

Table of Contents

 Executive Summary

1.1. Purpose and Audience

1.2. Key Takeaways

 How to Use this Cookbook

2.1. Pre-requisites

 Creating a Temporally-Aware Knowledge Graph with a Temporal Agent

3.1. Introducing our Temporal Agent

3.1.1. Key enhancements introduced in this cookbook

3.1.2. The Temporal Agent Pipeline

3.1.3. Selecting the right model for a Temporal Age

3.2. Building our Temporal Agent Pipeline

3.2.1. Load transcripts

3.2.2. Creating a Semantic Chunker

3.2.3. Laying the Foundations for our Temporal Agent

3.2.4. Statement Extraction

3.2.5. Temporal Range Extraction

3.2.6. Creating our Triplets

3.2.7. Temporal Event

3.2.8. Defining our Temporal Agent

3.2.9. Entity Resolution

3.2.10. Invalidation agent

3.2.11. Putting it all together

3.3. Knowledge Graphs

3.3.1. Building our Knowledge Graph with NetworkX

3.3.2. NetworkX versus Neo4j in Production

3.4. Evaluation and Suggested Feature Additions

3.4.1. Temporal Agent

3.4.2. Invalidation Agent

3.4.3. Multi-Step Retrieval Over a Knowledge Graph

4.1. Building our Retrieval Agent

4.1.1. Imports

4.1.2. (Re-)Initialize OpenAI Client

4.1.3. (Re-)Load our Temporal Knowledge Graph

4.1.4. Planner

4.1.5. Function Calling

4.1.6. Retriever

4.1.7. Selecting the right model for Multi-Step Knowledge-Graph Retrieval
4.2. Elevating your Retrieval System

 Prototype to Production

1. Executive summary

1.1. Purpose and Audience

This notebook provides a hands-on guide for building temporally-aware knowledge

graphs and performing multi-hop retrieval directly over those graphs.

It's designed for engineers, architects, and analysts working on temporally-aware

knowledge graphs. Whether you’re prototyping, deploying at scale, or exploring new ways

to use structured data, you’ll find practical workflows, best practices, and decision

frameworks to accelerate your work.

This cookbook presents two hands-on workflows you can use, extend, and deploy right

away:

 Temporally-aware knowledge graph (KG) construction

A key challenge in developing knowledge-driven AI systems is maintaining a database

that stays current and relevant. While much attention is given to boosting retrieval

accuracy with techniques like semantic similarity and re-ranking, this guide focuses

on a fundamental—yet frequently overlooked—aspect: systematically updating and

validating your knowledge base as new data arrives.

No matter how advanced your retrieval algorithms are, their e ectiveness is limited by

the quality and freshness of your database. This cookbook demonstrates how to

routinely validate and update knowledge graph entries as new data arrives, helping

ensure that your knowledge base remains accurate and up to date.

 Multi-hop retrieval using knowledge graphs

Learn how to combine OpenAI models (such as o3, o4-mini, GPT 4.1, and GPT 4.1-

mini) with structured graph queries via tool calls, enabling the model to traverse your

graph in multiple steps across entities and relationships.

This method lets your system answer complex, multi-faceted questions that require

reasoning over several linked facts, going well beyond what single-hop retrieval can

accomplish.

Inside, you'll discover:

Practical decision frameworks for choosing models and prompting techniques at

each stage

Plug-and-play code examples for easy integration into your ML and data pipelines

Links to in-depth resources on OpenAI tool use, fine-tuning, graph backend selection,

and more

A clear path from prototype to production, with actionable best practices for scaling

and reliability

“Note: All benchmarks and recommendations are based on the best available models

and practices as of June 2025. As the ecosystem evolves, periodically revisit your

approach to stay current with new capabilities and improvements.”

1.2. Key takeaways

Creating a Temporally-Aware Knowledge Graph with a Temporal Agent

 Why make your knowledge graph temporal?

Traditional knowledge graphs treat facts as static, but real-world information evolves

constantly. What was true last quarter may be outdated today, risking errors or

misinformed decisions if the graph does not capture change over time. Temporal

knowledge graphs allow you to precisely answer questions like “What was true on a

given date?” or analyse how facts and relationships have shifted, ensuring decisions

are always based on the most relevant context.

 What is a Temporal Agent?

A Temporal Agent is a pipeline component that ingests raw data and produces time-

stamped triplets for your knowledge graph. This enables precise time-based querying,

timeline construction, trend analysis, and more.

 How does the pipeline work?

The pipeline starts by semantically chunking your raw documents. These chunks are

decomposed into statements ready for our Temporal Agent, which then creates time-

aware triplets. An Invalidation Agent can then perform temporal validity checks,

spotting and handling any statements that are invalidated by new statements that

are incident on the graph.

Multi-Step Retrieval Over a Knowledge Graph

 Why use multi-step retrieval?

Direct, single-hop queries frequently miss salient facts distributed across a graph's

topology. Multi-step (multi-hop) retrieval enables iterative traversal, following

relationships and aggregating evidence across several hops. This methodology

surfaces complex dependencies and latent connections that would remain hidden

with one-shot lookups, providing more comprehensive and nuanced answers to

sophisticated queries.

 Planners

Planners orchestrate the retrieval process. Task-orientated planners decompose

queries into concrete, sequential subtasks. Hypothesis-orientated planners, by

contrast, propose claims to confirm, refute, or evolve. Choosing the optimal strategy

depends on where the problem lies on the spectrum from deterministic reporting

(well-defined paths) to exploratory research (open-ended inference).

 Tool Design Paradigms

Tool design spans a continuum: Fixed tools provide consistent, predictable outputs

for specific queries (e.g., a service that always returns today’s weather for San

Francisco). At the other end, Free-form tools o er broad flexibility, such as code

execution or open-ended data retrieval. Semi-structured tools fall between these

extremes, restricting certain actions while allowing tailored flexibility—specialized

sub-agents are a typical example. Selecting the appropriate paradigm is a trade-o

between control, adaptability, and complexity.

 Evaluating Retrieval Systems

High-fidelity evaluation hinges on expert-curated "golden" answers, though these are

costly and labor-intensive to produce. Automated judgments, such as those from

LLMs or tool traces, can be quickly generated to supplement or pre-screen, but may

lack the precision of human evaluation. As your system matures, transition towards

leveraging real user feedback to measure and optimize retrieval quality in production.

A proven workflow: Start with synthetic tests, benchmark on your curated human-

annotated "golden" dataset, and iteratively refine using live user feedback and ratings.

Prototype to Production

 Keep the graph lean

Established archival policies and assign numeric relevance scores to each edge (e.g.,

recency x trust x query-frequency). Automate the archival or sparsification of low-

value nodes and edges, ensuring only the most critical and frequently accessed facts

remain for rapid retrieval.

 Parallelize the ingestion pipeline

Transition from a linear document → chunk → extraction → resolution pipeline to a

staged, asynchronous architecture. Assign each processing phase its own queue and

dedicated worker pool. Apply clustering or network-based batching for invalidation

jobs to maximize e ciency. Batch external API requests (e.g., OpenAI) and database

writes wherever possible. This design increases throughput, introduces backpressure

for reliability, and allows you to scale each pipeline stage independently.

 Integrate Robust Production Safeguards

Enforce rigorous output validation: standardise temporal fields (e.g., ISO 8601 date

formatting), constrain entity types to your controlled vocabulary, and apply

lightweight model-based sanity checks for output consistency. Employ structured

logging with traceable identifiers and monitor real-time quality and performance

metrics in real lime to proactively detect data drift, regressions, or pipeline

anomalised before they impact downstream applications.

2. How to Use This Cookbook

This cookbook is designed for flexible engagement:

Use it as a comprehensive technical guide—read from start to finish for a deep
understanding of temporally-aware knowledge graph systems.
 Skim for advanced concepts, methodologies, and implementation patterns if you
prefer a high-level overview.
 Jump into any of the three modular sections; each is self-contained and directly
applicable to real-world scenarios.

Inside, you'll find:

- Creating a Temporally-Aware Knowledge Graph with a Temporal Agent

Build a pipeline that extracts entities and relations from unstructured text, resolves
temporal conflicts, and keeps your graph up-to-date as new information arrives.

- Multi-Step Retrieval Over a Knowledge Graph

Use structured queries and language model reasoning to chain multiple hops across your
graph and answer complex questions.

- Prototype to Production

Move from experimentation to deployment. This section covers architectural tips,
integration patterns, and considerations for scaling reliable AI Agents.

!python -V

%pip install --upgrade pip

%pip install -qU chonkie datetime ipykernel jinja2 matplotlib networkx numpy openai plotly

%pip install -q "datasets<3.0"

Python 3.12.8

Requirement already satisfied: pip in ./.venv/lib/python3.12/site-packages (25.1.1)

Note: you may need to restart the kernel to use updated packages.

2.2. Pre-requisites

Before diving into building temporal agents and knowledge graphs, let's set up your

environment. Install all required dependencies with pip, and set your OpenAI API key as an

environment variable. Python 3.12 or later is required.

Note: you may need to restart the kernel to use updated packages. Note: you may need

to restart the kernel to use updated packages.

import os

if "OPENAI_API_KEY" not in os.environ:

import getpass

os.environ["OPENAI_API_KEY"] = getpass.getpass("Paste your OpenAI API key here: ")

3. Creating a Temporally-Aware
Knowledge Graph with a Temporal
Agent

Accurate data is the foundation of any good business decision. OpenAI’s latest models

like o3, o4-mini, and the GPT 4.1 family are enabling businesses to build state-of-the-art

retrieval systems for their most important workflows. However, information evolves

rapidly: facts ingested confidently yesterday may already be outdated today.

Without the ability to track when each fact was valid, retrieval systems risk returning

answers that are outdated, non-compliant, or misleading. The consequences of missing

temporal context can be severe in any industry, as illustrated by the following examples.

Industry Example question Risk if database is not temporal

Financial Services "How has Moody’s long‑term rating for

BankYY evolved since Feb 2023?"

Mispricing credit risk by mixing

historical & current ratings

"Who was the CFO of Retailer ZZ when

the FY‑22 guidance was issued?"

Governance/insider‑trading analysis

may blame the wrong executive

"Was Fund AA sanctioned under

Article BB at the time it bought

Stock CC in Jan 2024?"

Compliance report could miss an

infraction if rules changed later

Manufacturing /
Automotive

"Which ECU firmware was deployed in

model Q3 cars shipped between

2022‑05 and 2023‑03?"

Misdiagnosing field failures due to

firmware drift

"Which robot‑controller software

revision ran on Assembly Line 7 during

Lot 8421?"

Root‑cause analysis may blame the

wrong software revision

"What torque specification applied to

steering‑column bolts in builds

produced in May 2024?"

Safety recall may miss a ected

vehicles

While we've called out some specific examples here, this theme is true across many

industries including pharmaceuticals, law, consumer goods, and more.

Looking beyond standard retrieval

A temporally-aware knowledge graph allows you to go beyond static fact lookup. It

enables richer retrieval workflows such as factual Q&A grounded in time, timeline

generation, change tracking, counterfactual analysis, and more. We dive into these in

more detail in our retrieval section later in the cookbook.

3.1. Introducing our Temporal Agent

[Subject] - [Predicate] -

Prediction

"London" - "isCapitalOf" - "United Kingdom"

A temporal agent is a specialized pipeline that converts raw, free-form statements into

time-aware triplets ready for ingesting into a knowledge graph that can then be queried

with the questions of the character “What was true at time T?”.

Triplets are the basic building blocks of knowledge graphs. It's a way to represent a single

fact or piece of knowledge using three parts (hence, "triplet"):

Subject - the entity you are talking about

Predicate - the type of relationship or property

 Object - the value or other entity that the subject is connected to

You can thinking of this like a sentence with a structure

. As a more clear example:

The Temporal Agent implemented in this cookbook draws inspiration from Zep and

Graphiti, while introducing tighter control over fact invalidation and a more nuanced

approach to episodic typing.

3.1.1. Key enhancements introduced in this cookbook

 Temporal validity extraction

Builds on Graphiti's prompt design to identify temporal spans and episodic context

without requiring auxiliary reference statements.

 Fact invalidation logic

Introduces bidirectionality checks and constrains comparisons by episodic type. This

retains Zep's non-lossy approach while reducing unnecessary evaluations.

 Temporal & episodic typing

Di erentiates between Fact , Opinion , , as well as between temporal

classes , Dynamic , Atemporal .

 Multi‑event extraction

Handles compound sentences and nested date references in a single pass.

[Object]

Static

This process allows us to update our sources of truth e ciently and reliably:

“Note: While the implementation in this cookbook is focused on a graph-based

implementation, this approach is generalizable to other knowledge base structures

e.g., pgvector-based systems.”

3.1.2. The Temporal Agent Pipeline

The Temporal Agent processes incoming statements through a three-stage pipeline:

 Temporal Classification

Labels each statement as Atemporal, Static, or Dynamic:

Atemporal statements never change (e.g., “The speed of light in a vaccuum is

t_created

≈3×10⁸ m s⁻¹”).

Static statements are valid from a point in time but do not change afterwards

(e.g., "Person YY was CEO of Company XX on October 23rd 2014.").

 Dynamic statements evolve (e.g., "Person YY is CEO of Company XX.").

 Temporal Event Extraction

Identifies relative or partial dates (e.g., “Tuesday”, “three months ago”) and resolves

them to an absolute date using the document timestamp or fallback heuristics (e.g.,

default to the 1st or last of the month if only the month is known).

 Temporal Validity Check

Ensures every statement includes a timestamp and, when applicable, a

timestamp. The agent then compares the candidate triplet to existing

knowledge graph entries to:

Detect contradictions and mark outdated entries with

Link newer statements to those they invalidate with

t_expired

t_invalid

invalidated_by

3.1.3. Selecting the right model for a Temporal Agent

When building systems with LLMs, it is a good practice to start with larger models then

later look to optimize and shrink.

The GPT 4.1 series is particularly well-suited for building Temporal Agents due to its strong

instruction-following ability. On benchmarks like Scale’s MultiChallenge, GPT 4.1

outperforms GPT 4o by $10.5%_{abs}$, demonstrating superior ability to maintain

context, reason in-conversation, and adhere to instructions - key traits for extracting time-

stamped triplets. These capabilities make it an excellent choice for prototyping agents

that rely on time-aware data extraction.

Recommended development workflow

 Prototype with GPT 4.1

Maximize correctness and reduce prompt-debug time while you build out the core

pipeline logic.

 Swap to GPT 4.1-mini or GPT 4.1-nano

Once prompts and logic are stable, switch to smaller variants for lower latency and

cost-e ective inference.

 Distill onto GPT 4.1-mini or GPT 4.1-nano

Use OpenAI's Model Distillation to train smaller models with high-quality outputs

from a larger 'teacher' model such as GPT 4.1, preserving (or even improving)

performance relative to GPT 4.1.

Model

Relative

cost

Relative

latency

Intelligence Ideal Role in Workflow

GPT 4.1 ★★★ ★★ ★★★

(highest)

Ground-truth prototyping, generating data

for distillation

GPT 4.1- ★★ ★ ★★ Balanced cost-performance, mid to large

mini scale production systems

GPT 4.1- ★ (lowest) ★ (fastest) ★ Cost-sensitive and ultra-large scale bulk

nano processing

“In practice, this looks like: prototype with GPT 4.1 → measure quality → step down the

ladder until the trade-o s no longer meet your needs.”

3.2. Building our Temporal Agent Pipeline

Before diving into the implementation details, it's useful to understand the ingestion

pipeline at a high level:

 Load transcripts

 Creating a Semantic Chunker

 Laying the Foundations for our Temporal Agent

 Statement Extraction

 Temporal Range Extraction

 Creating our Triplets

 Temporal Events

 Defining our Temporal Agent

 Entity Resolution

 Invalidation Agent

 Building our pipeline

Architecture diagram

3.2.1. Load transcripts

For the purposes of this cookbook, we have selected the "Earnings Calls Dataset" (jlh-

ibm/earnings_call) which is made available under the Creative Commons Zero v1.0 license.

This dataset contains a collection of 188 earnings call transcripts originating in the period

2016 2020 in relation to the NASDAQ stock market. We believe this dataset is a good

choice for this cookbook as extracting information from - and subsequently querying

information from - earnings call transcripts is a common problem in many financial

institutions around the world.

from datasets import load_dataset

hf_dataset_name = "jlh-ibm/earnings_call"

subset_options = ["stock_prices", "transcript-sentiment", "transcripts"]

hf_dataset = load_dataset(hf_dataset_name, subset_options[2])

my_dataset = hf_dataset["train"]

row = my_dataset[0]

row["company"], row["date"], row["transcript"][:200]

from collections import Counter

company_counts = Counter(my_dataset["company"])

company_counts

Moreover, the often variable character of statements and topics from the same company

across multiple earnings calls provides a useful vector through which to demonstrate the

temporal knowledge graph concept.

Despite this dataset's focus on the financial world, we build up the Temporal Agent in a

general structure, so it will be quick to adapt to similar problems in other industries such

as pharmaceuticals, law, automotive, and more.

For the purposes of this cookbook we are limiting the processing to two companies - AMD

and Nvidia - though in practice this pipeline can easily be scaled to any company.

Let’s start by loading the dataset from HuggingFace.

Dataset({

features: ['company', 'date', 'transcript'],

num_rows: 150

})

Database Set-up

my_dataset

memory = False

Chunker

Before we get to processing this data, let’s set up our database.

For convenience within a notebook format, we've chosen SQLite as our database for this

implementation. In the "Prototype to Production" section, and in Appendix section A.1

"Storing and Retrieving High-Volume Graph Data" we go into more detail of

considerations around di erent dataset choices in a production environment.

If you are running this cookbook locally, you may chose to set to save the

database to storage, the default file path my_database.db will be used to store your

database or you may pass your own db_path arg into make_connection .

We will set up several tables to store the following information:

Transcripts

Chunks

Temporal Events

Triplets

Entities (including canonical mappings)

This code is abstracted behind a method which creates the new SQLite

database. The details of this method can be found in the

GitHub repository for this cookbook.

3.2.2. Creating a Semantic Chunker

script in the

Before diving into buidling the class itself, we begin by defining our first data

models. As is generally considered good practice when working with Python, Pydantic is

used to ensure type safety and clarity in our model definitions. Pydantic provides a clean,

declarative way to define data structures whilst automatically validating and parsing input

data, making our data models both robust and easy to work with.

Chunk model

This is a core data model that we'll use to store individual segments of text extracted from

make_connection

db_interface.py

from db_interface import make_connection

sqlite_conn = make_connection(memory=False, refresh=True)

Chunk

Chunk

import uuid

from typing import Any

from pydantic import BaseModel, Field

class Chunk(BaseModel):

"""A chunk of text from an earnings call."""

id: uuid.UUID = Field(default_factory=uuid.uuid4)

text: str

metadata: dict[str, Any]

transcripts, along with any associated metadata. As we process the transcripts by

breaking them into semantically meaningful chunks, each piece will be saved as a

separate .

Each contains:

: A unique identifier automatically generated for each chunk. This helps us identify

and track chunks of text throughout

: A string field that contains the text content of the chunk

: A dictionary to allow for flexible metadata storage

Transcript model

As the name suggests, we will use the

model to represent the full content of

an earnings call transcript. It captures several key pieces of information:

: Analogous to , this gives us a unique identifier

: The full text of the transcript

: The name of the company that the earnings call was about

: The date of the earnings call

: The fiscal quarter that the earnings call was in

: A list of

transcript

objects, each representing a meaningful segment of the full

To ensure the field is handled correctly, the validator is used to convert

the value to datetime format.

Chunk

id

text

metadata

Transcript

id

text

company

date

quarter

chunks Chunk

date to_datetime

Chunker

find_quarter

Chunker class

Now, we define the class to split each transcript into semantically meaningful

chunks. Instead of relying on arbitrary rules like character count or line break, we apply

semantic chunking to preserve more of the contextual integrity of the original transcript.

This ensures that each chunk is a self-contained unit that keeps contextually linked ideas

together. This is particularly helpful for downstream tasks like statement extraction, where

context heavily influences accuracy.

