the present date is used implicitly as a 

reference. For some workflows, this assumption may have to be changed to meet the 

needs of the end users. 

 
Abstract dates (e.g., "until next year") are resolved into explicit dates, however the 

vagueness is not represented in the stored data structure. The inclusion of more granular 

metadata can capture more abstract date ranges: 

 

 
This structure permits the explicit representation of both literal and abstract date 

interpretations. 

 
Triplet Extraction 

There are several possible avenues for improving the Triplet Extraction presented in this 

cookbook. These include: 

valid_at invalid_at 



Utilising a larger model and optimizing the extraction prompts further 

Running the extraction process multiple times and consolidating results via e.g., a 

modal pooling mechanism to improve the accuracy and confidence in a prediction 

 Incorporating entity extraction tools (e.g., Spacy and leveraging predefined 

ontologies tailored to specific use cases for improved consistency and reliability 

 

3.4.2. Invalidation Agent 

The presented Invalidation Agent does not refine temporal validity ranges, but one could 

extend its functionality to perform said refinement as well as intra-cohort invalidation 

checks to identify temporal conflicts among incoming statements. 

 
There are also several opportunities for e  ciency enhancements. 

 
Transitioning from individual (1:1) comparisons to omni-directional (1:many) 

invalidation checks would reduce the number of LLM calls required 

Applying network analysis techniques to cluster related statements could enable 

batching of invalidation checks. Clusters can be derived from several properties 

including semantic similarity, temporal proximity, or more advanced techniques. This 

would significantly reduce bottlenecks arising from sequential processing, which is 

particularly important when ingesting large volumes of data 

4. Multi-Step Retrieval Over a 
Knowledge Graph 

 
 
 

 
Simple retrieval systems can often handle straightforward "look-up" queries with a single 

search against a vector store or document index. In practice, though, agents deployed in 

real-world settings frequently need more. User questions often require LLMs to synthesise 

information from multiple parts of a knowledge base or across several endpoints. 

 
The temporal knowledge graphs introduced earlier provide a natural foundation for this, 

explicitly encoding entities (nodes), relationships (edges), and their evolution over time. 

 
Multi-step retrieval allows us to fully harness the capabilities of these graphs. It involves 

iteratively traversing the graph through a series of targeted queries, enabling the agent to 



gather all necessary context before forming a response. 

We can see the power of multi-step retrieval below: 

 

 

 
In this case, the initial query to the knowledge graph returned no information on some 

competitors’ R&D activities. Rather than failing silently, the system pivoted to an 

alternative source—the strategy content—and successfully located the missing 

information. This multi-step approach allowed it to navigate sparse data and deliver a 

complete response to the user. 



4.1. Building our Retrieval Agent 
 

At a high level, we will build out the following structure: 

 
 User question → Planner → Orchestrator 

 
A planner utilising GPT 4.1 will decompose the user's question into a small sequence 

of proposed graph operations. This is then passed to the orchestrator to execute 

 
 Tool calls to retrieve information from the Temporal Knowledge Graph 

 
Considering the user query and the plan, the Orchestrator (o4-mini) makes a series of 

initial tool calls to retrieve information from the knowledge graph 

 
 Loop until done → Generate answer 

 
The responses to the tool calls are fed back to the Orchestrator which can then 

decide to either make more queries to the graph or answer the user's question 
 
 
 

 



 
%pip install --upgrade openai 

from openai import AsyncOpenAI 

client = AsyncOpenAI() 

from cb_functions import build_graph, load_db_from_hf 

conn = load_db_from_hf() 

G = build_graph(conn) 

print(G.number_of_nodes(), "nodes,", G.number_of_edges(), "edges") 

 

 

 
4.1.1. Imports 

 

 
4.1.2. (Re-)Initialise OpenAI Client 

 

 
4.1.3. (Re-)Load our Temporal Knowledge Graph 

 

 
4.1.4. Planner 

Planning steps are incorporated in many modern LLM applications. 

 
The explicit inclusion of a planning step improves overall performance by having the 

system consider the full scope of the problem before acting. 

 
In this implementation, the plan remains static. In longer-horizon agentic pipelines, 

however, it's common to include mechanisms for replanning or updating the plan as the 



system progresses. 

 
Broadly, planners take two forms: 

 
 Task-orientated (used in this cookbook) 

 
The planner outlines the concrete subtasks the downstream agentic blocks should 

execute. The tasks are phrased in an action-orientated sense such as "1. Extract 

information on R&D activities of Company IJK between 2018 2020." These planners 

are typically preferred when the goal is mostly deterministic and the primary risk is 

skipping or duplicating work. 

 
Example tasks where this approach is useful: 

 
Law: "Extract and tabulate termination-notice periods from every master service 

agreement executed in FY24" 

Finance: "Fetch every 10 K filed by S& P 500 banks for FY24, extract tier-1 capital 

and liquidity coverage ratios, and output a ranked table of institutions by capital 

adequacy" 

Automotive: "Compile warranty-claim counts by component for Model XYZ 

vehicles sold in Europe since the new emissions regulation came into force" 

 Manufacturing: "Analyse downtime logs from each CNC machine for Q1 2025, 

classify the root-cause codes, and generate a Pareto chart of the top five failure 

drivers" 

 Hypothesis-orientated 

 
The plan is framed as a set of hypotheses the system can confirm, reject, or refine in 

response to the user's question. Each step represents a testable claim, optionally 

paired with suggested actions. This approach excels in open-ended research tasks 

where new information can significantly reshape the solution space. 

