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Abstract 

The rapid development of large language models (LLMs) has opened new avenues across various fields, includ-
ing cybersecurity, which faces an evolving threat landscape and demand for innovative technologies. Despite initial 
explorations into the application of LLMs in cybersecurity, there is a lack of a comprehensive overview of this research 
area. This paper addresses this gap by providing a systematic literature review, covering the analysis of over 300 works, 
encompassing 25 LLMs and more than 10 downstream scenarios. Our comprehensive overview addresses three key 
research questions: the construction of cybersecurity-oriented LLMs, the application of LLMs to various cybersecurity 
tasks, the challenges and further research in this area. This study aims to shed light on the extensive potential of LLMs 
in enhancing cybersecurity practices and serve as a valuable resource for applying LLMs in this field. We also maintain 
and regularly update a list of practical guides on LLMs for cybersecurity at https:// github. com/ tmylla/ Aweso me- 
LLM4C ybers ecuri ty.
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Introduction
Large language models (LLMs), represented by 
advanced models such as ChatGPT (Ouyang et al. 2022), 
Llama (Touvron et al. 2023a), and their derivatives (Chi-
ang et al. 2023; Almazrouei et al. 2023; Jiang et al. 2024a) 
have marked a significant advancement in artificial intel-
ligence. By leveraging massive data and advanced neural 
network architectures, these models have demonstrated 
remarkable capabilities in understanding and generating 
human language  (Zoph et  al. 2022; Minaee et  al. 2024). 
They not only set new benchmarks for achieving arti-
ficial general intelligence (AGI) but also show unique 

adaptability and effectiveness when collaborating with 
domain experts  (Ge et  al. 2024; Kaur et  al. 2024). Such 
research enables LLMs to be tailored to specific chal-
lenges in various fields, thereby promoting progress and 
development in areas such as healthcare, law, education, 
and software engineering (Hou et al. 2023; Lai et al. 2024; 
Zhou et al. 2024b; Yan et al. 2024b; Li et al. 2023f; Zhao 
et al. 2024e). In the cybersecurity domain, exploring LLM 
applications can lay the foundations for further model 
development and utilization while highlighting potential 
transformative impacts (Yao et al. 2024b; Das et al. 2024; 
de  Jesus Coelho  da Silva and Westphall 2024; Motlagh 
et al. 2024; Yigit et al. 2024).

Cybersecurity is a critical issue given the growing 
number of cyber threats that pose significant risks to 
individuals, organizations, and governments  (Thakur 
et  al. 2015; Scala et  al. 2019; Ghelani 2022). The rapid 
evolution and dynamic nature of cybersecurity poses 
challenges as adversaries continuously adapt strate-
gies to exploit vulnerabilities and evade detection  (Li 
and Liu 2021; Aslan et  al. 2023). While traditional 
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approaches (e.g., signature-based detection, and rule-
based systems) often struggle to keep pace with the 
evolving threat landscape, advancements in AI, par-
ticularly LLMs have opened new avenues for enhancing 
cybersecurity (Ferrag et al. 2024a). On one hand, open-
sourced LLMs (e.g., LLaMA (Touvron et al. 2023a, b)) 
support the development of cybersecurity-enhanced 
domain LLMs such as RepairLlama  (Silva et  al. 2023) 
and Hackmentor (Zhang et al. 2023b) to address unique 
cybersecurity challenges. On the other hand, advanced 
LLMs such as ChatGPT solve complex tasks via prompt 
engineering, in-context learning, and chains-of-
thought despite the lack of cybersecurity-specific train-
ing (Mohammed and Hossain 2024). These preliminary 
efforts show LLMs can aid cybersecurity tasks with 
promising results.

Despite the initial efforts of LLMs in cybersecurity, 
the field still faces several challenges  (Das et  al. 2024; 
Pankajakshan et  al. 2024). First, many studies rely on 
case studies without comprehensive methodology, 
raising concerns about scalability and reproducibility. 
In addition, the field lacks connectivity and in-depth 
analysis between studies. With the rapid increase in 
the amount of LLM research in this field, conducting a 
systematic overview is essential to guide the field into 
a new stage of development, in which the application 
of LLM is not just experimental but also has a strategic 
impact  (de  Jesus Coelho  da Silva and Westphall 2024; 
Motlagh et  al. 2024; Yigit et  al. 2024). Therefore, this 
work aims to conduct an extensive review of domain-
specific LLMs tailored for cybersecurity, explore the 
breadth of LLM applications in this area, and identify 
emerging challenges to lay the foundation for future 
studies.

This survey aims to provide a comprehensive over-
view of the application of LLM in cybersecurity. We 
seek to address three key questions:

• RQ1: How to construct cybersecurity-oriented 
domain LLMs?

• RQ2: What are the potential applications of LLMs in 
cybersecurity?

• RQ3: What are the challenge and further research for 
the application of LLMs in cybersecurity?

By exploring these questions, we aim to bridge the 
gap between the advancement in LLMs and its potential 
impact on enhancing cybersecurity practices. We will 
delve into various cybersecurity tasks and applications to 
which LLMs are applicable, including vulnerability detec-
tion, secure code generation, program repair, binary, IT 
operations, threat intelligence, anomaly detection, and 
LLM-assisted attack, as shown in Table 1.

For the first question, we summarize the princi-
ples of existing cybersecurity LLMs, detailing their key 
techniques, the data used for model construction, and 
well-trained domain LLMs for special tasks. We pro-
vide insights into constructing domain models, which 
are valuable for researchers and practitioners looking 
to build customized LLMs based on specific require-
ments, such as computational limits, private data, and 
local knowledge bases (Sect.  RQ1: How to construct 
cybersecurity-oriented domain LLMs?). For the second 
question, we conduct an extensive survey on the usage 
of existing LLMs in more than 10 cybersecurity tasks, 
including threat intelligence, vulnerability detection, pro-
gram repairing, and others. This analysis not only helps 
us understand how LLMs benefit cybersecurity in vari-
ous aspects but also allows us to identify their strengths 
when applied to domain-specific tasks. By demonstrat-
ing the diverse capabilities of LLMs, we aim to illustrate 
their potential to enhance and transform the cybersecu-
rity field (Sect. RQ2: What are the potential applications 
of LLMs in cybersecurity?). The third question highlights 
the challenges that need to be overcome when apply-
ing LLMs in cybersecurity. LLMs’ inherent vulnerabili-
ties and susceptibilities lead to these attack challenges, 
especially attacks against LLMs and LLM jailbreaking. 
Additionally, we also explore further research directions 
for applying LLM to cybersecurity, guiding researchers 
and practitioners to promote advancement in this field 
(Sect. RQ3: What are the challenge and further research 
for the application of LLMs in cybersecurity?).

Table 1 The main cybersecurity tasks and applications where LLMs have been utilized

Vulnerability 
detection

(In)secure code 
generation

Program 
repairing

Binary IT operations Threat 
intelligence

Anomaly 
detection

LLM assisted 
attack

Others

RQ1 � � � � � – – – �

RQ2 � � � – – � � � �

RQ3 – – – – � – � � –
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In summary, this paper contributes by providing a 
comprehensive review of the state-of-the-art LLM appli-
cations in cybersecurity, highlighting the potential advan-
tages and challenges, and proposing future research 
directions. The subsequent sections of this paper are 
organized as follows. Section  Preliminaries outlines 
the scope of this paper. Section  RQ1: How to construct 
cybersecurity-oriented domain LLMs? summarizes exist-
ing LLMs for cybersecurity. Section  RQ2: What are the 
potential applications of LLMs in cybersecurity? details 
how LLMs can be applied to various cybersecurity tasks. 
Section RQ3: What are the challenge and further research 
for the application of LLMs in cybersecurity? highlights 
the challenges and promising opportunities for future 
research. Section Conclusion draws the conclusion.

Preliminaries
In this review paper, we systematically investigate the 
progress of LLMs’ applications in cybersecurity, cover-
ing more than 300 academic papers since 2023. Through 
an exhaustive study and comprehensive analysis, we 
aim to provide a detailed overview of the current state, 
challenges, and future directions of LLM applications in 
cybersecurity. As shown in Fig. 1, this emerging research 
field continues to gain attention, and LLMs can be used 
to solve various tasks. This not only highlights the cur-
rent and potential impact of LLMs in cybersecurity, but 
also offers practical guidance for future research. There-
fore, this section first summarizes the surveyed papers 
from two aspects: one is the LLMs used in cybersecurity, 
and the other is the category of cybersecurity tasks to 
which LLMs can be applied.

LLMs in cybersecurity
LLMs have emerged as a transformative technology in 
the field of artificial intelligence, demonstrating remark-
able capabilities in natural language understanding, gen-
eration, and reasoning  (Brown et  al. 2020; Zoph et  al. 
2022; Minaee et  al. 2024). These models, trained with 
large amounts of data, have the potential to revolution-
ize various fields, including the critical area of cyberse-
curity  (Motlagh et  al. 2024; Yigit et  al. 2024), as  shown 
in Table  2. The application of LLMs in cybersecurity is 
expected to enhance threat detection, automated vul-
nerability analysis, intelligent defense mechanisms, and 
more.

LLMs can be categorized into two main types: open-
source and closed-source models. Open-source LLMs 
(e.g., Llama  (Touvron et  al. 2023a) and Mixtral  (Jiang 
et  al. 2024a)) provide model weights, and researchers 
can fine-tune the models for specific cybersecurity tasks. 
This adaptability is particularly valuable in cybersecurity 
scenarios, such as private data and models fine-tuned to 
customized needs. However, open-source LLMs may lack 
the performance and scale of closed-source LLMs. On 
the other hand, closed-source LLMs (often referred to as 
commercial LLMs, e.g., ChatGPT  (Ouyang et  al. 2022) 
and Gemini (Team et al. 2023)), provide state-of-the-art 
performance and are maintained by commercial entities, 
often with access restrictions. While these models excel 
in accuracy and efficiency, their lack of transparency can 
raise concerns about potential biases and limitations in 
cybersecurity applications.

In the field of cybersecurity, there is a growing need 
for intelligent tools that can understand, analyze, and 
generate secure code. Code-based LLMs (e.g., CodeL-
lama (Roziere et al. 2023) and StarCoder (Li et al. 2023d; 
Lozhkov et  al. 2024)) are particularly well suited to 

Fig. 1 Statistic of surveyed papers
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address this demand. Unlike text-based LLMs that are 
trained on vast amounts of natural language data, code-
based LLMs are specifically designed to understand 
and work with programming languages. Code-based 
LLMs are trained on large code bases covering multiple 
programming languages, allowing them to capture the 
complexity of syntax, semantics, and common coding 
patterns. This specialized training enables them to per-
form a variety of tasks, including code completion, bug 
detection, and automated code review. In the context of 
cybersecurity, these capabilities are useful for identifying 
potential vulnerabilities, suggesting secure coding prac-
tices, and remediating security vulnerabilities.

Cybersecurity categories of LLMs application
Cybersecurity has become a critical concern due to 
the increasing reliance on interconnected systems 
and the continued emergence of sophisticated cyber 
threats  (Thakur et  al. 2015; Ghelani 2022). The field of 
cybersecurity encompasses a wide range of practices, 
technologies, and strategies aimed at protecting com-
puter systems, networks, and data from unauthorized 
access, attacks, damage, or disruption  (Li and Liu 2021; 

Aslan et al. 2023). AI techniques, especially LLMs, have 
shown great potential in revolutionizing various aspects 
of cybersecurity  (Yigit et  al. 2024). The applications of 
LLMs in cybersecurity are wide-ranging, including threat 
intelligence, vulnerability detection, malware detection, 
and anomaly detection, fuzz and program repair, LLM 
assisted attack(in)secure code generation, and others.

• Threat Intelligence: It is very difficult to extract 
information from a large number of threat intelli-
gence documents. Some researchers turn to LLMs 
to organize and analyze these massive and cluttered 
data.

• Vulnerability Detection: This is a critical task in 
cybersecurity, and has seen novel approaches emerge 
through the integration of LLMs.

• Malware Detection: LLMs can serve as both the 
static analysis assistant and the dynamic debugging 
assistant, improving the efficiency and effectiveness 
of the process.

• Anomaly Detection: It mainly refers to security 
anomalies such as malicious traffic in the flow, virus 
files in the system, anomalies in logs, etc.

Table 2 A Summary of LLMs used in cybersecurity (this paper)

Organization LLMs Size Open-Source Count Link

OpenAI GPT-3.5 175B × 86 https:// chat. openai. com/

GPT-4 – × 56 https:// chat. openai. com/

Codex – × 13 https:// openai. com/ blog/ openai- codex

davinci(-002,-003) 175B × 9 https:// openai. com/ blog/ openai- api

Google Bard&Gemini – × 12 https:// gemini. google. com/

PaLM(-1,-2) 540B × 7 https:// ai. google. dev/ models/ palm

Anthropic Claude(-1,-2) – × 2 https:// claude. ai/

Github Copilot – × 2 https:// github. com/ featu res/ copil ot

Microsoft BingChat – × 2 https:// www. bing. com/ chat

EleutherAI GPT-J 6B � 2 https:// huggi ngface. co/ Eleut herAI/ gpt-j- 6b

GPT-Neo 2.7B � 3 https:// huggi ngface. co/ Eleut herAI/ gpt- neo-2. 7B

Meta Llama(-1,-2) 7B/13B/70B � 38 https:// huggi ngface. co/ meta- llama

LlamaGuard 7B � 1 https:// huggi ngface. co/ meta- llama/ Llama Guard- 7b

InCoder 1B/6B � 4 https:// huggi ngface. co/ faceb ook/ incod er- 1B

LMSYS Vicuna 7B/13B � 12 https:// huggi ngface. co/ lmsys/ vicuna- 7b- v1.5

LianjiaTech BELLE 7B/13B � 1 https:// github. com/ Lianj iaTech/ BELLE/

Databricks Dolly 6B � 3 https:// huggi ngface. co/ datab ricks/ dolly- v1- 6b

– Guanaco 7B � 2 https:// huggi ngface. co/ Josep husCh eung/ Guana co

Salesforce CodeGen(-1,-2) 3B/7B/16B � 9 https:// github. com/ sales force/ CodeG en/

CodeT5 6B � 3 https:// huggi ngface. co/ Sales force/ codet 5p- 6b

BigCode StarCoder(-1,-2) 3B/7B/15B � 3 https:// huggi ngface. co/ bigco de/

THUDM ChatGLM 6B � 8 https:// github. com/ THUDM/ ChatG LM- 6B

KaistAI Prometheus 7B/13B � 1 https:// github. com/ kaist AI/ Prome theus

MistralAI Mistral 7B � 6 https:// huggi ngface. co/ mistr alai/ Mistr al- 7B- v0.1

Mixtral 8*7B � 5 https:// huggi ngface. co/ mistr alai/ Mixtr al- 8x7B- v0.1

https://chat.openai.com/
https://chat.openai.com/
https://openai.com/blog/openai-codex
https://openai.com/blog/openai-api
https://gemini.google.com/
https://ai.google.dev/models/palm
https://claude.ai/
https://github.com/features/copilot
https://www.bing.com/chat
https://huggingface.co/EleutherAI/gpt-j-6b
https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://huggingface.co/meta-llama
https://huggingface.co/meta-llama/LlamaGuard-7b
https://huggingface.co/facebook/incoder-1B
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://github.com/LianjiaTech/BELLE/
https://huggingface.co/databricks/dolly-v1-6b
https://huggingface.co/JosephusCheung/Guanaco
https://github.com/salesforce/CodeGen/
https://huggingface.co/Salesforce/codet5p-6b
https://huggingface.co/bigcode/
https://github.com/THUDM/ChatGLM-6B
https://github.com/kaistAI/Prometheus
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
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• Fuzz: Traditional fuzzing techniques are effective in 
discovering software vulnerabilities, but their inher-
ent limitations can affect their efficiency and effec-
tiveness. The LLM-based approach for fuzzing is a 
promising area of research.

• Program Repair: Program repair is task-intensive and 
patching defects requires sufficient experience and 
knowledge. Many studies have proved the effective-
ness of LLMs about this issue.

• LLM-Assisted Attacks: Many are not satisfied with 
LLMs’ positive applications. They have discovered 
the effectiveness of LLMs in launching network 
attacks such as phishing emails and penetration test-
ing.

• (In)secure Code Generation: Is there a risk in the 
code generated by LLMs? Moreover, can LLMs cor-
rect their code through some strategies?

• Others: In addition to the aspects mentioned above, 
we have also collected some researches which prove 
the importance of LLMs in the field of cybersecurity, 
there are fewer application studies of LLM in its field.

RQ1: How to construct cybersecurity‑oriented 
domain LLMs?
The cybersecurity domain is facing escalating threats, 
demanding intelligent and efficient solutions to address 
complex and evolving attacks  (Kaur et  al. 2023; Kumar 
et al. 2023; Mijwil et al. 2023). LLMs provide new oppor-
tunities for the cybersecurity community (de Jesus Coe-
lho  da Silva and Westphall 2024; Motlagh et  al. 2024). 
Trained on massive data, LLMs have acquired rich 
knowledge and developed strong understanding and rea-
soning capabilities, providing powerful decision-making 
for cybersecurity.