The chunker class contains two methods:

This method attempts to extract the fiscal quarter (e.g., "Q1 2023") directly from the

transcript text using a simple regular expression. In this case, this is straightforward

as the data format of quarters in the transcripts is consistent and well defined.

However, in real world scenarios, detecting the quarter reliably may require more

work. Across multiple sources or document types the detailing of the quarter is likely

to be di erent. LLMs are great tools to help alleviate this issue. Try using GPT 4.1-mini

from datetime import datetime

from pydantic import field_validator

class Transcript(BaseModel):

"""A transcript of a company earnings call."""

id: uuid.UUID = Field(default_factory=uuid.uuid4)

text: str

company: str

date: datetime

quarter: str | None = None

chunks: list[Chunk] | None = None

@field_validator("date", mode="before")

@classmethod

def to_datetime(cls, d: Any) -> datetime:

"""Convert input to a datetime object."""

if isinstance(d, datetime):

return d

if hasattr(d, "isoformat"):

return datetime.fromisoformat(d.isoformat())

return datetime.fromisoformat(str(d))

generate_transcripts_and_chunks

with a prompt specifically to extract the quarter given wider context from the

document.

This is the core method that takes in a dataset (as an iterable of dictionaries) and

returns a list of objects each populated with semantically derived

s. It performs the following steps:

 Transcript creation: Initializes

company, and date fields

 Filtering: Uses the

objects using the provided text,

from chonkie along with OpenAI's text-

embedding-3-small model to split the transcript into logical segments

 Chunk assignment: Wraps each semantic segment into a

attaching relevant metadata like start and end indices

The chunker falls in to this part of our pipeline:

model,

Transcript

Chunk

Transcript

SemanticChunker

Chunk

import re

from concurrent.futures import ThreadPoolExecutor, as_completed

from typing import Any

from chonkie import OpenAIEmbeddings, SemanticChunker

from tqdm import tqdm

class Chunker:

"""

Takes in transcripts of earnings calls and extracts quarter information and splits

the transcript into semantically meaningful chunks using embedding-based similarity.

"""

def init (self, model: str = "text-embedding-3-small"):

self.model = model

def find_quarter(self, text: str) -> str | None:

"""Extract the quarter (e.g., 'Q1 2023') from the input text if present, otherwise

In this dataset we can just use regex to find the quarter as it is consistently d

search_results = re.findall(r"[Q]\d\s\d{4}", text)

if search_results:

quarter = str(search_results[0])

return quarter

return None

def generate_transcripts_and_chunks(

self,

dataset: Any,

company: list[str] | None = None,

text_key: str = "transcript",

company_key: str = "company",

date_key: str = "date",

threshold_value: float = 0.7,

min_sentences: int = 3,

num_workers: int = 50,

) -> list[Transcript]:

"""Populate Transcript objects with semantic chunks."""

Populate the Transcript objects with the passed data on the transcripts

transcripts = [

Transcript(

text=d[text_key],

company=d[company_key],

date=d[date_key],

quarter=self.find_quarter(d[text_key]),

)

raw_data = list(my_dataset)

chunker = Chunker()

transcripts = chunker.generate_transcripts_and_chunks(raw_data)

for d in dataset

]

if company:

transcripts = [t for t in transcripts if t.company in company]

def _process(t: Transcript) -> Transcript:

if not hasattr(_process, "chunker"):

embed_model = OpenAIEmbeddings(self.model)

_process.chunker = SemanticChunker(

embedding_model=embed_model,

threshold=threshold_value,

min_sentences=max(min_sentences, 1),

)

semantic_chunks = _process.chunker.chunk(t.text)

t.chunks = [

Chunk(

text=c.text,

metadata={

"start_index": getattr(c, "start_index", None),

"end_index": getattr(c, "end_index", None),

},

)

for c in semantic_chunks

]

return t

Create the semantic chunks and add them to their respective Transcript object usi

with ThreadPoolExecutor(max_workers=num_workers) as pool:

futures = [pool.submit(_process, t) for t in transcripts]

transcripts = [

f.result()

for f in tqdm(

as_completed(futures),

total=len(futures),

desc="Generating Semantic Chunks",

)

]

return transcripts

Alternatively, we can load just the and pre-chunked transcripts from pre-

AMD NVDA

import pickle

from pathlib import Path

def load_transcripts_from_pickle(directory_path: str = "transcripts/") -> list[Transcript]:

"""Load all pickle files from a directory into a dictionary."""

loaded_transcripts = []

dir_path = Path(directory_path).resolve()

for pkl_file in sorted(dir_path.glob("*.pkl")):

try:

with open(pkl_file, "rb") as f:

transcript = pickle.load(f)

Ensure it's a Transcript object

if not isinstance(transcript, Transcript):

transcript = Transcript(**transcript)

loaded_transcripts.append(transcript)

print(f" Loaded transcript from {pkl_file.name}")
except Exception as e:

print(f" Error loading {pkl_file.name}: {e}")

return loaded_transcripts

transcripts = load_transcripts_from_pickle()

chunks = transcripts[0].chunks

if chunks is not None:

for i, chunk in enumerate(chunks[21:23]):

print(f"Chunk {i+21}:")

print(f" ID: {chunk.id}")

print(f" Text: {repr(chunk.text[:200])}{'...' if len(chunk.text) > 100 else ''}")

print(f" Metadata: {chunk.metadata}")

print()

else:

print("No chunks found for the first transcript.")

processed files in

Now we can inspect a couple of chunks:

With this, we have successfully split our transcripts into semantically sectioned chunks.

transcripts/

TemporalAgent

definition

date_handling_guidance

LABEL_DEFINITIONS: dict[str, dict[str, dict[str, str]]] = {

"episode_labelling": {

"FACT": dict(

definition=(

"Statements that are objective and can be independently "

"verified or falsified through evidence."

),

date_handling_guidance=(

We can now move onto the next steps in our pipeline.

3.2.3. Laying the Foundations for our Temporal Agent

Before we move onto defining the class, we will first define the prompts

and data models that are needed for it to function.

Formalizing our label definitions

For our temporal agent to be able to accurately extract the statement and temporal types

we need to provide it with su ciently detailed and specific context. For convenience, we

define these within a structured format below.

Each label contains three crucial pieces of information that we will later pass to our LLMs

in prompts.

Provides a concise description of what the label represents. It establishes the

conceptual boundaries of the statement or temporal type and ensures consistency in

interpretation across examples.

Explains how to interpret the temporal validity of a statement associated with the

label. It describes how the

processing instances of that label.

and dates should be derived when

Includes illustrative examples of how real-world statements would be labelled and

temporally annotated under this label. These will be used as few-shot examples to the

LLMs downstream.

date_handling_examples

valid_at invalid_at

"These statements can be made up of multiple static and "

"dynamic temporal events marking for example the start, end, "

"and duration of the fact described statement."

),

date_handling_example=(

"'Company A owns Company B in 2022', 'X caused Y to happen', "

"or 'John said X at Event' are verifiable facts which currently "

"hold true unless we have a contradictory fact."

),

),

"OPINION": dict(

definition=(

"Statements that contain personal opinions, feelings, values, "

"or judgments that are not independently verifiable. It also "

"includes hypothetical and speculative statements."

),

date_handling_guidance=(

"This statement is always static. It is a record of the date the "

"opinion was made."

),

date_handling_example=(

"'I like Company A's strategy', 'X may have caused Y to happen', "

"or 'The event felt like X' are opinions and down to the reporters "

"interpretation."

),

),

"PREDICTION": dict(

definition=(

"Uncertain statements about the future on something that might happen, "

"a hypothetical outcome, unverified claims. It includes interpretations "

"and suggestions. If the tense of the statement changed, the statement "

"would then become a fact."

),

date_handling_guidance=(

"This statement is always static. It is a record of the date the "

"prediction was made."

),

date_handling_example=(

"'It is rumoured that Dave will resign next month', 'Company A expects "

"X to happen', or 'X suggests Y' are all predictions."

),

),

},

"temporal_labelling": {

"STATIC": dict(

definition=(

"Often past tense, think -ed verbs, describing single points-in-time. "

"These statements are valid from the day they occurred and are never "

"invalid. Refer to single points in time at which an event occurred, "

"the fact X occurred on that date will always hold true."

),

date_handling_guidance=(

"The valid_at date is the date the event occurred. The invalid_at date "

"is None."

),

date_handling_example=(

"'John was appointed CEO on 4th Jan 2024', 'Company A reported X percent "

"growth from last FY', or 'X resulted in Y to happen' are valid the day "

"they occurred and are never invalid."

),

),

"DYNAMIC": dict(

definition=(

"Often present tense, think -ing verbs, describing a period of time. "

"These statements are valid for a specific period of time and are usually "

"invalidated by a Static fact marking the end of the event or start of a "

"contradictory new one. The statement could already be referring to a "

"discrete time period (invalid) or may be an ongoing relationship (not yet

"invalid)."

),

date_handling_guidance=(

"The valid_at date is the date the event started. The invalid_at date is "

"the date the event or relationship ended, for ongoing events this is None.

),

date_handling_example=(

"'John is the CEO', 'Company A remains a market leader', or 'X is continuou

"causing Y to decrease' are valid from when the event started and are inval

"by a new event."

),

),

"ATEMPORAL": dict(

definition=(

"Statements that will always hold true regardless of time therefore have no

"temporal bounds."

),

date_handling_guidance=(

"These statements are assumed to be atemporal and have no temporal bounds.

"their valid_at and invalid_at are None."

),

date_handling_example=(

"'A stock represents a unit of ownership in a company', 'The earth is round

"'Europe is a continent'. These statements are true regardless of time."

),

),

},

}

3.2.4. Statement Extraction

StatementType TemporalType

TemporalType

"Statement Extraction" refers to the process of splitting our semantic chunks into the

smallest possible "atomic" facts. Within our Temporal Agent, this is achieved by:

 Finding every standalone, declarative claim

Extract statements that can stand on their own as complete subject-predicate-object

expressions without relying on surrounding context.

 Ensuring atomicity

Break down complex or compound sentences into minimal, indivisible factual units,

each expressing a single relationship.

 Resolving references

Replace pronouns or abstract references (e.g., "he" or "The Company") with specific

entities (e.g., "John Smith", "AMD") using the main subject for disambiguation.

 Preserving temporal and quantitative precision

Retain explicit dates, durations, and quantities to anchor each fact precisely in time

and scale.

 Labelling each extracted statement

Every statement is annotated with a and a .

Temporal Types

The enum provides a standardized set of temporal categories that make it

easier to classify and work with statements extracted from earnings call transcripts.

Each category captures a di erent kind of temporal reference:

Atemporal: Statements that are universally true and invariant over time (e.g., “The

speed of light in a vacuum is ≈3×10⁸ m s⁻¹.”).

Static: Statements that became true at a specific point in time and remain

unchanged thereafter (e.g., “Person YY was CEO of Company XX on October 23rd,

2014.”).

Dynamic: Statements that may change over time and require temporal context to

interpret accurately (e.g., “Person YY is CEO of Company XX.”).

StatementType

TemporalType

class StatementType(StrEnum):

"""Enumeration of statement types for statements."""

FACT = "FACT"

OPINION = "OPINION"

PREDICTION = "PREDICTION"

Statement Types

Similarly, the

enum classifies the nature of each extracted statement,

capturing its epistemic characteristics.

Fact: A statement that asserts a verifiable claim considered true at the time it was

made. However, it may later be superseded or contradicted by other facts (e.g.,

updated information or corrections).

Opinion: A subjective statement reflecting a speaker’s belief, sentiment, or judgment.

By nature, opinions are considered temporally true at the moment they are expressed.

 Prediction: A forward-looking or hypothetical statement about a potential future

event or outcome. Temporally, a prediction is assumed to hold true from the time of

utterance until the conclusion of the inferred prediction window.

Raw Statement

The model represents an individual statement extracted by an LLM,

annotated with both its semantic type () and temporal classification

(). These raw statements serve as intermediate representations and are

intended to be transformed into objects in later processing stages.

Core fields:

from enum import StrEnum

class TemporalType(StrEnum):

"""Enumeration of temporal types of statements."""

ATEMPORAL = "ATEMPORAL"

STATIC = "STATIC"

DYNAMIC = "DYNAMIC"

StatementType

RawStatement

TemporalEvent

from pydantic import field_validator

class RawStatement(BaseModel):

"""Model representing a raw statement with type and temporal information."""

statement: str

statement_type: StatementType

temporal_type: TemporalType

@field_validator("temporal_type", mode="before")

@classmethod

def _parse_temporal_label(cls, value: str | None) -> TemporalType:

if value is None:

return TemporalType.ATEMPORAL

cleaned_value = value.strip().upper()

try:

return TemporalType(cleaned_value)

except ValueError as e:

raise ValueError(f"Invalid temporal type: {value}. Must be one of {[t.value for

@field_validator("statement_type", mode="before")

@classmethod

def _parse_statement_label(cls, value: str | None = None) -> StatementType:

if value is None:

return StatementType.FACT

cleaned_value = value.strip().upper()

try:

return StatementType(cleaned_value)

except ValueError as e:

raise ValueError(f"Invalid temporal type: {value}. Must be one of {[t.value for

class RawStatementList(BaseModel):

: The textual content of the extracted statement

: The type of statement (Fact, Opinion, Prediction), based on the

enum

: The temporal classification of the statement (Static, Dynamic,

Atemporal), drawn from the enum

The model includes field-level validators to ensure that all type annotations conform to

their respective enums, providing a layer of robustness against invalid input.

The companion model RawStatementList contains the output of the statement extraction

step: a list of RawStatement instances.

statement

statement_type

StatementType

temporal_type

TemporalType

statement_type temporal_type

Statement Extraction Prompt

This is the core prompt that powers our Temporal Agent's ability to extract and label

atomic statements. It is written in Jinja allowing us to modularly compose dynamic inputs

without rewriting the core logic.

Anatomy of the prompt

 Set up the extraction task

We instruct the assistant to behave like a domain expert in finance and clearly define

the two subtasks: (i) extracting atomic, declarative statements, and (ii) labelling each

with a and a .

 Enforces strict extraction guidelines

The rules for extraction help to enforce consistency and clarity. Statements must:

Be structured as clean subject-predicate-object triplets

Be self-contained and context-independent

Resolve co-references (e.g., "he" → "John Smith")

Include temporal/quantitative qualifiers where present

 Be split when multiple events or temporalities are described

 Supports plug-and-play definitions

The block makes it easy to inject structured definitions such

as statement categories, temporal types, and domain-specific terms.

 Includes few-shot examples

We provide an annotated example chunk and the corresponding JSON output to

demonstrate to the model how it should behave.

statements: list[RawStatement]

"""Model representing a list of raw statements."""

{% if definitions %}

statement_extraction_prompt = '''

{% macro tidy(name) -%}

{{ name.replace('_', ' ')}}

{%- endmacro %}

You are an expert finance professional and information-extraction assistant.

===Inputs===

{% if inputs %}

{% for key, val in inputs.items() %}

- {{ key }}: {{val}}

{% endfor %}

{% endif %}

===Tasks===

1. Identify and extract atomic declarative statements from the chunk given the extraction g

2. Label these (1) as Fact, Opinion, or Prediction and (2) temporally as Static or Dynamic

===Extraction Guidelines===

- Structure statements to clearly show subject-predicate-object relationships

- Each statement should express a single, complete relationship (it is better to have multi

- Avoid complex or compound predicates that combine multiple relationships

- Must be understandable without requiring context of the entire document

- Should be minimally modified from the original text

- Must be understandable without requiring context of the entire document,

- resolve co-references and pronouns to extract complete statements, if in doubt use ma

"your nearest competitor" -> "main_entity's nearest competitor"

- There should be no reference to abstract entities such as 'the company', resolve to t

- expand abbreviations and acronyms to their full form

- Statements are associated with a single temporal event or relationship

- Include any explicit dates, times, or quantitative qualifiers that make the fact precise

- If a statement refers to more than 1 temporal event, it should be broken into multiple st

- If there is a static and dynamic version of a relationship described, both versions shoul

{%- if definitions %}

{%- for section_key, section_dict in definitions.items() %}

==== {{ tidy(section_key) | upper }} DEFINITIONS & GUIDANCE ====

{%- for category, details in section_dict.items() %}

{{ loop.index }}. {{ category }}

- Definition: {{ details.get("definition", "") }}

{% endfor -%}

{% endfor -%}

{% endif -%}

===Examples===

Example Chunk: """

TechNova Q1 Transcript (Edited Version)

Attendees:

* Matt Taylor

ABC Ltd - Analyst

* Taylor Morgan

BigBank Senior - Coordinator

On April 1st, 2024, John Smith was appointed CFO of TechNova Inc. He works alongside the

Analysts believe this strategy may boost profitability, though others argue it risks empl

According to TechNova’s Q1 report, the company achieved a 10% increase in revenue compare

Since June 2024, TechNova Inc has been negotiating strategic partnerships in Asia. Meanwh

Competitor SkyTech announced last month they have developed a new AI chip and launched th

"""

Example Output: {

"statements": [

{

"statement": "Matt Taylor works at ABC Ltd.",

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "Matt Taylor is an Analyst.",

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "Taylor Morgan works at BigBank.",

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "Taylor Morgan is a Senior Coordinator.",

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "John Smith was appointed CFO of TechNova Inc on April 1st, 2024.",

"statement_type": "FACT",

"temporal_type": "STATIC"

},

{

"statement": "John Smith has held position CFO of TechNova Inc from April 1st, 2024."

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "Olivia Doe is the Senior VP of TechNova Inc.",

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "John Smith works with Olivia Doe.",

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "John Smith is overseeing TechNova Inc's global restructuring initiative

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "Analysts believe TechNova Inc's strategy may boost profitability.",

"statement_type": "OPINION",

"temporal_type": "STATIC"

},

{

"statement": "Some argue that TechNova Inc's strategy risks employee morale.",

"statement_type": "OPINION",

"temporal_type": "STATIC"

},

{

"statement": "An investor stated 'I think John has the right vision' on an unspecifie

"statement_type": "OPINION",

"temporal_type": "STATIC"

},

{

"statement": "TechNova Inc achieved a 10% increase in revenue in Q1 2024 compared to

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "It is expected that TechNova Inc will launch its AI-driven product line

"statement_type": "PREDICTION",

"temporal_type": "DYNAMIC"

},

{

"statement": "TechNova Inc started negotiating strategic partnerships in Asia in June

"statement_type": "FACT",

"temporal_type": "STATIC"

},

{

"statement": "TechNova Inc has been negotiating strategic partnerships in Asia since

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "TechNova Inc has been expanding its presence in Europe since July 2024.

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "TechNova Inc started expanding its presence in Europe in July 2024.",

"statement_type": "FACT",

"temporal_type": "STATIC"

class RawTemporalRange(BaseModel):

"""Model representing the raw temporal validity range as strings."""

valid_at: str | None = Field(..., json_schema_extra={"format": "date-time"})

invalid_at: str | None = Field(..., json_schema_extra={"format": "date-time"})

3.2.5. Temporal Range Extraction

Raw temporal range

The model holds the raw extraction of and date

strings for a statement. These both use the date-time supported string property.

represents the start of the validity period for a statement

represents the end of the validity period for a statement

Output format

Return only a list of extracted labelled statements in the JSON ARRAY of objects that match

{{ json_schema }}

'''

},

{

"statement": "TechNova Inc is going to pilot a remote-first work policy across all de

"statement_type": "FACT",

"temporal_type": "STATIC"

},

{

"statement": "SkyTech is a competitor of TechNova.",

"statement_type": "FACT",

"temporal_type": "DYNAMIC"

},

{

"statement": "SkyTech developed new AI chip.",

"statement_type": "FACT",

"temporal_type": "STATIC"

},

{

"statement": "SkyTech launched cloud-based learning platform.",

"statement_type": "FACT",

"temporal_type": "STATIC"

}

]

}

===End of Examples===

RawTemporalRange valid_at invalid_at

valid_at

invalid_at

valid_at

datetime

valid_at invalid_at

from utils import parse_date_str

class TemporalValidityRange(BaseModel):

"""Model representing the parsed temporal validity range as datetimes."""

valid_at: datetime | None = None

invalid_at: datetime | None = None

@field_validator("valid_at", "invalid_at", mode="before")

@classmethod

def _parse_date_string(cls, value: str | datetime | None) -> datetime | None:

if isinstance(value, datetime) or value is None:

return value

return parse_date_str(value)

Temporal validity range

While the RawTemporalRange model preserves the originally extracted date strings, the

TemporalValidityRange model transforms these into standardized

downstream processing.

objects for

It parses the raw and values, converting them from strings into

timezone-aware instances. This is handled through a field-level validator.