 
Example tasks where this approach is useful: 

 
Law: "Does the supplied evidence satisfy all four prongs of the fair-use doctrine? 

Evaluate each prong against relevant case law" 

Pharmaceuticals: "What emerging mRNA delivery methods could be used to 

target the IRS1 gene to treat obesity?" 

Finance: "Is Bank Alpha facing a liquidity risk? Compare its LCR trend, interbank 



 
async def initial_planner(user_question: str) -> str: 

"""Return an initial plan for answering the user's question.""" 

initial_planner_system_prompt = ( 

"You work for the leading financial firm, ABC Incorporated, one of the largest fina 

"Due to your long and esteemed tenure at the firm, various equity research teams wi 

"for guidance on research tasks they are performing. Your expertise is particularly 

"ABC Incorporated's proprietary knowledge base of earnings call transcripts. This c 

"extracted from the earnings call transcripts of various companies with labelling f 

"were, valid. You are an expert at providing instructions to teams on how to use th 

"their research queries. \n" 

"The teams will have access to the following tools to help them retrieve informatio 

"1. `factual_qa`: Queries the knowledge graph for time-bounded factual relationship 

"2. `trend_analysis`: Wraps the factual_qa tool with a specialised agent to perform 

borrowing costs, and deposit-outflow and anything else you find that is 

interesting" 

 

Prompting our planner 

We will define two prompts (one 
 

and one 
 

) for the initial planner. 

 
The most notable characteristic of our system prompt below is the use of 'persona-based' 

prompting. We prompt the LLM giving it a persona of an internal company expert. This 

helps to frame the tone of the model's response to the behaviour that we want - a direct, 

action-orientated task list that is fit for the financial industry. 
 

This is then extended in the user prompt, where we prepend the 

information on this specific situation and how the planner should handle it. 

with 

 
In production settings you can super-charge this template by dynamically enriching the 

prompt before each call. You can inject information on the user's profile —sector, role, 

preferred writing style, prior conversation context—so the planner tailors its actions to 

their environment. You can also perform a quick “question-building” loop: have the 

assistant propose clarifying questions, gather the answers, and merge them back into the 

prompt so the planner starts with a well-scoped, information-rich request rather than a 

vague one. 

 
Another flow that can work well is to allow users to view the plan and optionally edit it 

before it is executed. This is particularly e ective when your AI system is acting in more of 

an assistant role. Giving domain experts such as lawyers or pharmaceutical researchers 

the flexibility to steer and incorporate their ideas and research directions deeper into the 

system often has the dual benefit of improving both system performance and end user 

satisfaction. 

 

system user 

user_question 



 
plan = await initial_planner("How can we find out how AMD's research priorties have changed 

 
print(plan) 

"It shoudld also be noted that the trend_analysis tool can accept multiple predicat 

"You may recommend that multiple calls are made to the tools with different e.g., p 

"Your recommendation should explain to the team how to retrieve the information fro 

"tools only. " 

) 

 
initial_planner_user_prompt = ( 

"Your top equity research team has came to you with a research question they are tr 

"You should use your deep financial expertise to succinctly detail a step-by-step p 

"this information from the the company's knowledge base of earnings call transcript 

"You should produce a concise set of individual research tasks required to thorough 

"These tasks should cover all of the key points of the team's research task without 

"The question the team has is: \n\n" 

f"{user_question} \n\n" 

"Return your answer under a heading 'Research tasks' with no filler language, only 

) 

 
input_messages = [ 

{"role":"system", "content": initial_planner_system_prompt}, 

{"role":"user", "content": initial_planner_user_prompt} 

] 

 
initial_plan = await client.responses.create( 

model="gpt-4.1", 

input=input_messages 

) 

 
return initial_plan.output_text 

 
 

 

 

 
4.1.5. Function calling 

 
OpenAI function calling (otherwise known as tools) enable models to perform specific 

external actions by calling predefined functions. Some of the tools provided on the 

OpenAI platform include: 

 
Code interpreter: Executes code for data analysis, math, plotting, and file 

manipulation 

Web search: Include data from the internet in model response generation 



File search: Search the contents of uploaded files for context 

Image generation: Generate or edit images using GPT image 

 Remote MCP servers: Give the model access to new capabilities via Model Context 

Protocol (MCP) servers 

 
Other cookbooks cover how to build tools for use with LLMs. In this example, we’ll develop 

several tools designed to e  ciently explore the temporal knowledge graph and help 

answer the user’s question. 

 
There are several schools of thought on tool design, and the best choice depends on the 

application at hand. 
 
 

 

 
 

 
Fixed Tools 

In this context, 'fixed' tools refer to those with a rigid, well-defined functionality. Typically, 

these tools accept a limited number of specific arguments and perform clearly outlined 



tasks. For instance, a fixed tool might execute a simple query such as "Get today's weather 

for the user's location." Due to their structured nature, these tools excel at performing 

consistent lookups or monitoring values within structured environments like ERP systems, 

regulatory frameworks, or dashboards. However, their rigidity limits flexibility, prompting 

users to often replace them with more dynamic, traditional data pipelines, particularly for 

continuous data streaming. 