Advancing cybersecurity requires LLMs tailored to the 
field, leveraging their potential to learn domain-specific 
data and knowledge. This section firstly introduces sev-
eral domain datasets for evaluating the cybersecurity 
capabilities of LLMs  (Tihanyi et  al. 2024b; Bhatt et  al. 
2023; Tony et al. 2023), while can guide the selection of 
an appropriate LLM as the base model when constructing 
cybersecurity LLMs. Then, we focus on key technologies 
for constructing cybersecurity LLMs, including training 
methods such as continual pre-training (CPT)  (Çağatay 
Yıldız et  al. 2024; Zhang et  al. 2024e) and supervised 
fine-tuning (SFT) (Zhang et al. 2023c; Dong et al. 2023) 
of LLMs, as well as technical implementations like full-
parameters fine-tuning and parameter-efficient fine-
tuning (PEFT)  (Ding et al. 2023). Finally, we summarize 
existing customized LLMs for specific cybersecurity 
tasks  (Ferrag et  al. 2023; Zhang et  al. 2023b), including 
vulnerability detection, program repair, secure code gen-
eration, etc (Fig. 2).

Selection of base model for constructing domain LLM 
by evaluating cybersecurity capabilities
It is challenging to train a cybersecurity LLM from 
scratch. The general practice is to choose a general-pur-
pose LLM as the base model and then fine-tune it. How-
ever, how do we select the appropriate base model among 
various LLMs? The basic idea is to choose the LLM with 
strong cybersecurity capabilities or those that perform 
well in specific security tasks. Such models are better 
at understanding and addressing security-related prob-
lems. Existing evaluation of LLM cybersecurity capabili-
ties can be divided into several categories: cybersecurity 
knowledge, secure code generation, IT operations, Cap-
ture-the-Flag (CTF), and cyber intelligence, as listed in 
Table 3.

Fig. 2 An overview of RQ1
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Cybersecurity knowledge evaluation focuses on evalu-
ating the model’s understanding of cybersecurity con-
cepts and its ability to provide accurate information 
on security threats and mitigation strategies. Cyber-
Bench (Liu et al. 2024f ) is a domain-specific, multi-task 
benchmarking tool for evaluating LLMs’ capabilities 
in cybersecurity tasks. It offers a generic and consist-
ent approach that alleviates the limitations previously 
encountered in evaluating LLMs in this domain. SecE-
val  (Li et  al. 2023a) is designed to evaluate cybersecu-
rity knowledge in LLMs. It provides more than 2000 
multiple-choice questions in 9 domains: Software Secu-
rity, Application Security, System Security, Web Security, 
Cryptography, Memory Safety, Network Security, and 
PenTest. By facilitating the evaluation of ten state-of-the-
art foundational models, this study provides new insights 
into their performance in the cybersecurity domain. By 
combining expert knowledge with the collaboration of 
LLMs, Tihanyi et  al. (2024b) create the CyberMetric 
benchmark dataset, which contains 10,000 questions and 
is designed to evaluate the cybersecurity knowledge of 
various LLMs within the cybersecurity field. SecQA (Liu 
2023) is a dataset of multiple-choice questions generated 
by GPT-4 based on the textbook “Computer Systems 
Security: Planning for Success,” which is designed spe-
cifically to assess LLMs’ understanding and application of 
security principles. SecQA provides questions at two tiers 
of complexity, which can not only serve as an assessment 
tool but also facilitate the advancement of LLM applica-
tions in environments that require a high level of secu-
rity awareness. In addition, SECURE (Bhusal et al. 2024) 

is a benchmark designed to assess LLMs’ performance in 
realistic cybersecurity scenarios, which includes 6 data-
sets to evaluate the capabilities of knowledge extraction, 
understanding, and reasoning in the Industrial Control 
System scenarios.

Secure code generation tests the model’s capability 
to generate code that is not only functional but also 
adheres to security best practices, aiming to mini-
mize vulnerabilities. CyberSecEval  (Bhatt et  al. 2023) 
is a security coding benchmark that aims at assessing 
the potential security risks and tendencies to facilitate 
cyber attacks when LLMs generate code. By evaluat-
ing seven models including Llama 2, Code Llama, and 
OpenAI’s GPT, CyberSecEval effectively pinpoints key 
cybersecurity risks and provides practical insights for 
model improvement. LLMSecEval  (Tony et  al. 2023) 
is a dataset of 150 natural language prompts based on 
the narrative descriptions of various vulnerabilities 
that appear in MITRE’s Top 25 Common Weakness 
Enumeration (CWE) rankings. LLMSecEval evaluates 
the security of LLM-generated code by comparing it 
to secure implementation examples for each prompt. 
SecurityEval  (Siddiq and Santos 2022) focuses on the 
security evaluation of code generation models to pre-
vent the creation of vulnerable code and thus avoid 
potential misuse by developers. This dataset includes 
130 samples covering 75 types of vulnerabilities 
mapped to CWE. PythonSecurityEval  (Alrashedy and 
Aljasser 2024) is a real-world dataset collected from 
actual scenarios on Stack Overflow, which is designed 
to evaluate LLMs’ ability to generate secure Python 

Table 3 A summary of datasets used for evaluating LLMs’ cybersecurity capabilities

Catagory Name Count Link

Cybersecurity knowledge CyberBench 60000+ https:// github. com/ jpmor ganch ase/ Cyber Bench

CyberMetric 10000 https:// github. com/ cyber metric/ Cyber Metric

SecEval 2000+ https:// github. com/ Xuanw uAI/ SecEv al/

SecQA 242 https:// huggi ngface. co/ datas ets/ zefang- liu/ secqa

SECURE 3602 https:// github. com/ aifor sec/ SECURE

Secure code generation CyberSecEval 7000+ https:// github. com/ faceb ookre search/ Purpl eLlama

LLMSeceval 150 https:// github. com/ tuhh- softs ec/ LLMSe cEval/

SecurityEval 121 https:// github. com/ s2e- lab/ Secur ityEv al

DegugBench 4253 https:// github. com/ thunlp/ Debug Bench

PythonSecurityEval 470 https:// github. com/ Kamel 773/ LLM- code- refine

Eyeballvul 24,000+ https:// github. com/ timot hee- chauv in/ eyeba llvul

IT operations NetEval 5732 https:// huggi ngface. co/ datas ets/ NASP/ netev al- exam

OpsEval 8920 https:// github. com/ NetMa nAIOps/ OpsEv al- Datas ets

CTF NYU CTF Dataset 200 https:// github. com/ NYU- LLM- CTF/ NYU_ CTF_ Bench

Cybench 40 https:// github. com/ andyz origin/ cyben ch/

Cyber threat intelligence SEvenLLM 90000+ https:// github. com/ CSJia nYang/ SEeve nLLM

CTIBench 2500 https:// github. com/ xashru/ cti- bench

https://github.com/jpmorganchase/CyberBench
https://github.com/cybermetric/CyberMetric
https://github.com/XuanwuAI/SecEval/
https://huggingface.co/datasets/zefang-liu/secqa
https://github.com/aiforsec/SECURE
https://github.com/facebookresearch/PurpleLlama
https://github.com/tuhh-softsec/LLMSecEval/
https://github.com/s2e-lab/SecurityEval
https://github.com/thunlp/DebugBench
https://github.com/Kamel773/LLM-code-refine
https://github.com/timothee-chauvin/eyeballvul
https://huggingface.co/datasets/NASP/neteval-exam
https://github.com/NetManAIOps/OpsEval-Datasets
https://github.com/NYU-LLM-CTF/NYU_CTF_Bench
https://github.com/andyzorigin/cybench/
https://github.com/CSJianYang/SEevenLLM
https://github.com/xashru/cti-bench
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code and their capacity to fix security vulnerabilities. 
DebugBench (Tian et al. 2024) has 4,253 instances cov-
ering four major bug categories and 18 minor types in 
C++, Java, and Python. This comprehensive evaluation 
clarifies the advantages and disadvantages of LLMs in 
automated debugging, which marks a major step in 
understanding their applicability and restraint in prac-
tical coding scenarios. EvilInstructCoder (Hossen et al. 
2024) is designed to assess the cybersecurity vulner-
abilities of instruction-tuned Code LLMs to adversarial 
attacks. By incorporating practical threat models to 
reflect real-world adversaries with varying capabilities 
and evaluating the exploitability of instruction-tuned 
Code LLMs under these diverse adversarial attack 
scenarios. Eyeballvul  (Chauvin 2024) is a benchmark 
designed to test the vulnerability detection capabili-
ties of language models at scale, which have contained 
24,000+ vulnerabilities across 6,000+ revisions and 
5,000+ repositories.

IT operations capability is used to evaluate the 
model’s proficiency in managing and securing IT 
infrastructures, including awareness of security situ-
ations, security threat analysis, and incident response. 
NetEval (Miao et al. 2023) is an evaluation set designed 
to measure the common knowledge and reasoning 
abilities of LLMs in NetOps. This set contains 5,732 
questions related to NetOps, covering five different 
NetOps subdomains. With NetEval, researchers sys-
tematically evaluate the NetOps capabilities of 26 pub-
licly available LLMs. Additionally, OpsEval  (Liu et  al. 
2024b) contains 7184 multi-choice questions and 1736 
question-answering formats in English and Chinese. 
It aims to analyze the root cause of faults, operational 
script generation, and alert information summarization 
to evaluate the performance of LLMs in IT operational 
tasks comprehensively. Donadel et  al. (2024) develop 
a thorough framework for evaluating LLMs’ capabili-
ties in various network-related tasks and conduct an 
exhaustive study on LLMs’ comprehension of computer 
networks.

In addition, NYU CTF Dataset  (Shao et  al. 2024) and 
Cybench  (Zhang et  al. 2024a) are used to assess LLMs 
capacity to solve Capture the Flag (CTF) challenges 
in cybersecurity, aiming to improve the efficiency of 
LLMs in interactive cybersecurity tasks and automated 
task planning. SEvenLLM (Ji et al. 2024) is a framework 
to benchmark, elicit, and improve cybersecurity inci-
dent analysis and response abilities in LLMs for secu-
rity events. CTIBench (Alam et al. 2024) is a benchmark 
designed to evaluate the performance of LLMs in Cyber 
Threat Intelligence (CTI) applications, encompassing 
multiple datasets focused on assessing the knowledge 
acquired by LLMs within the cyber-threat landscape.

The evaluation of LLMs’ cybersecurity capabilities not 
only guides the basic model during fine-tuning but also 
demonstrates that general LLMs have certain cybersecu-
rity capabilities. This supports the feasibility of directly 
using LLMs (without fine-tuning) to aid cybersecurity 
applications, as discussed in section  4. Furthermore, 
these studies help researchers and developers recognize 
the limitations of LLMs in the field of cybersecurity, 
thereby providing the direction for artificial intelligence 
toward higher standards and more professional security 
development.

Key technologies in constructing domain LLMs
LLMs have demonstrated remarkable language under-
standing and generation capabilities by leveraging the 
transformer architecture and self-supervised pre-training 
strategies (Vaswani et al. 2017; Radford and Narasimhan 
2018; Brown et al. 2020). However, developing a special-
ized LLM for cybersecurity from scratch requires a lot of 
computational resources, which is impractical for most 
research teams. Fortunately, existing general LLMs have 
acquired extensive knowledge and demonstrated excel-
lent generalization capabilities (Touvron et  al. 2023a, b; 
Yang et al. 2023; Jiang et al. 2024a). By combining these 
pre-trained LLMs with domain datasets for training, we 
can adopt a more efficient approach to enhance the mod-
el’s cybersecurity capabilities. This approach not only 
significantly reduces the computational demands of pre-
training, but also maximizes the use of the knowledge 
that LLMs have learned. Thereby, the model can under-
stand and perform cybersecurity-related tasks, such as 
automated threat detection, vulnerability identification, 
and security policy recommendations.

To apply general LLMs to cybersecurity, researchers 
mainly employ two approaches: continual pre-training 
(CPT) and supervised fine-tuning (SFT).

Continual pre-training involves further training of 
pre-trained LLMs using a large amount of unlabeled 
domain-specific data  (Çağatay Yıldız et  al. 2024; Zhang 
et  al. 2024e; Wu et  al. 2024c; Ibrahim et  al. 2024). This 
method aims to improve the model’s understanding and 
application of domain knowledge, significantly improving 
its broad applicability within the cybersecurity field. CPT 
is based on the core assumption that even after extensive 
pre-training, the model still has the potential for further 
enhancement, especially in specific domains or tasks. The 
process usually involves several key steps: first, select a 
dataset that can appropriately represent the characteris-
tics of the target domain; second, determine the strategy 
for continuous pre-training; and finally, perform pre-
training and adjust the model architecture or optimiza-
tion algorithm as needed to adapt to the new training 
objectives.
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Supervised Fine-Tuning uses labeled domain-spe-
cific data for training, enabling direct optimization 
of the model’s performance on specific cybersecurity 
tasks  (Zhang et  al. 2023c; Dong et  al. 2023). Compared 
to CPT, SFT focuses on improving the performance of 
a specific task. In SFT, the model weights are refined via 
gradients calculated from a task-specific loss function. 
This function quantifies the deviation between the mod-
el’s predictions and the actual labels, thus promoting the 
learning of task-oriented patterns. SFT relies on the utili-
zation of high-quality, human-annotated data, which is a 
collection of prompts and their corresponding responses. 
SFT is important for LLMs such as ChatGPT, which are 
designed to follow user instructions and focus on specific 
tasks in context. This specific type of fine-tuning is also 
referred to as instruction fine-tuning.

In the context of CPT and SFT, researchers have the 
option of employing either full-parameter fine-tuning 
(FULL) or parameter-efficient fine-tuning (PEFT).

Full-parameter fine-tuning is a classical approach that 
adjusts all parameters of the model during training. This 
allows the model to fully adapt and specialize to the tar-
get domain. By optimizing all parameters, the model 
can achieve optimal performance for specific tasks or 
datasets. However, full parameter updates require con-
siderable computing power and time, posing challenges 
in efficiency and scalability, especially as the number of 
LLM parameters continues to increase.

Conversely, PEFT methods fine-tune only a small 
number of model parameters or additional parameters 
while freezing most parameters of the pre-trained LLMs, 
which greatly reduces the computational costs. It also 
helps in portability, and users can fine-tune the model 
using PEFT methods to obtain tiny checkpoints of only a 
few MB in size. In summary, PEFT methods are favored 
because they enable users to obtain comparable per-
formance to full fine-tuning while having only a small 
number of trainable parameters. There are several PEFT 
methods, such as adapter tuning, prefix tuning, prompt 
tuning, LoRA, QLoRA, and so on:

Adapter tuning  (He et  al. 2021) inserts adapters after 
the multi-head attention and feed-forward layers in the 
transformer architecture, which updates only the param-
eters in the adapter during fine-tuning while keeping 
the rest of the model parameters frozen. P-tuning  (Liu 
et  al. 2023e) automatically learns optimal task-specific 
prompt embeddings by introducing trainable prompt 
tokens, eliminating the need for manual prompt design 
and potentially improving performance with the addition 
of anchor tokens. Prefix tuning  (Liu et  al. 2021) keeps 
the language model parameters frozen and optimizes 
small, continuous, task-specific vectors called prefixes. 
Prompt tuning  (Lester et al. 2021) fine-tunes for specific 

tasks through learning soft prompts by backpropagat-
ing and merging labeled examples. LoRA (Hu et al. 2022) 
is a small trainable submodule that can be inserted into 
the transformer architecture. It freezes the pre-trained 
model weights and inserts a trainable low-rank decom-
position matrix into each layer of the model, reducing the 
number of trainable parameters for downstream tasks. 
After training, the matrix parameters are combined 
with the original LLM. QLoRA  (Dettmers et al. 2024) is 
a further optimization of LoRA, which carries out gradi-
ent backpropagation to a low-rank adapter with a frozen 
4-bit quantized pre-trained language model, reducing the 
memory requirement for fine-tuning while being almost 
comparable to full fine-tuning.

By integrating these techniques, researchers can select 
appropriate methods to construct LLMs tailored to the 
specific needs of the cybersecurity domain, as shown in 
Fig. 3. Furthermore, emerging technologies also provide 
insights for the construction of cybersecurity LLMs. For 
example, model editing techniques  (Yao et  al. 2023b; 
Zhang et al. 2024c) can precisely modify LLMs to incor-
porate cybersecurity knowledge without negatively 
affecting other knowledge. Prompt engineering  (Boz-
kurt and Sharma 2023; Ye et al. 2023; Sahoo et al. 2024), 
by designing effective prompts to guide LLMs towards 
desired outputs, can alleviate the bottleneck of training 
data and resources required for constructing cybersecu-
rity LLMs.

