
Aug 7, 2025

GPT-5 prompting guide

Anoop Kotha (OpenAI), Julian Lee (OpenAI),

Eric Zakariasson, et al.

Open in

Github

View as

Markdown

GPT�5, our newest flagship model, represents a substantial leap forward in

agentic task performance, coding, raw intelligence, and steerability.

While we trust it will perform excellently “out of the box” across a wide

range of domains, in this guide we’ll cover prompting tips to maximize the

quality of model outputs, derived from our experience training and

applying the model to real-world tasks. We discuss concepts like improving

agentic task performance, ensuring instruction adherence, making use of

newly API features, and optimizing coding for frontend and software

engineering tasks - with key insights into AI code editor Cursor’s prompt

tuning work with GPT�5.

We’ve seen significant gains from applying these best practices and

adopting our canonical tools whenever possible, and we hope that this

guide, along with the prompt optimizer tool we’ve built, will serve as a

launchpad for your use of GPT�5. But, as always, remember that prompting

is not a one-size-fits-all exercise - we encourage you to run experiments

and iterate on the foundation o�ered here to find the best solution for your

problem.

We trained GPT�5 with developers in mind: we’ve focused on improving

tool calling, instruction following, and long-context understanding to serve

Agentic workflow predictability

https://cookbook.openai.com/
https://github.com/openai/openai-cookbook/blob/main/examples/gpt-5/gpt-5_prompting_guide.ipynb
https://nbviewer.org/format/script/github/openai/openai-cookbook/blob/main/examples/gpt-5/gpt-5_prompting_guide.ipynb
https://platform.openai.com/chat/edit?optimize=true

as the best foundation model for agentic applications. If adopting GPT�5

for agentic and tool calling flows, we recommend upgrading to the

Responses API, where reasoning is persisted between tool calls, leading to

more e�cient and intelligent outputs.

Agentic sca�olds can span a wide spectrum of control—some systems

delegate the vast majority of decision-making to the underlying model,

while others keep the model on a tight leash with heavy programmatic

logical branching. GPT�5 is trained to operate anywhere along this

spectrum, from making high-level decisions under ambiguous

circumstances to handling focused, well-defined tasks. In this section we

cover how to best calibrate GPT�5’s agentic eagerness: in other words, its

balance between proactivity and awaiting explicit guidance.

GPT�5 is, by default, thorough and comprehensive when trying to gather

context in an agentic environment to ensure it will produce a correct

answer. To reduce the scope of GPT�5’s agentic behavior—including

limiting tangential tool-calling action and minimizing latency to reach a

final answer—try the following:

Switch to a lower reasoning_effort . This reduces exploration depth

but improves e�ciency and latency. Many workflows can be

accomplished with consistent results at medium or even low

reasoning_effort .

Define clear criteria in your prompt for how you want the model to

explore the problem space. This reduces the model’s need to explore

and reason about too many ideas:

Controlling agentic eagerness

Prompting for less eagerness

<context_gathering>

Goal: Get enough context fast. Parallelize discovery and stop as soon as you ca

Method:

- Start broad, then fan out to focused subqueries.

- In parallel, launch varied queries; read top hits per query. Deduplicate path

- Avoid over searching for context. If needed, run targeted searches in one par

Early stop criteria:

- You can name exact content to change.

- Top hits converge (~70%) on one area/path.

https://platform.openai.com/docs/api-reference/responses

If you’re willing to be maximally prescriptive, you can even set fixed tool

call budgets, like the one below. The budget can naturally vary based on

your desired search depth.

When limiting core context gathering behavior, it’s helpful to explicitly

provide the model with an escape hatch that makes it easier to satisfy a

shorter context gathering step. Usually this comes in the form of a clause

that allows the model to proceed under uncertainty, like “even if it might

not be fully correct” in the above example.

On the other hand, if you’d like to encourage model autonomy, increase

tool-calling persistence, and reduce occurrences of clarifying questions or

otherwise handing back to the user, we recommend increasing

reasoning_effort , and using a prompt like the following to encourage

persistence and thorough task completion:

Escalate once:

- If signals conflict or scope is fuzzy, run one refined parallel batch, then p

Depth:

- Trace only symbols you’ll modify or whose contracts you rely on; avoid transi

Loop:

- Batch search → minimal plan → complete task.