 
Examples of fixed tools in various industries include: 

 
Finance: "What's the current exchange rate from USD to EUR?" 

Pharmaceuticals: "Retrieve the known adverse e ects for Drug ABC." 

 Manufacturing: "What was the defect rate for batch #42?" 

 
Free-form 

Free-form tools represent the most flexible end of the tool spectrum. These tools are 

capable of executing complex, open-ended tasks with minimal constraints on input 

structure. A common example is a code interpreter, capable of handling diverse analytical 

tasks. Although their flexibility o ers substantial advantages, they can also introduce 

unpredictability and can be more challenging to optimize for consistent reliability. 

 
In industry applications, free-form tools can look like: 

 
Finance: "Backtest this momentum trading strategy using ETF price data over the 

past 10 years, and plot the Sharpe ratio distribution." 

Automotive: "Given this raw telemetry log, identify patterns that indicate early brake 

failure and simulate outcomes under various terrain conditions." 

 Pharmaceuticals: "Create a pipeline that filters for statistically significant gene 

upregulation from this dataset, then run gene set enrichment analysis and generate a 

publication-ready figure." 

 
Semi-structured Tools (used in this cookbook) 

Modern agentic workflows frequently require tools that e ectively balance structure and 

flexibility. Semi-structured tools are designed specifically to manage this middle ground. 

They accept inputs in moderately complex formats—such as text fragments, JSON-like 

arguments, or small code snippets—and often embed basic reasoning, retrieval, or 

decision-making capabilities. These tools are ideal when tasks are well-defined but not 

entirely uniform, such as when the required dataset or service is known, but the query or 

expected output varies. 



Two common paradigms of semi-structured tools are: 

 
Extended Capabilities: Tools that function as specialized agents themselves, 

incorporating internal logic and analysis routines 

 Flexible Argument Interfaces: Tools permitting the LLM to pass expressive yet 

structured arguments, such as detailed queries, filters, or embedded functions 

 
Semi-structured tools are particularly valuable when: 

 
Delegating specific yet non-trivial tasks (like searches, transformations, or 

summarizations) to specialized tools 

 The source data or APIs are known, but the results returned can be unpredictable 

 
In production environments, these tools are often preferable to free-form tools, like code 

interpreters, due to their enhanced reliability and performance. For instance, executing 

complex, multi-step queries against large Neo4j knowledge graphs is more reliable and 

e  cient using optimized Cypher queries templated within semi-structured tools rather 

than generating each query from scratch. 

 
Industry applications of semi-structured tools include: 

 
Finance: "Extract all forward-looking risk factors from company filings for Q2 2023." 

Automotive: "Identify recurring electrical faults from maintenance logs across EV 

models launched after 2020." 

 Pharmaceuticals: "Locate omics data supporting the hypothesis that a specific 

mRNA treatment e ectively upregulates the IRS1 gene." 

 
Creating tools for our retriever to use 

Factual Q&A 

The tool provides an e  cient way for our agent to retrieve information from 

our temporal knowledge graph pertaining to a particular company, topic, and date range. 

This will help the agent answer questions about the data such as "What were AMD's 

earnings in Q3 2017?" 

 
This tool sits somewhere in the middle of the fixed and semi-structured tools we 

introduced earlier. This is generally quite a rigid tool in that it restricts the agent to a small 

factual_qa 



entity 

number of parameters. However, the degrees of freedom in the input are large and the tool 

is still flexible in what information it can retrieve from the knowledge graph. This helps 

avoid the need for the core agent to write new queries for networkx from scratch on each 

query, improving accuracy and latency. 

 
The tool has the following arguments: 

 
: This is the entity (or object with respect to triplet ontology) that the tool 

should retrieve information for 

: This is the lower bound of the date range that the tool should 

retrieve over 

: This is the upper bound of the date range that the tool should 

retrieve over 

: This is the name of the predicate that the tool will connect the to 

perform a retrieval 

 
We begin by loading the predicate definitions. We will use these to improve error tolerance 

in the tool, using a GPT 4.1-nano to normalize the predicate passed in the argument to a 

valid predicate name. 
 

 
# Redefine the predicate definitions as we will need them here 

PREDICATE_DEFINITIONS = { 

"IS_A": "Denotes a class-or-type relationship between two entities (e.g., 'Model Y IS_A 

"HAS_A": "Denotes a part-whole relationship between two entities (e.g., 'Model Y HAS_A 

"LOCATED_IN": "Specifies geographic or organisational containment or proximity (e.g., h 

"HOLDS_ROLE": "Connects a person to a formal office or title within an organisation (CE 

"PRODUCES": "Indicates that an entity manufactures, builds, or creates a product, servi 

"SELLS": "Marks a commercial seller-to-customer relationship for a product or service ( 

"LAUNCHED": "Captures the official first release, shipment, or public start of a produc 

"DEVELOPED": "Shows design, R&D, or innovation origin of a technology, product, or capa 

"ADOPTED_BY": "Indicates that a technology or product has been taken up, deployed, or i 

"INVESTS_IN": "Represents the flow of capital or resources from one entity into another 

"COLLABORATES_WITH": "Generic partnership, alliance, joint venture, or licensing relati 

"SUPPLIES": "Captures vendor–client supply-chain links or dependencies (provides to, so 

"HAS_REVENUE": "Associates an entity with a revenue amount or metric—actual, reported, 