Fine-tuned domain LLMs for cybersecurity
The researchers have used the above techniques and base 
models to customize LLMs to address specific problems 
in the field of cybersecurity, as shown in Table 4. These 
efforts highlight the great potential of integrating 
domain-specific knowledge to enhance the capabilities 
of LLMs, especially for key applications including vulner-
ability detection, fault Localization, program repair, and 
so on.

Vulnerability detection involves identifying and classi-
fying potential security vulnerabilities in software code. 
Shestov et al. (2024) fine-tunes WizardCoder (Luo et al. 
2024) with LoRA specifically for vulnerability detection, 
focusing on the binary classification of whether Java func-
tions contain vulnerabilities. Ferrag et al. (2023) performs 
partial parameters fine-tuning on FalconLLM  (Almaz-
rouei et al. 2023) using C code samples to obtain Secure-
Falcon, which can distinguish between vulnerable and 
non-vulnerable samples with a detection accuracy of 
up to 96%, and further proposes a method for repair-
ing vulnerabilities using FalconLLM. Yang et  al. (2024a) 
introduces a new fault localization method based on the 
language model, named LLMAO. LLMAO adds bidirec-
tional adapter layers on CodeGen (Nijkamp et al. 2023b, 
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a), enabling the model to learn bidirectional representa-
tions of codes and predict the probability of defects in 
code lines. Detect Llama (Ince et al. 2024) is fine-tuned 
on Code-Llama with 17k dataset, outperforming GPT-4 
in smart contract vulnerability detection.

Secure code generate via LLMs aims to improve the 
security of automatically generated code by mitigat-
ing vulnerability risks. Storhaug et al. (2023) proposes a 
new approach called vulnerability-constrained decoding, 
which integrates vulnerability tags during model train-
ing. By avoiding generating code with these labels, the 

model significantly reduces the generation of vulnerable 
code. Fine-tuning on GPT-J (Wang 2021) shows a nota-
ble reduction in vulnerabilities in the generated code. He 
et  al. (2024) focuses on improving the security of code 
generation by LLMs via instruction tuning. They con-
vert CodeLlama (Roziere et al. 2023) to SafeCoder using 
supervised fine-tuning on a dataset containing both 
secure and insecure programs. This approach achieves 
significant security improvements (approximately 30%) 
across various popular LLMs and datasets while remain-
ing practical.

Fig. 3 Comparison of domain LLM training approaches. Continual Pre-Training and Supervised Fine-Tuning offer methods to enhance 
domain-specific performance based on existing LLMs, while Full Parameter Fine-Tuning and Parameter-Efficient Fine-Tuning represent different 
technical pathways within these training processes

Table 4 A summary of fine-tuned domain LLMs for cybersecurity

Description Base model Training methods Open source

SecureFalcon Software vulnerability classification Falcon SFT(PEFT) No

VulLLM Vulnerability detection StarCoder SFT(PEFT) No

SC-GPT Vulnerability constraint decoding GPT-J SFT(FULL) No

RepairLLaMA Automatic program repair Llama SFT(PEFT) Yes

LLMAO Fault location CodeGen SFT(PEFT) No

OWL IT operation Llama SFT(PEFT) No

SafeCoder Secure code generation Llama SFT(PEFT) No

HackMentor Security knowledge QA Llama SFT(PEFT) Yes

IoT-LM Internet of Things Llama CPT+SFT(PEFT) No

Nove Binary code analysis DeepSeek-Coder CPT+SFT(FULL) Yes
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Automated program repair aims to automatically fix 
software bugs without human intervention. Silva et  al. 
(2023) proposes a new program repair approach called 
RepairLLaMA, which significantly improves LLMs’ pro-
gram repair capabilities by applying LoRA fine-tuning 
to CodeLlama. It outperforms GPT-4 on the Java bench-
marks Defects4J and HumanEval-Java. Li et  al. (2024a) 
first creates an instruction dataset APR-INSTRUC-
TION by using prompt engineering, then fine-tunes 
LLMs using four different PEFT methods based on this 
data to improve the model’s automated program repair 
capabilities.

Binary is the most basic form of computer code, it is 
important to learn what it means and how to use it. 
Jiang et  al. (2023a) demonstrates the benefits of LLMs 
for binary analysis. They continually train StarCoder  (Li 
et  al. 2023d; Lozhkov et  al. 2024) on specialized binary 
code corpus and new tasks, leading to the development 
of Nova and Nova+ . After SFT, the enhanced LLMs effec-
tively address specific tasks such as binary code similar-
ity detection, binary code translation, and binary code 
recovery.

IT operations manage routine tasks and activities to 
keep the infrastructure running for other services. Guo 
et al. (2024a) describes a specialized LLM for IT opera-
tions, named Owl, which is supervised fine-tuned of 
Llama on the collected Owl-Instruct dataset. Owl out-
performs existing models in IT-related tasks and dem-
onstrates effective generalization capabilities on the 
Owl-Bench benchmark.

Cybersecurity knowledge assistants help to improve 
users’ security awareness and assist users in defending 
against cyber attacks through interaction with users. 
Zhang et  al. (2023b) proposes Hackmentor, a cyberse-
curity knowledge assistant. They develop a dataset of 
cybersecurity instructions and conversations and train 
Hackmentor using LoRA by fine-tuning on Llama and 
Vicuna  (Chiang et  al. 2023). CyberPal  (Levi et  al. 2024) 
is fine-tuned using SecKnowledge, a domain knowledge-
driven cybersecurity instruction dataset, to build a secu-
rity-specialized LLM capable of answering and following 
complex security-related instructions. This demonstrates 
the potential of LLMs in cybersecurity applications.

In addition to enhancing the cybersecurity capabili-
ties of general LLMs through SFT and CPT, specialized 
security-oriented LLMs can be developed by leveraging 
innovative model architectures and proprietary large-
scale datasets for independent pretraining. The Machine 
Language Model (MLM) is a large model designed for 
the machine language domain, utilizing an innovative 
architecture to align multimodal data across machine 
language, natural language, and source code (Liu et  al. 
2018; Wang et  al. 2022, 2024b). This approach not only 
addresses the limitations of existing LLMs in compre-
hending machine language but also introduces trans-
formative advancements in software reverse engineering 
and software security detection. TrafficFormer  (Zhou 
et  al. 2024a) is an efficient pre-training model designed 
for traffic data. Given the characteristics of traffic data, it 
introduces fine-grained multi-classification tasks in the 
pre-training stage to enhance the representation of traffic 
data; in the fine-tuning stage, it uses the random initiali-
zation characteristics of the field to propose a traffic data 
enhancement method to help the traffic model focus on 
key information. In this way, the accuracy of the model’s 
traffic detection and protocol understanding is improved. 
These developments pave the way for novel research 
directions in the field of cybersecurity.
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RQ2: What are the potential applications of LLMs 
in cybersecurity?
This section introduces the application of LLMs in vari-
ous cybersecurity tasks, encompassing offline defense 
(e.g., threat intelligence), online defense (e.g., vulner-
ability detection, malware detection, and anomaly detec-
tion), software testing (e.g., fuzz and program repair), 
attack assistance (e.g., LLM assisted attack), source code 
generation and analysis (e.g., (in)secure code generation), 
and other security-related applications (e.g., honeypot, 

botnet, SoC security, etc.). By reviewing the key advance-
ments in each topic, this paper aims to offer a compre-
hensive perspective on the evolution of the cybersecurity 
landscape driven by LLMs integration (Fig. 4).

Threat intelligence
Since LLMs have shown excellent analysis and summa-
rization capabilities in natural language processing tasks, 
it is natural for LLMs to be used to process threat intelli-
gence text. For example, Clairoux-Trepanier et al. (2024) 

Fig. 4 An overview of RQ2

Table 5 LLMs for cyber threat intelligent

Category Related work

CTI generation (5) Mitra et al. (2024), Perrina et al. (2023), Fayyazi and Yang (2023), Schwartz et al. (2024), Michelet and Breitinger 
(2024)

CTI information extraction (8) Clairoux-Trepanier et al. (2024), Siracusano et al. (2023), Hu et al. (2024), Zhang et al. (2024g), Fieblinger et al. 
(2024), Wu et al. (2024e), Fayyazi et al. (2024), Singla et al. (2023)

CTI report deduplication (1) Zhang et al. (2023d)

LLMs as security response experts (5) Lin et al. (2023), Kaheh et al. (2023), Jin et al. (2024), Tseng et al. (2024a), Rajapaksha et al. (2024)
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assesses the performance of an LLM system built on the 
GPT to extract CTI information, highlight the relevance 
of using LLMs for CTI. Researchers have used LLMs to 
assist in the generation and analysis of cyber threat intel-
ligence (CTI), as shown in Table 5.

Mitra et  al. (2024) introduces a framework known 
as LocalIntel, which aims to provide users with reli-
able threat intelligence by allowing LLMs to summarize 
knowledge after querying global and local knowledge 
databases. Global knowledge mainly refers to well-doc-
umented reports on cybersecurity threats from CWE 
and CVE, while local knowledge is customized by the 
organization for practical purposes to supplement global 
knowledge. Perrina et  al. (2023) also conducts similar 
work to extract security knowledge from a wide range 
of knowledge bases and automatically generate reports 
using LLMs. A few similar efforts are as follows. Fayyazi 
and Yang (2023) employs LLM to generate descriptions 
of cyber attacks and fine-tune the model using informa-
tion collected from ATT&CK and CAPEC. Then, they 
compare the performance of the fine-tuned LLMs with 
the directly used LLMs (GPT−3.5) in describing attacks. 
LMCloudHunter  (Schwartz et  al. 2024) leverages LLMs 
to automatically generate generic signature detection rule 
candidates from textual and visual OSCTI data.

Specifically for digital forensics, Michelet and Bre-
itinger (2024) proposes a method to automate the gen-
eration of reports. They study the structure of forensic 
reports to identify common sections and assess the fea-
sibility of LLMs in generating these sections. Through a 
case study approach, the article evaluates the strengths 
and limitations of LLMs in creating different sections of 
forensic reports.

Given that most threat intelligence providers offer 
information in an unstructured format, Siracusano et al. 
(2023) and Hu et  al. (2024) propose innovative solu-
tions to the common problem of extracting useful infor-
mation from threat intelligence. The former designs a 
framework named aCTIon, which includes downloading 
and parsing raw reports, extracting useful information 
with LLM, and exporting structured reports follow-
ing STIX (Barnum 2012) standard. The latter constructs 
the knowledge graph of unstructured threat intelligence 
and fine-tunes LLMs to automate information extrac-
tion tasks. Also, by leveraging the capabilities of LLMs 
in instruction prompting and in-context learning, Zhang 
et  al. (2024g) propose a fully automatic LLM-based 
framework, AttacKG, which comprises four consecutive 
modules: rewriter, parser, identifier, and summarizer, to 
construct attack knowledge graphs from CTI. Fieblinger 
et al. (2024) explore the application of open-source LLMs 
for extracting meaningful triples from CTI texts. Then, 
the extracted data is utilized to construct a knowledge 

graph, offering a structured and queryable representation 
of threat intelligence. Besides, considering the quality 
assessment of threat intelligence provided by intelligence 
platforms, Wu et al. (2024e) propose a novel CTI quality 
assessment framework that combines knowledge graphs 
and LLMs. In this verifier, LLMs automatically extract 
OSCTI key claims to be verified and utilize a knowledge 
graph consisting of paragraphs for fact-checking. This 
significantly improves the performance of LLMs in intel-
ligence quality assessment.

In another work, Fayyazi et al. (2024) studies the appli-
cation of LLMs in cybersecurity to explain and summa-
rize cyberattack Tactics, Techniques, and Procedures 
(TTPs) from the MITRE ATT&CK framework. It reveals 
that RAG significantly improves the explanation of TTPs 
by providing relevant context, highlighting the potential 
of LLMs in threat intelligence. Singla et  al. (2023) dis-
cusses the capability of LLMs to automatically analyze 
and summarize software supply chain security vulner-
abilities. Their results show that LLMs show good poten-
tial, especially when the data is comprehensive, but still 
cannot replace human analysts in this specific field.

In addition to extracting valuable information from 
large amounts of text, report deduplication is also an 
important research focus in this field. Zhang et  al. 
(2023d) uses LLMs to alleviate the problem of bug report 
deduplication. They leverage LLMs as an intermedi-
ate step to improve the performance of REP  (Sun et  al. 
2011) (a traditional method of measuring the similarity 
between bug reports) by identifying keywords, thereby 
improving its effectiveness.

There are also studies that attempt to use LLMs as 
experienced security response experts. Lin et  al. (2023) 
uses LLMs as suggestion providers to mitigate vulnerabil-
ities through prompt engineering. They design a system 
that is able to retrieve relative CVE & CWE information 
after the user enters a vulnerability description. LLMs’ 
mitigation suggestions are a subcomponent of the sys-
tem. Kaheh et al. (2023) believes that LLMs are not only 
question-answering assistants with expertise but also able 
to perform actions based on the user’s description (e.g., 
instructing the host’s intrusion detection system to block 
a specific IP). To enhance strategic reasoning in cyber-
security, Jin et  al. (2024) introduces Crimson, a system 
that uses LLMs to associate CVEs with MITRE ATT&CK 
techniques to improve threat prediction and defense. The 
core concept is the Retrieval-Aware Training (RAT) pro-
cess, which refines LLMs to generate accurate cybersecu-
rity strategies, thereby significantly reducing errors and 
hallucinations. By integrating real-time data retrieval and 
domain-specific fine-tuning, Crimson enhances the mod-
els’ interpretability and strategic consistency, providing a 
proactive approach to cybersecurity threat intelligence. 
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Tseng et al. (2024a) develop an AI agent designed to auto-
mate the labor-intensive and repetitive tasks associated 
with analyzing CTI reports. By leveraging the advanced 
capabilities of LLMs, the AI agent can accurately extract 
important information from large volumes of text and 
generate Regex to help SOC analysts accelerate the pro-
cess of establishing correlation rules. Rajapaksha et  al. 
(2024) introduces a QA model based on Retrieval Aug-
mented Generation (RAG) techniques together with 
LLMs and provides answers to the users’ queries based 
on the knowledge base that contains curated information 
about cyber-attacks investigations and attribution or on 
outside resources provided by the users.

Vulnerability detection
This section provides an overview of the main stud-
ies on vulnerability detection using LLMs  (we blur the 
concepts of “vulnerability” and “software defect” in this 
part). Through these studies, we aim to shed light on the 
progress, challenges, and future directions of leveraging 
LLMs to enhance cyber security (Table 6).

Whether LLMs have the ability to detect vulnerabili-
ties? The following papers conduct preliminary studies 
on this question. Although their results may vary due to 
some unknown reasons (e.g., they may use different data-
sets), in general, they all show that LLMs are promising 
for vulnerability detection  (Zhou et  al. 2024c; Tamberg 
and Bahsi 2024; Zhou et  al. 2024d; Mahyari 2024; Mao 
et al. 2024a).

Cheshkov et  al. (2023) initially evaluates whether 
GPT-3 and GPT−3.5 could identify some known CWE 
vulnerabilities in Java code. The results show that the 
application effect in vulnerability detection tasks is not 
good and needs further improvement and research. In 
another work, Purba et  al. (2023) uses LLMs (includ-
ing GPT−3.5, CodeGen, and GPT-4) to analyze several 
common vulnerabilities (e.g., SQL injection, overflow). 
The conclusion confirms that LLMs do have the abil-
ity to detect vulnerabilities, but the false positive rate 

is high. However, Omar and Shiaeles (2023) fine-tunes 
GPT on various vulnerable code benchmarks to detect 
software vulnerabilities and achieve good performances. 
Similarly, Khare et  al. (2023) concludes that LLMs are 
generally able to perform better vulnerability detec-
tion than existing static analysis and deep learning-
based tools. With carefully designed prompts, desirable 
results can be obtained on synthetic datasets, but per-
formance degrades on more challenging real-world 
datasets. Jensen et al. (2024) compares the performance 
of a wide range of open-source and proprietary models 
with Python code snippets in assisting vulnerability dis-
covery. Their research suggests that LLMs can be effec-
tively used to enhance the efficiency and quality of code 
reviews, particularly in detecting security issues within 
software code. Shestov et  al. (2024) fine-tunes Wizard-
Coder for vulnerability detection and investigate whether 
the encountered performance limit is due to the lim-
ited capacity of CodeBERT-like models. Their results 
suggest that this is indeed the case and that LLMs have 
great potential for application in vulnerability detection. 
Li et  al. (2023c) presents LLift, a framework that lever-
ages LLMs to assist static program analysis, specifically 
for detecting use-before-initialization (UBI) defects. LLift 
interacts with static analysis tools and LLMs, demon-
strating 50% accuracy in real-world scenarios and iden-
tifying 13 previously unknown UBI bugs in the Linux 
kernel. Kouliaridis et al. (2024) assess the ability of vari-
ous LLMs to detect Android code vulnerabilities listed in 
the latest Open Worldwide Application Security Project 
(OWASP) Mobile Top 10. While the reported findings 
regarding code vulnerability analysis show promise, they 
also reveal significant discrepancies among the differ-
ent LLMs. Moreover, Guo et al. (2024b) thoroughly ana-
lyzes the capabilities of LLMs in detecting vulnerabilities 
within source code by testing the models beyond their 
usual applications. It also paves the way for LLM-based 
vulnerability detection by addressing two key aspects: 
model training and dataset curation

Table 6 LLMs for vulnerability detection

Category Related work

Vulnerability detection capability assessment (14) Zhou et al. (2024c), Tamberg and Bahsi (2024), Zhou et al. (2024d), Mahyari 
(2024), Mao et al. (2024a), Cheshkov et al. (2023), Purba et al. (2023), Omar 
and Shiaeles (2023), Khare et al. (2023), Jensen et al. (2024), Shestov et al. 
(2024), Li et al. (2023c), Kouliaridis et al. (2024), Guo et al. (2024b)

Vulnerability detection capability improvement (18) Wang et al. (2023b), Bakhshandeh et al. (2023), Mathews et al. (2024), Zhang 
et al. (2024b), Lee et al. (2024), Yang et al. (2025), Wang et al. (2024g), Yang et al. 
(2024e), Du et al. (2024b), Hu et al. (2023b), Liu et al. (2023g), Sun et al. (2024b), 
Du et al. (2024a), Sun et al. (2024a), Mao et al. (2024b), Li et al. (2024d), Chen 
et al. (2023a), Liu et al. (2023c)

Vulnerability detection datasets preparation (4) Chen et al. (2023b), Gao et al. (2023), Tihanyi et al. (2023), Gonçalves et al. 
(2024)
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Improving detection capabilities through different 
strategies. Instead of directly providing code to LLM and 
asking it to answer, many researchers would adopt vari-
ous strategies in advance. They believe that simply pro-
viding code is not enough and that the code needs to be 
further preprocessed or more information needs to be 
provided to LLMs for vulnerability reasoning.