- Search again only if validation fails or new unknowns appear. Prefer acting o

</context_gathering>

<context_gathering>

- Search depth: very low

- Bias strongly towards providing a correct answer as quickly as possible, even

- Usually, this means an absolute maximum of 2 tool calls.

- If you think that you need more time to investigate, update the user with you

</context_gathering>

Prompting for more eagerness

<persistence>

- You are an agent - please keep going until the user's query is completely res

- Only terminate your turn when you are sure that the problem is solved.

- Never stop or hand back to the user when you encounter uncertainty — research

- Do not ask the human to confirm or clarify assumptions, as you can always adj

</persistence>

Generally, it can be helpful to clearly state the stop conditions of the

agentic tasks, outline safe versus unsafe actions, and define when, if ever,

it’s acceptable for the model to hand back to the user. For example, in a set

of tools for shopping, the checkout and payment tools should explicitly

have a lower uncertainty threshold for requiring user clarification, while the

search tool should have an extremely high threshold; likewise, in a coding

setup, the delete file tool should have a much lower threshold than a grep

search tool.

We recognize that on agentic trajectories monitored by users, intermittent

model updates on what it’s doing with its tool calls and why can provide

for a much better interactive user experience - the longer the rollout, the

bigger the di�erence these updates make. To this end, GPT�5 is trained to

provide clear upfront plans and consistent progress updates via “tool

preamble” messages.

You can steer the frequency, style, and content of tool preambles in your

prompt—from detailed explanations of every single tool call to a brief

upfront plan and everything in between. This is an example of a high-

quality preamble prompt:

Here’s an example of a tool preamble that might be emitted in response to

such a prompt—such preambles can drastically improve the user’s ability

to follow along with your agent’s work as it grows more complicated:

Tool preambles

<tool_preambles>

- Always begin by rephrasing the user's goal in a friendly, clear, and concise

- Then, immediately outline a structured plan detailing each logical step you’l

- Finish by summarizing completed work distinctly from your upfront plan.

</tool_preambles>

"output": [

 {

 "id": "rs_6888f6d0606c819aa8205ecee386963f0e683233d39188e7",

 "type": "reasoning",

 "summary": [

 {

We provide a reasoning_effort parameter to control how hard the model

thinks and how willingly it calls tools; the default is medium , but you should

scale up or down depending on the di�culty of your task. For complex,

multi-step tasks, we recommend higher reasoning to ensure the best

possible outputs. Moreover, we observe peak performance when distinct,

separable tasks are broken up across multiple agent turns, with one turn

for each task.

We strongly recommend using the Responses API when using GPT�5 to

unlock improved agentic flows, lower costs, and more e�cient token

usage in your applications.

We’ve seen statistically significant improvements in evaluations when

 "type": "summary_text",

 "text": "**Determining weather response**\n\nI need to answer the use

 },

 },

 {

 "id": "msg_6888f6d83acc819a978b51e772f0a5f40e683233d39188e7",

 "type": "message",

 "status": "completed",

 "content": [

 {

 "type": "output_text",

 "text": "I\u2019m going to check a live weather service to get the cu

 }

],

 "role": "assistant"

 },

 {

 "id": "fc_6888f6d86e28819aaaa1ba69cca766b70e683233d39188e7",

 "type": "function_call",

 "status": "completed",

 "arguments": "{\"location\":\"San Francisco, CA\",\"unit\":\"f\"}",

 "call_id": "call_XOnF4B9DvB8EJVB3JvWnGg83",

 "name": "get_weather"

 },

],

Reasoning e�ort

Reusing reasoning context with the Responses API

using the Responses API over Chat Completions—for example, we

observed Tau-Bench Retail score increases from 73.9% to 78.2% just by

switching to the Responses API and including previous_response_id to

pass back previous reasoning items into subsequent requests. This allows

the model to refer to its previous reasoning traces, conserving CoT tokens

and eliminating the need to reconstruct a plan from scratch after each tool

call, improving both latency and performance - this feature is available for

all Responses API users, including ZDR organizations.

GPT�5 leads all frontier models in coding capabilities: it can work in large

codebases to fix bugs, handle large di�s, and implement multi-file

refactors or large new features. It also excels at implementing new apps

entirely from scratch, covering both frontend and backend

implementation. In this section, we’ll discuss prompt optimizations that

we’ve seen improve programming performance in production use cases

for our coding agent customers.