"INCREASED": "Expresses an upward change in a metric (revenue, market share, output) re 

"DECREASED": "Expresses a downward change in a metric relative to a prior period or bas 

"RESULTED_IN": "Captures a causal relationship where one event or factor leads to a spe 

"TARGETS": "Denotes a strategic objective, market segment, or customer group that an en 

"PART_OF": "Expresses hierarchical membership or subset relationships (division, subsid 

"DISCONTINUED": "Indicates official end-of-life, shutdown, or termination of a product, 

"SECURED": "Marks the successful acquisition of funding, contracts, assets, or rights b 

} 

entity 

start_date_range 

end_date_range 

predicate 



# Helper functions and models 

from datetime import datetime 

from pydantic import BaseModel, Field, ValidationError, field_validator 

def _as_datetime(ts) -> datetime | None: 

"""Helper function to coerce possible timestamp formats to `datetime`.""" # noqa: D401 

if ts is None: 

return None 

if isinstance(ts, datetime): 

return ts 

for fmt in ("%Y-%m-%d", "%Y/%m/%d", "%Y-%m-%dT%H:%M:%S"): 

try: 

return datetime.strptime(ts, fmt) 

except ValueError: 

continue 

return None 

class PredicateMatching(BaseModel): 

"""Class for structured outputs from model to coerce input to correct predicate format. 

reasoning: str = Field(description="Use this space to reason about the correct predicat 

predicate_match: str = Field(description="The predicate that aligns with the dictionary 

class PredicateMatchValidation(BaseModel): 

"""Class for validating the outputs from the model that tries to coerce predicate argum 

predicate: str 

@field_validator("predicate") 

@classmethod 

 

 
We define several helper functions for the factual QA tool. 

 

First is . This tool is used to coerce the arguments that define the date range 

to the correct datetime format. 

 
Next, we introduce two new data models: PredicateMatching and 

. PredicateMatching defines the output format for the GPT 4.1- 

nano call that matches the predicate in the function arguments to valid predicate names. 

then performs a secondary validation step to assert that this 

output from GPT 4.1-nano is a valid predicate name, leveraging a Pydantic field validator. 

This process helps to ensure that the tool runs smoothly and helps to eliminate some of 

the rare edge cases which would lead to an unsuccessful graph query. 

 

_as_datetime 

PredicateMatchValidation 

PredicateMatchValidation 



async def factual_qa( 

entity: str, 

start_date_range: datetime, 

end_date_range: datetime, 

predicate: str 

) -> str: 

""" 

Query the knowledge-graph for relationships attached to *entity* that match 

*predicate* and fall within the requested time-window. 

The response is rendered as: 

Subject – PREDICATE – Object [Valid-From] 

Statement: "..." 

Type: FACT • Value: 42 

 

 
Our factual QA tool can be decomposed into four steps. 

 
 Predicate coercion 

 

If the provided predicate is not found in the 

step uses GPT 4.1-nano to coerce it into a valid predicate 

 
 Entity location 

dictionary, this 

 
Performs fuzzy matching to identify the corresponding entity nodes within the 

networkx graph 

 
 Edge collection 

 
Retrieves both inbound and outbound edges associated with the identified entity 

nodes 

 
 Response formatting 

 
Structures the collected information into a well-formatted response that is easy for 

the orchestrator to consume 
 

 

def predicate_in_definitions(cls, v): 

"""Return an error string if the predicate is not in PREDICATE_DEFINITIONS.""" 

if v not in PREDICATE_DEFINITIONS: 

return f"Error: '{v}' is not a valid predicate. Must be one of: {list(PREDICATE 

return v 

PREDICATE_DEFINITIONS 



 
If no matches are found (or on error) a human-readable explanation is returned. 

""" 

# Checks that the date range passed is logical 

if start_date_range > end_date_range: 

return ( 

"You used the `factual_qa` tool incorrectly last time. You provided a " 

"`start_date_range` that was more recent than the `end_date_range`. " 

"`end_date_range` must be ≥ `start_date_range`." 

) 

 
# ---- (1) predicate coercion / validation ----------------------- 

if predicate not in PREDICATE_DEFINITIONS: 

try: 

predicate_definitions_str = "\n".join( 

f"- {k}: {v}" for k, v in PREDICATE_DEFINITIONS.items() 

) 

coercion_prompt = ( 

"You are a helpful assistant that matches predicates to a dictionary of " 

"predicate definitions. Return the best-matching predicate **and** your rea 

f"Dictionary:\n{predicate_definitions_str}\n\n" 

f"Predicate to match: {predicate}" 

) 

 
completion = await client.beta.chat.completions.parse( 

model="gpt-4.1-nano", 

messages=[{"role": "user", "content": coercion_prompt}], 

response_format=PredicateMatching, 

) 

coerced_predicate = completion.choices[0].message.parsed.predicate_match 

 
# Validate against the enum / model we expect 

_ = PredicateMatchValidation(predicate=coerced_predicate) 

predicate = coerced_predicate 

except ValidationError: 

return ( 

"You provided an invalid predicate. " 

f"Valid predicates are: {list(PREDICATE_DEFINITIONS.keys())}" 

) 

except Exception: 

# Coercion failed – fall back to original predicate 

pass 

 
predicate_upper = predicate.upper() 

entity_lower = entity.lower() 