Wang et al. (2023b) proposes a code sequence embed-
ding (CSE) that combines the AST, DFG, and CFG of the 
code as input to the model. Then, the model captures the 
semantic information with the help of conformer mecha-
nism (Gulati et  al. 2020), an improved architecture of 
Transformer. Zhang et al. (2024b) not only provides the 
code to GPT but also provides the API call sequence and 
data flow diagrams. Bakhshandeh et al. (2023) conducts 
a similar experiment to compare the performance of the 
model when different levels of information are given, 
including asking for the vulnerability point directly, giv-
ing some CWE information, and telling LLMs what vul-
nerabilities are in the code. Mathews et al. (2024) focuses 
on Android platform vulnerabilities and compares the 
performance of LLMs on three conditions: asking LLMs 
to find vulnerabilities directly, providing vulnerability 
summaries before asking and granting LLMs permission 
to request any file in the APK after providing the APK 
core (AndroidManifest.xml and MainActivity.java). Lee 
et al. (2024) focuses on the security of Android systems 
against filesystem vulnerabilities. They present PathSen-
tinel, which leverages LLMs to generate targeted exploit 
code based on the identified vulnerabilities and generated 
input payloads, reducing the engineering effort required 
for writing test applications. DLAP  (Yang et  al. 2025) 
combines the advantages of deep learning models for 
specific tasks and LLM’s powerful general understand-
ing ability, and achieves excellent vulnerability detection 
performance. Wang et al. (2024g) reframes vulnerability 
detection as an anomaly detection task by viewing vul-
nerable code as an anomaly within the LLM’s predicted 
code distribution. This approach frees the model from 
the need for labeled data, allowing it to learn a represen-
tation of vulnerable code. Ultimately, it results in a detec-
tor that identifies software vulnerabilities at the line-level 
granularity.

There are some studies that use retrieval-augmented 
generation (RAG) based on additional knowledge bases 
to facilitate LLM for vulnerability detection. Yang et  al. 
(2024e) explores three different strategies for augment-
ing both single and multi-statement vulnerabilities using 
LLMs: Mutation, Injection, and Extension. These strate-
gies potentially alleviate the shortage of data. Du et  al 
(2024b) proposed Vul-RAG, which leverages knowledge-
level RAG framework to detect vulnerability. And the 
vulnerability knowledge generated by Vul-RAG can serve 

as high-quality explanations to further improve the man-
ual detection accuracy.

In addition to the above efforts, researchers have also 
proposed many innovative ideas to improve the vul-
nerability detection ability of LLMs. Hu et  al. (2023b) 
proposes an innovative two-stage framework named 
GPTLENS, which includes two adversarial agent roles: 
auditor and critic. The auditor performs during the gen-
eration phase and its main goal is to identify potential 
vulnerabilities in the smart contract. In contrast, the 
critic works during the identification phase its main goal 
is to evaluate the vulnerabilities generated by the auditor. 
Liu et al. (2023g) uses traditional algorithms (TF-IDF and 
BM25) to match the code under analysis with the code in 
the vulnerability corpus to determine similarity. The code 
under analysis is presented to LLMs together with similar 
corpus entries. Based on in-context learning, LLMs can 
more accurately determine whether the code contains the 
identified vulnerability type. Sun et al. (2024b) specifically 
focuses on vulnerability detection in smart contracts and 
introduce a tool called GPTScan. GPTScan first parses 
the smart contract project to determine the reachability 
of the functions, retaining only those that may have vul-
nerabilities. Subsequently, GPTScan uses GPT to match 
candidate functions with predefined vulnerability types. 
Finally, GPTScan asks GPT to confirm the vulnerability. 
VulLLM (Du et  al. 2024a) combines multi-task learning 
with LLMs, introducing two auxiliary tasks-vulnerability 
localization and vulnerability explanation-in addition to 
the primary vulnerability detection task. This approach 
enhances the model’s ability to understand the root 
causes of code vulnerabilities, thereby improving its gen-
eralization capabilities.

To improve LLM’s ability to reason about vulnerabili-
ties, Sun et al. (2024a) proposes LLM4Vuln, which sep-
arates the vulnerability reasoning capabilities of LLMs 
from others (e.g., proactively seeking more information, 
employing relevant vulnerability knowledge, and fol-
lowing instructions to output structured results). They 
allow LLMs to request additional contextual informa-
tion about the target code. Moreover, they conclude 
that the more information input to LLMs is not the 
better. Too much information such as full vulnerabili-
ties report, and a large amount of invocation context, 
may lead to distractions. Mao et al. (2024b) proposes a 
new method called MuCoLD, which simulates a multi-
role code review process for vulnerability detection in 
software. By playing different roles, such as developers 
and testers, LLMs participate in discussions to reach 
a consensus on the existence and classification of vul-
nerabilities. IRIS (Li et al. 2024d) combines LLMs with 
static analysis to enable reasoning over the entire code-
base. It automatically infers taint specifications and 
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performs contextual analysis, thereby reducing reli-
ance on human-generated specifications and manual 
inspection.

In addition to detecting vulnerabilities in specific pro-
grams, recent studies have attempted to use LLMs to infer 
lists of affected libraries from vulnerability reports. Chen 
et al. (2023a) observes that many vulnerability reports in 
the national vulnerability database (NVD) either omit-
ted affected libraries or provided incomplete or incorrect 
library names, increasing the risk of third-party library 
vulnerabilities. To address this problem, they propose 
VulLibGen, a method designed to detect vulnerabilities 
in third-party libraries. VulLibGen takes only vulnerabil-
ity descriptions as input and uses the inherent knowledge 
of LLMs to generate a list of library names that may be 
affected by the reported vulnerabilities.

Liu et al. (2023c) explores the application of ChatGPT 
for vulnerability management. They evaluate ChatGPT’s 
capabilities in predicting security bugs, evaluating sever-
ity, repairing vulnerabilities, and verifying patch correct-
ness. The results reveal that while ChatGPT can assist 
in identifying and mitigating software security threats, 
it needs enhancements to perform more nuanced tasks, 
such as vulnerability prioritization and patch validation.

Construction of vulnerability detection datasets. In 
addition to the methods of retraining or fine-tuning the 
models, the construction of the dataset is also important 
for vulnerability detection.

Chen et al. (2023b) introduces a new vulnerable source 
code dataset called DiverseVul, which contains 18,945 
vulnerable functions (covering 150 CWEs) and 330,492 
non-vulnerable functions, all written in C/C++. They 
also explore 11 different deep learning architectures and 
conclude that despite the remarkable success of LLMs, 
they still face challenges such as high false positive rates, 

low F1 scores, and difficulty in identifying complex 
CWEs for vulnerability detection. Gao et al. (2023) intro-
duces a comprehensive vulnerability benchmark dataset 
called VulBench, which includes high-quality data from 
CTF challenges and real-world applications with detailed 
annotations of vulnerability types and causes for each 
vulnerable function. Tihanyi et al. (2023) creates a data-
set containing 112,000 vulnerable C code instances with 
detailed information about the specific vulnerability, 
including CWE number, location, and function name. 
Notably, all the code in this dataset is generated by GPT−
3.5, which illustrates the application potential of vulner-
able code synthesized by LLMs. Source Code Processing 
Engine (SCoPE)  (Gonçalves et  al. 2024) is a framework 
that incorporates strategized techniques to reduce the 
size and normalize C/C++ functions. Additionally, 
SCoPE refines the CVEFixes dataset, which can be used 
for fine-tuning pre-trained LLMs for software vulnerabil-
ity detection.

Malware detection
In malware detection, LLMs can serve as both the static 
analysis assistant and the dynamic debugging assistant, 
improving the efficiency and effectiveness of the process, 
and making it an important part of defending against 
cyber threats (Table 7).

LLMs as the static analysis assistant
Pearce et  al. (2022b) explores the application of LLMs, 
such as OpenAI’s Codex, in the field of reverse engineer-
ing, particularly in understanding software functional-
ity and extracting information from the code. LLMs are 
primarily used to analyze the functionality of C code 
provided by reverse engineering tools such as Ghidra. 
These C codes are obtained from binary files through 

Table 7 LLMs for malware detection

Category Related work

Static analysis assistant (10) Pearce et al. (2022b), Tan et al. (2024), Fang et al. (2024a),Zhao et al. (2023), 
Palacio et al. (2023), Yan et al. (2023), Fujima et al. (2023), Wang (2023), 
Zahan et al. (2024), Lu et al. (2024)

Dynamic debugging assistant (3) Tian et al. (2024), Liu et al. (2024e), Ahmad et al. (2023a)

Table 8 LLMs for anomaly detection

Category Related work

Log-based anomaly detection (6) Karlsen et al. (2024), Liu et al. (2023b), Qi et al. (2023), Han et al. (2023), Liu et al. (2024c), Zhang et al. 
(2024f )

Web content security (9) Jamal and Wimmer (2023), Wu et al. (2024d), Nahmias et al. (2024), Heiding et al. (2023), Vörös et al. (2023), 
Guastalla et al. (2023), Ferrag et al. (2024b), Ziems et al. (2023), Ali and Kostakos (2023)

Digital forensic (1) Scanlon et al. (2023)
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the process of decompilation. Decompilation is also an 
important task in reverse engineering. Tan et  al. (2024) 
introduces an LLM tailored for decompilation that 
focuses on converting compiled machine code back into 
human-readable source code. They fine-tune a model 
called DeepSeek-Coder on a large number of C code and 
assembly code pairs and evaluate the performance of 
their work by recompiling and executing the decompiled 
code. Fang et al. (2024a) explores the potential and limi-
tations of LLMs for code analysis tasks, especially when 
dealing with obfuscated code. In the experiments, they 
conduct tests that allow LLMs to generate de-obfuscated 
versions of code, i.e., to recover more readable original 
code from obfuscated code.

Zhao et  al. (2023) focuses on how to improve LLM’s 
semantic understanding of programs through fuzz test-
ing. Their core idea is that programs with their basic units 
(e.g., functions, and subroutines) are designed to exhibit 
diverse behaviors and provide possible outputs given dif-
ferent inputs. Thus, through fuzz testing, various inputs 
trigger different functions of the code that can help LLMs 
understand the behavior and semantics of the program 
more thoroughly.. Palacio et al. (2023) introduces ASTx-
plainer, an explainability method for LLMs in coding 
scenarios. It aligns token predictions with Abstract Syn-
tax Tree (AST) nodes, enabling detailed evaluation and 
visualization of model predictions. ASTxplainer consists 
of AsC-Eval for structural performance estimation, AsC-
Causal for causal analysis, and AsC-Viz for visualization. 
These components provide a more comprehensive expla-
nation of how LLMs work when generating or analyzing 
code.

Yan et al. (2023) focuses on how LLMs can be utilized 
to aid in dynamic analysis of malware. The core idea of 
the research is to use GPT-4 to generate explanatory text 
for each API call, and then use BERT to generate a series 
of API sequences to be executed based on the previous 
analysis. This approach can theoretically generate rep-
resentations for all API calls without the need to train 
the dataset during the generation process. Fujima et  al. 
(2023) uses LLM (specifically ChatGPT) to analyze the 
linguistic and strategic elements of ransomware com-
munications. By examining a range of ransomware sam-
ples, the study identifies patterns and strategies used in 
ransom notes, revealing the evolution of ransomware 
strategies characterized by sophisticated language use 
and psychological manipulation. Wang (2023) also dis-
cusses the potential and challenges of LLMs in generat-
ing strategies against ransomware. Zahan et  al. (2024) 
employs GPT-3 and GPT-4 to detect potential malware 
in the npm ecosystem by analyzing JavaScript packages. 
The study introduces SocketAI Scanner, a multi-stage 
workflow that utilizes iterative self-refinement, zero-shot 

role-playing, and chain of thought prompting techniques 
to enhance the model’s ability to identify malicious intent 
within code. By comparing LLMs’ performance with 
static analysis tools, the paper demonstrates that LLMs 
can effectively pinpoint malware with higher precision 
and lower false positive rates.

Binary malware summarization aims to automatically 
generate human-readable descriptions of malware behav-
iors from executable files, facilitating tasks like malware 
cracking and detection. Lu et  al. (2024) introduces a 
novel code summarization framework, namely MAL-
SIGHT, which can iteratively generate descriptions of 
binary malware by exploring malicious source code and 
benign pseudocode. At the same time, they construct the 
first malware summary dataset, MalS and MalP, to sup-
port further research.

LLMs as the dynamic debugging assistant
Tian et al. (2024) introduces DebugBench, a benchmark 
for evaluating LLMs’ debugging capabilities in program-
ming. It consists of 4253 instances across various bug 
categories in C++, Java, and Python. The benchmark is 
constructed by collecting code snippets from LeetCode, 
implanting bugs with GPT-4, and conducting rigor-
ous quality assessment. Liu et  al. (2024e) addresses the 
challenge of automated Graphical User Interface (GUI) 
testing for mobile applications. They propose a novel 
approach called GPTDroid that formulates the GUI test-
ing as a question and answering (Q&A) task, where the 
LLM is asked to chat with the mobile apps by passing 
GUI page information to generate testing scripts. These 
scripts are executed and iterations of the application’s 
responses are fed back to the model to guide further 
exploration. Ahmad et al. (2023a) proposes an approach 
called FLAG to assist human debuggers in identify-
ing and localizing security and functional bugs in code. 
FLAG takes a code file as input and regenerates each line 
in the file for comparison. It compares the original code 
with LLM-generated code to flag notable differences as 
anomalies for further inspection.

Anomaly detection
We investigate some methods to incorporate LLMs into 
cybersecurity frameworks for anomaly detection, under-
scoring their critical role in maintaining network integ-
rity and safeguarding against cyber intrusions (Table 8).

Log‑based anomaly detection
Karlsen et al. (2024) tests 60 language models fine-tuned 
for log analysis, including models with different archi-
tectures such as BERT, RoBERTa, DistilRoBERTa, GPT-2 
and GPT-Neo. The results show that these fine-tuned 
models can be effectively used for log analysis, especially 
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for domain adaptation for specific log types. Targeting 
service logs on Huawei Cloud, Liu et  al. (2023b) pro-
poses a framework called ScaleAD, which aims to pro-
vide an accurate, lightweight, and adaptive solution for 
log anomaly detection in cloud systems. When ScaleAD’s 
Trie-based Detection Agent (TDA) detects suspicious 
anomaly logs, it queries the LLM to validate these logs. 
The LLM determines whether the logs are anomalous 
or not by understanding the semantics of the log con-
tent and gives the corresponding confidence scores. Qi 
et al. (2023) proposes a log anomaly detection framework 
named LogGPT. This framework consists of three main 
components: log preprocessing, prompt construction, 
and response parser. The log preprocessing component 
filters, parses and groups raw log messages into a struc-
tured format for further analysis. The response parser 
extracts the output returned by ChatGPT for detailed 
analysis and evaluation of the detected anomalies. Han 
et al. (2023) performs similar work. The difference is that 
they fine-tune GPT-2 by introducing a Top-K reward 
metric, which directs the model to focus on the most rel-
evant parts of the log sequence, thus improving the accu-
racy of anomaly detection. Liu et  al. (2024c) introduces 
an online log analysis method called LogPrompt. They 
employ LLMs to parse unstructured logs and generate 
reports with a specific structure. LogPrompt then utilizes 
chain of thought and in-context learning methods to pro-
gressively reason about log content and provide normal/
abnormal judgments. Zhang et  al. (2024f ) introduces 
LEMUR, a cutting-edge log parsing framework that 
enhances log analysis with entropy sampling for efficient 
log clustering and semantic understanding using LLMs. 
LEMUR addresses the limitations of traditional pars-
ers by discarding manual rules and focusing on seman-
tic information. Relying on semantic understanding of 
LLMs, the framework accurately distinguishes between 
parameters and invariant tokens, leading to impressive 
efficiency and state-of-the-art performance in log tem-
plate merging and categorization.