Date extraction prompt

Let's now create the prompt that guides our Temporal Agent in accurately determining the

temporal validity of statements.

Anatomy of the prompt

This prompt helps the Temporal Agent precisely understand and extract temporal validity

ranges.

 Clearly Defines the Extraction Task

The prompt instructs our model to determine when a statement became true

() and optionally when it stopped being true ().

 Uses Contextual Guidance

datetime

invalid_at

valid_at

invalid_at

date_extraction_prompt = """

{#

This prompt (template) is adapted from [getzep/graphiti]

Licensed under the Apache License, Version 2.0

Original work:

https://github.com/getzep/graphiti/blob/main/graphiti_core/prompts/extract_edge_dates.p

Modifications made by Tomoro on 2025-04-14

See the LICENSE file for the full Apache 2.0 license text.

#}

{% macro tidy(name) -%}

{{ name.replace('_', ' ')}}

{%- endmacro %}

INPUTS:

{% if inputs %}

By dynamically incorporating and

, the prompt guides the model in interpreting temporal

nuances based on the nature of each statement (like distinguishing facts from

predictions or static from dynamic contexts).

 Ensures Consistency with Clear Formatting Rules

To maintain clarity and consistency, the prompt requires all dates to be converted into

standardized ISO 8601 date-time formats, normalized to UTC. It explicitly anchors

relative expressions (like "last quarter") to known publication dates, making temporal

information precise and reliable.

 Aligns with Business Reporting Cycles

Recognizing the practical need for quarter-based reasoning common in business and

financial contexts, the prompt can interpret and calculate temporal ranges based on

business quarters, minimizing ambiguity.

 Adapts to Statement Types for Semantic Accuracy

Specific rules ensure the semantic integrity of statements—for example, opinions

might only have a start date () reflecting the moment they were expressed,

while predictions will clearly define their forecast window using an end date

().

{{ inputs.temporal_type }} {{

inputs.statement_type }}

{% for key, val in inputs.items() %}

- {{ key }}: {{val}}

{% endfor %}

{% endif %}

TASK:

- Analyze the statement and determine the temporal validity range as dates for the temporal

- Use the temporal information you extracted, guidelines below, and date of when the statem

- Only set dates if they explicitly relate to the validity of the relationship described in

- If the relationship is not of spanning nature and represents a single point in time, but

{{ inputs.get("temporal_type") | upper }} Temporal Type Specific Guidance:

{% for key, guide in temporal_guide.items() %}

- {{ tidy(key) | capitalize }}: {{ guide }}

{% endfor %}

{{ inputs.get("statement_type") | upper }} Statement Type Specific Guidance:

{%for key, guide in statement_guide.items() %}

- {{ tidy(key) | capitalize }}: {{ guide }}

{% endfor %}

Validity Range Definitions:

- `valid_at` is the date and time when the relationship described by the statement became t

- `invalid_at` is the date and time when the relationship described by the statement stoppe

General Guidelines:

1. Use ISO 8601 format (YYYY-MM-DDTHH:MM:SS.SSSSSSZ) for datetimes.

2. Use the reference or publication date as the current time when determining the valid_a

3. If the fact is written in the present tense without containing temporal information, u

4. Do not infer dates from related events or external knowledge. Only use dates that are

5. Convert relative times (e.g., “two weeks ago”) into absolute ISO 8601 datetimes based

6. If only a date is mentioned without a specific time, use 00:00:00 (midnight) for that

7. If only year or month is mentioned, use the start or end as appropriate at 00:00:00 e.

8. Always include the time zone offset (use Z for UTC if no specific time zone is mention

{% if inputs.get('quarter') and inputs.get('publication_date') %}

9. Assume that {{ inputs.quarter }} ends on {{ inputs.publication_date }} and infer dates

{% endif %}

Statement Specific Rules:

- when `statement_type` is **opinion** only valid_at must be set

- when `statement_type` is **prediction** set its `invalid_at` to the **end of the predicti

Never invent dates from outside knowledge.

Output format

Return only the validity range in the JSON ARRAY of objects that match the schema below:

{{ json_schema }}

"""

3.2.6. Creating our Triplets

We will now build up the definitions and prompts to create the our triplets. As discussed

above, these are a combination of:

Subject - the entity you are talking about

Predicate - the type of relationship or property

 Object - the value or other entity that the subject is connected to

Let's start with our predicate.

Predicate

The enum provides a standard set of predicates that clearly describe

relationships extracted from text.

We've defined the set of predicates below to be appropriate for earnings call transcripts.

Here are some examples for how each of these predicates could fit into a triplet in our

knowledge graph: Here are more anonymized, generalized examples following your

template:

: [Company ABC]-[IS_A]-[Software Provider]

: [Corporation XYZ]-[HAS_A]-[Innovation Division]

: [Factory 123]-[LOCATED_IN]-[Germany]

: [Jane Doe]-[HOLDS_ROLE]-[CEO at Company LMN]

: [Company DEF]-[PRODUCES]-[Smartphone Model X]

: [Retailer 789]-[SELLS]-[Furniture]

: [Company UVW]-[LAUNCHED]-[New Subscription Service]

: [Startup GHI]-[DEVELOPED]-[Cloud-Based Tool]

: [New Technology]-[ADOPTED_BY]-[Industry ABC]

: [Investment Firm JKL]-[INVESTS_IN]-[Clean Energy Startups]

: [Company PQR]-[COLLABORATES_WITH]-[University XYZ]

: [Manufacturer STU]-[SUPPLIES]-[Auto Components to Company VWX]

: [Corporation LMN]-[HAS_REVENUE]-[€500 Million]

Predicate

IS_A

HAS_A

LOCATED_IN

HOLDS_ROLE

PRODUCES

SELLS

LAUNCHED

DEVELOPED

ADOPTED_BY

INVESTS_IN

COLLABORATES_WITH

SUPPLIES

HAS_REVENUE

class Predicate(StrEnum):

"""Enumeration of normalised predicates."""

IS_A = "IS_A"

HAS_A = "HAS_A"

LOCATED_IN = "LOCATED_IN"

HOLDS_ROLE = "HOLDS_ROLE"

PRODUCES = "PRODUCES"

SELLS = "SELLS"

LAUNCHED = "LAUNCHED"

DEVELOPED = "DEVELOPED"

ADOPTED_BY = "ADOPTED_BY"

INVESTS_IN = "INVESTS_IN"

COLLABORATES_WITH = "COLLABORATES_WITH"

SUPPLIES = "SUPPLIES"

HAS_REVENUE = "HAS_REVENUE"

INCREASED = "INCREASED"

DECREASED = "DECREASED"

RESULTED_IN = "RESULTED_IN"

TARGETS = "TARGETS"

PART_OF = "PART_OF"

DISCONTINUED = "DISCONTINUED"

SECURED = "SECURED"

PREDICATE_DEFINITIONS = {

"IS_A": "Denotes a class-or-type relationship between two entities (e.g., 'Model Y IS_A

"HAS_A": "Denotes a part-whole relationship between two entities (e.g., 'Model Y HAS_A

"LOCATED_IN": "Specifies geographic or organisational containment or proximity (e.g., h

"HOLDS_ROLE": "Connects a person to a formal office or title within an organisation (CE

"PRODUCES": "Indicates that an entity manufactures, builds, or creates a product, servi

"SELLS": "Marks a commercial seller-to-customer relationship for a product or service (

: [Company YZA]-[INCREASED]-[Market Share]

: [Firm BCD]-[DECREASED]-[Operating Expenses]

: [Cost Reduction Initiative]-[RESULTED_IN]-[Improved Profit Margins]

: [Product Launch Campaign]-[TARGETS]-[Millennial Consumers]

: [Subsidiary EFG]-[PART_OF]-[Parent Corporation HIJ]

: [Company KLM]-[DISCONTINUED]-[Legacy Product Line]

: [Startup NOP]-[SECURED]-[Series B Funding]

We also assign a definition to each predicate, which we will then pass to the extraction

prompt downstream.

INCREASED

DECREASED

RESULTED_IN

TARGETS

PART_OF

DISCONTINUED

SECURED

PREDICATE_DEFINITIONS = {}

Defining your own predicates

When working with di erent data sources, you'll want to define your own predicates that

are specific to your use case.

To define your own predicates:

 First, run your pipeline with on a representative sample

of your documents. This initial run will derive a noisy graph with many non-

standardized and overlapping predicates

 Next, drop some of your intial results into ChatGPT or manually review them to merge

similar predicate classes. This process helps to eliminate duplicates such as

and

 Finally, carefully review and refine this list of predicates to ensure clarity and

precision. These finalized predicate definitions will then guide your extraction process

and ensure a consistent extraction pipeline

Raw triplet

With predicates now well-defined, we can begin building up the data models for our

triplets.

The model represents a basic subject-predicate-object relationship that is

extracted directly from textual data. This serves as a precursor for the more detailed

triplet representation in which we introduce later.

}

"LAUNCHED": "Captures the official first release, shipment, or public start of a produc

"DEVELOPED": "Shows design, R&D, or innovation origin of a technology, product, or capa

"ADOPTED_BY": "Indicates that a technology or product has been taken up, deployed, or i

"INVESTS_IN": "Represents the flow of capital or resources from one entity into another

"COLLABORATES_WITH": "Generic partnership, alliance, joint venture, or licensing relati

"SUPPLIES": "Captures vendor–client supply-chain links or dependencies (provides to, so

"HAS_REVENUE": "Associates an entity with a revenue amount or metric—actual, reported,

"INCREASED": "Expresses an upward change in a metric (revenue, market share, output) re

"DECREASED": "Expresses a downward change in a metric relative to a prior period or bas

"RESULTED_IN": "Captures a causal relationship where one event or factor leads to a spe

"TARGETS": "Denotes a strategic objective, market segment, or customer group that an en

"PART_OF": "Expresses hierarchical membership or subset relationships (division, subsid

"DISCONTINUED": "Indicates official end-of-life, shutdown, or termination of a product,

"SECURED": "Marks the successful acquisition of funding, contracts, assets, or rights b

IS_CEO

IS_CEO_OF

RawTriplet

Triplet

Company

class Triplet(BaseModel):

"""Model representing a subject-predicate-object triplet."""

id: uuid.UUID = Field(default_factory=uuid.uuid4)

event_id: uuid.UUID | None = None

subject_name: str

subject_id: int | uuid.UUID

predicate: Predicate

object_name: str

object_id: int | uuid.UUID

value: str | None = None

@classmethod

def from_raw(cls, raw_triplet: "RawTriplet", event_id: uuid.UUID | None = None) -> "Tri

Core fields:

: The textual representation of the subject entity

: Numeric identifier for the subject entity

: The relationship type, specified by the enum

: The textual representation of the object entity

: Numeric identifier for the object entity

→

: Numeric value associated to relationship, may be None e.g. →

with

Triplet

The model extends the by incorporating unique identifiers and

optionally linking each triplet to a specific event. These identifiers help with integration

into structured knowledge bases like our temporal knowledge graph.

class RawTriplet(BaseModel):

"""Model representing a subject-predicate-object triplet."""

subject_name: str

subject_id: int

predicate: Predicate

object_name: str

object_id: int

value: str | None = None

subject_name

subject_id

predicate Predicate

object_name

object_id

value HAS_A

Revenue value='$100 mill'

Triplet RawTriplet

manufacturing semiconductors

class RawEntity(BaseModel):

"""Model representing an entity (for entity resolution)."""

entity_idx: int

name: str

type: str = ""

description: str = ""

RawEntity

The model represents an Entity as extracted from the Statement . This serves

as a precursor for the more detailed triplet representation in Entity which we introduce

next.

Core fields:

: An integer to di erentiate extracted entites from the statement (links to

)

: The name of the entity extracted e.g.

: The type of entity extracted e.g.

: The textual description of the entity e.g.

Entity

The model extends the by incorporating unique identifiers and

optionally linking each entity to a specific event. Additionally, it contains

which will be populated during entity resolution with the canonical entity's id to remove

"""Create a Triplet instance from a RawTriplet, optionally associating it with an e

return cls(

id=uuid.uuid4(),

event_id=event_id,

subject_name=raw_triplet.subject_name,

subject_id=raw_triplet.subject_id,

predicate=raw_triplet.predicate,

object_name=raw_triplet.object_name,

object_id=raw_triplet.object_id,

value=raw_triplet.value,

)

RawEntity

entity_idx

RawTriplet

name AMD

type Company

description Technology company know for

Entity RawEntity

resolved_id

class Entity(BaseModel):

"""

Model representing an entity (for entity resolution).

'id' is the canonical entity id if this is a canonical entity.

'resolved_id' is set to the canonical id if this is an alias.

"""

id: uuid.UUID = Field(default_factory=uuid.uuid4)

event_id: uuid.UUID | None = None

name: str

type: str

description: str

resolved_id: uuid.UUID | None = None

@classmethod

def from_raw(cls, raw_entity: "RawEntity", event_id: uuid.UUID | None = None) -> "Entit

"""Create an Entity instance from a RawEntity, optionally associating it with an ev

return cls(

id=uuid.uuid4(),

event_id=event_id,

name=raw_entity.name,

type=raw_entity.type,

description=raw_entity.description,

resolved_id=None,

)

class RawExtraction(BaseModel):

"""Model representing a triplet extraction."""

triplets: list[RawTriplet]

entities: list[RawEntity]

duplicate naming of entities in the database. These updated identifiers help with

integration and linking of entities to events and triplets .

Raw extraction

Both and are extracted at the same time per to reduce

LLM calls and to allow easy referencing of Entities through Triplets.

Triplet Extraction Prompt

The prompt below guides our Temporal Agent to e ectively extract triplets and entities

RawTriplet RawEntity Statement

Entities

Triplets

from provided statements.

Anatomy of the prompt

Avoids temporal details

The agent is specifically instructed to ignore temporal relationships, as these are

captured separately within the TemporalValidityRange . Defined are

deliberately designed to be time-neutral—for instance, HAS_A covers both present

() and past () contexts.

Maintains structured outputs

The prompt yields structured

examples that clearly illustrate:

outputs, supported by detailed

How to extract information from a given

How to link with corresponding

How to handle extracted

How to manage multiple involving the same

triplet_extraction_prompt = """

You are an information-extraction assistant.

Task: You are going to be given a statement. Proceed step by step through the guideline

Statement: "{{ statement }}"

Guidelines

First, NER:

- Identify the entities in the statement, their types, and context independent descriptions

- Do not include any lengthy quotes from the reports

- Do not include any calendar dates or temporal ranges or temporal expressions

- Numeric values should be extracted as separate entities as an instance_of _Numeric_, wher

Second, Triplet extraction:

- Identify the subject entity of that predicate – the main entity carrying out the action o

- Identify the object entity of that predicate – the entity, value, or concept that the pre

- Identify a predicate between the entities expressed in the statement, such as 'is', 'work

- Extract the corresponding (subject, predicate, object, date) knowledge triplet.

- Exclude all temporal expressions (dates, years, seasons, etc.) from every field.

- Repeat until all predicates contained in the statement have been extracted form the state

{%- if predicate_instructions -%}

Predicates

HAS_A HAD_A

RawExtraction

Statement

Triplets

values

Entity

Predicate Instructions:

Please try to stick to the following predicates, do not deviate unless you can't find a rel

{%- for pred, instruction in predicate_instructions.items() -%}

- {{ pred }}: {{ instruction }}

{%- endfor -%}

{%- endif -%}

Output:

List the entities and triplets following the JSON schema below. Return ONLY with valid JSON

Do not include any commentary or explanation.

{{ json_schema }}

===Examples===

Example 1 Statement: "Google's revenue increased by 10% from January through March."

Example 1 Output: {

"triplets": [

{

"subject_name": "Google",

"subject_id": 0,

"predicate": "INCREASED",

"object_name": "Revenue",

"object_id": 1,

"value": "10%",

}

],

"entities": [

{

"entity_idx": 0,

"name": "Google",

"type": "Organization",

"description": "Technology Company",

},

{

"entity_idx": 1,

"name": "Revenue",

"type": "Financial Metric",

"description": "Income of a Company",

}

]

}

Example 2 Statement: "Amazon developed a new AI chip in 2024."

Example 2 Output:

{

"triplets": [

{

"subject_name": "Amazon",

"subject_id": 0,

"predicate": "DEVELOPED",

"object_name": "AI chip",

"object_id": 1,

"value": None,

},

],

"entities": [

{

"entity_idx": 0,

"name": "Amazon",

"type": "Organization",

"description": "E-commerce and cloud computing company"

},

{

"entity_idx": 1,

"name": "AI chip",

"type": "Technology",

"description": "Artificial intelligence accelerator hardware"

}

]

}

Example 3 Statement: "It is expected that TechNova Inc will launch its AI-driven product li

Example 3 Output:{

"triplets": [

{

"subject_name": "TechNova",

"subject_id": 0,

"predicate": "LAUNCHED",

"object_name": "AI-driven Product",

"object_id": 1,

"value": "None,

}

],

"entities": [

{

"entity_idx": 0,

"name": "TechNova",

"type": "Organization",

"description": "Technology Company",

},

{

"entity_idx": 1,

"name": "AI-driven Product",

"type": "Product",

"description": "General AI products",

}

]

}

Example 4 Statement: "The SVP, CFO and Treasurer of AMD spoke during the earnings call."

Example 4 Output: {

TemporalEvent

InvalidationAgent

Chunk

InvalidationAgent

Triplets

invalid_at

TemporalEvent

Statement

3.2.7. Temporal Event

The model brings together the Statement and all related information into

one handy class. It's a primary output of the TemporalAgent and plays an important role

within the .

Main fields include:

: A unique identifier for the event

: Points to the specific associated with the event

: The specific

relationship or event

extracted from the detailing a

: A representation of the

gauge event similarity

used by the to

: Unique identifiers for the individual extracted from the

: Timestamp indicating when the event becomes valid

: Timestamp indicating when the event becomes invalid

: Describes temporal characteristics from the

: Categorizes the statement according to the original

: Date the event was first created.

: Date the event was marked invalid (set to if is

already set when building the)

applicable

: ID of the responsible for invalidating this event, if

===End of Examples===

"""

}

"triplets": [],

"entities":[].

import json

id

chunk_id

statement RawStatement Chunk

embedding statement

triplets

valid_at

invalid_at

temporal_type RawStatement

statement_type RawStatement

created_at

expired_at created_at

invalidated_by TemporalEvent

TemporalAgent

extract_transcript_events

RawStatement Chunk

from pydantic import model_validator

class TemporalEvent(BaseModel):

"""Model representing a temporal event with statement, triplet, and validity informatio

id: uuid.UUID = Field(default_factory=uuid.uuid4)

chunk_id: uuid.UUID

statement: str

embedding: list[float] = Field(default_factory=lambda: [0.0] * 256)

triplets: list[uuid.UUID]

valid_at: datetime | None = None

invalid_at: datetime | None = None

temporal_type: TemporalType

statement_type: StatementType

created_at: datetime = Field(default_factory=datetime.now)

expired_at: datetime | None = None

invalidated_by: uuid.UUID | None = None

@property

def triplets_json(self) -> str:

"""Convert triplets list to JSON string."""

return json.dumps([str(t) for t in self.triplets]) if self.triplets else "[]"

@classmethod

def parse_triplets_json(cls, triplets_str: str) -> list[uuid.UUID]:

"""Parse JSON string back into list of UUIDs."""

if not triplets_str or triplets_str == "[]":

return []

return [uuid.UUID(t) for t in json.loads(triplets_str)]

@model_validator(mode="after")

def set_expired_at(self) -> "TemporalEvent":

"""Set expired_at if invalid_at is set and temporal_type is DYNAMIC."""

self.expired_at = self.created_at if (self.invalid_at is not None) and (self.tempor

return self

3.2.8. Defining our Temporal Agent

Now we arrive at a central point in our pipeline: The class. This brings

together the steps we've built up above - chunking, data models, and prompts. Let's take a

closer look at how this works.