 
# ---- (2) locate the entity node by fuzzy match ----------------- 

try: 

target_node = None 

for node, data in G.nodes(data=True): 

node_name = data.get("name", str(node)) 



if entity_lower in node_name.lower() or node_name.lower() in entity_lower: 

target_node = node 

break 

if target_node is None: 

return f"Entity '{entity}' not found in the knowledge graph." 

except Exception as e: 

return f"Error locating entity '{entity}': {str(e)}" 

 
# ---- (3) collect matching edges (outgoing + incoming) ---------- 

matching_edges = [] 

 
def _edge_ok(edge_data): 

"""Return True if edge is temporally valid in the requested window.""" 

valid_at = _as_datetime(edge_data.get("valid_at")) 

invalid_at = _as_datetime(edge_data.get("invalid_at")) 

if valid_at and end_date_range < valid_at: 

return False 

if invalid_at and start_date_range >= invalid_at: 

return False 

return True 

 
# Outgoing 

try: 

for _, tgt, _, ed in G.out_edges(target_node, data=True, keys=True): 

pred = ed.get("predicate", "").upper() 

if predicate_upper in pred and _edge_ok(ed): 

matching_edges.append( 

{ 

"subject": G.nodes[target_node].get("name", str(target_node)), 

"predicate": pred, 

"object": G.nodes[tgt].get("name", str(tgt)), 

**ed, 

} 

) 

except Exception: 

pass 

 
# Incoming 

try: 

for src, _, _, ed in G.in_edges(target_node, data=True, keys=True): 

pred = ed.get("predicate", "").upper() 

if predicate_upper in pred and _edge_ok(ed): 

matching_edges.append( 

{ 

"subject": G.nodes[src].get("name", str(src)), 

"predicate": pred, 

"object": G.nodes[target_node].get("name", str(target_node)), 

**ed, 

} 

) 

except Exception: 



 
result = await factual_qa( 

entity="Amd", 

start_date_range=datetime(2016, 1, 1), 

end_date_range=datetime(2020, 1, 1), 

predicate="launched" 

pass 

 
# (4) format the response 

if not matching_edges: 

s = start_date_range.strftime("%Y-%m-%d") 

e = end_date_range.strftime("%Y-%m-%d") 

return ( 

f"No data found for '{entity}' with predicate '{predicate}' " 

f"in the specified date range ({s} to {e})." 

) 

 
lines = [ 

f"Found {len(matching_edges)} relationship" 

f"{'s' if len(matching_edges) != 1 else ''} for " 

f"'{entity}' with predicate '{predicate}':", 

"" 

] 

 
for idx, edge in enumerate(matching_edges, 1): 

value = edge.get("value") 

statement = edge.get("statement") 

statement_tp = edge.get("statement_type") 

valid_from = edge.get("valid_at") 

 
# First line: Subject – PREDICATE – Object 

triplet = f"{edge['subject']} – {edge['predicate']} – {edge['object']}" 

if valid_from: 

triplet += f" [Valid-from: {valid_from}]" 

if value is not None: 

triplet += f" (Value: {value})" 

lines.append(f"{idx}. {triplet}") 

 
# Second line: Statement (truncated to 200 chars) + Type 

if statement: 

snippet = statement if len(statement) <= 200 else statement[:197] + "…" 

lines.append(f' Statement: "{snippet}"') 

if statement_tp: 

lines.append(f" Type: {statement_tp}") 

lines.append("") # spacer 

return "\n".join(lines) 
 
 

 



 
 

 
factual_qa_schema = { 

"type": "function", 

"name": "factual_qa", 

"description": "Queries the knowledge graph for time-bounded factual relationships involv 

"parameters": { 

"type": "object", 

"properties": { 

"entity": { 

"type": "string", 

"description": "The name of the entity (e.g., company or organization) whose relati 

}, 

"start_date_range": { 

"type": "string", 

"format": "date", 

"description": "The start (inclusive) of the date range to filter factual relations 

}, 

"end_date_range": { 

"type": "string", 

"format": "date", 

"description": "The end (inclusive) of the date range to filter factual relationshi 

}, 

"predicate": { 

"type": "string", 

"description": "The type of relationship or topic to match against the knowledge gr 

} 

}, 

"required": [ 

"entity", 

"start_date_range", 

"end_date_range", 

"predicate" 

], 

"additionalProperties": False 

} 

} 
 
 

 
Trend analysis 

 

The tool is designed to compare how specific metrics or signals evolve 

over time—often across multiple companies and/or topics. It exposes a structured 

interface that lets the agent specify the time window, subject set, and target metric, then 

delegates the comparison logic to a specialised agent for handling this analysis. In this 

) 

print(result) 

trend_analysis 



case we utilised o4-mini with high reasoning e ort as this is a 'harder' anaysis task. 

 
This allows us to build a highly focused and optimised pipeline for dealing with 

comparison-style tasks. Whilst this could be built into the core orchestrator itself, it's often 

more manageable to split this into specialised tools so they can be more easily swapped 

out or updated later without much concern for impact on the wider system. 
 

 
import asyncio 

from datetime import datetime 
 
 
 

async def trend_analysis( 

question: str, 

companies: list[str], 

start_date_range: datetime, 

end_date_range: datetime, 

topic_filter: list[str], 

) -> str: 

""" 

Aggregate knowledge-graph facts for multiple companies and topics. 

 
For every (company, topic) pair, this calls `factual_qa` with the same 

date window and returns one concatenated, human-readable string. 