Web content security
LLMs can assist in the detection of phishing and spam. 
Jamal and Wimmer (2023) presents a model named 
Improved Phishing and Spam Detection Model (IPSDM), 
a fine-tuned model based on DistilBERT and RoBERTa. 
They emphasizes the potential of LLMs to revolutionize 
the field of email security and suggests that these 
models can be valuable tools for improving the security 
of information systems. Another work also conduct 
spam detection with LLMs, Wu et  al. (2024d) evaluate 
ChatGPT’s performance in spam detection and find it 
outperforms BERT on a low-resource Chinese dataset 
but lags on a larger English dataset. The study also 

highlights the positive impact of increasing prompts on 
ChatGPT’s accuracy. Nahmias et  al. (2024) introduces 
a spear-phishing detection approach utilizing LLMs 
to generate “prompted contextual document vectors.” 
By posing targeted questions to LLMs about email 
content, the method quantifies the presence of common 
persuasion principles, creating vectors that capture 
the malicious intent within spear-phishing emails. The 
approach utilizes the reasoning capabilities of LLMs and 
outperforms traditional phishing detection methods. In 
addition to detecting phishing emails, there are studies 
on generating phishing emails using LLMs. Heiding et al. 
(2023) evaluates the performance of GPT-4 in creating 
phishing emails and compare its effectiveness with 
traditional phishing methods called V-Triad method, 
which relys on manual design based on general rules 
and cognitive heuristics. They also explore the use of 
LLMs in detecting phishing emails, where models like 
GPT, Claude, PaLM, and LLaMA demonstrate strong 
capabilities in identifying malicious intent, sometimes 
surpassing human detection rates.

In addition, LLMs can be used for malicious URLs, 
DDoS attacks, and other cyber threat detection. Based on 
the website content, Vörös et al. (2023) uses the knowl-
edge distillation approach to detect malicious URLs. 
Specifically, unlabeled URLs are classified and labels are 
generated by a teacher model. The student model trained 
with this label improves accuracy with significantly fewer 
parameters and is therefore suitable for malicious URL 
detection. Guastalla et  al. (2023) explores the potential 
of LLMs in detecting DDoS attacks by investigating the 
performance of LLMs on two datasets. For the CICIDS 
2017 dataset, they fine-tune LLMs with labeled pcap files 
to enable traffic classification through few-shot learning. 
Urban IoT dataset is a real-world anonymized dataset 
containing 4060 IoT devices. Considering the complexity 
of this dataset, they fine-tune LLMs separately depend-
ing on whether the correlation of traffic between IoT 
devices is considered or not. Ferrag et al. (2024b) encodes 
the network traffic by employing a novel encoding tech-
nique called Privacy-Preserving Fixed-Length Encoding 
(PPFLE). Then they train a model named SecurityBERT 
with these encoded data to perform a classification task 
on network traffic. Specifically, their model targets IoT 
devices to achieve efficient and accurate cyber threat 
detection on resource-limited IoT devices. Ziems et  al. 
(2023) studies the interpretation of decision tree models 
in network intrusion detection (NID) systems. They con-
vert the path and structure data of the decision tree into 
text format and provide it to LLMs to generate explana-
tions. Moreover, LLMs provide additional background 
knowledge to help users understand why certain features 
are important in categorization. Ali and Kostakos (2023) 
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introduces HuntGPT, a system that integrates LLMs with 
traditional machine learning for anomaly detection. The 
system utilizes a random forest classifier trained on the 
KDD99 dataset to identify cyber threats. To enhance 
interpretability, the system employs XAI techniques such 
as SHAP and Lime and combines them with the GPT−
3.5 conversational agent.

Digital forensic
Scanlon et  al. (2023) assesses the applicability of Chat-
GPT for digital forensics. ChatGPT is used to help 
determine if a file has been downloaded to a PC and if 
the file has been executed by a specific user. In addition, 
ChatGPT is also used to detect browser history, Win-
dows event logs, and interactions with cloud platform 
machines.

Fuzz
Although traditional fuzzing techniques are effective in 
discovering software vulnerabilities, their inherent limi-
tations can affect their efficiency and effectiveness. One 
significant drawback is that traditional fuzzers operate in 
a largely random or semi-random manner, which is time-
consuming and inefficient because they may not explore 
all possible execution paths. Additionally, the mutated 
seeds are usually artificially crafted, which makes the 
time and labor costs high. Although all of the above 
problems have been studied for many years and there 
are many ways to mitigate them, the emergence of LLMs 
provides a new way of thinking in the field of fuzz test-
ing  (Jiang et  al. 2024b; Wang et  al. 2024a), as  shown in 
Table 9.

What are the advantages of LLMs fuzz over traditional 
methods?
Zhang et al. (2023f) evaluates the performance of Chat-
GPT in generating test cases directly (without tuning) 
and compare it with two traditional testing tools (i.e., 
SIEGE, and TRANSFER). Their experiments show that 
LLMs outperform traditional methods in generating test 
cases when a detailed description of the vulnerability, 
possible exploits, and code context are given.

There are some advantages of LLMs over traditional 
tools. One of the most important factors is that LLMs 
lead to a shift from random mutation to guided mutation. 
Hu et  al. (2023a) introduces a GPT-based seed mutator 
to the traditional gray-box fuzz testing, selecting seeds 
from a seed pool and requesting variants from Chat-
GPT to generate higher-quality inputs. Another factor 
is that LLMs have a strong understanding of program-
ming languages, enabling them to perform testing tasks 
in multiple languages. Most traditional methods can only 
fuzz specific programming languages. Xia et  al. (2024) 
tests 6 languages code (i.e., C, C++, Go, SMT2, Java, 
and Python) with a method named Fuzz-Loop, which 
automatically mutates test cases based on LLMs. Most 
traditional fuzz methods fail to achieve high code cover-
age in all codes, while LLMs have mastered the logic of 
code and can generate more targeted test cases for areas 
with low coverage. For example, Lemieux et  al. (2023) 
uses Codex to generate test cases against low-coverage 
functions when SBST (Search-Based Software Testing, a 
traditional fuzz method) reaches coverage plateau. Spe-
cifically, the raw character sequences generated by the 
Codex are deserialized into an internal test case repre-
sentation compatible with SBST to leverage its mutation 
operations and fitness functions.

Specific fuzzing strategies for different testing objects
Depending on the test subject, the strategy should be 
adjusted when fuzzing with LLMs. For testing against 
general APIs, Zhang et al. (2023a) investigates the effec-
tiveness of LLMs in generating invocation code. They 
compare LLM-based generation with traditional pro-
gram analysis methods and find that LLMs can automati-
cally generate a large number of effective fuzzing drivers 
while reducing human intervention. The research intro-
duces query strategies, iterative improvements, and the 
use of examples to enhance LLM performance. Although 
it’s all about testing APIs, the strategy for testing against 
deep-learning libraries needs to be modified. Because 
programs that call deep learning libraries usually have 
strict requirements on tensor dimensions, ignoring this 
would cause the fuzzer to perform meaningless tests. 

Table 9 LLMs for Fuzz

Category Related work

Fuzz capability assessment (6) Jiang et al. (2024b), Wang et al. (2024a), Zhang et al. 
(2023f ), Hu et al. (2023a), Xia et al. (2024), Lemieux et al. 
(2023)

Testing against General APIs (1) Zhang et al. (2023a)

Testing against DL Libraries (2) Deng et al. (2023b), Deng et al. (2023c)

Testing against Protocol (1) Meng et al. (2024)

Testing against BusyBox (1) Asmita et al. (2024)
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Deng et al. (2023b) proposes TitanFuzz, a tool specifically 
for generating test cases for deep learning libraries. Their 
training corpus contains a large number of code snippets 
that call the DL library APIs, so that the language syn-
tax and semantics, and complex DL API constraints can 
be learned to efficiently generate DL programs. FuzzGPT 
(Deng et al. 2023c) is also about fuzzing the DL library. 
The difference is that FuzzGPT focuses on using histori-
cal error-triggered code snippets to guide LLMs to gen-
erate test cases.

In addition to the above research, we have collected 
some studies targeting other testing objects. Testing 
against Protocol. Meng et  al. (2024) discusses how to 
find security vulnerabilities in protocol implementations 
in the absence of a machine-readable protocol specifi-
cation. They train LLMs with massive human-readable 
protocol documents and ask LLMs to mutate interactive 
messages for protocol fuzz (e.g., HTTP). Testing against 
BusyBox. Specifically targeting BusyBox, a popular utility 
in Linux-based devices, Asmita et  al. (2024) introduces 
two fuzzing methods. One is to use LLMs to generate 
target-specific initial seeds for fuzzing, which signifi-
cantly improves the efficiency of identifying crashes and 
potential vulnerabilities. The other is crash reuse, which 
employs previously acquired crash data to streamline the 
testing process for new targets.

Program repairing
The software development lifecycle is deeply impacted by 
the presence of bugs, with their detection and resolution 
being costly. Researchers are motivated to find new ways 
to automatically identify and correct bugs/vulnerabilities 
with LLMs (Zhang et al. 2024d), as shown in Table 10.

Evaluation of existing LLMs on program repairing
For state-of-the-art LLMs (open-sourced or proprietary), 
many studies have evaluated their capabilities for pro-
gram repairing. Prenner and Robbes (2021) explores the 
application of OpenAI’s Codex to the field of automatic 
program repair (APR), specifically its ability to locate and 

fix bugs in software. They use the QuixBugs benchmark, 
which includes 40 bugs in Python and Java, to evaluate 
the effectiveness of Codex in APR tasks. Notably, Codex 
outperforms numerous existing APR methods even with-
out retraining. Sobania et  al. (2023) conducts similar 
work with the previous one. Both studies evaluate LLMs 
for automatic program repair on QuixBugs benchmark. 
In this work, ChatGPT is evaluated instead of Codex. 
Keller and Nowakowski (2024) discusses the applica-
tion of Gemini in automating the repair of software vul-
nerabilities, especially for vulnerabilities found by the 
sanitizer tool in C/C++, Java, and Go code. The authors 
argue that while the success rate seems low, it has the 
potential to significantly reduce engineering effort over 
time. Yu et al. (2024) evaluates the performance of three 
LLMs, Gemini Pro, GPT-4, and GPT−3.5, on codes with 
identified vulnerabilities from real-world code reviews. 
The findings indicate that GPT-4 outperforms the other 
models, but all LLMs have great potential, especially for 
conciseness, clarity, and accuracy of responses. Xia et al. 
(2022) selects 9 LLMs and compare them with traditional 
automated program repair methods, demonstrating the 
superior effectiveness of LLMs in this field.

Pearce et al. (2023) explores the potential of LLMs for 
zero-shot vulnerability repair in code. Through extensive 
experiments with various LLMs in synthetic, artifactual, 
and real-world security scenarios, they demonstrate that 
while LLMs show promise in repairing simple cases, they 
struggle with more complex, real-world examples. The 
study reveals the limitations and strengths of LLMs in 
cybersecurity and urges further research into the applica-
tion of LLMs in program repairing. Wu et al. (2023) com-
pares the capabilities of LLMs and deep learning-based 
APR models in fixing Java vulnerabilities. They evaluate 
the performance of 5 LLMs (Codex, CodeGen, CodeT5, 
PLBART, and InCoder), 4 fine-tuned LLMs, and 4 deep 
learning-based APR techniques on two real-world Java 
vulnerability benchmarks (i.e., Vul4J and VJBench). They 
design code transformations to address the overlapping 
of train and test sets faced by Codex, and create a new 

Table 10 LLMs for program repairing

Category Related work

Program repairing capability assessment (8) Prenner and Robbes (2021), Sobania et al. (2023), Keller and Nowakowski (2024), Yu et al. (2024),Xia 
et al. (2022), Pearce et al. (2023), Wu et al. (2023), Xiang et al. (2024)

Program repairing capability improvement (16) Xu et al. (2024a), Chen et al. (2024a), Ahmed and Devanbu (2023), Kulsum et al. (2024),Zhao et al. 
(2024a), Yang et al. (2024b), Yin et al. (2024),Wei et al. (2023), Islam et al. (2024), Wang et al. (2024h), 
Kong et al. (2024),Chen et al. (2024b), Yang et al. (2024c), de-Fitero-Dominguez et al. (2024), Zhao et al. 
(2024d),Dehghan et al. (2024)

Combined LLMs with static analysis tools (2) Alrashedy and Aljasser (2024),Jin et al. (2023)

Target-specific program repairing (6) Tol and Sunar (2023), Paria et al. (2023), Ahmad et al. (2023b), Charalambous et al. (2024), Le et al. 
(2024), Xu et al. (2024c)
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Java vulnerability remediation benchmark, VJBench, to 
better evaluate LLMs and APR techniques. Xiang et  al. 
(2024) investigate LLM-based function-level APR, focus-
ing on the effects of the few-shot learning mechanism 
and the inclusion of auxiliary repair-relevant information. 
The study shows that LLMs with zero-shot learning are 
already effective for function-level APR, but applying the 
few-shot learning mechanism results in varying repair 
performance. Additionally, they find that directly incor-
porating auxiliary repair-relevant information into LLMs 
significantly enhances function-level repair performance.

Combined LLMs with static analysis tools
Instead of using LLMs alone for program repair, some 
studies have combined them with traditional program 
analysis tools to increase the efficiency of those tools. 
Alrashedy and Aljasser (2024) proposes a new approach 
called Feedback-Driven Security Patching (FDSP), which 
passes feedback from Bandit to LLM. With the help of 
the static code analysis tool, LLM can generate potential 
solutions to address security vulnerabilities. Each sug-
gested solution, along with the corresponding vulnerable 
code segment, is fed back to LLM for verification and 
validation. Jin et  al. (2023) introduces a program repair 
framework called InferFix that incorporates the latest 
static analyzers for fixing critical security and perfor-
mance vulnerabilities. Inferfix consists of two main com-
ponents: a retriever and a generator. The retriever aims 
to search for semantically similar vulnerabilities and their 
associated fixes. The generator is fine-tuned on vulnera-
bility fix data, with prompts enhanced by bug type anno-
tations and semantically similar fixes, thereby improving 
the model’s ability to generate effective proposals.

Improving repair capabilities through different strategies
To improve the performance of LLMs on program repair 
tasks, researchers have proposed some methodologies. 
D4C  (Xu et  al. 2024a) is a straightforward prompting 
framework for APR. By aligning the output to LLMs 
training objective and allowing LLMs to refine the whole 
program without first identifying faulty statements, 
D4C greatly improve LLM’s APR capability. Chen 
et  al. (2024a) proposes an approach called SELF-
DEBUGGING. Even if there is no human feedback 
about the correctness of the code or error messages, 
this method can identify the error by observing the 
execution results and explaining the code generated by 
natural language. Ahmed and Devanbu (2023) explores 
the application of Self-Consistency (an approach for 
improving model reasoning ability (Wang et  al. 2023d)) 
in program repair. By incorporating commit-logs as 
reasoning paths in few-shot prompts, Self-Consistency 
enables LLMs to generate diverse solutions. The most 

frequent solution from multiple samples is selected to 
improve patch accuracy. Similarly, VRpilot  (Kulsum 
et  al/ 2024) is based on reasoning and patch validation 
feedback. The method uses a chain-of-thought prompt 
to reason about a vulnerability before generating patch 
candidates and iteratively refines the prompts based on 
feedback from external tools on previously generated 
patches, improving patch accuracy. DRCodePilot  (Zhao 
et al. 2024a) is designed to enhance GPT-4-Turbo’s APR 
capabilities by incorporating design rationales (DR) into 
the prompt instruction, along with a utility feedback-
based self-reflective framework. This framework prompts 
GPT-4 to reconsider and refine its outputs by referencing 
the provided patch and suggested identifiers.