GPT�5 is trained to have excellent baseline aesthetic taste alongside its

rigorous implementation abilities. We’re confident in its ability to use all

types of web development frameworks and packages; however, for new

apps, we recommend using the following frameworks and packages to get

the most out of the model's frontend capabilities:

Frameworks: Next.js (TypeScript), React, HTML

Styling / UI: Tailwind CSS, shadcn/ui, Radix Themes

Icons: Material Symbols, Heroicons, Lucide

Animation: Motion

Fonts: San Serif, Inter, Geist, Mona Sans, IBM Plex Sans, Manrope

GPT�5 is excellent at building applications in one shot. In early

Maximizing coding performance, from planning to

execution

Frontend app development

Zero-to-one app generation

experimentation with the model, users have found that prompts like the

one below—asking the model to iteratively execute against self-

constructed excellence rubrics—improve output quality by using GPT�5’s

thorough planning and self-reflection capabilities.

When implementing incremental changes and refactors in existing apps,

model-written code should adhere to existing style and design standards,

and “blend in” to the codebase as neatly as possible. Without special

prompting, GPT�5 already searches for reference context from the

codebase - for example reading package.json to view already installed

packages - but this behavior can be further enhanced with prompt

directions that summarize key aspects like engineering principles,

directory structure, and best practices of the codebase, both explicit and

implicit. The prompt snippet below demonstrates one way of organizing

code editing rules for GPT�5: feel free to change the actual content of the

rules according to your programming design taste!

<self_reflection>

- First, spend time thinking of a rubric until you are confident.

- Then, think deeply about every aspect of what makes for a world-class one-sho

- Finally, use the rubric to internally think and iterate on the best possible

</self_reflection>

Matching codebase design standards

<code_editing_rules>

<guiding_principles>

- Clarity and Reuse: Every component and page should be modular and reusable. A

- Consistency: The user interface must adhere to a consistent design system—col

- Simplicity: Favor small, focused components and avoid unnecessary complexity

- Demo-Oriented: The structure should allow for quick prototyping, showcasing f

- Visual Quality: Follow the high visual quality bar as outlined in OSS guideli

</guiding_principles>

<frontend_stack_defaults>

- Framework: Next.js (TypeScript)

- Styling: TailwindCSS

- UI Components: shadcn/ui

- Icons: Lucide

- State Management: Zustand

- Directory Structure:

\`\`\`

/src

 /app

We’re proud to have had AI code editor Cursor as a trusted alpha tester for

GPT�5: below, we show a peek into how Cursor tuned their prompts to get

the most out of the model’s capabilities. For more information, their team

has also published a blog post detailing GPT�5’s day-one integration into

Cursor: https://cursor.com/blog/gpt-5

Cursor’s system prompt focuses on reliable tool calling, balancing

verbosity and autonomous behavior while giving users the ability to

configure custom instructions. Cursor’s goal for their system prompt is to

allow the Agent to operate relatively autonomously during long horizon

tasks, while still faithfully following user-provided instructions.

The team initially found that the model produced verbose outputs, often

including status updates and post-task summaries that, while technically

relevant, disrupted the natural flow of the user; at the same time, the code

outputted in tool calls was high quality, but sometimes hard to read due to

terseness, with single-letter variable names dominant. In search of a better

balance, they set the verbosity API parameter to low to keep text outputs

 /api/<route>/route.ts # API endpoints

 /(pages) # Page routes

 /components/ # UI building blocks

 /hooks/ # Reusable React hooks

 /lib/ # Utilities (fetchers, helpers)

 /stores/ # Zustand stores

 /types/ # Shared TypeScript types

 /styles/ # Tailwind config

\`\`\`

</frontend_stack_defaults>

<ui_ux_best_practices>

- Visual Hierarchy: Limit typography to 4–5 font sizes and weights for consiste

- Color Usage: Use 1 neutral base (e.g., `zinc`) and up to 2 accent colors.

- Spacing and Layout: Always use multiples of 4 for padding and margins to main

- State Handling: Use skeleton placeholders or `animate-pulse` to indicate data

- Accessibility: Use semantic HTML and ARIA roles where appropriate. Favor pre-

</ui_ux_best_practices>

<code_editing_rules>

Collaborative coding in production: Cursor’s GPT�5 prompt

tuning

System prompt and parameter tuning

https://cursor.com/blog/gpt-5

brief, and then modified the prompt to strongly encourage verbose

outputs in coding tools only.