 
Sections are separated by blank lines and prefixed with: 

=== <Company> · <Topic> === 

 
If `factual_qa` raises an exception, an ⚠ line with the error message 

is included in place of that section. 

""" 

 
# helper 

async def _fetch(company: str, predicate: str) -> str: 

return await factual_qa( 

entity=company, 

start_date_range=start_date_range, 

end_date_range=end_date_range, 

predicate=predicate, 

) 

 
# -------- schedule every call (concurrently) -------------------------- 

pairs = [(c, p) for c in companies for p in topic_filter] 

tasks = [asyncio.create_task(_fetch(c, p)) for c, p in pairs] 

 
# gather results 

results = await asyncio.gather(*tasks, return_exceptions=True) 

# assemble final string 



 
result = await trend_analysis( 

question="How have AMD's research priorties changed over time?", 

companies=["AMD"], 

start_date_range=datetime(2016, 1, 1), 

end_date_range=datetime(2020, 1, 1), 

topic_filter=["launched", "researched", "developed"] 

) 

print(result) 

 
trend_analysis_schema = { 

"type": "function", 

"name": "trend_analysis", 

sections: list[str] = [] 

for (company, predicate), res in zip(pairs, results, strict=True): 

header = f"=== {company} · {predicate} ===" 

if isinstance(res, Exception): 

sections.append(f"{header}\n⚠ {type(res). name }: {res}") 

else: 

sections.append(f"{header}\n{res}") 

joined = "\n\n".join(sections) 

analysis_user_prompt = ( 

"You are a helpful assistant" 

"You specialise in providing in-depth analyses of financial data. " 

"You are provided with a detailed dump of data from a knowledge graph that contains 

"extracted from companies' earnings call transcripts. \n" 

"Please summarise the trends from this, comparing how data has evolved over time in 

"Your answer should only contain information that is derived from the data provided 

"knowledge. The knowledge graph contains data in the range 2016-2020. " 

"The data provided is: \n" 

f"{joined}\n\n" 

f"The user question you are summarizing for is: {question}" 

) 

 
analysis = await client.responses.create( 

model="o4-mini", 

input=analysis_user_prompt, 

reasoning={ 

"effort": "high", 

"summary": "auto" 

} 

) 

 
return analysis.output_text 

 
 

 

 



 
tools = [ 

factual_qa_schema, 

trend_analysis_schema 

] 

"description": "Aggregates and compares knowledge-graph facts for multiple companies and 

"parameters": { 

"type": "object", 

"properties": { 

"question": { 

"type": "string", 

"description": "A free-text question that guides the trend analysis (e.g., 'How did 

}, 

"companies": { 

"type": "array", 

"items": { 

"type": "string" 

}, 

"description": "List of companies to compare (e.g., ['Apple', 'Microsoft'])." 

}, 

"start_date_range": { 

"type": "string", 

"format": "date", 

"description": "The start (inclusive) of the date range to filter knowledge-graph f 

}, 

"end_date_range": { 

"type": "string", 

"format": "date", 

"description": "The end (inclusive) of the date range to filter knowledge-graph fac 

}, 

"topic_filter": { 

"type": "array", 

"items": { 

"type": "string" 

}, 

"description": "List of predicates (topics) to query for each company (e.g., ['hire 

} 

}, 

"required": [ 

"question", 

"companies", 

"start_date_range", 

"end_date_range", 

"topic_filter" 

], 

"additionalProperties": False 

} 

} 
 
 

 



 

 
4.1.6. Retriever 

 
We design a simple retriever containing only a run method which encompasses the 

planning step and a while loop to execute each tool call that the orchestrator makes 

before returning a final answer. 
 

 
import json 

 
 
 

class MultiStepRetriever: 

"""Retrieve information in multiple steps using an OpenAI client.""" 

def   init  (self, client: AsyncOpenAI): 

self.client = client 

# This helps us simplify our tool calling functionality in run() 

self.function_map = { 

"factual_qa": factual_qa, 

"trend_analysis": trend_analysis 

} 

 
async def run(self, user_question: str) -> tuple[str, dict]: 

"""Run the multi-step retrieval process for a user question.""" 

# 

# Step 1: Generate initial plan 

# 

 
initial_plan = await initial_planner(user_question=user_question) 

 
# 

# Step 2: Make initial model call 

# 

 
retriever_user_prompt = ( 

"You are a helpful assistant. " 

"You are provided with a user question: \n\n" 

f"{user_question} \n\n" 

"You have access to a set of tools. You may choose to use these tools to retrie 

"help you answer the user's question. These tools allow you to query a knowledg 

"information that has been extracted from companies' earnings call transcripts. 

"You should not use your own memory of these companies to answer questions. " 

"When returning an answer to the user, all of your content must be derived from 

"you have retrieved from the tools used. This is to ensure that is is accurate, 

"this knowledge graph has been carefully check to ensure its accuracy. The know 

"data spanning from 2016-2020. \n\n" 

"You are provided with a plan of action as follows: \n" 

f"{initial_plan} \n\n" 

"You should generally stick to this plan to help you answer the question, thoug 



"from it should you deem it suitable. You may make more than one tool call." 