Additionally, Yang et  al. (2024b) introduces a novel 
approach that leverages the entropy of LLMs in 
combination with prior APR tools to enhance all stages 
of the APR process. By using entropy-delta for patch 
ranking and classification, this method can rank correct 
patches more effectively than state-of-the-art machine 
learning tools. ThinkRepair  (Yin et al. 2024) is an LLM-
based autonomous two-stage automatic program repair 
framework. In the collection stage, CoT prompts guide 
the LLM to automatically gather various reasoning 
chains that form the foundation of the repair knowledge. 
In the repair stage, sample selection is performed for 
few-shot learning, with interactive feedback from the 
LLM. This approach significantly improves LLMs’ bug 
fixing capability. Wei et  al. (2023) proposes a program 
repair framework named Repilot. It starts by masking the 
buggy code segment and then utilizes LLMs to generate 
candidate patches. During the generation, Repilot 
consults the completion engine to prune infeasible tokens 
and proactively completes the code when necessary. This 
approach enhances the compilation rate and correctness 
of patches while reducing the number of invalid attempts 
in the generation process. Islam et al. (2024) introduces 
SecRepair, a system that uses LLMs to detect and fix code 
vulnerabilities in the software. It utilizes reinforcement 
learning with the semantic reward mechanism to 
improve the model’s ability to generate accurate code 
comments and descriptions, guiding developers to 
address security issues. ARJA-CLM (Wang et al. 2024h) 
integrates a multi-objective evolutionary algorithm with 
a code language model to fix multi-location bugs in Java 
projects. It does this by predicting the correct statement 
for masked buggy positions using the powerful code-
filling capabilities of CodeLLMs. Kong et  al. (2024) 
launches Contrastrepair to provide more accurate 
feedback by providing LLMs with contrastive test case 
pairs (a failing test and a passing test), thereby enhancing 
conversation-driven repair framework. The key insight is 
to minimize the difference between the generated passing 
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test and the failing one, effectively isolating bug causes. 
ContrastRepair interacts with ChatGPT repeatedly to 
generate patches until a plausible fix is generated. Unlike 
previous function-level approaches, Chen et  al. (2024b) 
investigates the performance of LLMs in repository-level 
program repair, which needs to consider interactions 
and dependencies between code that may span multiple 
functions or files. In this work, they propose a benchmark 
named RepoBugs, which includes 124 bugs from open 
source repositories to evaluate the performance of LLMs.

Fine-tuning is also necessary to unlock state-of-the-
art performance in program repair. MORepair  (Yang 
et  al. 2024c) is a multi-objective fine-tuning approach 
that instructs LLMs to generate high-quality patches. It 
involves adapting the LLM parameters to the syntactic 
nuances of code transformation and specifically fine-tun-
ing the model to understand the logical reasoning behind 
code changes in the training data. This fine-tuning strat-
egy enables LLM to achieve superior performance in pro-
gram repair. de-Fitero-Dominguez et al. (2024) fine-tunes 
LLM on datasets containing C code vulnerabilities. They 
specifically design a structured representation of the code 
and provide it to LLM, including the line number of the 
code that needs to be repaired, the vulnerability descrip-
tion (i.e., CWE description), and the complete source 
code. The output of LLM is also structured and can be 
directly patched, which enables the code to be repaired 
automatically without manual intervention. Zhao et  al. 
(2024d) explores how LLMs can achieve excellent APR 
performance through process supervision and feedback. 
They first construct a dataset called CodeNet4Repair, 
which is filled with multiple repair records for supervised 
fine-tuning. Then,they develop a reward model that pro-
vides feedback on the fine-tuned LLM’s actions, progres-
sively optimizing its policy for better repair. Dehghan 
et al. (2024) proposes continual merging and empirically 
studies the capabilities of merged adapters in Code LLMs 
for the APR task. Specifically, task-specific adapters are 
first trained for the LLM, and then MergeRepair is used 

to merge multiple task-specific adapters, considering the 
order and weight of the merged adapters for better APR.

Target‑specific program repairing
We also investigate some studies on program repair-
ing for some specific targets. Tol and Sunar (2023) pro-
poses a framework called ZeroLeak, which explore how 
LLMs can be used to automatically generate repair code 
to address side-channel vulnerabilities in software. Zero-
Leak guides LLMs to generate patches for specific vul-
nerabilities through zero-shot learning. Once generated, 
these patches are inspected by dynamic analysis tools 
to ensure that they not only function correctly, but also 
prevent information leakage. Paria et  al. (2023) intro-
duces a novel framework named DIVAS. The framework 
maps user-defined SoC specifications to Common Weak-
ness Enumerations (CWEs), generates SystemVerilog 
Assertions (SVAs) for verification, and enforces security 
policies. DIVAS automates the process of vulnerabil-
ity detection and policy enforcement, reducing manual 
effort and enhancing SoC security. Ahmad et al. (2023b) 
constructs a corpus of hardware security vulnerabilities 
and utilize LLMs to automatically remediate Verilog code 
containing these vulnerabilities. Charalambous et  al. 
(2024) focuses on the software implementation of neu-
ral networks and related memory safety issues, includ-
ing NULL pointer dereferencing, out-of-bounds access, 
double-free errors, and memory leaks. They propose 
detecting these vulnerabilities and automatically repair-
ing them with the help of LLMs. Le et al. (2024) focuses 
on the application of LLMs (e.g., ChatGPT and Bard) 
in repairing security vulnerabilities in JavaScript pro-
grams. Using the top 25 CWEs of 2023 as a reference, 
they selecte JavaScript-related vulnerabilities to evalu-
ate the accuracy of the models in generating the correct 
patches. Their findings highlight the potential of LLMs 
for JavaScript security, emphasizing the effectiveness of 
LLMs for programming languages used for web devel-
opment. To convert a regular C/C++ program into its 

Table 11 LLM assisted cyber attack

Category Related work

Penetration testing (4) Deng et al. (2023a), Happe and Cito (2023), Huang 
and Zhu (2023), Pratama et al. (2024)

Full-life-cycle cyberattack (3) Xu et al. (2024b), Wang et al. (2024e), Usman et al. (2024)

Phishing website/email generation (3) Begou et al. (2023), Roy et al. (2024), Francia et al. (2024)

Privilege escalation attacks (1) Happe et al. (2023)

Payload generation (1) Charan et al. (2023)

Attack graph generation (1) Prapty et al. (2024)

CTF challenges (3) Tann et al. (2023), Shao et al. (2024), Zhang et al. (2024a)

Proxies for attacks (1) Beckerich et al. (2023)
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HLS-compatible counterpart (HLS-C), Xu et  al. (2024c) 
proposes an LLM-driven program repair framework that 
takes standard C/C++ code as input and automatically 
generates the corresponding HLS-C code for synthesis, 
minimizing human repair effort.

LLM assisted attack
A report (Barrett et al. 2023) from the workshop organ-
ized by Google on January 1, 2024 highlight the dual-
use issue of Generative Artificial Intelligence (GenAI). 
These techniques can be used for both positive pur-
poses and potentially for malicious attacks. In this sec-
tion, we discuss current attacks with the help of LLMs in 
detail (Table 11).

Current status of LLM‑assisted attacks
Sharma and Dash (2023) points out that ChatGPT has 
both positive and potentially negative impacts on cyber-
security. They list various types of threats to cyberse-
curity today, including malware attacks, phishing, and 
password attacks. They also mention the potential appli-
cation of ChatGPT in social engineering attacks. Gupta 
et al. (2023) also conduct similar work on the impact of 
generative AI in cybersecurity and privacy. Furthermore, 
Moskal et  al. (2023) explores the potential of LLMs for 
network threat testing, particularly in supporting threat-
related actions and decisions. Experimenting on virtual 
machines, they discuss in detail how automated attacks 
guided by LLMs can be launched against devices in a 
network. They conclude that while this work is prelimi-
nary, it demonstrates that LLMs shows strong potential 
for cyber threats. For existing accessible malicious LLMs, 
Lin et al. (2024) conducts a systematic study of 212 real-
world Malla (malicious LLM), revealing how they spread 
and work in the underground market. They examine in 
detail the Malla ecosystem, development frameworks, 
exploitation techniques, and the effectiveness of Malla in 
generating various malicious content. They also provide 
insights into how cybercriminals utilize LLMs and strate-
gies for combating such cybercrime.

Specifically, there are various means of executing auto-
matic attacks with the help of LLMs.

LLM‑enabled automated penetration testing
Deng et  al. (2023a) introduces a tool called PentestGPT 
designed to perform automated penetration tests. 
PentestGPT consists of three modules: inference, 
generation and parsing. Each module reflects a specific 
role in the penetration testing team so that the system 
can more realistically simulate automated penetration 
tests. Happe and Cito (2023) also conducts a study on 
penetration testing with the help of LLMs. The study 
investigates two use cases: high-level task planning for 

security testing and low-level vulnerability hunting within 
vulnerable virtual machines. They cerate a feedback 
loop between LLM-generated operations and the virtual 
machine, allowing LLMs to analyze the state of the system 
to find vulnerabilities and suggest attack vectors. Huang 
and Zhu (2023) points out the importance of integrating 
penetration testing with vulnerability remediation into a 
cohesive system. They proposes PenHeal, a two-stage LLM-
based framework designed to autonomously identify and 
mitigate security vulnerabilities. The framework integrates 
two LLM-enabled components: the Pentest Module, 
which detects multiple vulnerabilities within a system, and 
the Remediation Module, which recommends optimal 
remediation strategies. Pratama et  al. (2024) developes 
CIPHER (Cybersecurity Intelligent Penetration-testing 
Helper for Ethical Researchers), a LLM trained using over 
300 high-quality write-ups of vulnerable machines, hacking 
techniques, and documentation of open-source penetration 
testing tools. Additionally, they introduce the Findings, 
Action, Reasoning, and Results (FARR) Flow augmentation 
to enhance penetration testing write-ups, establishing a fully 
automated pentesting simulation benchmark tailored for 
LLMs.

LLM‑assisted automatic full‑life‑cycle cyberattack
Xu et  al. (2024b) proposes AUTOATTACKER, a sys-
tem that leverages LLMs to automate the execution of 
“keystroke-operated” cyberattacks that mimic human 
operations. The system employs LLMs to generate pre-
cise attack commands for various techniques and envi-
ronments, transforming potential manual operations 
into automated and efficient processes. AUTOAT-
TACKER consists of multiple modules that interact 
iteratively with the LLM to construct complex attack 
sequences using functions such as summarization, 
planning, and action selection. AURORA  (Wang et  al. 
2024e) is another automatic end-to-end framework for 
cyberattack construction and emulation. It can auton-
omously build multi-stage cyberattack plans based on 
CTI reports, construct the emulation infrastructure, 
and execute the attack procedures. Usman et al. (2024) 
introduces Occupy AI, a customized and fine-tuned 
LLM specifically designed to automate and execute 
cyberattacks. This specialized AI-driven tool is profi-
cient in crafting attack steps and generating executable 
code for various cyber threats, including phishing, mal-
ware injection, and system exploitation.

LLM‑assisted phishing website/email generation
Begou et  al. (2023) uses LLM to automatically gener-
ate advanced phishing attacks. In the proposed attack 
method, LLMs are used for the following functions: 
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cloning target websites, modifying login forms to cap-
ture credentials, obfuscating code, automating domain 
name registration, and automating script deployment. 
Roy et  al. (2024) examines the potential of LLMs like 
ChatGPT, GPT-4, Claude, and Bard to generate phish-
ing attacks. The study finds that these models can effec-
tively create convincing phishing websites and emails, 
mimicking well-known brands and employing evasive 
tactics to avoid detection. The research also develops 
a BERT-based detection tool that achieves high accu-
racy in identifying malicious prompts, serving as a 
countermeasure against the misuse of LLMs for phish-
ing scams. Francia et al. (2024) compares the effective-
ness of smishing (SMS phishing) messages created by 
GPT-4 and human authors, demonstrating that LLM-
generated messages are generally perceived as more 
convincing than those authored by humans. The study 
also finds that targets are unable to identify whether 
a message was AI-generated or human-authored and 
struggle to pinpoint criteria that could help make this 
distinction. This poses a challenge against personalized 
AI-enabled social engineering attacks.

LLM‑assisted privilege escalation attacks
Happe et  al. (2023) uses LLM to assist in completing 
penetration tests. They develop an automated Linux 
privilege escalation benchmark to evaluate the perfor-
mance of different LLMs. At the same time, they design 
a tool called Wintermute to quickly explore the ability 
of LLMs to bootstrap privilege escalation.

LLM‑assisted payload generation
Charan et al. (2023) proposes to write payloads with the 
help of LLMs to launch cyber attacks. This study shows 
the high efficiency of LLMs by generating executable 
code for the top 10 MITRE weaknesses observed in 
2022 using ChatGPT and Bard respectively. In addition, 
LLM-generated payloads tend to be more complex and 
targeted than manually crafted payloads.

LLM‑assisted attack graph generation
Prapty et al. (2024) explores the approach of leveraging 
LLMs to automate the generation of attack graphs by 
intelligently chaining CVEs based on their precondi-
tions and effects. They also show how to utilize LLMs 
to create attack graphs from threat reports.

LLM‑assisted capture the flag (CTF) challenges
Tann et  al. (2023) investigates the potential of exist-
ing LLMs in solving CTF competitions. They select a 
number of representative challenges from common 
CTF categories to evaluate the performance of LLMs, 
including GPT−3.5, PaLM2, and Prometheus. Their 

research results demonstrate that LLMs can indeed 
help participants cope with CTF challenges to a certain 
extent, albeit not comprehensively.

Proxies for attacks Beckerich et al. (2023) uses Chat-
GPT as a proxy between the victim and the network 
controlled by the attackers (C&C), which allows the 
attacker to remotely control the victim’s system with-
out communicating directly, making it difficult to track 
down the attackers.

(In)secure code generation
There have been many previous works that have con-
firmed that LLMs do have good code comprehension 
capabilities  (He et  al. 2024; Luo et  al. 2024; Roziere 
et  al. 2023; Li et  al. 2023d). However, the security of 
the generated code is very important, and some studies 
have explored this issue (Table 12).

Evaluation of the security of LLM-generated code. It 
is very important to know whether the code generated 
by LLMs has security risks. Sandoval et  al. (2023) 
conducts an experiment to explore whether code 
written by undergraduate computer science students 
with the help of LLMs poses any additional security 
risks. Participants are tasked with implementing a 
singly-linked ’shopping list’ structure in C and they are 
divided into two groups: a control group that doesn’t 
have access to Codex, and an assisted group that does. 
The results show that LLM does not significantly 
increase the risk of introducing security vulnerabilities 
when used as a code assistant. Tambon et  al. (2024) 
conducts an empirical study investigating bugs in 
code generated by LLMs, focusing on three models: 
CodeGen, PanGu-Coder, and Codex. The research 
identifies 10 unique bug patterns among 333 collected 

Table 12 LLMs for (In)secure code generation

Category Related work

Generate Code Evaluation (11) Sandoval et al. (2023), 
Tambon et al. (2024), 
Tihanyi et al. (2024a),
Pearce et al. (2022a), 
Wang et al. (2024d), Wang 
et al. (2023f ), Liu et al. 
(2024g),
Siddiq and Santos (2023), 
Liu et al. (2024a), Ullah 
et al. (2023), Buscemi 
(2023)

Secure Code Generation (7) Khoury et al. (2023), 
Kavian et al. (2024), He 
and Vechev (2023),
Li et al. (2024b), He et al. 
(2024), Tang et al. (2024), 
Wong et al. (2024)
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errors, and these patterns are confirmed by 34 LLM 
practitioners and researchers. Tihanyi et  al. (2024a) 
study how LLMs generate vulnerabilities when writing 
simple C programs using a neutral zero-shot prompt. 
They collected code generated by Gemini-pro, GPT-4, 
Falcon-180B, CodeLLama2-13B, and other LLMs under 
neutral prompts, which constitute the FormAI-v2 
dataset. The study found that at least 63.47% of the 
generated programs are vulnerable, highlighting the 
risks of using LLM-generated code.

There are many studies exploring the security of code 
generated by state-of-the-art LLMs. Pearce et al. (2022a) 
investigates the security of code generated by GitHub 
Copilot. They design 89 different execution scenarios for 
Copilot, resulting in 1,689 programs. These programs are 
then analyzed for vulnerabilities, particularly focusing 
on the top 25 CWEs identified by MITRE. Wang et  al. 
(2024d) introduces CodeSecEval, a meticulously curated 
dataset designed to address 44 critical vulnerability types 
with 180 distinct samples. The dataset is then used for 
precisely evaluating and enhancing the security aspects 
of code generated by LLMs. The study reveals that cur-
rent models frequently overlook security issues dur-
ing both code generation and repair processes, leading 
to the creation of vulnerable code. Wang et  al. (2023f ) 
delves into the potential of LLMs in security-oriented 
program analysis. Their evaluation focuses on two rep-
resentative LLMs, ChatGPT and CodeBERT, evaluating 
their performance on analysis tasks of varying difficulty, 
including vulnerability analysis, bug fixing, fuzzing, and 
assembly code analysis. Liu et  al. (2024g) evaluates the 
code generated by ChatGPT, focusing on aspects such 
as correctness, understandability, and security. Through 
an empirical study using LeetCode questions and CWE 
scenarios, they analyze the quality of code snippets gen-
erated by ChatGPT and its ability to improve the code 
through multi-round dialogue. The results reveal that 
while ChatGPT is able to generate functionally correct 
code, it encounters challenges in complex reasoning and 
ensuring code security.