This dual usage of parameter and prompt resulted in a balanced format

combining e�cient, concise status updates and final work summary with

much more readable code di�s.

Cursor also found that the model occasionally deferred to the user for

clarification or next steps before taking action, which created unnecessary

friction in the flow of longer tasks. To address this, they found that

including not just available tools and surrounding context, but also more

details about product behavior encouraged the model to carry out longer

tasks with minimal interruption and greater autonomy. Highlighting

specifics of Cursor features such as Undo/Reject code and user

preferences helped reduce ambiguity by clearly specifying how GPT�5

should behave in its environment. For longer horizon tasks, they found this

prompt improved performance:

Cursor found that sections of their prompt that had been e�ective with

earlier models needed tuning to get the most out of GPT�5. Here is one

example below:

While this worked well with older models that needed encouragement to

analyze context thoroughly, they found it counterproductive with GPT�5,

which is already naturally introspective and proactive at gathering context.

On smaller tasks, this prompt often caused the model to overuse tools by

calling search repetitively, when internal knowledge would have been

su�cient.

Write code for clarity first. Prefer readable, maintainable solutions with clea

Be aware that the code edits you make will be displayed to the user as proposed

<maximize_context_understanding>

Be THOROUGH when gathering information. Make sure you have the FULL picture bef

...

</maximize_context_understanding>

To solve this, they refined the prompt by removing the maximize_ prefix

and softening the language around thoroughness. With this adjusted

instruction in place, the Cursor team saw GPT�5 make better decisions

about when to rely on internal knowledge versus reaching for external

tools. It maintained a high level of autonomy without unnecessary tool

usage, leading to more e�cient and relevant behavior. In Cursor’s testing,

using structured XML specs like <[instruction]_spec> improved instruction

adherence on their prompts and allows them to clearly reference previous

categories and sections elsewhere in their prompt.

While the system prompt provides a strong default foundation, the user

prompt remains a highly e�ective lever for steerability. GPT�5 responds

well to direct and explicit instruction and the Cursor team has consistently

seen that structured, scoped prompts yield the most reliable results. This

includes areas like verbosity control, subjective code style preferences,

and sensitivity to edge cases. Cursor found allowing users to configure

their own custom Cursor rules to be particularly impactful with GPT�5’s

improved steerability, giving their users a more customized experience.

As our most steerable model yet, GPT�5 is extraordinarily receptive to

prompt instructions surrounding verbosity, tone, and tool calling behavior.

In addition to being able to control the reasoning_e�ort as in previous

reasoning models, in GPT�5 we introduce a new API parameter called

verbosity, which influences the length of the model’s final answer, as

<context_understanding>

...

If you've performed an edit that may partially fulfill the USER's query, but yo

Bias towards not asking the user for help if you can find the answer yourself.

</context_understanding>

Optimizing intelligence and instruction-following

Steering

Verbosity

https://docs.cursor.com/en/context/rules

opposed to the length of its thinking. Our blog post covers the idea behind

this parameter in more detail - but in this guide, we’d like to emphasize

that while the API verbosity parameter is the default for the rollout, GPT�5

is trained to respond to natural-language verbosity overrides in the prompt

for specific contexts where you might want the model to deviate from the

global default. Cursor’s example above of setting low verbosity globally,

and then specifying high verbosity only for coding tools, is a prime

example of such a context.

Like GPT�4.1, GPT�5 follows prompt instructions with surgical precision,

which enables its flexibility to drop into all types of workflows. However, its

careful instruction-following behavior means that poorly-constructed

prompts containing contradictory or vague instructions can be more

damaging to GPT�5 than to other models, as it expends reasoning tokens

searching for a way to reconcile the contradictions rather than picking one

instruction at random.

Below, we give an adversarial example of the type of prompt that often

impairs GPT�5’s reasoning traces - while it may appear internally

consistent at first glance, a closer inspection reveals conflicting

instructions regarding appointment scheduling:

Never schedule an appointment without explicit patient consent

recorded in the chart conflicts with the subsequent auto-assign the

earliest same-day slot without contacting the patient as the first

action to reduce risk.