) 

 
input_messages = [ 

{"role":"user", "content":retriever_user_prompt} 

] 

 
response = await self.client.responses.create( 

model="gpt-4.1", 

input=input_messages, 

tools=tools, 

parallel_tool_calls=False, 

) 

 
# 

# Step 3: While loop until no more tool calls are made 

# 

 
tools_used = {} 

 
while response.output[0].type == "function_call": 

tool_call = response.output[0] 

args = json.loads(tool_call.arguments) 

name = tool_call.name 

 
if name in self.function_map: 

tool_func = self.function_map[name] 

tool_response_text = await tool_func(**args) 

 
input_messages.append(tool_call) 

input_messages.append({ 

"type": "function_call_output", 

"call_id": tool_call.call_id, 

"output": tool_response_text 

}) 

 
tools_used[name] = [args, tool_response_text] 

 
response = await self.client.responses.create( 

model="gpt-4.1", 

input=input_messages, 

tools=tools, 

parallel_tool_calls=False 

) 

 
return response.output_text, tools_used 

 
 

 
We can now run our MultiStepRetriever. 



retriever = MultiStepRetriever(client=client) 

answer, tools_used = await retriever.run(user_question="How have AMD's research & developme 

print(answer) 

 
for key, value in tools_used.items(): 

if value: 

print(f"{key}: {value[0]}") 

else: 

print(f"{key}: [empty list]") 

We observe that the answer returned is detailed, and includes a detailed walkthrough of 

how AMD's research priorities evolved from 2016 to 2020, with references to the 

underlying quotes that were used to derive these answers. 

 

 
We can also inspect the tools used by our MultiStepRetriever to answer this query. 

 

 
Appendix section A.5. "Scaling and Productionizing our Retrieval Agent" outlines some 

guidelines for how one could take the Retrieval Agent we've built up to production. 

 

4.1.7. Selecting the right model for Multi-Step Knowledge-Graph 

Retrieval 

Multi-step retrieval agents need strong reasoning to hop through entities and relations, 

verify answers, and decide what to do next. Latency still matters to users, but usually less 

than raw accuracy. Hence, this is one of the domains where OpenAI's o3 and o4-mini 

reasoning models shine. 

 
Once again, for development we recommend a “start big, then specialise” ladder: 

 
 Start with o3 – ensure your retrieval logic (chaining, re-ranking, fallback prompts) is 

sound. o3 may also be the best choice for production if your retrieval system is 

working with particularly complex data such as pharmaceutical or legal data. You can 

test this by looking at the severity of performance degradation with smaller models. If 

the drop o  in performance is large, consider sticking with o3 

 Move to o4-mini 
 

Prompt enhancement - optimise your prompts to push the performance of the 



o4-mini system as close to that of the full o3 model 

 Reinforcement fine-tuning (RFT) - OpenAI's Reinforcement Fine-Tuning o ering 

enables you to fine-tune OpenAI's o-series models to improve their performance 

on hard reasoning tasks. With as little as ~50 golden answers you can leverage 

the power of reinforcement learning to fine-tune o4-mini which can help it come 

close or even exceed the base o3's performance on the same task 

 Fallback to GPT 4.1 when latency dominates – for cases when latency is particularly 

important or you've tuned your prompts well enough that performance drop-o  is 

minimal, consider moving to the GPT 4.1 series 

 
 

 
Model 

Relative 

cost 

Relative 

latency 
 

Intelligence Ideal role in workflow 

o3 ★★★ ★★ ★★★ 

(highest) 

Initial prototyping, working with complex 

data, golden dataset generation 

o4-mini ★★ ★ ★★ Main production engine, can push 

    performance with RFT 

GPT 4.1 ★ (lowest) ★ (fastest) ★ Latency-critical or large-scale background 

series    scoring 
 

 
Why is Reinforcement Fine-Tuning powerful for long horizon, multi-step retrieval tasks? 

RFT has a number of benefits over Supervised Fine-Tuning or Direct Preference 

Optimization for this use case. 

 
Firstly, reinforcement fine-tuning can be performed with a far small number of examples, 

sometimes requiring as little as 50 training examples. 

 
Additionally, RFT eliminates the necessity of providing labeled step-by-step trajectories. 

By supplying only the final correct answer, the system learns implicitly how to navigate the 

knowledge graph e ectively. This feature is particularly valuable in real-world contexts 

where end users typically face time constraints and may struggle to curate the extensive 

sets of labeled examples (often numbering in the hundreds or thousands) required by 

traditional SFT methods. 

 

 

4.2 Evaluating your Retrieval System 



 Human-annotated “Golden Answers” 

 
The traditional baseline for retrieval evaluation: a curated set of query → gold answer 

pairs, vetted by domain experts. Metrics such as precision@k or recall@k are 

computed by matching retrieved passages against these gold spans. 

 
Pros: Highest reliability, clear pass/fail thresholds, excellent for regression testing 

Cons: Expensive to create, slow to update, narrow coverage (quickly becomes stale 

when the knowledge base evolves) 

 
 Synthetically generated answers 

 
Use an LLM to generate reference answers or judgments, enabling rapid, low-cost 

expansion of the evaluation set. Three common pathways: 

 
LLM-as-judge: Feed the query, retrieved passages, and candidate answer to a 

judge model that outputs a graded score or e.g., “yes / partial / no” 

 Tool-use pathway: For di erent question types you can either manually or 

synthetically generate the 'correct' tool-use pathways and score responses 

against this 

 
Pros: Fast, infinitely scalable, easier to keep pace with a dynamic application 

specification 

Cons: Judgement quality is typically of lower quality than expert human-annotated 

solutions 

 
 Human feedback 

 
Collect ratings directly from end-users or domain reviewers (thumbs-up/down, five- 

star scores, pairwise comparisons). Can be in-the-loop (model trains continuously on 

live feedback) or o ine (periodic eval rounds). 