On the other hand, Siddiq and Santos (2023) proposes 
a framework called SALLM specifically for evaluating 
the security of code generated by LLMs. SALLM 
consists of three components: a prompt dataset detailing 
Python programs, a code generation environment that 
requires different solutions from LLMs, and a systematic 
evaluation model that leverages Docker to execute the 
generated code. Liu et  al. (2024a) focuses on enhancing 
the quality evaluation of code generation. Recognizing 
that existing benchmarks often have a limited set of 
test cases, they introduced a code synthesis evaluation 
framework, EvalPlus. EvalPlus significantly expands 
the number of test cases in the evaluation dataset 

by deploying an automatic test input generator that 
combines LLMs with a mutation-based strategy. Ullah 
et  al. (2023) collects 228 code scenarios and analyze 
8 LLMs in an automated framework to determine 
whether LLMs can reliably identify security-related 
vulnerabilities. They point out that current LLMs fall 
short in automated vulnerability detection tasks and 
outline several limitations exhibited by current LLMs. 
Buscemi (2023) evaluates the performance of ChatGPT−
3.5 on generating code, including an examination of code 
security in 10 programming languages.

Do LLMs know whether the generated code is safe or 
not?Khoury et al. (2023) conducts a series of experiments 
to evaluate the security of LLM-generated code and to 
discover vulnerabilities in generated code under various 
scenarios. The results show that while LLMs may iden-
tify vulnerabilities in the generated code when prompted 
for review, they still generate unsafe code unless explicitly 
instructed otherwise. A significant challenge they faced 
stems from the uninterpretability of deep neural net-
works, which causes LLMs to give inconsistent responses 
when repeatedly asked about code security, without a 
clear strategy to maximize successful identification.

To ensure the generation of secure codes, LLM-
SecGuard (Kavian et  al. 2024) enhance code security 
through the synergy between static code analyzers 
and LLMs. He and Vechev (2023) takes a more direct 
approach to customize LLMs through specific mecha-
nisms. They propose a method named svGen, which 
makes LLMs generate safe or unsafe code based on the 
user’s security preferences. In addition to the descrip-
tions for the generated code, they also introduce prop-
erty-specific continuous vectors (called prefixes), which 
are sequences of vectors that match the shape of the 
LLMs’ hidden states. These prefixes are optimized to 
influence the LLM’s generation process by setting ini-
tial hidden states that steer the code toward meeting 
the desired security criteria, all without modifying the 
underlying weights of the LLM.

Fine-tuning LLMs for secure code generation is feasi-
ble. Li et  al. (2024b) reveals that fine-tuning LLMs can 
improve secure code generation by 6.4% for C language 
and 5.4% for C++ language. Additionally, fine-tuning 
with function-level and block-level datasets achieves 
the best performance in secure code generation, com-
pared to file-level and line-level datasets. He et al. (2024) 
introduces SafeCoder, an innovative instruction tuning 
approach that enhances the security of code generation 
by LLMs. SafeCoder combines traditional instruction 
tuning with security-specific fine-tuning using a high-
quality dataset collected through an automated pipeline 
from GitHub. This approach significantly enhances code 
security without compromising the LLMs’ utility across 
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various tasks, demonstrating its adaptability and effec-
tiveness in enhancing the security of LLM-generated 
code.

In addressing the question of how to best iteratively 
refine code, Tang et  al. (2024) points out that the pro-
cess exposes an explore-exploit tradeoff, which can be 
framed as a multi-armed bandit problem, and solved 
using Thompson Sampling. The resulting LLM-based 
program synthesis algorithm is widely applicable. Wong 
et  al. (2024) discusses iterative code repair in both high 
and low-resource languages, where an LLM fixes an 
incorrect program by reasoning about errors and gener-
ating new code. Specifically, they delve into guiding the 
model to generate secure code through chain-of-thought 
reasoning.

Others
Apart from the previously described categories, there are 
a few scattered studies on the application of LLMs in the 
field of cybersecurity, which are also of research value.

IoT fingerprint
Sarabi et  al. (2023) proposes a method for Internet 
devices fingerprint generation. Their approach is divided 
into two steps. First, raw text data obtained from web 
scans is converted into a stable embedded representation 
with RoBERTa. Next, the embedding is clustered using 
the HDBSCAN and the fingerprint is generated based on 
the clustering.

Botnet
Yang and Menczer (2023) introduces a LLM-driven bot-
net called fox8 on Twitter. The fox8 botnet contains over 
one thousand users controlled by AI. They post machine-
generated content and stolen images to spread fake and 
harmful information, engaging with each other through 
replies and retweets.

Security patch detection
Tang et  al. (2023) proposes a system named LLMDA, 
whose main goal is to improve the identification of secu-
rity patches in open-source software (OSS). LLMs are 
used to generate explanatory descriptions of patches and 
synthetic data, which helps to augment existing datasets.

SoC security
Saha et  al. (2024) explores the potential of integrating 
LLMs into the system-on-chip (SoC) security verification 
paradigm. They provide a systematic evaluation of LLM 
applications about vulnerability insertion, security 
assessment, security verification, and countermeasure 
development.

Taint analysis
Liu et al. (2023d) introduces LATTE, a static binary taint 
analysis tool supported by LLMs. LLMs help to identify 
the chain of data dependencies between taint sources 
and possible vulnerability triggers. LLMs could provide 
an understanding of code structure and semantics in the 
process.

LLMs’ input–output safeguard
Inan et al. (2023) proposes Llama Guard to detect the risk 
in LLM’s prompt and response. Using labeled security 
risk text, they perform instruction tuning on Llama2-7b 
to obtain this model.

Honeypot
Sladic et  al. (2024) designs a dynamic and real-time fake 
honeypot by giving response generated by LLMs, which 
mainly focus on changing the limitation that honeypots 
are easily recognizable. In their experiment, most people 
can’t recognize whether the remote host is a real one or 
a honeypot generated by LLMs. Reti et al. (2024) system-
atically investigates the use of LLMs to create a variety of 
honeytokens. They design different types of honeytokens 
to evaluate the optimal prompts, including configura-
tion files, databases, and log files. They test 210 different 
prompt structures, based on 16 prompt-building blocks, 
and demonstrate that LLMs can generate a wide array of 
honeytokens using the presented prompt structures. LLM-
Pot  (Vasilatos et al. 2024) is a novel approach for design-
ing honeypots in ICS networks that harnesses the power 
of LLMs. It aims to automate and optimize the creation 
of realistic honeypots with vendor-agnostic configura-
tions, applicable to any control logic, thereby eliminating 
the manual effort and specialized knowledge traditionally 
required.

Incidence response
Hays and White (2024) advocates for the application of 
ChatGPT to enhance incident response planning (IRP) in 
cybersecurity. It suggests that LLMs can draft initial plans, 
recommend best practices, and identify documentation 
gaps. The paper highlights the potential of LLMs to stream-
line IRP processes, emphasizing the value of human over-
sight to ensure accuracy and relevance.

Network management
Mani et  al. (2023) explores how LLMs can be used to 
generate task-specific code from natural language queries 
to improve network management. They develop and 
release a test benchmark, NeMoEval, covering two network 
management applications: network traffic analysis and 
network lifecycle management.
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Vulnerabilities reproduction
Feng and Chen (2024) proposes an approach called Adb-
GPT that utilizes LLMs to automatically reproduce vulner-
abilities in vulnerability reports by prompting engineering 
without training or hard coding.

Expertise Q&A on cybersecurity domain
Kabir et  al. (2024) conducts an empirical study of Chat-
GPT’s performance in answering Stack Overflow 

programming questions. The main drawbacks of the LLM 
answers are fake information and excessive length of the 
content. Still some testers like its comprehensiveness and 
good style of language presentation. Due to the difficulty of 
recognizing misleading information given by LLMs, this is 
an area that has yet to be researched.

Fig. 5 An overview of RQ3

Table 13 LLM agents for cybersecurity

Category Related work

Complex Tasks (3) Cui et al. (2024), Rigaki et al. (2024), Huang et al. (2023b)

Cyber Attacks (4) Fang et al. (2024c), Moskal et al. (2023), Fang et al. (2024b), Fang et al. (2024d)

Cyber Defense (4) An et al. (2024), Kaheh et al. (2023), Cao et al. (2024), Tseng et al. (2024b)
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RQ3: What are the challenge and further research 
for the application of LLMs in cybersecurity?
Challenge
The application of LLMs in cybersecurity represents 
a cutting-edge field, demonstrating the power of 
LLMs in dealing with complex and dynamic cyber 
threats. However, despite their strengths, LLMs are 
not without challenges, especially their inherent 
vulnerabilities and susceptibilities to attacks  (Yao 
et  al. 2024b; Zhao et  al. 2024c). Among the critical 
concerns are the phenomena of LLMs-oriented attacks 
and LLMs jailbreaking. These vulnerabilities highlight 
the double-edged nature of LLM applications in 
cybersecurity  (Pasupuleti et  al. 2023). On one hand, 
the powerful comprehension and predictive capabilities 
of LLMs can significantly promote the intelligence 
of cybersecurity systems. On the other hand, their 
intrinsic weaknesses facilitate exploitation and pose 
serious security risks, undermining their reliability and 
integrity in cybersecurity applications.

In this part, we discuss attacks against LLMs and 
model risks separately, depending on whether the secu-
rity challenges arise from intentional attackers or from 
risks inherent in the model itself (Fig. 5).

Attacks against LLMs
The vulnerabilities of LLMs make them susceptible to 
attacks by malicious users  (Kumar et  al. 2024; Esmradi 
et al. 2023; Wu et al. 2024b). There are various types of 
attack against LLMs, including backdoor attack, prompt 
injection, and jailbreaking.

Backdoor attack manipulates model outputs to achieve 
attackers’ objectives by embedding specific triggers in 
the model or its inputs. Shi et al. (2023) proposes a novel 
backdoor attack methodology called BadGPT, specifically 
targeting language models that have been fine-tuned 
through reinforcement learning, such as ChatGPT. This 
approach involves embedding backdoors within the 
reward model, which can be activated via specific trig-
ger prompts. Such activation allows attackers to con-
trol the model’s output to align with their preferences, 
showcasing a critical security vulnerability. In another 
study, Zhao et  al. (2024b) introduces a novel backdoor 
attack strategy, ICLAttack, which aims at exploiting 
the inherent context learning capabilities of LLMs. The 
ICLAttack framework encompasses two primary attack 
vectors: poisoning demonstration examples and poison-
ing demonstration prompts. By embedding backdoor 
triggers within the model’s context, ICLAttack is able to 
influence the model’s behavior without the need for fine-
tuning, thus revealing universal vulnerabilities within 
LLMs. Furthermore, Yao et  al. (2024a) reveals a back-
door attack mechanism tailored to prompt-based LLMs, 

called PoisonPrompt. The method injects backdoors into 
the language model through two steps: poisoned prompt 
generation and bi-level optimization. PoisonPrompt 
can alter the normal prediction of the model in case of 
specific trigger activations without affecting the perfor-
mance of the model on downstream tasks, posing a sub-
tle but powerful threat to the integrity of LLMs.

Prompt injections involve attackers inserting special 
commands into inputs, compelling the model to execute 
actions aligned with the attackers’ intentions. Pedro 
et  al. (2023) conducts a comprehensive investigation of 
prompt-to-SQL (P2SQL) injection attacks against web 
applications based on the Langchain framework. These 
attacks utilize user-input prompts to generate malicious 
SQL queries, thereby enabling attackers to tamper with 
databases or steal sensitive information. Jiang et  al. 
(2023b) introduces the Compositional Instruction Attack 
(CIA), unveiling the susceptibility of LLMs to attacks that 
utilize synthetic instructions with potentially malicious 
intentions. Through two transformation methods, 
Talking-CIA and Writing-CIA, harmful instructions are 
masked as conversational or writing tasks, preventing 
the model from recognizing potentially malicious intent 
and thus generating harmful content. Liu et  al. (2023f) 
proposes a novel black-box prompt injection attack 
technique named HOUYI for applications integrated 
with LLMs. HOUYI executes attacks through three key 
elements: pre-constructed prompts, injection prompts, 
and malicious payloads. Its deployment across 36 real-
world scenarios demonstrates its efficacy in discovering 
and exploiting vulnerabilities within LLM-integrated 
applications. Yan et al. (2024a) focuses on Virtual Prompt 
Injection (VPI) attacks against instruction-tuned LLMs, 
which allow attackers to manipulate model behavior by 
specifying virtual prompts without directly injecting 
into model inputs, leading to the model disseminating 
biased information. Piet et  al. (2024) uses instruction-
tuned models to generate datasets for specific tasks. 
These datasets are then utilized to fine-tune foundational 
models, enhancing their robustness to resist most 
prompt injection attacks. Additionally, Kour et al. (2023) 
constructs an adversarial attack dataset named AttaQ 
in a semi-automated manner, aiming to evaluate the 
security of LLMs in the face of harmful or inappropriate 
inputs. Vulnerabilities are exposed by analyzing 
model responses to the AttaQ dataset, and specialized 
clustering techniques are further applied to identify and 
characterize the models’ vulnerable semantic areas.

Jailbreaking refers to the phenomenon of LLMs gen-
erating unsafe or unintended content when prompted 
in certain ways, despite being designed with safe-
guards  (Chu et  al. 2024; Xu et  al. 2024e). Owing to the 
advancing capabilities of LLMs, this issue has attracted 
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significant attention in recent years. Shen et  al. (2023) 
studies the security issues of LLMs when facing jail-
break prompts. They collect and analyze 6,387 prompts 
to reveal the characteristics and attack strategies of these 
prompts. Despite various security measures implemented 
by LLMs, they found that effective jailbreak prompts still 
successfully induce models to generate harmful content, 
indicating the need for further improvements in the 
security of LLMs. Chu et al. (2024) conducts a compre-
hensive evaluation of LLMs jailbreaking, revealing the 
effectiveness of these attack methods and the vulnerabili-
ties of LLMs across various violation categories.

There are various methods for generating adversarial 
prompts for jailbreaking. Zou et  al. (2023) combines 
greedy search and gradient-based optimization tech-
niques to propose a method that automatically generates 
adversarial suffixes to prompt models, both open-source 
and commercial, to produce inappropriate content. Lapid 
et  al. (2023) introduces a novel approach to black-box 
jailbreak attacks using genetic algorithms, which can 
manipulate LLMs to produce unexpected and potentially 
harmful outputs without accessing the model’s inter-
nal structure and parameters by optimizing a universal 
adversarial prompt. Ding et al. (2024) conceptualizes the 
jailbreaking process as prompt rewriting and scenario 
nesting. They then introduce ReNeLLM, a jailbreaking 
prompt generation framework that utilizes LLMs to gen-
erate effective jailbreaking prompts. Compared to exist-
ing baselines, ReNeLLM achieves high attack success 
rates on multiple LLMs while significantly reducing the 
time cost. Deng et  al. (2024) explores jailbreak attacks 
on LLM Chatbots and proposes a framework named 
MASTERKEY to automate this process. Through tem-
poral feature analysis and automated prompt generation, 
MASTERKEY reveals and bypasses the defense mecha-
nisms of LLM chatbots, offering new perspectives for 
LLM security research and guidance for service providers 
to improve their security measures.

Research on LLMs jailbreaking can also be used for 
red-teaming. Zhu et  al. (2024) proposes AutoDAN, 
an interpretable and gradient-based adversarial attack 
method. By combining the dual objectives of jailbreak-
ing and readability, it generates interpretable and diverse 
attack prompts capable of effectively bypass perplexity fil-
ters and demonstrates robust generalization in scenarios 
with limited training data. This method not only offers a 
novel approach for red-teaming of LLMs but also helps 
to understand the mechanics of jailbreak attacks. Yu et al. 
(2023) presents a new black-box jailbreak fuzzing frame-
work named GPTFUZZER. By collecting human-written 
jailbreak templates from the internet as initial seeds, and 
then iterating through a process of seed selection, muta-
tion, and evaluating the success of attacks, GPTFUZZER 

significantly enhances the efficiency and scalability of red 
team testing. Yao et  al. (2023a) introduces FuzzLLM, a 
novel and universally applicable fuzz testing framework 
designed to proactively discover jailbreak vulnerabilities 
in LLMs. FuzzLLM employs a template-based strategy 
that generates a variety of jailbreak prompts and identify 
potential security vulnerabilities through automated test-
ing. It demonstrates efficiency and comprehensiveness 
across various LLMs, effectively identifying and assessing 
jailbreak vulnerabilities.