The core function, , handles all key processes:

 It extracts a from each .

TemporalEvent

Triplet

 From each

related

and

, it identifies the

objects.

along with lists of

 Finally, it bundles all this information neatly into a

.

Here's what you'll get:

for each

: The transcript currently being analyzed.

: A comprehensive list of all generated objects.

: A complete collection of objects extracted across all events.

: A detailed list of all

be further refined in subsequent steps.

objects pulled from the events, which will

The diagram below visualizes this portion of our pipeline:

RawStatement TemporalValidityRange

Triplet Entity

TemporalEvent

RawStatement

transcript

all_events

all_triplets

all_entities Entity

import asyncio

from typing import Any

from jinja2 import DictLoader, Environment

from openai import AsyncOpenAI

from tenacity import retry, stop_after_attempt, wait_random_exponential

class TemporalAgent:

"""Handles temporal-based operations for extracting and processing temporal events from

def init (self) -> None:

"""Initialize the TemporalAgent with a client."""

self._client = AsyncOpenAI()

self._model = "gpt-4.1-mini"

self._env = Environment(loader=DictLoader({

"statement_extraction.jinja": statement_extraction_prompt,

"date_extraction.jinja": date_extraction_prompt,

"triplet_extraction.jinja": triplet_extraction_prompt,

}))

self._env.filters["split_and_capitalize"] = self.split_and_capitalize

@staticmethod

def split_and_capitalize(value: str) -> str:

"""Split dict key string and reformat for jinja prompt."""

return " ".join(value.split("_")).capitalize()

async def get_statement_embedding(self, statement: str) -> list[float]:

"""Get the embedding of a statement."""

response = await self._client.embeddings.create(

model="text-embedding-3-large",

input=statement,

dimensions=256,

)

return response.data[0].embedding

@retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attem

async def extract_statements(

self,

chunk: Chunk,

inputs: dict[str, Any],

) -> RawStatementList:

"""Determine initial validity date range for a statement.

Args:

chunk (Chunk): The chunk of text to analyze.

inputs (dict[str, Any]): Additional input parameters for extraction.

Returns:

Statement: Statement with updated temporal range.

"""

inputs["chunk"] = chunk.text

template = self._env.get_template("statement_extraction.jinja")

prompt = template.render(

inputs=inputs,

definitions=LABEL_DEFINITIONS,

json_schema=RawStatementList.model_fields,

)

response = await self._client.responses.parse(

model=self._model,

temperature=0,

input=prompt,

text_format=RawStatementList,

)

raw_statements = response.output_parsed

statements = RawStatementList.model_validate(raw_statements)

return statements

@retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attem

async def extract_temporal_range(

self,

statement: RawStatement,

ref_dates: dict[str, Any],

) -> TemporalValidityRange:

"""Determine initial validity date range for a statement.

Args:

statement (Statement): Statement to analyze.

ref_dates (dict[str, Any]): Reference dates for the statement.

Returns:

Statement: Statement with updated temporal range.

"""

if statement.temporal_type == TemporalType.ATEMPORAL:

return TemporalValidityRange(valid_at=None, invalid_at=None)

template = self._env.get_template("date_extraction.jinja")

inputs = ref_dates | statement.model_dump()

prompt = template.render(

inputs=inputs,

temporal_guide={statement.temporal_type.value: LABEL_DEFINITIONS["temporal_labe

statement_guide={statement.statement_type.value: LABEL_DEFINITIONS["episode_lab

json_schema=RawTemporalRange.model_fields,

)

response = await self._client.responses.parse(

model=self._model,

temperature=0,

input=prompt,

text_format=RawTemporalRange,

)

raw_validity = response.output_parsed

temp_validity = TemporalValidityRange.model_validate(raw_validity.model_dump()) if

if temp_validity.valid_at is None:

temp_validity.valid_at = inputs["publication_date"]

if statement.temporal_type == TemporalType.STATIC:

temp_validity.invalid_at = None

return temp_validity

@retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attem

async def extract_triplet(

self,

statement: RawStatement,

max_retries: int = 3,

) -> RawExtraction:

"""Extract triplets and entities from a statement as a RawExtraction object."""

template = self._env.get_template("triplet_extraction.jinja")

prompt = template.render(

statement=statement.statement,

json_schema=RawExtraction.model_fields,

predicate_instructions=PREDICATE_DEFINITIONS,

)

for attempt in range(max_retries):

try:

response = await self._client.responses.parse(

model=self._model,

temperature=0,

input=prompt,

text_format=RawExtraction,

)

raw_extraction = response.output_parsed

extraction = RawExtraction.model_validate(raw_extraction)

return extraction

except Exception as e:

if attempt == max_retries - 1:

raise

print(f"Attempt {attempt + 1} failed with error: {str(e)}. Retrying...")

await asyncio.sleep(1)

raise Exception("All retry attempts failed to extract triplets")

async def extract_transcript_events(

self,

transcript: Transcript,

) -> tuple[Transcript, list[TemporalEvent], list[Triplet], list[Entity]]:

"""

For each chunk in the transcript:

- Extract statements

- For each statement, extract temporal range and Extraction in parallel

- Build TemporalEvent for each statement

- Collect all events, triplets, and entities for later DB insertion

Returns the transcript, all events, all triplets, and all entities.

"""

if not transcript.chunks:

return transcript, [], [], []

doc_summary = {

"main_entity": transcript.company or None,

"document_type": "Earnings Call Transcript",

"publication_date": transcript.date,

"quarter": transcript.quarter,

"document_chunk": None,

}

all_events: list[TemporalEvent] = []

all_triplets: list[Triplet] = []

all_entities: list[Entity] = []

async def _process_chunk(chunk: Chunk) -> tuple[Chunk, list[TemporalEvent], list[Tr

statements_list = await self.extract_statements(chunk, doc_summary)

events: list[TemporalEvent] = []

chunk_triplets: list[Triplet] = []

chunk_entities: list[Entity] = []

async def _process_statement(statement: RawStatement) -> tuple[TemporalEvent, l

temporal_range_task = self.extract_temporal_range(statement, doc_summary)

extraction_task = self.extract_triplet(statement)

temporal_range, raw_extraction = await asyncio.gather(temporal_range_task,

Create the event first to get its id

embedding = await self.get_statement_embedding(statement.statement)

event = TemporalEvent(

chunk_id=chunk.id,

statement=statement.statement,

embedding=embedding,

triplets=[],

valid_at=temporal_range.valid_at,

invalid_at=temporal_range.invalid_at,

temporal_type=statement.temporal_type,

statement_type=statement.statement_type,

)

Map raw triplets/entities to Triplet/Entity with event_id

triplets = [Triplet.from_raw(rt, event.id) for rt in raw_extraction.triplet

entities = [Entity.from_raw(re, event.id) for re in raw_extraction.entities

event.triplets = [triplet.id for triplet in triplets]

return event, triplets, entities

temporal_agent = TemporalAgent()

transcripts: list[Transcript] = chunker.generate_transcripts_and_chunks(dataset)

Process only the first transcript

results = await temporal_agent.extract_transcript_events(transcripts[0])

Parse and display the results in a nice format

transcript, events, triplets, entities = results

print("=== TRANSCRIPT PROCESSING RESULTS ===\n")

print(f"📄 Transcript ID: {transcript.id}")

print(f"📊 Total Chunks: {len(transcript.chunks) if transcript.chunks is not None else 0}")

print(f"🎯 Total Events: {len(events)}")

print(f"🔗 Total Triplets:

{len(triplets)}") print(f"🏷 Total Entities:
{len(entities)}")

print("\n=== SAMPLE EVENTS ===")

for i, event in enumerate(events[:3]): # Show first 3 events

print(f"\n📝 Event {i+1}:")

print(f" Statement: {event.statement[:100]}...")

print(f" Type: {event.temporal_type}")

print(f" Valid At: {event.valid_at}")

print(f" Triplets: {len(event.triplets)}")

print("\n=== SAMPLE TRIPLETS ===")

for i, triplet in enumerate(triplets[:5]): # Show first 5 triplets

print(f"\n🔗 Triplet {i+1}:")

print(f" Subject: {triplet.subject_name} (ID: {triplet.subject_id})")

chunk_results = await asyncio.gather(*(_process_chunk(chunk) for chunk in transcrip

transcript.chunks = [chunk for chunk, _, _, _ in chunk_results]

for _, events, triplets, entities in chunk_results:

all_events.extend(events)

all_triplets.extend(triplets)

all_entities.extend(entities)

return transcript, all_events, all_triplets, all_entities

if statements_list.statements:

results = await asyncio.gather(*(_process_statement(stmt) for stmt in state

for event, triplets, entities in results:

events.append(event)

chunk_triplets.extend(triplets)

chunk_entities.extend(entities)

return chunk, events, chunk_triplets, chunk_entities

3.2.9. Entity Resolution

Before diving into Temporal Invalidation, we need to first tackle entity resolution. This

process is crucial to ensure that each real-world entity has a single, authoritative

representation, eliminating duplicates and maintaining data consistency. For instance,

and clearly refer to the same entity, so they should be

represented under a unified canonical entity.

Here's our approach to entity resolution:

We use the class to batch entities by type (), which

helps us make context-specific comparisons—like distinguishing companies from

individuals.

To address noisy data e ectively, we leverage RapidFuzz to cluster entities based on

name similarity. This method involves a simple, case-insensitive, punctuation-free

comparison using a partial match ratio, allowing tolerance for minor typos and

substring matches.

Within each fuzzy-matched cluster, we select the medoid—the entity most

representative of the cluster based on overall similarity. This prevents bias toward the

most frequently occurring or earliest listed entity. The medoid then serves as the

initial canonical entity, providing a semantically meaningful representation of the

group.

Before adding a new canonical entity, we cross-check the medoid against existing

canonicals, considering both fuzzy matching and acronyms. For example,

may yield , closely matching the acronym . This step

print("\n=== SAMPLE ENTITIES ===")

print(f" Name: {entity.name}")

print(f" Type: {entity.type}")

print(f" Description: {entity.description}")

if entity.resolved_id:

print(f" Resolved ID: {entity.resolved_id}")

print(f" Predicate: {triplet.predicate}")

print(f" Object: {triplet.object_name} (ID: {triplet.object_id})")

if triplet.value:

print(f" Value: {triplet.value}")

AMD Advanced Micro Devices

EntityResolution Entity.type

Advanced

Micro Devices Inc. AMDI AMD

Entity.name

import sqlite3

import string

from rapidfuzz import fuzz

from db_interface import (

get_all_canonical_entities,

insert_canonical_entity,

remove_entity,

update_entity_references,

)

class EntityResolution:

"""

Entity resolution class.

"""

def init (self, conn: sqlite3.Connection):

self.conn = conn

self.global_canonicals: list[Entity] = get_all_canonical_entities(conn)

self.threshold = 80.0

self.acronym_thresh = 98.0

def resolve_entities_batch(

self, batch_entities: list[Entity],

) -> None:

"""

Orchestrate the scalable entity resolution workflow for a batch of entities.

"""

helps prevent unnecessary creation of duplicate canonical entities.

If a global match isn't found, the medoid becomes a new canonical entity, with all

entities in the cluster linked to it via a resolved ID.

 Finally, we perform an additional safeguard check to resolve potential acronym

duplication across all canonical entities, ensuring thorough cleanup.

To further enhance entity resolution, you could consider advanced techniques such as:

Using embedding-based similarity on

improving disambiguation beyond simple text similarity.

alongside ,

Employing a large language model (LLM) to intelligently group entities under their

canonical forms, enhancing accuracy through semantic understanding.

Entity.description

type_groups = {t: [e for e in batch_entities if e.type == t] for t in set(e.type fo

for entities in type_groups.values():

clusters = self.group_entities_by_fuzzy_match(entities)

for group in clusters.values():

if not group:

continue

local_canon = self.set_medoid_as_canonical_entity(group)

if local_canon is None:

continue

match = self.match_to_canonical_entity(local_canon, self.global_canonicals)

if " " in local_canon.name: # Multi-word entity

acronym = "".join(word[0] for word in local_canon.name.split())

acronym_match = next(

(c for c in self.global_canonicals if fuzz.ratio(acronym, c.name) >

)

if acronym_match:

match = acronym_match

if match:

canonical_id = match.id

else:

insert_canonical_entity(

self.conn,

{

"id": str(local_canon.id),

"name": local_canon.name,

"type": local_canon.type,

"description": local_canon.description,

},

)

canonical_id = local_canon.id

self.global_canonicals.append(local_canon)

for entity in group:

entity.resolved_id = canonical_id

self.conn.execute(

"UPDATE entities SET resolved_id = ? WHERE id = ?",

(str(canonical_id), str(entity.id))

)

Clean up any acronym duplicates after processing all entities

self.merge_acronym_canonicals()

def group_entities_by_fuzzy_match(

self, entities: list[Entity],

) -> dict[str, list[Entity]]:

"""

Group entities by fuzzy name similarity using rapidfuzz"s partial_ratio.

Returns a mapping from canonical name to list of grouped entities.

"""

def clean(name: str) -> str:

return name.lower().strip().translate(str.maketrans("", "", string.punctuation)

name_to_entities: dict[str, list[Entity]] = {}

cleaned_name_map: dict[str, str] = {}

for entity in entities:

name_to_entities.setdefault(entity.name, []).append(entity)

cleaned_name_map[entity.name] = clean(entity.name)

unique_names = list(name_to_entities.keys())

clustered: dict[str, list[Entity]] = {}

used = set()

for name in unique_names:

if name in used:

continue

clustered[name] = []

for other_name in unique_names:

if other_name in used:

continue

score = fuzz.partial_ratio(cleaned_name_map[name], cleaned_name_map[other_n

if score >= self.threshold:

clustered[name].extend(name_to_entities[other_name])

used.add(other_name)

return clustered

def set_medoid_as_canonical_entity(self, entities: list[Entity]) -> Entity | None:

"""

Select as canonical the entity in the group with the highest total similarity (sum

Returns the medoid entity or None if the group is empty.

"""

if not entities:

return None

def clean(name: str) -> str:

return name.lower().strip().translate(str.maketrans("", "", string.punctuation)

n = len(entities)

scores = [0.0] * n

for i in range(n):

for j in range(n):

if i != j:

s1 = clean(entities[i].name)

s2 = clean(entities[j].name)

scores[i] += fuzz.partial_ratio(s1, s2)

max_idx = max(range(n), key=lambda idx: scores[idx])

return entities[max_idx]

def match_to_canonical_entity(self, entity: Entity, canonical_entities: list[Entity]) -

"""

Fuzzy match a single entity to a list of canonical entities.

Returns the best matching canonical entity or None if no match above self.threshold

"""

def clean(name: str) -> str:

return name.lower().strip().translate(str.maketrans("", "", string.punctuation)

best_score: float = 0

best_canon = None

for canon in canonical_entities:

score = fuzz.partial_ratio(clean(entity.name), clean(canon.name))

if score > best_score:

best_score = score

best_canon = canon

if best_score >= self.threshold:

return best_canon

return None

def merge_acronym_canonicals(self) -> None:

"""

Merge canonical entities where one is an acronym of another.

"""

multi_word = [e for e in self.global_canonicals if " " in e.name]

single_word = [e for e in self.global_canonicals if " " not in e.name]

acronym_map = {}

for entity in multi_word:

acronym = "".join(word[0].upper() for word in entity.name.split())

acronym_map[entity.id] = acronym

for entity in multi_word:

acronym = acronym_map[entity.id]

for single_entity in single_word:

score = fuzz.ratio(acronym, single_entity.name)

if score >= self.threshold:

update_entity_references(self.conn, str(entity.id), str(single_entity.i

remove_entity(self.conn, str(entity.id))

self.global_canonicals.remove(entity)

break

3.2.10. Invalidation agent

Understanding the Invalidation Process

To e ectively invalidate temporal events, the agent performs checks in both directions:

 Incoming vs. Existing: Are incoming events invalidated by events already present?

 Existing vs. Incoming: Are current events invalidated by the new incoming events?

This bi-directional assessment results in a clear True/False decision.

Event Invalidation Prompt

The prompt has three key components:

 Task Setup

Defines two roles—

and

—for event comparison. The assessment

checks if the event is invalidated by the event.

 Guidelines

Provides clear criteria on interpreting temporal metadata. Importantly, invalidation

must rely solely on the relationships explicitly stated between events. External

information cannot influence the decision.

 Event Information

Both events (

and

) include timestamp details (

and

) along with semantic context through either

both. This context ensures accurate and relevant comparisons.

, , or

event_invalidation_prompt = """

Task: Analyze the primary event against the secondary event and determine if the primary ev

Only set dates if they explicitly relate to the validity of the relationship described in t

IMPORTANT: Only invalidate events if they are directly invalidated by the other event given

Only use dates that are directly stated to invalidate the relationship. The invalid_at for

Invalidation Guidelines:

Dates are given in ISO 8601 format (YYYY-MM-DDTHH:MM:SS.SSSSSSZ).

Where invalid_at is null, it means this event is still valid and considered to be ongoin

Where invalid_at is defined, the event has previously been invalidated by something else

An event can refine the invalid_at of a finished event to an earlier date only.

An event cannot invalidate an event that chronologically occurred after it.

An event cannot be invalidated by an event that chronologically occurred before it.

An event cannot invalidate itself.

Primary Event:

primary secondary

primary secondary

primary secondary valid_at

invalid_at Statement Triplet

top_k

Requirements to be compared for Invalidation

We can only invalidate dynamic facts that haven't been marked invalid yet. These facts

serve as our primary events, while potential candidates for invalidation are our secondary

events. To streamline the invalidation process, consider these guidelines when evaluating

secondary events:

 Must be a FACT type and not Atemporal

 Share at least one canonical entity at the triplet level

 Belong to the same semantic predicate group at the triplet level (defined below)

 Temporally overlap and be currently ongoing

 Have a statement cosine similarity above the threshold (currently set to 0.5)

 The similarity threshold (0.5) helps us filter noise e ectively by selecting only the

most relevant results. Low-level semantic similarities are acceptable since our

goal is refining the data sent to the LLM for further assessment

When invalidation occurs, we annotate the a ected events with

to clearly indicate cause-and-e ect relationships.

and

Return: "True" if the primary event is invalidated or its invalid_at is refined else "False

"""

{% if primary_event -%}

Statement: {{primary_event}}

{%- endif %}

{% if primary_triplet -%}

Triplet: {{primary_triplet}}

{%- endif %}

Valid_at: {{primary_event.valid_at}}

Invalid_at: {{primary_event.invalid_at}}

Secondary Event:

{% if secondary_event -%}

Statement: {{secondary_event}}

{%- endif %}

{% if secondary_triplet -%}

Triplet: {{secondary_triplet}}

{%- endif %}

Valid_at: {{secondary_event.valid_at}}

Invalid_at: {{secondary_event.invalid_at}}

expired_at

invalidated_by

InvalidationAgent

_top_k = 10

When we put all of this together, the workflow for our looks like this:

 Temporal Range Detection

We start by identifying when events happen with get_incoming_temporal_bounds() .

This function checks the event's

Atemporal events aren't included here.

 Temporal Event Selection

and, if it's dynamic, its invalid_at .

We use to filter events by:

Checking if they're static or dynamic.

Determining if their time ranges overlap with our incoming event.

 Handling dynamic events carefully, especially "ongoing" ones without an

, or events with various overlaps.

 Embedding Similarity Filtering

Then,

similarity:

compares events based on semantic

It calculates cosine similarity between embeddings.

Events below a similarity threshold (

out.

) are filtered

We keep only the top-K most similar events ().

 Combining Temporal and Semantic Filters

With , we:

Apply temporal filters first.