 
Pros: Captures real-world utility, surfaces edge-cases synthetic tests miss 

Cons: Noisy and subjective; requires thoughtful aggregation (e.g., ELO scoring), risk 

of user biases becoming incorporated in the model 

 

Which is the best evaluation method? 

There is no single best method. However, a workflow that we have found that works well 

on projects is: 



 Start building and iterate synthetic evaluations 

 Test with your golden human set of evaluations before deployment 

 Make it easy for end-users to annotate good and bad answers, and use this feedback 

to continue to develop your application over time 

5. Prototype to Production 
 
 
 

 
Transitioning your knowledge graph system from a proof-of-concept to a robust, 

production-grade pipeline requires you to address several key points: 

 
Storing and retrieving high-volume graph data 

Mananging and pruning datasets 

Implementing concurrency in the ingestion pipeline 

Minimizing token cost 

Scaling retrieval agents 

 Safeguards 

 
This section serves as a walkthrough of key considerations and best practices to ensure 

your temporally-aware knowledge graph can operate reliably in a real-world environment. 

A more detailed Prototype to Production Appendix section can be found in the repository 

for this cookbook. 

 
 Storing and Retrieving High-Volume Graph Data 

 
Appendix section A.1. "Storing and Retrieving High-Volume Graph Data" 

 
Manage scalability through thoughtful schema design, sharding, and partitioning. 

Clearly define entities, relationships, and ensure schema flexibility for future 

evolution. Use high-cardinality fields like timestamps for e  cient data partitioning. 

 Temporal Validity & Versioning 

 
Appendix section A.1.2. "Temporal Validity & Versioning" 

 
Include temporal markers (valid_from, valid_to) for each statement. Maintain 



historical records non-destructively by marking outdated facts as inactive and 

indexing temporal fields for e  cient queries. 

 Indexing & Semantic Search 

 
Appendix section A.1.3. "Indexing & Semantic Search" 

 
Utilize B-tree indexes for e  cient temporal querying. Leverage PostgreSQL’s 

pgvector extension for semantic search with approximate nearest-neighbor 

algorithms like iv  at, ivfpq, and hnsw to optimize query speed and memory usage. 

 
 Managing and Pruning Datasets 

 
Appendix section A.2. "Managing and Pruning Datasets" 

 
Establish TTL and archival policies for data retention based on source reliability and 

relevance. Implement automated archival tasks and intelligent pruning with relevance 

scoring to optimize graph size. 

 
 Concurrent Ingestion Pipeline 

 
Appendix section A.3. "Implementing Concurrency in the Ingestion Pipeline" 

 
Implement batch processing with separate, scalable pipeline stages for chunking, 

extraction, invalidation, and entity resolution. Optimize throughput and parallelism to 

manage ingestion bottlenecks. 

 
 Minimizing Token Costs 

 
Appendix section A.4. "Minimizing Token Cost" 

 
Use caching strategies to avoid redundant API calls. Adopt service tiers like OpenAI's 

flex option to reduce costs and replace expensive model queries with e  cient 

embedding and nearest-neighbor search. 

 
 Scaling Retrieval Agents 

 
Appendix section A.5. "Scaling and Productionizing our Retrieval Agent" 

 
Use a controller and traversal workers architecture to handle multi-hop queries. 

Implement parallel subgraph extraction, dynamic traversal with chained reasoning, 

caching, and autoscaling for high performance. 



 Safeguards & Verification 

 
Appendix section A.6. "Safeguards" 

 
Deploy multi-layered output verification, structured logging, and monitoring to ensure 

data integrity and operational reliability. Track critical metrics and perform regular 

audits. 

 
 Prompt Optimization 

 
Appendix section A.7. "Prompt Optimization" 

 
Optimize LLM interactions with personas, few-shot prompts, chain-of-thought 

methods, dynamic context management, and automated A/B testing of prompt 

variations for continuous performance improvement. 

 

 
Closing thoughts 

 
This cookbook equips you with foundational techniques and concrete workflows to 

e ectively build and deploy temporally-aware knowledge graphs coupled with powerful 

multi-hop retrieval capabilities. 

 
Whether you're starting from a prototype or refining a production system, leveraging 

structured graph data with OpenAI models can unlock richer, more nuanced interactions 

with your data. As these technologies evolve rapidly, look out for updates in OpenAI's 

model lineup and keep experimenting with indexing methods and retrieval strategies to 

continuously enhance your knowledge-centric AI solutions. 

 
You can easily adapt the frameworks presented in this cookbook to your respective 

domain by customizing the provided ontologies and refining the extraction prompts. 

Swapping in Neo4j as the graph database takes you well on the way to an MVP level 

application, providing data persistence out of the box. It also opens the door to levelling 

up your retriever's tools with Cypher queries. 

 
Iterively develop your solution by making use of synthetic evals, and then test your 

solution against "golden" expert-human annotated solutions. Once in production, you can 

quickly iterate from human feedback to push your application to new heights. 
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