Additionally, Wang et  al. (2023e) introduces the con-
cept of a semantic firewall to describe the defense mech-
anisms of LLMs against malicious prompts and proposes 
a self-deception attack method to bypass LLMs seman-
tic firewalls. This method designs a customizable dia-
logue template for experimenting with specific illegal 
payloads and automatically achieving LLM jailbreak. 
Qiu et  al. (2023) develops a potential jailbreak prompt 
dataset embedded with malicious instructions and pro-
poses a hierarchical annotation framework to analyze 
the performance of LLMs under different conditions(e.g., 
instruction positions, word substitutions, and instruc-
tion replacements). This is aimed at evaluating the secu-
rity and output robustness of LLMs when processing 
texts containing potential malicious instructions. Li et al. 
(2023b) investigates the potential privacy threats asso-
ciated with ChatGPT and the Bing search engine inte-
grated with ChatGPT. By introducing a novel multi-step 
jailbreaking prompt, they successfully extract personally 
identifiable information from ChatGPT and demonstrate 
the privacy threats posed by the new Bing under direct 
prompts.

Model safety risks
Even in the absence of direct adversarial attacks, inherent 
risks within these models limit their application in cyber-
security, including LLMs trustworthy concerns, lack of 
interpretability, and frontier risks.

LLMs trustworthy Concerns The surge of LLMs brings 
significant concerns regarding their trustworthiness, 
especially considering the inherent risks in the models 
themselves, which pertain to the aspects and extent to 
which humans can trust AI. Existing research in AI gov-
ernance and trustworthy LLMs has provided guidance for 
the concern dimensions of trustworthy LLMs  (Tabassi 
2023; Liu et al. 2023a; Wang et al. 2023a).

Hallucination is a response generated by AI that 
contains false or misleading information presented 
as fact  (Maynez et  al. 2020; Ji et  al. 2023). Ensuring the 
authenticity of content generated by language models is 
a critical issue that requires urgent attention. In practical 
applications, the content produced by LLMs may exhibit 
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factual hallucinations, which severely impact the reli-
ability of their outputs. Several studies have explored the 
causes of hallucinations and proposed mitigation strate-
gies (Huang et al. 2023a; Zhang et al. 2023e). The causes 
of hallucinations are typically attributed to issues arising 
during the data, training, and inference stages, such as 
poor data quality, misinformation, outdated knowledge, 
flaws in model architecture and strategies, and random-
ness in the inference process. Although hallucinations are 
difficult to eliminate completely  (Xu et  al. 2024d), they 
can be mitigated through various methods, such as build-
ing high-quality datasets, optimizing decoding strategies, 
and enhancing external knowledge through techniques 
like Retrieval-Augmented Generation (RAG). Address-
ing the hallucination issue is of significant importance for 
improving the trustworthiness of LLMs in cybersecurity 
applications.

Toxicity in language models is characterized as rude, 
disrespectful, or unreasonable commentary that is likely 
to drive individuals away from a discussion  (Welbl 
et  al. 2021). This is an inherent property of LLMs, 
stemming from their inevitable exposure to toxic 
content during training. For instance, an analysis of the 
LLaMA2 pretraining corpus revealed that approximately 
0.2% of the documents could be identified as toxic 
content  (Touvron et  al. 2023b). The detoxification of 
LLMs can be broadly categorized into two approaches. 
The first category involves internal modifications to 
the model to prevent the generation of toxic content, 
such as employing Reinforcement Learning with 
Human Feedback (RLHF) to align the model with safety 
guidelines (Ouyang et al. 2022) or employing knowledge 
editing techniques to precisely modify toxic regions 
within the LLMs  (Wang et  al. 2024f ). The second 
approach involves using external classifiers to filter the 
model’s outputs (Inan et al. 2023). In summary, reducing 
the toxicity of generated content is essential to preventing 
harm to individuals, groups, and broader societies.

Fairness in LLMs encapsulates the ethical principle 
that necessitates the equitable design, training, and 
deployment of LLMs and related AI systems, preventing 
biased or discriminatory outcomes  (Wang et  al. 2023c). 
Language models may exhibit discrimination and bias, 
primarily due to the characteristics of their training 
data and model design  (Li et  al. 2023e). The training 
data collected from the internet reflects real-world 
biases, including those related to race, gender, culture, 
religion, and social status. It is difficult to completely 
filter and clean all biased content. Additionally, in the 
design of generative AI models, there is a lack of effective 
mechanisms to mitigate biases, which results in the 
models capturing discriminatory patterns from the 

training data. In response, various strategies have been 
proposed to improve fairness in LLMs, ranging from 
holistic approaches to mitigating specific types of biases, 
such as biases in internal components of LLMs and biases 
arising from user interactions  (Dev et  al. 2023; Dong 
et al. 2024), thereby promoting AI models’ adherence to 
fairness and anti-discrimination principles.

Privacy means the norms and practices that help to 
safeguard human and data autonomy, identity, and dig-
nity  (Tabassi 2023). Unlike previous concerns that pri-
marily focused on sensitive data protection, advanced 
generative AI models trained on massive datasets posses 
sophisticated memory mechanisms that may result in 
privacy leaks (Carlini et al. 2021, 2022; Peris et al. 2023). 
And various privacy protection methods have been 
developed for AI models, including data anonymization, 
federated learning, differential privacy, and unlearning, 
each addressing distinct privacy challenges (Murthy et al. 
2019; Nagy et  al. 2023; Vasa and Thakkar 2023; Sekhari 
et  al. 2021). Nevertheless, privacy protection for gener-
ative AI is still in its early stages, and exploring how to 
fully utilize the capabilities of these models while safe-
guarding personal privacy remains a challenge.

Robustness in LLMs refers to their stability and perfor-
mance when faced with various input conditions. This 
includes their ability to effectively handle diverse inputs, 
noise, interference, adversarial attacks, and changes 
in data distribution, among other factors  (Huang et  al. 
2024). In addition to the model’s performance against 
malicious attacks discussed in the previous chapter, the 
performance of the model on noisy data and out-of-
distribution (OOD) data is also used to assess robust-
ness  (Wang et al. 2021, 2024c). This capability is crucial 
for LLMs in real-world applications, as it enables the 
models to respond appropriately when dealing with 
unknown or new inputs. Therefore, the application of 
LLMs in the cybersecurity domain requires a high level 
of robustness.

Beyond the key dimensions discussed above, there are 
other important aspects of model trustworthiness that 
warrant attention, including accountability, machine eth-
ics, environmental well-being, data governance, repro-
ducibility, and human oversight, among others. These are 
crucial for building trustworthy and responsible AI sys-
tems, and significantly impact the application of models 
in specific areas such as cybersecurity.

Lack of Interpretability Interpretability refers to the abil-
ity of an AI system to explain its decisions and outputs in a 
manner understandable to humans. The underlying prin-
ciple is to design models or algorithms that can generate 
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corresponding explanations when making predictions or 
decisions (Zhang et al. 2021).

As AI systems grow increasingly advanced, it has 
become challenging for humans to understand and trace 
how algorithms produce their results. The computational 
process has thus evolved into what is commonly referred 
to as a “black box” - a system with opaque internal mech-
anisms. The complexity of these systems and their lack of 
transparency pose significant risks, especially in sensitive 
and critical domains such as cybersecurity.

Research into the interpretability of AI models not 
only guides model improvement and optimization but 
also enhances user trust in their safe application. Studies 
explore interpretability from various perspectives, 
including the data level (analyzing inputs, outputs, 
datasets, and data modalities), the model level 
(examining tokens, features, neurons, network layers, 
and architecture), and the training and reasoning 
process (investigating how models are trained and 
how they perform during inference)  (Dang et  al. 2024). 
For instance, OpenAI uses GPT-4 to generate natural 
language explanations of neuron behaviors in GPT-2 
and rates these explanations (Bills et al. 2023). Anthropic 
employs dictionary learning to isolate repeated neuron 
activation patterns across different contexts, aiding in 
understanding how concepts are represented in language 
models  (Templeton et al. 2024). Additionally, studies on 

circuits and sparse autoencoders have been conducted to 
uncover the behaviors of black-box models (Elhage et al. 
2022, 2021; Huben et al. 2023; Gao et al. 2024).

Despite numerous attempts to explain neuron behav-
iors, little progress has been made in understanding 
the underlying mechanisms that generate these behav-
iors (Bills et al. 2023). The black-box nature of AI models 
remains largely unresolved. Moreover, as the number of 
model parameters increases and more complex emergent 
behaviors arise, the lack of interpretability will persist as a 
significant challenge in AI development and application.

Frontier risks
With the advancement of AI, some researchers have 
raised concerns about the potential catastrophic risks 
posed by AI. Carlsmith (2022) highlights that imperfectly 
controlled agents may deliberately seek power over 
humans, and such power-seeking AIs could result 
in human disempowerment, leading to catastrophic 
outcomes. Similarly, issues such as proxy gaming  (Clark 
and Amodei 2016) and goal drift  (Hendrycks et  al. 
2023) could cause highly intelligent AIs to lose control, 
further exacerbating these risks. Hubinger et  al. (2024) 
investigates the deceptive behaviors that LLMs may 
exhibit under specific trigger conditions, finding that 
these behaviors could persist even after safety alignment, 
thereby posing a potential threat to AI system security.

Regarding emerging frontier risks, Li et al. (2024c) and 
Stewart (2024) discuss how LLMs could contribute to 
the proliferation of chemical, biological, radiological, and 
nuclear weapons. Given that LLMs have been trained on 
vast amounts of computer code and possess the ability to 
generate scripts and code, they could facilitate engineer-
ing design and computer simulations related to specific 
CBRN production processes. Therefore, caution is nec-
essary when deploying LLMs in sensitive fields, and it is 
critical to implement mitigation measures to prevent the 
generation of problematic outputs.

Further research
Despite the significant research into LLMs within the 
field of cybersecurity, the exploration and application 
of such models remain in their initial stages and have 
great potential for development (de Jesus Coelho da Silva 
and Westphall 2024; Motlagh et al. 2024). The complex-
ity of cybersecurity stems not only from the diversity 
of attack methods but also from the intricate nature of 
network environments, which requires the integrated 
application of various tools and strategies to achieve 
effective protection  (Azizi and Haass 2023; Mtsweni 
et al. 2018). Facing these challenges requires AI systems 
to have stronger capabilities in planning, reasoning, tool 
use, and memory. Consequently, the concept of LLM 
Agent has emerged and attracted a lot of attention from 
researchers (Table 13).

LLM Agent is “a system that can use an LLM to reason 
through a problem, create a plan to solve the problem, 
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and execute the plan with the help of a set of tools (Var-
shney 2023).” By simulating complex network behaviors 
and attack patterns, and integrating advanced natural 
language processing capabilities, LLM agents introduce 
new perspectives and solutions to the field of cybersecu-
rity (Kaheh et al. 2023; Moskal et al. 2023; Cui et al. 2024; 
Rigaki et al. 2024; Fang et al. 2024c; An et al. 2024). With 
the continuous advancement of technology and in-depth 
research, LLM agents are expected to play a key role in 
defense strategy generation, threat detection, and secu-
rity policy formulation, significantly improving the effi-
ciency and intelligence level of cybersecurity defenses.

The AI Agents framework based on LLMs possesses 
the critical capabilities required to solve complex 
problems  (Ruan et  al. 2023). Xi et  al. (2023) proposes 
an LLM Agent architecture that includes brain, 
perception, and action components to provide a wide 
range of applications in single-agent scenarios, multi-
agent environments, and human-agent collaboration. 
Moreover, the incorporation of Tool & API calls endows 
LLM agents with the capacity to interact with the real 
world. Qin et al. (2024) develops the ToolBench dataset 
and the DFSDT algorithm to enable LLMs to successfully 
handle complex tasks involving numerous real-world 
APIs. Liu et  al. (2024d) introduces a sophisticated tool 
invocation mechanism that enhances LLMs’ interaction 
with external tools by summarizing and making 
decisions. Additionally, Yang et al. (2024d) demonstrates 
that integrating code into LLMs significantly enhances its 
ability to perform more complex tasks as an intelligent 
agent. Qiao et  al. (2023) proposes TaskWeaver, a code-
first agent framework for seamlessly planning and 
executing data analytics tasks.

LLM agents can be applied to address complex cyber-
security tasks. Cui et  al. (2024) proposes an innova-
tive framework named LLMind, which utilizes LLM as 
a coordinator to perform complex tasks by integrating 
with IoT devices and domain-specific AI modules. The 
framework employs finite state machine methods to gen-
erate control scripts, thereby enhancing the accuracy 
and success rate of task execution. In addition, LLMind 
introduces a mechanism for accumulating experience, 
which allows the system to continually learn and pro-
gress through ongoing interactions between users and 
machines. Rigaki et  al. (2024) demonstrates the use of 
LLMs as agents within cybersecurity environments. 
Experiments show that LLM agents can achieve perfor-
mance comparable to or better than extensively trained 
agents in sequential decision-making tasks, even without 
additional training. Furthermore, the study introduces 
the NetSecGame environment, a highly modular and 
adaptive cybersecurity environment designed to sup-
port complex multi-agent scenarios. Huang et al. (2023b) 

proposes ChatNet, a domain-specific network LLM 
framework with access to a variety of external network 
tools. ChatNet significantly reduces the time required for 
tedious network planning tasks, thereby greatly increas-
ing efficiency.

LLM agents can be employed to perform automated 
attacks. Fang et al. (2024c) reveals the potential of LLM 
agents in cybersecurity attacks, particularly the capabil-
ity of GPT-4 to autonomously conduct complex hacker 
attacks on websites without prior knowledge of vulner-
abilities. The study shows that LLM agents have a success 
rate of up to 73.3% in hacking attempts and can autono-
mously discover vulnerabilities in real-world websites. 
Moskal et al. (2023) demonstrates the potential applica-
tion of LLMs in cyber threat testing, especially in auto-
mating cyber attack activities. With prompt engineering 
and automated agents, LLMs can understand and exe-
cute complex cyber attacks. Fang et al. (2024b) collects a 
dataset of 15 zero-day vulnerabilities. Based on this data-
set, the study shows that LLM agents can autonomously 
exploit these zero-day vulnerabilities in real-world sys-
tems. Fang et al. (2024d) also shows that teams of LLM 
agents can exploit real-world, zero-day vulnerabilities by 
designing a system of agents with a planning agent that 
can launch subagents.

LLM agents can also be utilized to assist in cyber 
defense. An et  al. (2024) designs a multi-agent system 
(Nissist) to precisely understand user queries and provide 
effective mitigation plans. Nissist utilizes troubleshooting 
guides and incident mitigation history to provide sug-
gestions, which significantly reduces the time for event 
mitigation, reduces the workload of on-duty engineers, 
and enhances the reliability of services. Cyber Senti-
nel (Kaheh et al. 2023) is a dialogue agent based on GPT-
4, which can interpret potential cyber threats and execute 
security actions based on user instructions. The poten-
tial impact of Cyber Sentinel in cyber security includes 
improved threat detection and response capabilities, 
enhanced operational efficiency, real-time collaboration, 
and knowledge sharing. PhishAgent  (Cao et  al. 2024) is 
a multimodal agent that combines a wide range of tools, 
integrating both online and offline knowledge bases with 
Multimodal LLMs, showing strong resilience against 
various types of adversarial attacks. Tseng et al. (2024b) 
develops an AI agent to replace the labor intensive repet-
itive tasks involved in analyzing CTI reports. By leverag-
ing the advanced capabilities of LLMs, the AI agent can 
accurately extract important information from large vol-
umes of text and generate Regex to help SOC analysts 
accelerate the process of establishing correlation rules.

LLM agents enhance cybersecurity applications with 
their remarkable capabilities, yet the security risks inher-
ent in agent systems  (Yuan et  al. 2024) pose challenges 



Page 32 of 41Zhang et al. Cybersecurity            (2025) 8:55 

for their deployment in cybersecurity environments. 
Wu et  al. (2024a) introduces the concept of Web-based 
Indirect Prompt Injection (WIPI), a novel cyber threat 
that embeds malicious instructions in web pages to indi-
rectly control these agents, achieving high success rates 
and robustness across different user inputs. Zhan et  al. 
(2024) highlights that LLM agents integration with exter-
nal tools may lead to the risk of indirect prompt injection 
attacks, in which attackers embed malicious commands 
in the content processed by LLMs to manipulate these 
agents to perform actions harmful to users.

In conclusion, the application of LLM-based agents 
in cybersecurity opens up new avenues for dealing with 
cyber security threats. Although research in this area is 
still in its early stages, and the inherent security vulner-
abilities of agents have not yet been addressed, this line of 
research promises to significantly enhance the capability 
to counter complex cyber threats and has the potential 
to revolutionize the working methods of security profes-
sionals, thereby unleashing greater productivity. There-
fore, further research into the application of LLM agents 
in cybersecurity is crucial for developing adaptive, intel-
ligent, and comprehensive cybersecurity solutions.

In summary, we bridges the gap between LLM 
advancements and cybersecurity demands, laying the 
groundwork for researchers and practitioners. It guides 
them to harness the transformative potential of LLMs 
while addressing the unique challenges that arise in this 
field. Further research and exploration would open up 
new pathways for future cybersecurity practice, ensuring 
that we have more comprehensive and professional strat-
egies in the face of increasingly complex cyber threats.
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