Then apply embedding similarity filters.

PREDICATE_GROUPS: list[list[str]] = [

["IS_A", "HAS_A", "LOCATED_IN", "HOLDS_ROLE", "PART_OF"],

["PRODUCES", "SELLS", "SUPPLIES", "DISCONTINUED", "SECURED"],

["LAUNCHED", "DEVELOPED", "ADOPTED_BY", "INVESTS_IN", "COLLABORATES_WITH"],

["HAS_REVENUE", "INCREASED", "DECREASED", "RESULTED_IN", "TARGETS"],

]

valid_at

select_events_temporally()

invalid_at

filter_by_embedding_similarity()

_similarity_threshold = 0.5

select_temporally_relevant_events_for_invalidation()

invalidation_step()

valid_at

resolve_duplicate_invalidations()

 This gives us a refined list of events most likely interacting or conflicting with the

incoming one.

 Event Invalidation Decision (LLM-based)

The LLM-based (powered by GPT 4.1-mini) determines whether

the incoming event invalidates another event:

If it does, we update:

to match the secondary event's .

with the current timestamp.

with the ID of the secondary event.

 Bidirectional Event Check

We use to check:

If the incoming event invalidates existing events.

 If existing, later events invalidate the incoming event, especially if the incoming

one is dynamic and currently valid.

 Deduplication Logic

Lastly, ensures clean invalidation:

It allows only one invalidation per event.

Picks the earliest invalidation time to avoid conflicts.

 This helps manage batch processing e ectively.

The invalidation below represents this part of our pipeline:

invalid_at

expired_at

invalidated_by

bi_directional_event_invalidation()

import asyncio

import logging

import pickle

import sqlite3

from collections import Counter, defaultdict

from collections.abc import Coroutine

from concurrent.futures import ThreadPoolExecutor

from datetime import datetime

from typing import Any

from jinja2 import DictLoader, Environment

from openai import AsyncOpenAI

from scipy.spatial.distance import cosine

from tenacity import retry, stop_after_attempt, wait_random_exponential

class InvalidationAgent:

"""Handles temporal-based operations for extracting and processing temporal events from

def init (self, max_workers: int = 5) -> None:

"""Initialize the TemporalAgent with a client."""

self.max_workers = max_workers

self._executor = ThreadPoolExecutor(max_workers=max_workers)

self.logger = logging.getLogger(name)

self._client = AsyncOpenAI()

self._model = "gpt-4.1-mini"

self._similarity_threshold = 0.5

self._top_k = 10

self._env = Environment(loader=DictLoader({

"event_invalidation.jinja": event_invalidation_prompt,

}))

@staticmethod

def cosine_similarity(v1: list[float], v2: list[float]) -> float:

"""Calculate cosine similarity between two vectors."""

return float(1 - cosine(v1, v2))

@staticmethod

def get_incoming_temporal_bounds(

event: TemporalEvent,

) -> dict[str, datetime] | None:

"""Get temporal bounds of all temporal events associated with a statement."""

if (event.temporal_type == TemporalType.ATEMPORAL) or (event.valid_at is None):

return None

temporal_bounds = {"start": event.valid_at, "end": event.valid_at}

if event.temporal_type == TemporalType.DYNAMIC:

if event.invalid_at:

temporal_bounds["end"] = event.invalid_at

return temporal_bounds

def select_events_temporally(

self,

triplet_events: list[tuple[Triplet, TemporalEvent]],

temp_bounds: dict[str, datetime],

dynamic: bool = False,

) -> list[tuple[Triplet, TemporalEvent]]:

"""Select temporally relevant events (static or dynamic) based on temporal bounds.

Groups events into before, after, and overlapping categories based on their tempora

Args:

triplet_events: List of (Triplet, TemporalEvent) tuples to filter

temp_bounds: Dict with 'start' and 'end' datetime bounds

dynamic: If True, filter dynamic events; if False, filter static events

n_window: Number of events to include before and after bounds

Returns:

Dict with keys '{type}_before', '{type}_after', '{type}_overlap' where type is

"""

def _check_overlaps_dynamic(event: TemporalEvent, start: datetime, end: datetime) -

"""Check if the dynamic event overlaps with the temporal bounds of the incoming

if event.temporal_type != TemporalType.DYNAMIC:

return False

event_start = event.valid_at or datetime.min

event_end = event.invalid_at

1. Event contains the start

if (event_end is not None) and (event_start <= start <= event_end):

return True

2. Ongoing event starts before the incoming start

if (event_end is None) and (event_start <= start):

return True

3. Event starts within the incoming interval

if start <= event_start <= end:

return True

return False

Filter by temporal type

target_type = TemporalType.DYNAMIC if dynamic else TemporalType.STATIC

filtered_events = [(triplet, event) for triplet, event in triplet_events if event.t

Sort by valid_at timestamp

sorted_events = sorted(filtered_events, key=lambda te: te[1].valid_at or datetime.m

start = temp_bounds["start"]

end = temp_bounds["end"]

if dynamic:

overlap: list[tuple[Triplet, TemporalEvent]] = [

(triplet, event) for triplet, event in sorted_events if _check_overlaps_dyn

]

else:

overlap = []

if start != end:

overlap = [(triplet, event) for triplet, event in sorted_events if event.va

return overlap

def filter_by_embedding_similarity(

self,

reference_event: TemporalEvent,

candidate_pairs: list[tuple[Triplet, TemporalEvent]],

) -> list[tuple[Triplet, TemporalEvent]]:

"""Filter triplet-event pairs by embedding similarity."""

pairs_with_similarity = [

(triplet, event, self.cosine_similarity(reference_event.embedding, event.embedd

]

filtered_pairs = [

(triplet, event) for triplet, event, similarity in pairs_with_similarity if sim

]

sorted_pairs = sorted(filtered_pairs, key=lambda x: self.cosine_similarity(referenc

return sorted_pairs[: self._top_k]

def select_temporally_relevant_events_for_invalidation(

self,

incoming_event: TemporalEvent,

candidate_triplet_events: list[tuple[Triplet, TemporalEvent]],

) -> list[tuple[Triplet, TemporalEvent]] | None:

"""Select the temporally relevant events based on temporal range of incoming event.

temporal_bounds = self.get_incoming_temporal_bounds(event=incoming_event)

if not temporal_bounds:

return None

First apply temporal filtering - find overlapping events

selected_statics = self.select_events_temporally(

triplet_events=candidate_triplet_events,

temp_bounds=temporal_bounds,

)

selected_dynamics = self.select_events_temporally(

triplet_events=candidate_triplet_events,

temp_bounds=temporal_bounds,

dynamic=True,

)

Then filter by semantic similarity

similar_static = self.filter_by_embedding_similarity(reference_event=incoming_event

similar_dynamics = self.filter_by_embedding_similarity(reference_event=incoming_eve

return similar_static + similar_dynamics

@retry(wait=wait_random_exponential(multiplier=1, min=1, max=30), stop=stop_after_attem

async def invalidation_step(

self,

primary_event: TemporalEvent,

primary_triplet: Triplet,

secondary_event: TemporalEvent,

secondary_triplet: Triplet,

) -> TemporalEvent:

"""Check if primary event should be invalidated by secondary event.

Args:

primary_event: Event to potentially invalidate

primary_triplet: Triplet associated with primary event

secondary_event: Event that might cause invalidation

secondary_triplet: Triplet associated with secondary event

Returns:

TemporalEvent: Updated primary event (may have invalid_at and invalidated_by se

"""

template = self._env.get_template("event_invalidation.jinja")

prompt = template.render(

primary_event=primary_event.statement,

primary_triplet=f"({primary_triplet.subject_name}, {primary_triplet.predicate},

primary_valid_at=primary_event.valid_at,

primary_invalid_at=primary_event.invalid_at,

secondary_event=secondary_event.statement,

secondary_triplet=f"({secondary_triplet.subject_name}, {secondary_triplet.predi

secondary_valid_at=secondary_event.valid_at,

secondary_invalid_at=secondary_event.invalid_at,

)

response = await self._client.responses.parse(

model=self._model,

temperature=0,

input=prompt,

)

Parse boolean response

response_bool = str(response).strip().lower() == "true" if response else False

if not response_bool:

return primary_event

Create updated event with invalidation info

updated_event = primary_event.model_copy(

update={

"invalid_at": secondary_event.valid_at,

"expired_at": datetime.now(),

"invalidated_by": secondary_event.id,

}

)

return updated_event

async def bi_directional_event_invalidation(

self,

incoming_triplet: Triplet,

incoming_event: TemporalEvent,

existing_triplet_events: list[tuple[Triplet, TemporalEvent]],

) -> tuple[TemporalEvent, list[TemporalEvent]]:

"""Validate and update temporal information for triplet events with full bidirectio

Args:

incoming_triplet: The new triplet

incoming_event: The new event associated with the triplet

existing_triplet_events: List of existing (triplet, event) pairs to validate ag

Returns:

tuple[TemporalEvent, list[TemporalEvent]]: (updated_incoming_event, list_of_cha

"""

changed_existing_events: list[TemporalEvent] = []

updated_incoming_event = incoming_event

Filter for dynamic events that can be invalidated

dynamic_events_to_check = [

(triplet, event) for triplet, event in existing_triplet_events if event.tempora

]

1. Check if incoming event invalidates existing dynamic events

if dynamic_events_to_check:

tasks = [

self.invalidation_step(

primary_event=existing_event,

primary_triplet=existing_triplet,

secondary_event=incoming_event,

secondary_triplet=incoming_triplet,

)

for existing_triplet, existing_event in dynamic_events_to_check

]

updated_events = await asyncio.gather(*tasks)

for original_pair, updated_event in zip(dynamic_events_to_check, updated_events

original_event = original_pair[1]

if (updated_event.invalid_at != original_event.invalid_at) or (

updated_event.invalidated_by != original_event.invalidated_by

):

changed_existing_events.append(updated_event)

2. Check if existing events invalidate the incoming dynamic event

if incoming_event.temporal_type == TemporalType.DYNAMIC and incoming_event.invalid_

Only check events that occur after the incoming event

invalidating_events = [

(triplet, event)

for triplet, event in existing_triplet_events

if (incoming_event.valid_at and event.valid_at and incoming_event.valid_at

]

if invalidating_events:

tasks = [

self.invalidation_step(

primary_event=incoming_event,

primary_triplet=incoming_triplet,

secondary_event=existing_event,

secondary_triplet=existing_triplet,

)

for existing_triplet, existing_event in invalidating_events

]

updated_events = await asyncio.gather(*tasks)

Find the earliest invalidation

valid_invalidations = [(e.invalid_at, e.invalidated_by) for e in updated_ev

if valid_invalidations:

earliest_invalidation = min(valid_invalidations, key=lambda x: x[0])

updated_incoming_event = incoming_event.model_copy(

update={

"invalid_at": earliest_invalidation[0],

"invalidated_by": earliest_invalidation[1],

"expired_at": datetime.now(),

}

)

return updated_incoming_event, changed_existing_events

@staticmethod

def resolve_duplicate_invalidations(changed_events: list[TemporalEvent]) -> list[Tempor

"""Resolve duplicate invalidations by selecting the most restrictive (earliest) inv

When multiple incoming events invalidate the same existing event, we should apply

the invalidation that results in the shortest validity range (earliest invalid_at).

Args:

changed_events: List of events that may contain duplicates with different inval

Returns:

List of deduplicated events with the most restrictive invalidation applied

"""

if not changed_events:

return []

Count occurrences of each event ID

id_counts = Counter(str(event.id) for event in changed_events)

resolved_events = []

Group events by ID only for those with duplicates

events_by_id = defaultdict(list)

for event in changed_events:

event_id = str(event.id)

if id_counts[event_id] == 1:

resolved_events.append(event)

else:

events_by_id[event_id].append(event)

Deduplicate only those with duplicates

for _id, event_versions in events_by_id.items():

invalidated_versions = [e for e in event_versions if e.invalid_at is not None]

if not invalidated_versions:

resolved_events.append(event_versions[0])

else:

most_restrictive = min(invalidated_versions, key=lambda e: (e.invalid_at if

resolved_events.append(most_restrictive)

return resolved_events

async def _execute_task_pool(

self,

tasks: list[Coroutine[Any, Any, tuple[TemporalEvent, list[TemporalEvent]]]],

batch_size: int = 10

) -> list[Any]:

"""Execute tasks in batches using a pool to control concurrency.

Args:

tasks: List of coroutines to execute

batch_size: Number of tasks to process concurrently

Returns:

List of results from all tasks

"""

all_results = []

for i in range(0, len(tasks), batch_size):

batch = tasks[i:i + batch_size]

batch_results = await asyncio.gather(*batch, return_exceptions=True)

all_results.extend(batch_results)

Small delay between batches to prevent overload

if i + batch_size < len(tasks):

await asyncio.sleep(0.1)

return all_results

async def process_invalidations_in_parallel(

self,

incoming_triplets: list[Triplet],

incoming_events: list[TemporalEvent],

existing_triplets: list[Triplet],

existing_events: list[TemporalEvent],

) -> tuple[list[TemporalEvent], list[TemporalEvent]]:

"""Process invalidations for multiple triplets in parallel.

Args:

incoming_triplets: List of new triplets to process

incoming_events: List of events associated with incoming triplets

existing_triplets: List of existing triplets from DB

existing_events: List of existing events from DB

Returns:

tuple[list[TemporalEvent], list[TemporalEvent]]:

- List of updated incoming events (potentially invalidated)

- List of existing events that were updated (deduplicated)

"""

Create mappings for faster lookups

event_map = {str(e.id): e for e in existing_events}

incoming_event_map = {str(t.event_id): e for t, e in zip(incoming_triplets, incomin

Prepare tasks for parallel processing

tasks = []

for incoming_triplet in incoming_triplets:

incoming_event = incoming_event_map[str(incoming_triplet.event_id)]

Get related triplet-event pairs

related_pairs = [

(t, event_map[str(t.event_id)])

for t in existing_triplets

if (str(t.subject_id) == str(incoming_triplet.subject_id) or str(t.object_i

and str(t.event_id) in event_map

]

Filter for temporal relevance

all_relevant_events = self.select_temporally_relevant_events_for_invalidation(

incoming_event=incoming_event,

candidate_triplet_events=related_pairs,

)

if not all_relevant_events:

continue

Add task for parallel processing

task = self.bi_directional_event_invalidation(

incoming_triplet=incoming_triplet,

incoming_event=incoming_event,

existing_triplet_events=all_relevant_events,

)

tasks.append(task)

Process all invalidations in parallel with pooling

if not tasks:

return [], []

Use pool size based on number of workers, but cap it

pool_size = min(self.max_workers * 2, 10) # Adjust these numbers based on your nee

results = await self._execute_task_pool(tasks, batch_size=pool_size)

Collect all results (may contain duplicates)

updated_incoming_events = []

all_changed_existing_events = []

for result in results:

if isinstance(result, Exception):

self.logger.error(f"Task failed with error: {str(result)}")

continue

updated_event, changed_events = result

updated_incoming_events.append(updated_event)

all_changed_existing_events.extend(changed_events)

Resolve duplicate invalidations for existing events

deduplicated_existing_events = self.resolve_duplicate_invalidations(all_changed_exi

Resolve duplicate invalidations for incoming events (in case multiple triplets fr

deduplicated_incoming_events = self.resolve_duplicate_invalidations(updated_incomin

return deduplicated_incoming_events, deduplicated_existing_events

@staticmethod

def batch_fetch_related_triplet_events(

conn: sqlite3.Connection,

incoming_triplets: list[Triplet],

) -> tuple[list[Triplet], list[TemporalEvent]]:

"""

Batch fetch all existing triplets and their events from the DB that are related to

Related means:

- Share a subject or object entity

- Predicate is in the same group

- Associated event is a FACT

Returns two lists: triplets and events (with mapping via event_id).

"""

1. Build sets of all relevant entity IDs and predicate groups

entity_ids = set()

predicate_to_group = {}

for group in PREDICATE_GROUPS:

group_list = list(group)

for pred in group_list:

predicate_to_group[pred] = group_list

relevant_predicates = set()

for triplet in incoming_triplets:

entity_ids.add(str(triplet.subject_id))

entity_ids.add(str(triplet.object_id))

group = predicate_to_group.get(str(triplet.predicate), [])

if group:

relevant_predicates.update(group)

2. Prepare SQL query

entity_placeholders = ",".join(["?"] * len(entity_ids))

predicate_placeholders = ",".join(["?"] * len(relevant_predicates))

query = f"""

SELECT

t.id,

t.subject_name,

t.subject_id,

t.predicate,

t.object_name,

t.object_id,

t.value,

t.event_id,

e.chunk_id,

e.statement,

"""

e.triplets,

e.statement_type,

e.temporal_type,

e.valid_at,

e.invalid_at,

e.created_at,

e.expired_at,

e.invalidated_by,

e.embedding

FROM triplets t

JOIN events e ON t.event_id = e.id

WHERE

(t.subject_id IN ({entity_placeholders}) OR t.object_id IN ({entity_placeho

AND t.predicate IN ({predicate_placeholders})

AND e.statement_type = ?

params = list(entity_ids) + list(entity_ids) + list(relevant_predicates) + [Stateme

cursor = conn.cursor()

cursor.execute(query, params)

rows = cursor.fetchall()

triplets = []

events = []

events_by_id = {}

for row in rows:

triplet = Triplet(

id=row[0],

subject_name=row[1],

subject_id=row[2],

predicate=Predicate(row[3]),

object_name=row[4],

object_id=row[5],

value=row[6],

event_id=row[7],

)

event_id = row[7]

triplets.append(triplet)

if event_id not in events_by_id:

events_by_id[event_id] = TemporalEvent(

id=row[7],

chunk_id=row[8],

statement=row[9],

triplets=TemporalEvent.parse_triplets_json(row[10]),

statement_type=row[11],

temporal_type=row[12],

valid_at=row[13],

invalid_at=row[14],

created_at=row[15],

expired_at=row[16],

invalidated_by=row[17],

We can create a batch processing function for invalidation for a set of Temporal Events.

This is where we filter our Statements to type FACT before passing into the invalidation

agent to process.

async def batch_process_invalidation(

conn: sqlite3.Connection, all_events: list[TemporalEvent], all_triplets: list[Triplet],

) -> tuple[list[TemporalEvent], list[TemporalEvent]]:

"""Process invalidation for all FACT events that are temporal.

Args:

conn: SQLite database connection

all_events: List of all extracted events

all_triplets: List of all extracted triplets

invalidation_agent: The invalidation agent instance

Returns:

tuple[list[TemporalEvent], list[TemporalEvent]]:

- final_events: All events (updated incoming events)

- events_to_update: Existing events that need DB updates

"""

def _get_fact_triplets(

all_events: list[TemporalEvent],

all_triplets: list[Triplet],

) -> list[Triplet]:

"""

Return only those triplets whose associated event is of statement_type FACT.

"""

fact_event_ids = {

event.id for event in all_events if (event.statement_type == StatementType.FACT

}

return [triplet for triplet in all_triplets if triplet.event_id in fact_event_ids]

Prepare a list of triplets whose associated event is a FACT and not ATEMPORAL

fact_triplets = _get_fact_triplets(all_events, all_triplets)

if not fact_triplets:

return all_events, []

Create event map for quick lookup

all_events_map = {event.id: event for event in all_events}

Build aligned lists of valid triplets and their corresponding events

fact_events: list[TemporalEvent] = []

embedding=pickle.loads(row[18]) if row[18] else [0] * 1536,

)

events = list(events_by_id.values())

return triplets, events

valid_fact_triplets: list[Triplet] = []

for triplet in fact_triplets:

Handle potential None event_id and ensure type safety

if triplet.event_id is not None:

event = all_events_map.get(triplet.event_id)

if event:

fact_events.append(event)

valid_fact_triplets.append(triplet)

else:

print(f"Warning: Could not find event for fact_triplet with event_id {tripl

else:

print(f"Warning: Fact triplet {triplet.id} has no event_id, skipping invalidati

if not valid_fact_triplets:

return all_events, []

Batch fetch all related existing triplets and events

existing_triplets, existing_events = invalidation_agent.batch_fetch_related_triplet_eve

Process all invalidations in parallel

updated_incoming_fact_events, changed_existing_events = await invalidation_agent.proces

incoming_triplets=valid_fact_triplets,

incoming_events=fact_events,

existing_triplets=existing_triplets,

existing_events=existing_events,

)

Create mapping for efficient updates

updated_incoming_event_map = {event.id: event for event in updated_incoming_fact_events

Reconstruct final events list with updates applied

final_events = []

for original_event in all_events:

if original_event.id in updated_incoming_event_map:

final_events.append(updated_incoming_event_map[original_event.id])

else:

final_events.append(original_event)

return final_events, changed_existing_events

3.2.11. Putting it all together

Now that we have built out each individual component of the Temporal Knowledge Graph

workflow, we can integrate them into a cohesive workflow.