The prompt says Always look up the patient profile before taking

any other actions to ensure they are an existing patient. but then

continues with the contradictory instruction When symptoms indicate

high urgency, escalate as EMERGENCY and direct the patient to call

911 immediately before any scheduling step.

Instruction following

You are CareFlow Assistant, a virtual admin for a healthcare startup that sched

- Core entities include Patient, Provider, Appointment, and PriorityLevel (Red,

+Core entities include Patient, Provider, Appointment, and PriorityLevel (Red,

*Do not do lookup in the emergency case, proceed immediately to providing 911 g

- Use the following capabilities: schedule-appointment, modify-appointment, wai

- For high-acuity Red and Orange cases, auto-assign the earliest same-day slot

By resolving the instruction hierarchy conflicts, GPT�5 elicits much more

e�cient and performant reasoning. We fixed the contradictions by:

Changing auto-assignment to occur after contacting a patient, auto-

assign the earliest same-day slot after informing the patient of your

actions. to be consistent with only scheduling with consent.

Adding Do not do lookup in the emergency case, proceed immediately

to providing 911 guidance. to let the model know it is ok to not look up

in case of emergency.

We understand that the process of building prompts is an iterative one,

and many prompts are living documents constantly being updated by

di�erent stakeholders - but this is all the more reason to thoroughly review

them for poorly-worded instructions. Already, we’ve seen multiple early

users uncover ambiguities and contradictions in their core prompt libraries

upon conducting such a review: removing them drastically streamlined

and improved their GPT�5 performance. We recommend testing your

prompts in our prompt optimizer tool to help identify these types of issues.

In GPT�5, we introduce minimal reasoning e�ort for the first time: our

fastest option that still reaps the benefits of the reasoning model

paradigm. We consider this to be the best upgrade for latency-sensitive

users, as well as current users of GPT�4.1.

Perhaps unsurprisingly, we recommend prompting patterns that are

similar to GPT�4.1 for best results. minimal reasoning performance can vary

more drastically depending on prompt than higher reasoning levels, so key

points to emphasize include:

��� Prompting the model to give a brief explanation summarizing its

thought process at the start of the final answer, for example via a

bullet point list, improves performance on tasks requiring higher

intelligence.

��� Requesting thorough and descriptive tool-calling preambles that

- For high-acuity Red and Orange cases, auto-assign the earliest same-day slot

Minimal reasoning

https://platform.openai.com/chat/edit?optimize=true
https://cookbook.openai.com/examples/gpt4-1_prompting_guide

continually update the user on task progress improves performance in

agentic workflows.

��� Disambiguating tool instructions to the maximum extent possible and

inserting agentic persistence reminders as shared above, are

particularly critical at minimal reasoning to maximize agentic ability in

long-running rollout and prevent premature termination.

��� Prompted planning is likewise more important, as the model has fewer

reasoning tokens to do internal planning. Below, you can find a sample

planning prompt snippet we placed at the beginning of an agentic

task: the second paragraph especially ensures that the agent fully

completes the task and all subtasks before yielding back to the user.

By default, GPT�5 in the API does not format its final answers in

Markdown, in order to preserve maximum compatibility with developers

whose applications may not support Markdown rendering. However,

prompts like the following are largely successful in inducing hierarchical

Markdown final answers.

Occasionally, adherence to Markdown instructions specified in the system

prompt can degrade over the course of a long conversation. In the event

that you experience this, we’ve seen consistent adherence from appending

a Markdown instruction every 3�5 user messages.

Finally, to close with a meta-point, early testers have found great success

using GPT�5 as a meta-prompter for itself. Already, several users have

deployed prompt revisions to production that were generated simply by

Remember, you are an agent - please keep going until the user's query is comple

You must plan extensively in accordance with the workflow steps before making s

Markdown formatting

- Use Markdown **only where semantically correct** (e.g., `inline code`, ```cod

- When using markdown in assistant messages, use backticks to format file, dire

Metaprompting

asking GPT�5 what elements could be added to an unsuccessful prompt to

elicit a desired behavior, or removed to prevent an undesired one.

Here is an example metaprompt template we liked:

Agentic coding tool definitions

When asked to optimize prompts, give answers from your own perspective - explai

Here's a prompt: [PROMPT]

The desired behavior from this prompt is for the agent to [DO DESIRED BEHAVIOR]

Appendix

SWE�Bench verified developer instructions

In this environment, you can run `bash -lc <apply_patch_command>` to execute a

apply_patch << 'PATCH'

*** Begin Patch

[YOUR_PATCH]

*** End Patch

PATCH

Where [YOUR_PATCH] is the actual content of your patch.

Always verify your changes extremely thoroughly. You can make as many tool call

IMPORTANT: not all tests are visible to you in the repository, so even on probl

Set 1: 4 functions, no terminal

type apply_patch = (_: {

patch: string, // default: null

}) => any;

type read_file = (_: {

path: string, // default: null

line_start?: number, // default: 1

line_end?: number, // default: 20

}) => any;

type list_files = (_: {

path?: string, // default: ""

depth?: number, // default: 1

}) => any;

As shared in the GPT�4.1 prompting guide, here is our most updated

apply_patch implementation: we highly recommend using apply_patch

for file edits to match the training distribution. The newest implementation

should match the GPT�4.1 implementation in the overwhelming majority of

cases.

type find_matches = (_: {

query: string, // default: null

path?: string, // default: ""

max_results?: number, // default: 50

}) => any;

Set 2: 2 functions, terminal-native

type run = (_: {

command: string[], // default: null

session_id?: string | null, // default: null

working_dir?: string | null, // default: null

ms_timeout?: number | null, // default: null

environment?: object | null, // default: null

run_as_user?: string | null, // default: null

}) => any;

type send_input = (_: {

session_id: string, // default: null

text: string, // default: null

wait_ms?: number, // default: 100

}) => any;

Taubench-Retail minimal reasoning instructions

As a retail agent, you can help users cancel or modify pending orders, return o

Remember, you are an agent - please keep going until the user’s query is comple

If you are not sure about information pertaining to the user’s request, use you

You MUST plan extensively before each function call, and reflect extensively on

Workflow steps

- At the beginning of the conversation, you have to authenticate the user ident

- Once the user has been authenticated, you can provide the user with informati

- You can only help one user per conversation (but you can handle multiple requ

- Before taking consequential actions that update the database (cancel, modify,

- You should not make up any information or knowledge or procedures not provide

- You should at most make one tool call at a time, and if you take a tool call,

- You should transfer the user to a human agent if and only if the request cann

Domain basics

- All times in the database are EST and 24 hour based. For example "02:30:00" m

- Each user has a profile of its email, default address, user id, and payment m

- Our retail store has 50 types of products. For each type of product, there ar

- Each product has an unique product id, and each item has an unique item id. T

https://github.com/openai/openai-cookbook/tree/main/examples/gpt-5/apply_patch.py

- Each order can be in status 'pending', 'processed', 'delivered', or 'cancelle

- Exchange or modify order tools can only be called once. Be sure that all item

Cancel pending order

- An order can only be cancelled if its status is 'pending', and you should che

- The user needs to confirm the order id and the reason (either 'no longer need

- After user confirmation, the order status will be changed to 'cancelled', and

Modify pending order

- An order can only be modified if its status is 'pending', and you should chec

- For a pending order, you can take actions to modify its shipping address, pay

Modify payment

- The user can only choose a single payment method different from the original

- If the user wants the modify the payment method to gift card, it must have en

- After user confirmation, the order status will be kept 'pending'. The origina

Modify items

- This action can only be called once, and will change the order status to 'pen

- For a pending order, each item can be modified to an available new item of th

- The user must provide a payment method to pay or receive refund of the price

Return delivered order

- An order can only be returned if its status is 'delivered', and you should ch

- The user needs to confirm the order id, the list of items to be returned, and

- The refund must either go to the original payment method, or an existing gift

- After user confirmation, the order status will be changed to 'return requeste

Exchange delivered order

- An order can only be exchanged if its status is 'delivered', and you should c

- For a delivered order, each item can be exchanged to an available new item of

- The user must provide a payment method to pay or receive refund of the price

- After user confirmation, the order status will be changed to 'exchange reques

Terminal-Bench prompt

Please resolve the user's task by editing and testing the code files in your cu

You are a deployed coding agent.

Your session is backed by a container specifically designed for you to easily m

You MUST adhere to the following criteria when executing the task:

<instructions>

- Working on the repo(s) in the current environment is allowed, even if they ar

- Analyzing code for vulnerabilities is allowed.

- Showing user code and tool call details is allowed.