Given a chunked transcript, the Temporal Agent sequentially processes each chunk,

initially extracting relevant statements. These statements are then classified and enriched

through subsequent extraction phases, resulting in Temporal Events, structured Triplets,

and identified Entities.

The extracted Entities are cross-referenced with existing records in the database,

ensuring accurate resolution and avoiding redundancy. Following entity resolution, the

Dynamic Facts undergo validation via the Invalidation Agent to verify temporal

consistency and validity.

After successful processing and validation, the refined data is systematically stored into

their respective tables within the SQLite database, maintaining an organized and

temporally accurate knowledge graph.

To help visually ground the code presented below, we can look again at the pipeline

diagram:

import sqlite3

from db_interface import (

has_events,

insert_chunk,

insert_entity,

insert_event,

insert_transcript,

insert_triplet,

update_events_batch,

)

from utils import safe_iso

async def ingest_transcript(

transcript: Transcript,

conn: sqlite3.Connection,

temporal_agent: TemporalAgent,

invalidation_agent: InvalidationAgent,

entity_resolver: EntityResolution) -> None:

"""

Ingest a Transcript object into the database, extracting and saving all chunks, events,

"""

insert_transcript(

conn,

{

"id": str(transcript.id),

"text": transcript.text,

"company": transcript.company,

"date": transcript.date,

"quarter": transcript.quarter,

},

)

transcript, all_events, all_triplets, all_entities = await temporal_agent.extract_trans

entity_resolver.resolve_entities_batch(all_entities)

name_to_canonical = {entity.name: entity.resolved_id for entity in all_entities if enti

Update triplets with resolved entity IDs

for triplet in all_triplets:

if triplet.subject_name in name_to_canonical:

triplet.subject_id = name_to_canonical[triplet.subject_name]

if triplet.object_name in name_to_canonical:

triplet.object_id = name_to_canonical[triplet.object_name]

Invalidation processing with properly resolved triplet IDs

events_to_update: list[TemporalEvent] = []

if has_events(conn):

all_events, events_to_update = await batch_process_invalidation(conn, all_events, a

ALL DB operations happen in single transaction

with conn:

Update existing events first (they're already in DB)

if events_to_update:

update_events_batch(conn, events_to_update)

print(f"Updated {len(events_to_update)} existing events")

Insert new data

for chunk in transcript.chunks or []:

chunk_dict = chunk.model_dump()

insert_chunk(

conn,

{

"id": str(chunk_dict["id"]),

"transcript_id": str(transcript.id),

"text": chunk_dict["text"],

"metadata": json.dumps(chunk_dict["metadata"]),

},

)

for event in all_events:

event_dict = {

"id": str(event.id),

"chunk_id": str(event.chunk_id),

"statement": event.statement,

"embedding": pickle.dumps(event.embedding) if event.embedding is not None e

"triplets": event.triplets_json,

"statement_type": event.statement_type.value if hasattr(event.statement_typ

"temporal_type": event.temporal_type.value if hasattr(event.temporal_type,

"created_at": safe_iso(event.created_at),

"valid_at": safe_iso(event.valid_at),

"expired_at": safe_iso(event.expired_at),

"invalid_at": safe_iso(event.invalid_at),

"invalidated_by": str(event.invalidated_by) if event.invalidated_by else No

}

insert_event(conn, event_dict)

for triplet in all_triplets:

try:

insert_triplet(

conn,

{

"id": str(triplet.id),

"event_id": str(triplet.event_id),

"subject_name": triplet.subject_name,

"subject_id": str(triplet.subject_id),

"predicate": triplet.predicate,

"object_name": triplet.object_name,

"object_id": str(triplet.object_id),

"value": triplet.value,

},

)

except KeyError as e:

print(f"KeyError: {triplet.subject_name} or {triplet.object_name} not found

print(f"Skipping triplet: Entity '{e.args[0]}' is unresolved.")

Initialize core components

sqlite_conn = make_connection(memory=False, refresh=True)

temporal_agent = TemporalAgent()

invalidation_agent = InvalidationAgent()

entity_resolver = EntityResolution(sqlite_conn)

Ingest single transcript

await ingest_transcript(transcripts[0], sqlite_conn, temporal_agent, invalidation_agent, en

View what tables have been created and populated

sqlite_conn.execute("SELECT name FROM sqlite_master WHERE type='table';").fetchall()

View triplets table

from db_interface import view_db_table

triplets_df = view_db_table(sqlite_conn, "triplets", max_rows=10)

display(triplets_df)

import time

from tqdm import tqdm

We can then ingest the rest of the Transcripts. Note that this code has not been optimised

to be production ready and on average takes 2 5 mins per Transcript. This bulk ingestion

using the data in /transcripts (~30 files) will take up to 2 hours to run. Optimizing this is a

critical step in scaling to production. We outline some methods you can use to approach

this in the Appendix in A.3 "Implementing Concurrency in the Ingestion Pipeline",

including batch chunking, entity clustering, and more.

return None

continue

Deduplicate entities by id before insert

unique_entities = {}

for entity in all_entities:

unique_entities[str(entity.id)] = entity

for entity in unique_entities.values():

insert_entity(conn, {"id": str(entity.id), "name": entity.name, "resolved_id":

Bulk ingestion (not recommended)

sqlite_conn = make_connection(memory=False, refresh=True, db_path="my_database.db")

transcripts = load_transcripts_from_pickle()

async def bulk_transcript_ingestion(transcripts: list[Transcript], sqlite_conn: sqlite3.Con

"""Handle transcript ingestion with duplicate checking, optional overwriting, and progr

Args:

transcripts (List[Transcript]): List of transcripts to ingest

sqlite_conn (sqlite3.Connection): SQLite database connection

overwrite (bool, optional): Whether to overwrite existing transcripts. Defaults to

"""

temporal_agent = TemporalAgent()

invalidation_agent = InvalidationAgent()

entity_resolver = EntityResolution(sqlite_conn)

pbar = tqdm(total=len(transcripts), desc="Ingesting transcripts")

for transcript in transcripts:

start_time = time.time()

try:

await ingest_transcript(transcript, sqlite_conn, temporal_agent, invalidation_a

Calculate and display ingestion time

end_time = time.time()

ingestion_time = end_time - start_time

Update progress bar with completion message

pbar.write(

f"Ingested transcript {transcript.id} "

f"in {ingestion_time:.2f} seconds"

)

except Exception as e:

pbar.write(f"Error ingesting transcript {transcript.id}: {str(e)}")

finally:

Update progress bar

pbar.update(1)

pbar.close()

“Note: Running the below cell for all transcripts in this dataset can take approximately 1

hour”

date

transcript_df = view_db_table(sqlite_conn, "transcripts", max_rows=None)

display(transcript_df)

Q2 2016

\n\nThomson Reuters StreetEvents

Event Transcr...

Event Transcr...

2016

NVDA

View transcripts table

from db_interface import view_db_table

2016 07-

NVDA

74d42583-b614 4771 80c8-

1ddf964a4f1c

Q3 2017

21T00:00:00

NVDA \n\nThomson Reuters StreetEvents

Event Transcr...

\n\nRefinitiv StreetEvents Event

Transcript\nE...

2018 05-

\n\nThomson Reuters StreetEvents 74380d19 203a-48f6-a1c8-

\n\nThomson Reuters StreetEvents

Event Transcr...

19T00:00:00

Q2 2021

26e523aa-7e15 4741 986a-

Q4 2016

 2019

Q2 2017 2017 07-

\n\nThomson Reuters StreetEvents

Event Transcr...

1ba2fc55-a121 43d4 85d7-

e221851f2c7f

2017 01-

text

Q3 2018

31T00:00:00

NVDA \n\nThomson Reuters StreetEvents

Event Transcr...

We recommend loading the pre-processed AMD and NVDA data from file by creating a

new SQLite connection using the code below. This will create the database needed for

building the graph and retriever.

You can find this data on HuggingFace.

Loading transcripts...

Loading chunks...

Loading events...

Loading triplets...

Loading entities...

✅ All tables written to SQLite.

await bulk_transcript_ingestion(transcripts, sqlite_conn)

from cb_functions import load_db_from_hf

sqlite_conn = load_db_from_hf()

import numpy

import pandas

import scipy

print("numpy :", numpy. version)

print("pandas:", pandas. version)

print("scipy :", scipy. version)

id text company date quarter

fe212bc0 9b3d-44ed-91ca- \n\nThomson Reuters StreetEvents NVDA 2019 02- Q4 2019
7

bfb856b21aa6 Event Transcr... 14T00:00:00

7c0a6f9c-9279 4714-b25e- \n\nThomson Reuters StreetEvents AMD 2019 04- Q1 2019
8

8be20ae8fb99 Event Transcr... 30T00:00:00

3.3. Knowledge Graphs

3.3.1 Building our Knowledge Graph with NetworkX

When constructing the knowledge graph, canonical entity identifiers derived from triplets

ensure accurate mapping of entity names, allowing storage of detailed temporal metadata

directly on edges. Specifically, the implementation utilizes attributes:

valid_at, invalid_at, and temporal_type for Temporal Validity, representing real-world

accuracy at specific historical moments—critical for analysis of historical facts.

 Optionally, attributes created_at and expired_at may also be used for Transactional

Validity, enabling audit trails and source attribution by tracking when information was

recorded, updated, or corrected.

Transactional validity is particularly beneficial in scenarios such as:

Finance: Determining the accepted financial facts about Company X’s balance sheet

on a specific historical date, based on contemporaneously accepted knowledge.

Law: Identifying applicable legal frameworks as understood at a contract signing

date, or compliance obligations recognized at past dates.

Journalism: Assessing if previously reported information has become outdated,

ensuring press releases and reporting remain accurate and credible over time.

import networkx as nx

Print descriptive notes about the graph

print(f"Graph has {G.number_of_nodes()} nodes and {G.number_of_edges()} edges")

Get some basic graph statistics

print(f"Graph density: {G.number_of_edges() / (G.number_of_nodes() * (G.number_of_nodes() -

Sample some nodes to see their attributes

sample_nodes = list(G.nodes(data=True))[:5]

print("\nSample nodes (first 5):")

for node_id, attrs in sample_nodes:

print(f" {node_id}: {attrs}")

Sample some edges to see their attributes

sample_edges = list(G.edges(data=True))[:5]

print("\nSample edges (first 5):")

for u, v, attrs in sample_edges:

print(f" {u} -> {v}: {attrs}")

Get degree statistics

degrees = [d for _, d in G.degree()]

print("\nDegree statistics:")

print(f" Min degree: {min(degrees)}")

print(f" Max degree: {max(degrees)}")

print(f" Average degree: {sum(degrees) / len(degrees):.2f}")

Loading transcripts...

✅ All tables written to SQLite.
Loading chunks...

✅ All tables written to SQLite.
Loading events...

✅ All tables written to SQLite.
Loading triplets...

✅ All tables written to SQLite.
Loading entities...

✅ All tables written to SQLite.
2282 nodes, 13150 edges

from cb_functions import build_graph, load_db_from_hf

conn = load_db_from_hf()

G = build_graph(conn)

print(G.number_of_nodes(), "nodes,", G.number_of_edges(), "edges")

Create a visualization of the knowledge graph

import matplotlib.pyplot as plt

import networkx as nx

import numpy as np

Create a smaller subgraph for visualization (reduce data for clarity)

Get nodes with highest degrees for a meaningful visualization

degrees = dict(G.degree())

top_nodes = sorted(degrees.items(), key=lambda x: x[1], reverse=True)[:20] # Reduced from

visualization_nodes = [node for node, _ in top_nodes]

Create subgraph with these high-degree nodes

graph = G.subgraph(visualization_nodes)

print(f"Visualization subgraph: {graph.number_of_nodes()} nodes, {graph.number_of_edges()}

Create the plot with better styling

fig, ax = plt.subplots(figsize=(18, 14))

fig.patch.set_facecolor("white")

Use hierarchical layout for better structure

try:

Try hierarchical layout first

pos = nx.nx_agraph.graphviz_layout(graph, prog="neato")

except (ImportError, nx.NetworkXException):

Fall back to spring layout with better parameters

pos = nx.spring_layout(graph, k=5, iterations=100, seed=42)

Calculate node properties

node_degrees = [degrees[node] for node in graph.nodes()]

max_degree = max(node_degrees)

min_degree = min(node_degrees)

Create better color scheme

colors = plt.cm.plasma(np.linspace(0.2, 0.9, len(node_degrees)))

node_colors = [colors[i] for i in range(len(node_degrees))]

Draw nodes with improved styling

node_sizes = [max(200, min(2000, deg * 50)) for deg in node_degrees] # Better size scaling

nx.draw_networkx_nodes(graph, pos,

node_color=node_colors,

node_size=node_sizes,

alpha=0.9,

Check if graph is connected (considering it as undirected for connectivity)

undirected_G = G.to_undirected()

print("\nConnectivity:")

print(f" Number of connected components: {len(list(nx.connected_components(undirected_G)))

print(f" Is weakly connected: {nx.is_weakly_connected(G)}")

edgecolors="black",

linewidths=1.5,

ax=ax)

Draw edges with better styling

edge_weights = []

for _, _, _ in graph.edges(data=True):

edge_weights.append(1)

nx.draw_networkx_edges(graph, pos,

alpha=0.4,

edge_color="#666666",

width=1.0,

arrows=True,

arrowsize=15,

arrowstyle="->",

ax=ax)

Add labels for all nodes with better formatting

labels = {}

for node in graph.nodes():

node_name = graph.nodes[node].get("name", str(node))

Truncate long names

if len(node_name) > 15:

node_name = node_name[:12] + "..."

labels[node] = node_name

nx.draw_networkx_labels(graph, pos, labels,

font_size=9,

font_weight="bold",

font_color="black", # changed from 'white' to 'black'

ax=ax)

Improve title and styling

ax.set_title("Temporal Knowledge Graph Visualization\n(Top 20 Most Connected Entities)",

fontsize=18, fontweight="bold", pad=20)

ax.axis("off")

Add a better colorbar

sm = plt.cm.ScalarMappable(cmap=plt.cm.plasma,

norm=plt.Normalize(vmin=min_degree, vmax=max_degree))

sm.set_array([])

cbar = plt.colorbar(sm, ax=ax, shrink=0.6, aspect=30)

cbar.set_label("Node Degree (Number of Connections)", rotation=270, labelpad=25, fontsize=1

cbar.ax.tick_params(labelsize=10)

Add margin around the graph

ax.margins(0.1)

plt.tight_layout()

plt.show()

Print some information about the visualized nodes

print("\nTop entities in visualization:")

for i, (node, degree) in enumerate(top_nodes[:10]):

node_name = G.nodes[node].get("name", "Unknown")

print(f"{i+1:2d}. {node_name} (connections: {degree})")

Create an improved function for easier graph visualization

def visualise_graph(G, num_nodes=20, figsize=(16, 12)):

"""

Visualize a NetworkX graph with improved styling and reduced data.

Args:

G: NetworkX graph

num_nodes: Number of top nodes to include in visualization (default: 20)

figsize: Figure size tuple

"""

degrees = dict(G.degree())

top_nodes = sorted(degrees.items(), key=lambda x: x[1], reverse=True)[:num_nodes]

visualization_nodes = [node for node, _ in top_nodes]

Create subgraph

subgraph = G.subgraph(visualization_nodes)

Create the plot

fig, ax = plt.subplots(figsize=figsize)

fig.patch.set_facecolor("white")

Layout with better parameters

try:

pos = nx.nx_agraph.graphviz_layout(subgraph, prog="neato")

except (ImportError, nx.NetworkXException):

pos = nx.spring_layout(subgraph, k=4, iterations=100, seed=42)

Node properties

node_degrees = [degrees[node] for node in subgraph.nodes()]

max_degree = max(node_degrees)

min_degree = min(node_degrees)

Better color scheme

colors = plt.cm.plasma(np.linspace(0.2, 0.9, len(node_degrees)))

node_colors = list(colors)

Draw nodes

node_sizes = [max(200, min(2000, deg * 50)) for deg in node_degrees]

nx.draw_networkx_nodes(subgraph, pos,

node_color=node_colors,

node_size=node_sizes,

alpha=0.9,

edgecolors="black",

linewidths=1.5,

Get node information on NVIDIA, filtering for what they have developed

Find the node key for NVIDIA (case-insensitive match on name)

nvidia_node = None

for node, data in graph.nodes(data=True):

ax=ax)

Draw edges

nx.draw_networkx_edges(subgraph, pos,

alpha=0.4,

edge_color="#666666",

width=1.0,

arrows=True,

arrowsize=15,

ax=ax)

Labels

labels = {}

for node in subgraph.nodes():

node_name = subgraph.nodes[node].get("name", str(node))

if len(node_name) > 15:

node_name = node_name[:12] + "..."

labels[node] = node_name

nx.draw_networkx_labels(subgraph, pos, labels,

font_size=9,

font_weight="bold",

font_color="black", # changed from 'white' to 'black'

ax=ax)

ax.set_title(f"Temporal Knowledge Graph\n(Top {num_nodes} Most Connected Entities)",

fontsize=16, fontweight="bold", pad=20)

ax.axis("off")

Colorbar

sm = plt.cm.ScalarMappable(cmap=plt.cm.plasma,

norm=plt.Normalize(vmin=min_degree, vmax=max_degree))

sm.set_array([])

cbar = plt.colorbar(sm, ax=ax, shrink=0.6)

cbar.set_label("Connections", rotation=270, labelpad=20)

ax.margins(0.1)

plt.tight_layout()

plt.show()

return subgraph

3.3.2 NetworkX versus Neo4j in Production

To e ectively implement and utilize the knowledge graph we utilise NetworkX for the

purposes of this cookbook for several reasons.

 Python integration: NetworkX seamlessly integrates with Python, facilitating rapid

prototyping and iterative development

 Ease of setup: It requires minimal initial setup, not requiring a client-server setup

featured in alternatives. This makes it ideal for users who wish to run this cookbook

themselves

 Compatibility with In-Memory Databases: NetworkX can e ciently manage graphs

with fewer than c.100,000 nodes, which is appropriate for this cookbook's data scale

However, it should be noted that NetworkX lacks built-in data persistence and is therefore

not typically recommended for production builds.

For production builds, Neo4j emerges as a more optimal choice due to a wider set of

production-centric features, including:

Show all edges where NVIDIA is the subject and the predicate is 'DEVELOPED' or 'LAUNC

print("\nEdges where NVIDIA developed or launched something:")

for _, v, _, d in graph.out_edges(nvidia_node, data=True, keys=True):

pred = d.get("predicate", "").upper()

if pred in {"LAUNCHED"}:#, "LAUNCHED", "PRODUCES", "CREATED", "INTRODUCED"}:

print(f" {nvidia_node} -[{pred}]-> {v} | {d}")

Optionally, print the statement if available

if "statement" in d:

print(f" Statement: {d['statement']}")

else:

print("NVIDIA node not found in the graph.")

if nvidia_node is not None:

print(f"Node key for NVIDIA: {nvidia_node}")

print("Node attributes:")

for k, v in graph.nodes[nvidia_node].items():

print(f" {k}: {v}")

if "nvidia" in str(data.get("name", "")).lower():

nvidia_node = node

break

Native Graph Storage and Processing: Optimized for graph data with high-

performance and e cient handling

Optimized Query Engine: Leverages the Cypher query language, explicitly designed

for e cient graph traversal

Scalability and Persistence: E ectively manages extensive graph datasets, ensuring

data persistence, reliability, and durability

Production Tooling: O ers integrated tooling such as Neo4j Bloom for vislualization

and Neo4j Browser for exploration, enhancing user interaction and analysis

Advanced Access Control: Provides granular security options to control data access

3.4. Evaluation and Suggested Feature Additions

The approach presented above o ers a foundational implementation of a Temporal Agent

for knowledge graph construction. However, it does not fully address complexities or all

possible edge cases encountered in real-world applications. Below, we outline several

possible enhancements that could be used to further improve the robustness and

applicability of this implementation. In the later "Prototype to Production" section, we

expand on these enhancements by suggesting additional considerations essential for

deploying such agents e ectively in production environments. Further details on scaling

to production are included in the Appendix.