- User instructions may overwrite the _CODING GUIDELINES_ section in this devel

- Do not use \`ls -R\`, \`find\`, or \`grep\` - these are slow in large repos.

- Use \`apply_patch\` to edit files: {"cmd":["apply_patch","*** Begin Patch\\n*

- If completing the user's task requires writing or modifying files:

 - Your code and final answer should follow these _CODING GUIDELINES_:

 - Fix the problem at the root cause rather than applying surface-level patch

 - Avoid unneeded complexity in your solution.

 - Ignore unrelated bugs or broken tests; it is not your responsibility to

 - Update documentation as necessary.

 - Keep changes consistent with the style of the existing codebase. Changes s

 - Use \`git log\` and \`git blame\` to search the history of the codebase

 - NEVER add copyright or license headers unless specifically requested.

 - You do not need to \`git commit\` your changes; this will be done automati

 - If there is a .pre-commit-config.yaml, use \`pre-commit run --files ...\`

 - If pre-commit doesn't work after a few retries, politely inform the user

 - Once you finish coding, you must

 - Check \`git status\` to sanity check your changes; revert any scratch fi

 - Remove all inline comments you added much as possible, even if they look

 - Check if you accidentally add copyright or license headers. If so, remov

 - Try to run pre-commit if it is available.

 - For smaller tasks, describe in brief bullet points

 - For more complex tasks, include brief high-level description, use bullet

- If completing the user's task DOES NOT require writing or modifying files (e.

 - Respond in a friendly tune as a remote teammate, who is knowledgeable, capab

- When your task involves writing or modifying files:

 - Do NOT tell the user to "save the file" or "copy the code into a file" if yo

 - Do NOT show the full contents of large files you have already written, unles

</instructions>

<apply_patch>

To edit files, ALWAYS use the \`shell\` tool with \`apply_patch\` CLI. \`apply

\`\`\`bash

{"cmd": ["apply_patch", "<<'EOF'\\n*** Begin Patch\\n[YOUR_PATCH]\\n*** End Pat

\`\`\`

Where [YOUR_PATCH] is the actual content of your patch, specified in the follow

*** [ACTION] File: [path/to/file] -> ACTION can be one of Add, Update, or Delet

For each snippet of code that needs to be changed, repeat the following:

[context_before] -> See below for further instructions on context.

- [old_code] -> Precede the old code with a minus sign.

+ [new_code] -> Precede the new, replacement code with a plus sign.

[context_after] -> See below for further instructions on context.

For instructions on [context_before] and [context_after]:

- By default, show 3 lines of code immediately above and 3 lines immediately be

- If 3 lines of context is insufficient to uniquely identify the snippet of cod

@@ class BaseClass

[3 lines of pre-context]

- [old_code]

+ [new_code]

[3 lines of post-context]

- If a code block is repeated so many times in a class or function such that ev

@@ class BaseClass

@@ def method():

[3 lines of pre-context]

- [old_code]

+ [new_code]

[3 lines of post-context]

Note, then, that we do not use line numbers in this diff format, as the context

\`\`\`bash

{"cmd": ["apply_patch", "<<'EOF'\\n*** Begin Patch\\n*** Update File: pygorithm

\`\`\`

File references can only be relative, NEVER ABSOLUTE. After the apply_patch com

</apply_patch>

<persistence>

You are an agent - please keep going until the user’s query is completely resol

- Never stop at uncertainty — research or deduce the most reasonable approach a

- Do not ask the human to confirm assumptions — document them, act on them, and

</persistence>

<exploration>

If you are not sure about file content or codebase structure pertaining to the

Before coding, always:

- Decompose the request into explicit requirements, unclear areas, and hidden a

- Map the scope: identify the codebase regions, files, functions, or libraries

- Check dependencies: identify relevant frameworks, APIs, config files, data fo

- Resolve ambiguity proactively: choose the most probable interpretation based

- Define the output contract: exact deliverables such as files changed, expecte

- Formulate an execution plan: research steps, implementation sequence, and tes

</exploration>

<verification>

Routinely verify your code works as you work through the task, especially any d

Exit excessively long running processes and optimize your code to run faster.

</verification>

<efficiency>

Efficiency is key. you have a time limit. Be meticulous in your planning, tool

</efficiency>

<final_instructions>

Never use editor tools to edit files. Always use the \`apply_patch\` tool.

</final_instructions>