3.4.1. Temporal Agent

Statement Extraction and Temporal Events

Duplicate Temporal Events

In this cookbook, the Temporal Agent does not identify or merge duplicate Temporal

Events arising from statements referring to the same event, especially when originating

from di erent sources. These events are saved separately rather than unified into a single,

consolidated event.

Static and Dynamic Representation

There's an opportunity to enrich the dataset by consistently capturing both Static and

Dynamic representations of events, even when explicit statements aren't available.

temporal_event = {

"summary": "The event ran from April to September",

"label": "dynamic",

"valid_at": {

"date": "2025-04-01",

"literal": False,

"abstract_date": "2025-04"

},

"invalid_at": {

"date": "2025-09-30",

"literal": False,

"abstract_date": "2025-09"

}

}

For Dynamic events without corresponding Static statements, creating explicit Static

entries marking the start () and end () can enhance temporal clarity,

particularly for the purposes of retrieval tasks.

Conversely, Static events lacking Dynamic counterparts can have Dynamic relationships

inferred, though this would require careful checks for potential invalidation within

statement cohorts.

Date Extraction

The implementation in this cookbook does not explictly record assumptions made during

date disambiguation.

In the absence of an explicit publication date, the present date is used implicitly as a

reference. For some workflows, this assumption may have to be changed to meet the

needs of the end users.

Abstract dates (e.g., "until next year") are resolved into explicit dates, however the

vagueness is not represented in the stored data structure. The inclusion of more granular

metadata can capture more abstract date ranges:

This structure permits the explicit representation of both literal and abstract date

interpretations.

Triplet Extraction

There are several possible avenues for improving the Triplet Extraction presented in this

cookbook. These include:

valid_at invalid_at

Utilising a larger model and optimizing the extraction prompts further

Running the extraction process multiple times and consolidating results via e.g., a

modal pooling mechanism to improve the accuracy and confidence in a prediction

 Incorporating entity extraction tools (e.g., Spacy and leveraging predefined

ontologies tailored to specific use cases for improved consistency and reliability

3.4.2. Invalidation Agent

The presented Invalidation Agent does not refine temporal validity ranges, but one could

extend its functionality to perform said refinement as well as intra-cohort invalidation

checks to identify temporal conflicts among incoming statements.

There are also several opportunities for e ciency enhancements.

Transitioning from individual (1:1) comparisons to omni-directional (1:many)

invalidation checks would reduce the number of LLM calls required

Applying network analysis techniques to cluster related statements could enable

batching of invalidation checks. Clusters can be derived from several properties

including semantic similarity, temporal proximity, or more advanced techniques. This

would significantly reduce bottlenecks arising from sequential processing, which is

particularly important when ingesting large volumes of data

4. Multi-Step Retrieval Over a
Knowledge Graph

Simple retrieval systems can often handle straightforward "look-up" queries with a single

search against a vector store or document index. In practice, though, agents deployed in

real-world settings frequently need more. User questions often require LLMs to synthesise

information from multiple parts of a knowledge base or across several endpoints.

The temporal knowledge graphs introduced earlier provide a natural foundation for this,

explicitly encoding entities (nodes), relationships (edges), and their evolution over time.

Multi-step retrieval allows us to fully harness the capabilities of these graphs. It involves

iteratively traversing the graph through a series of targeted queries, enabling the agent to

gather all necessary context before forming a response.

We can see the power of multi-step retrieval below:

In this case, the initial query to the knowledge graph returned no information on some

competitors’ R&D activities. Rather than failing silently, the system pivoted to an

alternative source—the strategy content—and successfully located the missing

information. This multi-step approach allowed it to navigate sparse data and deliver a

complete response to the user.

4.1. Building our Retrieval Agent

At a high level, we will build out the following structure:

 User question → Planner → Orchestrator

A planner utilising GPT 4.1 will decompose the user's question into a small sequence

of proposed graph operations. This is then passed to the orchestrator to execute

 Tool calls to retrieve information from the Temporal Knowledge Graph

Considering the user query and the plan, the Orchestrator (o4-mini) makes a series of

initial tool calls to retrieve information from the knowledge graph

 Loop until done → Generate answer

The responses to the tool calls are fed back to the Orchestrator which can then

decide to either make more queries to the graph or answer the user's question

%pip install --upgrade openai

from openai import AsyncOpenAI

client = AsyncOpenAI()

from cb_functions import build_graph, load_db_from_hf

conn = load_db_from_hf()

G = build_graph(conn)

print(G.number_of_nodes(), "nodes,", G.number_of_edges(), "edges")

4.1.1. Imports

4.1.2. (Re-)Initialise OpenAI Client

4.1.3. (Re-)Load our Temporal Knowledge Graph

4.1.4. Planner

Planning steps are incorporated in many modern LLM applications.

The explicit inclusion of a planning step improves overall performance by having the

system consider the full scope of the problem before acting.

In this implementation, the plan remains static. In longer-horizon agentic pipelines,

however, it's common to include mechanisms for replanning or updating the plan as the

system progresses.

Broadly, planners take two forms:

 Task-orientated (used in this cookbook)

The planner outlines the concrete subtasks the downstream agentic blocks should

execute. The tasks are phrased in an action-orientated sense such as "1. Extract

information on R&D activities of Company IJK between 2018 2020." These planners

are typically preferred when the goal is mostly deterministic and the primary risk is

skipping or duplicating work.

Example tasks where this approach is useful:

Law: "Extract and tabulate termination-notice periods from every master service

agreement executed in FY24"

Finance: "Fetch every 10 K filed by S& P 500 banks for FY24, extract tier-1 capital

and liquidity coverage ratios, and output a ranked table of institutions by capital

adequacy"

Automotive: "Compile warranty-claim counts by component for Model XYZ

vehicles sold in Europe since the new emissions regulation came into force"

 Manufacturing: "Analyse downtime logs from each CNC machine for Q1 2025,

classify the root-cause codes, and generate a Pareto chart of the top five failure

drivers"

 Hypothesis-orientated

The plan is framed as a set of hypotheses the system can confirm, reject, or refine in

response to the user's question. Each step represents a testable claim, optionally

paired with suggested actions. This approach excels in open-ended research tasks

where new information can significantly reshape the solution space.

Example tasks where this approach is useful:

Law: "Does the supplied evidence satisfy all four prongs of the fair-use doctrine?

Evaluate each prong against relevant case law"

Pharmaceuticals: "What emerging mRNA delivery methods could be used to

target the IRS1 gene to treat obesity?"

Finance: "Is Bank Alpha facing a liquidity risk? Compare its LCR trend, interbank

async def initial_planner(user_question: str) -> str:

"""Return an initial plan for answering the user's question."""

initial_planner_system_prompt = (

"You work for the leading financial firm, ABC Incorporated, one of the largest fina

"Due to your long and esteemed tenure at the firm, various equity research teams wi

"for guidance on research tasks they are performing. Your expertise is particularly

"ABC Incorporated's proprietary knowledge base of earnings call transcripts. This c

"extracted from the earnings call transcripts of various companies with labelling f

"were, valid. You are an expert at providing instructions to teams on how to use th

"their research queries. \n"

"The teams will have access to the following tools to help them retrieve informatio

"1. `factual_qa`: Queries the knowledge graph for time-bounded factual relationship

"2. `trend_analysis`: Wraps the factual_qa tool with a specialised agent to perform

borrowing costs, and deposit-outflow and anything else you find that is

interesting"

Prompting our planner

We will define two prompts (one

and one

) for the initial planner.

The most notable characteristic of our system prompt below is the use of 'persona-based'

prompting. We prompt the LLM giving it a persona of an internal company expert. This

helps to frame the tone of the model's response to the behaviour that we want - a direct,

action-orientated task list that is fit for the financial industry.

This is then extended in the user prompt, where we prepend the

information on this specific situation and how the planner should handle it.

with

In production settings you can super-charge this template by dynamically enriching the

prompt before each call. You can inject information on the user's profile —sector, role,

preferred writing style, prior conversation context—so the planner tailors its actions to

their environment. You can also perform a quick “question-building” loop: have the

assistant propose clarifying questions, gather the answers, and merge them back into the

prompt so the planner starts with a well-scoped, information-rich request rather than a

vague one.

Another flow that can work well is to allow users to view the plan and optionally edit it

before it is executed. This is particularly e ective when your AI system is acting in more of

an assistant role. Giving domain experts such as lawyers or pharmaceutical researchers

the flexibility to steer and incorporate their ideas and research directions deeper into the

system often has the dual benefit of improving both system performance and end user

satisfaction.

system user

user_question

plan = await initial_planner("How can we find out how AMD's research priorties have changed

print(plan)

"It shoudld also be noted that the trend_analysis tool can accept multiple predicat

"You may recommend that multiple calls are made to the tools with different e.g., p

"Your recommendation should explain to the team how to retrieve the information fro

"tools only. "

)

initial_planner_user_prompt = (

"Your top equity research team has came to you with a research question they are tr

"You should use your deep financial expertise to succinctly detail a step-by-step p

"this information from the the company's knowledge base of earnings call transcript

"You should produce a concise set of individual research tasks required to thorough

"These tasks should cover all of the key points of the team's research task without

"The question the team has is: \n\n"

f"{user_question} \n\n"

"Return your answer under a heading 'Research tasks' with no filler language, only

)

input_messages = [

{"role":"system", "content": initial_planner_system_prompt},

{"role":"user", "content": initial_planner_user_prompt}

]

initial_plan = await client.responses.create(

model="gpt-4.1",

input=input_messages

)

return initial_plan.output_text

4.1.5. Function calling

OpenAI function calling (otherwise known as tools) enable models to perform specific

external actions by calling predefined functions. Some of the tools provided on the

OpenAI platform include:

Code interpreter: Executes code for data analysis, math, plotting, and file

manipulation

Web search: Include data from the internet in model response generation

File search: Search the contents of uploaded files for context

Image generation: Generate or edit images using GPT image

 Remote MCP servers: Give the model access to new capabilities via Model Context

Protocol (MCP) servers

Other cookbooks cover how to build tools for use with LLMs. In this example, we’ll develop

several tools designed to e ciently explore the temporal knowledge graph and help

answer the user’s question.

There are several schools of thought on tool design, and the best choice depends on the

application at hand.

Fixed Tools

In this context, 'fixed' tools refer to those with a rigid, well-defined functionality. Typically,

these tools accept a limited number of specific arguments and perform clearly outlined

tasks. For instance, a fixed tool might execute a simple query such as "Get today's weather

for the user's location." Due to their structured nature, these tools excel at performing

consistent lookups or monitoring values within structured environments like ERP systems,

regulatory frameworks, or dashboards. However, their rigidity limits flexibility, prompting

users to often replace them with more dynamic, traditional data pipelines, particularly for

continuous data streaming.

Examples of fixed tools in various industries include:

Finance: "What's the current exchange rate from USD to EUR?"

Pharmaceuticals: "Retrieve the known adverse e ects for Drug ABC."

 Manufacturing: "What was the defect rate for batch #42?"

Free-form

Free-form tools represent the most flexible end of the tool spectrum. These tools are

capable of executing complex, open-ended tasks with minimal constraints on input

structure. A common example is a code interpreter, capable of handling diverse analytical

tasks. Although their flexibility o ers substantial advantages, they can also introduce

unpredictability and can be more challenging to optimize for consistent reliability.

In industry applications, free-form tools can look like:

Finance: "Backtest this momentum trading strategy using ETF price data over the

past 10 years, and plot the Sharpe ratio distribution."

Automotive: "Given this raw telemetry log, identify patterns that indicate early brake

failure and simulate outcomes under various terrain conditions."

 Pharmaceuticals: "Create a pipeline that filters for statistically significant gene

upregulation from this dataset, then run gene set enrichment analysis and generate a

publication-ready figure."

Semi-structured Tools (used in this cookbook)

Modern agentic workflows frequently require tools that e ectively balance structure and

flexibility. Semi-structured tools are designed specifically to manage this middle ground.

They accept inputs in moderately complex formats—such as text fragments, JSON-like

arguments, or small code snippets—and often embed basic reasoning, retrieval, or

decision-making capabilities. These tools are ideal when tasks are well-defined but not

entirely uniform, such as when the required dataset or service is known, but the query or

expected output varies.

Two common paradigms of semi-structured tools are:

Extended Capabilities: Tools that function as specialized agents themselves,

incorporating internal logic and analysis routines

 Flexible Argument Interfaces: Tools permitting the LLM to pass expressive yet

structured arguments, such as detailed queries, filters, or embedded functions

Semi-structured tools are particularly valuable when:

Delegating specific yet non-trivial tasks (like searches, transformations, or

summarizations) to specialized tools

 The source data or APIs are known, but the results returned can be unpredictable

In production environments, these tools are often preferable to free-form tools, like code

interpreters, due to their enhanced reliability and performance. For instance, executing

complex, multi-step queries against large Neo4j knowledge graphs is more reliable and

e cient using optimized Cypher queries templated within semi-structured tools rather

than generating each query from scratch.

Industry applications of semi-structured tools include:

Finance: "Extract all forward-looking risk factors from company filings for Q2 2023."

Automotive: "Identify recurring electrical faults from maintenance logs across EV

models launched after 2020."

 Pharmaceuticals: "Locate omics data supporting the hypothesis that a specific

mRNA treatment e ectively upregulates the IRS1 gene."

Creating tools for our retriever to use

Factual Q&A

The tool provides an e cient way for our agent to retrieve information from

our temporal knowledge graph pertaining to a particular company, topic, and date range.

This will help the agent answer questions about the data such as "What were AMD's

earnings in Q3 2017?"

This tool sits somewhere in the middle of the fixed and semi-structured tools we

introduced earlier. This is generally quite a rigid tool in that it restricts the agent to a small

factual_qa

entity

number of parameters. However, the degrees of freedom in the input are large and the tool

is still flexible in what information it can retrieve from the knowledge graph. This helps

avoid the need for the core agent to write new queries for networkx from scratch on each

query, improving accuracy and latency.

The tool has the following arguments:

: This is the entity (or object with respect to triplet ontology) that the tool

should retrieve information for

: This is the lower bound of the date range that the tool should

retrieve over

: This is the upper bound of the date range that the tool should

retrieve over

: This is the name of the predicate that the tool will connect the to

perform a retrieval

We begin by loading the predicate definitions. We will use these to improve error tolerance

in the tool, using a GPT 4.1-nano to normalize the predicate passed in the argument to a

valid predicate name.

Redefine the predicate definitions as we will need them here

PREDICATE_DEFINITIONS = {

"IS_A": "Denotes a class-or-type relationship between two entities (e.g., 'Model Y IS_A

"HAS_A": "Denotes a part-whole relationship between two entities (e.g., 'Model Y HAS_A

"LOCATED_IN": "Specifies geographic or organisational containment or proximity (e.g., h

"HOLDS_ROLE": "Connects a person to a formal office or title within an organisation (CE

"PRODUCES": "Indicates that an entity manufactures, builds, or creates a product, servi

"SELLS": "Marks a commercial seller-to-customer relationship for a product or service (

"LAUNCHED": "Captures the official first release, shipment, or public start of a produc

"DEVELOPED": "Shows design, R&D, or innovation origin of a technology, product, or capa

"ADOPTED_BY": "Indicates that a technology or product has been taken up, deployed, or i

"INVESTS_IN": "Represents the flow of capital or resources from one entity into another

"COLLABORATES_WITH": "Generic partnership, alliance, joint venture, or licensing relati

"SUPPLIES": "Captures vendor–client supply-chain links or dependencies (provides to, so

"HAS_REVENUE": "Associates an entity with a revenue amount or metric—actual, reported,

"INCREASED": "Expresses an upward change in a metric (revenue, market share, output) re

"DECREASED": "Expresses a downward change in a metric relative to a prior period or bas

"RESULTED_IN": "Captures a causal relationship where one event or factor leads to a spe

"TARGETS": "Denotes a strategic objective, market segment, or customer group that an en

"PART_OF": "Expresses hierarchical membership or subset relationships (division, subsid

"DISCONTINUED": "Indicates official end-of-life, shutdown, or termination of a product,

"SECURED": "Marks the successful acquisition of funding, contracts, assets, or rights b

}

entity

start_date_range

end_date_range

predicate

Helper functions and models

from datetime import datetime

from pydantic import BaseModel, Field, ValidationError, field_validator

def _as_datetime(ts) -> datetime | None:

"""Helper function to coerce possible timestamp formats to `datetime`.""" # noqa: D401

if ts is None:

return None

if isinstance(ts, datetime):

return ts

for fmt in ("%Y-%m-%d", "%Y/%m/%d", "%Y-%m-%dT%H:%M:%S"):

try:

return datetime.strptime(ts, fmt)

except ValueError:

continue

return None

class PredicateMatching(BaseModel):

"""Class for structured outputs from model to coerce input to correct predicate format.

reasoning: str = Field(description="Use this space to reason about the correct predicat

predicate_match: str = Field(description="The predicate that aligns with the dictionary

class PredicateMatchValidation(BaseModel):

"""Class for validating the outputs from the model that tries to coerce predicate argum

predicate: str

@field_validator("predicate")

@classmethod

We define several helper functions for the factual QA tool.

First is . This tool is used to coerce the arguments that define the date range

to the correct datetime format.

Next, we introduce two new data models: PredicateMatching and

. PredicateMatching defines the output format for the GPT 4.1-

nano call that matches the predicate in the function arguments to valid predicate names.

then performs a secondary validation step to assert that this

output from GPT 4.1-nano is a valid predicate name, leveraging a Pydantic field validator.

This process helps to ensure that the tool runs smoothly and helps to eliminate some of

the rare edge cases which would lead to an unsuccessful graph query.

_as_datetime

PredicateMatchValidation

PredicateMatchValidation

async def factual_qa(

entity: str,

start_date_range: datetime,

end_date_range: datetime,

predicate: str

) -> str:

"""

Query the knowledge-graph for relationships attached to *entity* that match

predicate and fall within the requested time-window.

The response is rendered as:

Subject – PREDICATE – Object [Valid-From]

Statement: "..."

Type: FACT • Value: 42

Our factual QA tool can be decomposed into four steps.

 Predicate coercion

If the provided predicate is not found in the

step uses GPT 4.1-nano to coerce it into a valid predicate

 Entity location

dictionary, this

Performs fuzzy matching to identify the corresponding entity nodes within the

networkx graph

 Edge collection

Retrieves both inbound and outbound edges associated with the identified entity

nodes

 Response formatting

Structures the collected information into a well-formatted response that is easy for

the orchestrator to consume

def predicate_in_definitions(cls, v):

"""Return an error string if the predicate is not in PREDICATE_DEFINITIONS."""

if v not in PREDICATE_DEFINITIONS:

return f"Error: '{v}' is not a valid predicate. Must be one of: {list(PREDICATE

return v

PREDICATE_DEFINITIONS

If no matches are found (or on error) a human-readable explanation is returned.

"""

Checks that the date range passed is logical

if start_date_range > end_date_range:

return (

"You used the `factual_qa` tool incorrectly last time. You provided a "

"`start_date_range` that was more recent than the `end_date_range`. "

"`end_date_range` must be ≥ `start_date_range`."

)

---- (1) predicate coercion / validation -----------------------

if predicate not in PREDICATE_DEFINITIONS:

try:

predicate_definitions_str = "\n".join(

f"- {k}: {v}" for k, v in PREDICATE_DEFINITIONS.items()

)

coercion_prompt = (

"You are a helpful assistant that matches predicates to a dictionary of "

"predicate definitions. Return the best-matching predicate **and** your rea

f"Dictionary:\n{predicate_definitions_str}\n\n"

f"Predicate to match: {predicate}"

)

completion = await client.beta.chat.completions.parse(

model="gpt-4.1-nano",

messages=[{"role": "user", "content": coercion_prompt}],

response_format=PredicateMatching,

)

coerced_predicate = completion.choices[0].message.parsed.predicate_match

Validate against the enum / model we expect

_ = PredicateMatchValidation(predicate=coerced_predicate)

predicate = coerced_predicate

except ValidationError:

return (

"You provided an invalid predicate. "

f"Valid predicates are: {list(PREDICATE_DEFINITIONS.keys())}"

)

except Exception:

Coercion failed – fall back to original predicate

pass

predicate_upper = predicate.upper()

entity_lower = entity.lower()

---- (2) locate the entity node by fuzzy match -----------------

try:

target_node = None

for node, data in G.nodes(data=True):

node_name = data.get("name", str(node))

if entity_lower in node_name.lower() or node_name.lower() in entity_lower:

target_node = node

break

if target_node is None:

return f"Entity '{entity}' not found in the knowledge graph."

except Exception as e:

return f"Error locating entity '{entity}': {str(e)}"

---- (3) collect matching edges (outgoing + incoming) ----------

matching_edges = []

def _edge_ok(edge_data):

"""Return True if edge is temporally valid in the requested window."""

valid_at = _as_datetime(edge_data.get("valid_at"))

invalid_at = _as_datetime(edge_data.get("invalid_at"))

if valid_at and end_date_range < valid_at:

return False

if invalid_at and start_date_range >= invalid_at:

return False

return True

Outgoing

try:

for _, tgt, _, ed in G.out_edges(target_node, data=True, keys=True):

pred = ed.get("predicate", "").upper()

if predicate_upper in pred and _edge_ok(ed):

matching_edges.append(

{

"subject": G.nodes[target_node].get("name", str(target_node)),

"predicate": pred,

"object": G.nodes[tgt].get("name", str(tgt)),

**ed,

}

)

except Exception:

pass

Incoming

try:

for src, _, _, ed in G.in_edges(target_node, data=True, keys=True):

pred = ed.get("predicate", "").upper()

if predicate_upper in pred and _edge_ok(ed):

matching_edges.append(

{

"subject": G.nodes[src].get("name", str(src)),

"predicate": pred,

"object": G.nodes[target_node].get("name", str(target_node)),

**ed,

}

)

except Exception:

result = await factual_qa(

entity="Amd",

start_date_range=datetime(2016, 1, 1),

end_date_range=datetime(2020, 1, 1),

predicate="launched"

pass

(4) format the response

if not matching_edges:

s = start_date_range.strftime("%Y-%m-%d")

e = end_date_range.strftime("%Y-%m-%d")

return (

f"No data found for '{entity}' with predicate '{predicate}' "

f"in the specified date range ({s} to {e})."

)

lines = [

f"Found {len(matching_edges)} relationship"

f"{'s' if len(matching_edges) != 1 else ''} for "

f"'{entity}' with predicate '{predicate}':",

""

]

for idx, edge in enumerate(matching_edges, 1):

value = edge.get("value")

statement = edge.get("statement")

statement_tp = edge.get("statement_type")

valid_from = edge.get("valid_at")

First line: Subject – PREDICATE – Object

triplet = f"{edge['subject']} – {edge['predicate']} – {edge['object']}"

if valid_from:

triplet += f" [Valid-from: {valid_from}]"

if value is not None:

triplet += f" (Value: {value})"

lines.append(f"{idx}. {triplet}")

Second line: Statement (truncated to 200 chars) + Type

if statement:

snippet = statement if len(statement) <= 200 else statement[:197] + "…"

lines.append(f' Statement: "{snippet}"')

if statement_tp:

lines.append(f" Type: {statement_tp}")

lines.append("") # spacer

return "\n".join(lines)

factual_qa_schema = {

"type": "function",

"name": "factual_qa",

"description": "Queries the knowledge graph for time-bounded factual relationships involv

"parameters": {

"type": "object",

"properties": {

"entity": {

"type": "string",

"description": "The name of the entity (e.g., company or organization) whose relati

},

"start_date_range": {

"type": "string",

"format": "date",

"description": "The start (inclusive) of the date range to filter factual relations

},

"end_date_range": {

"type": "string",

"format": "date",

"description": "The end (inclusive) of the date range to filter factual relationshi

},

"predicate": {

"type": "string",

"description": "The type of relationship or topic to match against the knowledge gr

}

},

"required": [

"entity",

"start_date_range",

"end_date_range",

"predicate"

],

"additionalProperties": False

}

}

Trend analysis

The tool is designed to compare how specific metrics or signals evolve

over time—often across multiple companies and/or topics. It exposes a structured

interface that lets the agent specify the time window, subject set, and target metric, then

delegates the comparison logic to a specialised agent for handling this analysis. In this

)

print(result)

trend_analysis

case we utilised o4-mini with high reasoning e ort as this is a 'harder' anaysis task.

This allows us to build a highly focused and optimised pipeline for dealing with

comparison-style tasks. Whilst this could be built into the core orchestrator itself, it's often

more manageable to split this into specialised tools so they can be more easily swapped

out or updated later without much concern for impact on the wider system.

import asyncio

from datetime import datetime

async def trend_analysis(

question: str,

companies: list[str],

start_date_range: datetime,

end_date_range: datetime,

topic_filter: list[str],

) -> str:

"""

Aggregate knowledge-graph facts for multiple companies and topics.

For every (company, topic) pair, this calls `factual_qa` with the same

date window and returns one concatenated, human-readable string.

Sections are separated by blank lines and prefixed with:

=== <Company> · <Topic> ===

If `factual_qa` raises an exception, an ⚠ line with the error message

is included in place of that section.

"""

helper

async def _fetch(company: str, predicate: str) -> str:

return await factual_qa(

entity=company,

start_date_range=start_date_range,

end_date_range=end_date_range,

predicate=predicate,

)

-------- schedule every call (concurrently) --------------------------

pairs = [(c, p) for c in companies for p in topic_filter]

tasks = [asyncio.create_task(_fetch(c, p)) for c, p in pairs]

gather results

results = await asyncio.gather(*tasks, return_exceptions=True)

assemble final string

result = await trend_analysis(

question="How have AMD's research priorties changed over time?",

companies=["AMD"],

start_date_range=datetime(2016, 1, 1),

end_date_range=datetime(2020, 1, 1),

topic_filter=["launched", "researched", "developed"]

)

print(result)

trend_analysis_schema = {

"type": "function",

"name": "trend_analysis",

sections: list[str] = []

for (company, predicate), res in zip(pairs, results, strict=True):

header = f"=== {company} · {predicate} ==="

if isinstance(res, Exception):

sections.append(f"{header}\n⚠ {type(res). name }: {res}")

else:

sections.append(f"{header}\n{res}")

joined = "\n\n".join(sections)

analysis_user_prompt = (

"You are a helpful assistant"

"You specialise in providing in-depth analyses of financial data. "

"You are provided with a detailed dump of data from a knowledge graph that contains

"extracted from companies' earnings call transcripts. \n"

"Please summarise the trends from this, comparing how data has evolved over time in

"Your answer should only contain information that is derived from the data provided

"knowledge. The knowledge graph contains data in the range 2016-2020. "

"The data provided is: \n"

f"{joined}\n\n"

f"The user question you are summarizing for is: {question}"

)

analysis = await client.responses.create(

model="o4-mini",

input=analysis_user_prompt,

reasoning={

"effort": "high",

"summary": "auto"

}

)

return analysis.output_text

tools = [

factual_qa_schema,

trend_analysis_schema

]

"description": "Aggregates and compares knowledge-graph facts for multiple companies and

"parameters": {

"type": "object",

"properties": {

"question": {

"type": "string",

"description": "A free-text question that guides the trend analysis (e.g., 'How did

},

"companies": {

"type": "array",

"items": {

"type": "string"

},

"description": "List of companies to compare (e.g., ['Apple', 'Microsoft'])."

},

"start_date_range": {

"type": "string",

"format": "date",

"description": "The start (inclusive) of the date range to filter knowledge-graph f

},

"end_date_range": {

"type": "string",

"format": "date",

"description": "The end (inclusive) of the date range to filter knowledge-graph fac

},

"topic_filter": {

"type": "array",

"items": {

"type": "string"

},

"description": "List of predicates (topics) to query for each company (e.g., ['hire

}

},

"required": [

"question",

"companies",

"start_date_range",

"end_date_range",

"topic_filter"

],

"additionalProperties": False

}

}

4.1.6. Retriever

We design a simple retriever containing only a run method which encompasses the

planning step and a while loop to execute each tool call that the orchestrator makes

before returning a final answer.

import json

class MultiStepRetriever:

"""Retrieve information in multiple steps using an OpenAI client."""

def init (self, client: AsyncOpenAI):

self.client = client

This helps us simplify our tool calling functionality in run()

self.function_map = {

"factual_qa": factual_qa,

"trend_analysis": trend_analysis

}

async def run(self, user_question: str) -> tuple[str, dict]:

"""Run the multi-step retrieval process for a user question."""

Step 1: Generate initial plan

initial_plan = await initial_planner(user_question=user_question)

Step 2: Make initial model call

retriever_user_prompt = (

"You are a helpful assistant. "

"You are provided with a user question: \n\n"

f"{user_question} \n\n"

"You have access to a set of tools. You may choose to use these tools to retrie

"help you answer the user's question. These tools allow you to query a knowledg

"information that has been extracted from companies' earnings call transcripts.

"You should not use your own memory of these companies to answer questions. "

"When returning an answer to the user, all of your content must be derived from

"you have retrieved from the tools used. This is to ensure that is is accurate,

"this knowledge graph has been carefully check to ensure its accuracy. The know

"data spanning from 2016-2020. \n\n"

"You are provided with a plan of action as follows: \n"

f"{initial_plan} \n\n"

"You should generally stick to this plan to help you answer the question, thoug

"from it should you deem it suitable. You may make more than one tool call."

)

input_messages = [

{"role":"user", "content":retriever_user_prompt}

]

response = await self.client.responses.create(

model="gpt-4.1",

input=input_messages,

tools=tools,

parallel_tool_calls=False,

)

Step 3: While loop until no more tool calls are made

tools_used = {}

while response.output[0].type == "function_call":

tool_call = response.output[0]

args = json.loads(tool_call.arguments)

name = tool_call.name

if name in self.function_map:

tool_func = self.function_map[name]

tool_response_text = await tool_func(**args)

input_messages.append(tool_call)

input_messages.append({

"type": "function_call_output",

"call_id": tool_call.call_id,

"output": tool_response_text

})

tools_used[name] = [args, tool_response_text]

response = await self.client.responses.create(

model="gpt-4.1",

input=input_messages,

tools=tools,

parallel_tool_calls=False

)

return response.output_text, tools_used

We can now run our MultiStepRetriever.

retriever = MultiStepRetriever(client=client)

answer, tools_used = await retriever.run(user_question="How have AMD's research & developme

print(answer)

for key, value in tools_used.items():

if value:

print(f"{key}: {value[0]}")

else:

print(f"{key}: [empty list]")

We observe that the answer returned is detailed, and includes a detailed walkthrough of

how AMD's research priorities evolved from 2016 to 2020, with references to the

underlying quotes that were used to derive these answers.

We can also inspect the tools used by our MultiStepRetriever to answer this query.

Appendix section A.5. "Scaling and Productionizing our Retrieval Agent" outlines some

guidelines for how one could take the Retrieval Agent we've built up to production.

4.1.7. Selecting the right model for Multi-Step Knowledge-Graph

Retrieval

Multi-step retrieval agents need strong reasoning to hop through entities and relations,

verify answers, and decide what to do next. Latency still matters to users, but usually less

than raw accuracy. Hence, this is one of the domains where OpenAI's o3 and o4-mini

reasoning models shine.

Once again, for development we recommend a “start big, then specialise” ladder:

 Start with o3 – ensure your retrieval logic (chaining, re-ranking, fallback prompts) is

sound. o3 may also be the best choice for production if your retrieval system is

working with particularly complex data such as pharmaceutical or legal data. You can

test this by looking at the severity of performance degradation with smaller models. If

the drop o in performance is large, consider sticking with o3

 Move to o4-mini

Prompt enhancement - optimise your prompts to push the performance of the

o4-mini system as close to that of the full o3 model

 Reinforcement fine-tuning (RFT) - OpenAI's Reinforcement Fine-Tuning o ering

enables you to fine-tune OpenAI's o-series models to improve their performance

on hard reasoning tasks. With as little as ~50 golden answers you can leverage

the power of reinforcement learning to fine-tune o4-mini which can help it come

close or even exceed the base o3's performance on the same task

 Fallback to GPT 4.1 when latency dominates – for cases when latency is particularly

important or you've tuned your prompts well enough that performance drop-o is

minimal, consider moving to the GPT 4.1 series

Model

Relative

cost

Relative

latency

Intelligence Ideal role in workflow

o3 ★★★ ★★ ★★★

(highest)

Initial prototyping, working with complex

data, golden dataset generation

o4-mini ★★ ★ ★★ Main production engine, can push

 performance with RFT

GPT 4.1 ★ (lowest) ★ (fastest) ★ Latency-critical or large-scale background

series scoring

Why is Reinforcement Fine-Tuning powerful for long horizon, multi-step retrieval tasks?

RFT has a number of benefits over Supervised Fine-Tuning or Direct Preference

Optimization for this use case.

Firstly, reinforcement fine-tuning can be performed with a far small number of examples,

sometimes requiring as little as 50 training examples.

Additionally, RFT eliminates the necessity of providing labeled step-by-step trajectories.

By supplying only the final correct answer, the system learns implicitly how to navigate the

knowledge graph e ectively. This feature is particularly valuable in real-world contexts

where end users typically face time constraints and may struggle to curate the extensive

sets of labeled examples (often numbering in the hundreds or thousands) required by

traditional SFT methods.

4.2 Evaluating your Retrieval System

 Human-annotated “Golden Answers”

The traditional baseline for retrieval evaluation: a curated set of query → gold answer

pairs, vetted by domain experts. Metrics such as precision@k or recall@k are

computed by matching retrieved passages against these gold spans.

Pros: Highest reliability, clear pass/fail thresholds, excellent for regression testing

Cons: Expensive to create, slow to update, narrow coverage (quickly becomes stale

when the knowledge base evolves)

 Synthetically generated answers

Use an LLM to generate reference answers or judgments, enabling rapid, low-cost

expansion of the evaluation set. Three common pathways:

LLM-as-judge: Feed the query, retrieved passages, and candidate answer to a

judge model that outputs a graded score or e.g., “yes / partial / no”

 Tool-use pathway: For di erent question types you can either manually or

synthetically generate the 'correct' tool-use pathways and score responses

against this

Pros: Fast, infinitely scalable, easier to keep pace with a dynamic application

specification

Cons: Judgement quality is typically of lower quality than expert human-annotated

solutions

 Human feedback

Collect ratings directly from end-users or domain reviewers (thumbs-up/down, five-

star scores, pairwise comparisons). Can be in-the-loop (model trains continuously on

live feedback) or o ine (periodic eval rounds).

Pros: Captures real-world utility, surfaces edge-cases synthetic tests miss

Cons: Noisy and subjective; requires thoughtful aggregation (e.g., ELO scoring), risk

of user biases becoming incorporated in the model

Which is the best evaluation method?

There is no single best method. However, a workflow that we have found that works well

on projects is:

 Start building and iterate synthetic evaluations

 Test with your golden human set of evaluations before deployment

 Make it easy for end-users to annotate good and bad answers, and use this feedback

to continue to develop your application over time

5. Prototype to Production

Transitioning your knowledge graph system from a proof-of-concept to a robust,

production-grade pipeline requires you to address several key points:

Storing and retrieving high-volume graph data

Mananging and pruning datasets

Implementing concurrency in the ingestion pipeline

Minimizing token cost

Scaling retrieval agents

 Safeguards

This section serves as a walkthrough of key considerations and best practices to ensure

your temporally-aware knowledge graph can operate reliably in a real-world environment.

A more detailed Prototype to Production Appendix section can be found in the repository

for this cookbook.

 Storing and Retrieving High-Volume Graph Data

Appendix section A.1. "Storing and Retrieving High-Volume Graph Data"

Manage scalability through thoughtful schema design, sharding, and partitioning.

Clearly define entities, relationships, and ensure schema flexibility for future

evolution. Use high-cardinality fields like timestamps for e cient data partitioning.

 Temporal Validity & Versioning

Appendix section A.1.2. "Temporal Validity & Versioning"

Include temporal markers (valid_from, valid_to) for each statement. Maintain

historical records non-destructively by marking outdated facts as inactive and

indexing temporal fields for e cient queries.

 Indexing & Semantic Search

Appendix section A.1.3. "Indexing & Semantic Search"

Utilize B-tree indexes for e cient temporal querying. Leverage PostgreSQL’s

pgvector extension for semantic search with approximate nearest-neighbor

algorithms like iv at, ivfpq, and hnsw to optimize query speed and memory usage.

 Managing and Pruning Datasets

Appendix section A.2. "Managing and Pruning Datasets"

Establish TTL and archival policies for data retention based on source reliability and

relevance. Implement automated archival tasks and intelligent pruning with relevance

scoring to optimize graph size.

 Concurrent Ingestion Pipeline

Appendix section A.3. "Implementing Concurrency in the Ingestion Pipeline"

Implement batch processing with separate, scalable pipeline stages for chunking,

extraction, invalidation, and entity resolution. Optimize throughput and parallelism to

manage ingestion bottlenecks.

 Minimizing Token Costs

Appendix section A.4. "Minimizing Token Cost"

Use caching strategies to avoid redundant API calls. Adopt service tiers like OpenAI's

flex option to reduce costs and replace expensive model queries with e cient

embedding and nearest-neighbor search.

 Scaling Retrieval Agents

Appendix section A.5. "Scaling and Productionizing our Retrieval Agent"

Use a controller and traversal workers architecture to handle multi-hop queries.

Implement parallel subgraph extraction, dynamic traversal with chained reasoning,

caching, and autoscaling for high performance.

 Safeguards & Verification

Appendix section A.6. "Safeguards"

Deploy multi-layered output verification, structured logging, and monitoring to ensure

data integrity and operational reliability. Track critical metrics and perform regular

audits.

 Prompt Optimization

Appendix section A.7. "Prompt Optimization"

Optimize LLM interactions with personas, few-shot prompts, chain-of-thought

methods, dynamic context management, and automated A/B testing of prompt

variations for continuous performance improvement.

Closing thoughts

This cookbook equips you with foundational techniques and concrete workflows to

e ectively build and deploy temporally-aware knowledge graphs coupled with powerful

multi-hop retrieval capabilities.

Whether you're starting from a prototype or refining a production system, leveraging

structured graph data with OpenAI models can unlock richer, more nuanced interactions

with your data. As these technologies evolve rapidly, look out for updates in OpenAI's

model lineup and keep experimenting with indexing methods and retrieval strategies to

continuously enhance your knowledge-centric AI solutions.

You can easily adapt the frameworks presented in this cookbook to your respective

domain by customizing the provided ontologies and refining the extraction prompts.

Swapping in Neo4j as the graph database takes you well on the way to an MVP level

application, providing data persistence out of the box. It also opens the door to levelling

up your retriever's tools with Cypher queries.

Iterively develop your solution by making use of synthetic evals, and then test your

solution against "golden" expert-human annotated solutions. Once in production, you can

quickly iterate from human feedback to push your application to new heights.

Contributors

This cookbook serves as a joint collaboration between OpenAI and Tomoro.

Alex Heald

Douglas Adams

Rishabh Sagar

Danny Wigg

Shikhar Kwatra

