
Zhang et al. Cybersecurity (2025) 8:55
https://doi.org/10.1186/s42400-025-00361-w

SURVEY Open Access

© The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Cybersecurity

When LLMs meet cybersecurity: a systematic
literature review
Jie Zhang1,2 , Haoyu Bu1,2, Hui Wen1,2*, Yongji Liu1,2, Haiqiang Fei1,2, Rongrong Xi1,2, Lun Li1,2, Yun Yang1,2,
Hongsong Zhu1,2* and Dan Meng1,2

Abstract

The rapid development of large language models (LLMs) has opened new avenues across various fields, includ-
ing cybersecurity, which faces an evolving threat landscape and demand for innovative technologies. Despite initial
explorations into the application of LLMs in cybersecurity, there is a lack of a comprehensive overview of this research
area. This paper addresses this gap by providing a systematic literature review, covering the analysis of over 300 works,
encompassing 25 LLMs and more than 10 downstream scenarios. Our comprehensive overview addresses three key
research questions: the construction of cybersecurity-oriented LLMs, the application of LLMs to various cybersecurity
tasks, the challenges and further research in this area. This study aims to shed light on the extensive potential of LLMs
in enhancing cybersecurity practices and serve as a valuable resource for applying LLMs in this field. We also maintain
and regularly update a list of practical guides on LLMs for cybersecurity at https:// github. com/ tmylla/ Aweso me-
LLM4C ybers ecuri ty.

Keywords Cybersecurity, Cyber attack, Cyber defense, Large language model, Agent

Introduction
Large language models (LLMs), represented by
advanced models such as ChatGPT (Ouyang et al. 2022),
Llama (Touvron et al. 2023a), and their derivatives (Chi-
ang et al. 2023; Almazrouei et al. 2023; Jiang et al. 2024a)
have marked a significant advancement in artificial intel-
ligence. By leveraging massive data and advanced neural
network architectures, these models have demonstrated
remarkable capabilities in understanding and generating
human language (Zoph et al. 2022; Minaee et al. 2024).
They not only set new benchmarks for achieving arti-
ficial general intelligence (AGI) but also show unique

adaptability and effectiveness when collaborating with
domain experts (Ge et al. 2024; Kaur et al. 2024). Such
research enables LLMs to be tailored to specific chal-
lenges in various fields, thereby promoting progress and
development in areas such as healthcare, law, education,
and software engineering (Hou et al. 2023; Lai et al. 2024;
Zhou et al. 2024b; Yan et al. 2024b; Li et al. 2023f; Zhao
et al. 2024e). In the cybersecurity domain, exploring LLM
applications can lay the foundations for further model
development and utilization while highlighting potential
transformative impacts (Yao et al. 2024b; Das et al. 2024;
de Jesus Coelho da Silva and Westphall 2024; Motlagh
et al. 2024; Yigit et al. 2024).

Cybersecurity is a critical issue given the growing
number of cyber threats that pose significant risks to
individuals, organizations, and governments (Thakur
et al. 2015; Scala et al. 2019; Ghelani 2022). The rapid
evolution and dynamic nature of cybersecurity poses
challenges as adversaries continuously adapt strate-
gies to exploit vulnerabilities and evade detection (Li
and Liu 2021; Aslan et al. 2023). While traditional

*Correspondence:
Hui Wen
wenhui@iie.ac.cn
Hongsong Zhu
zhuhongsong@iie.ac.cn
1 Institute of Information Engineering, Chinese Academy of Sciences, No.
19, Shucun Road, Haidian District, Beijing 100085, China
2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-025-00361-w&domain=pdf
http://orcid.org/0000-0002-1135-2031
https://github.com/tmylla/Awesome-LLM4Cybersecurity
https://github.com/tmylla/Awesome-LLM4Cybersecurity

Page 2 of 41Zhang et al. Cybersecurity (2025) 8:55

approaches (e.g., signature-based detection, and rule-
based systems) often struggle to keep pace with the
evolving threat landscape, advancements in AI, par-
ticularly LLMs have opened new avenues for enhancing
cybersecurity (Ferrag et al. 2024a). On one hand, open-
sourced LLMs (e.g., LLaMA (Touvron et al. 2023a, b))
support the development of cybersecurity-enhanced
domain LLMs such as RepairLlama (Silva et al. 2023)
and Hackmentor (Zhang et al. 2023b) to address unique
cybersecurity challenges. On the other hand, advanced
LLMs such as ChatGPT solve complex tasks via prompt
engineering, in-context learning, and chains-of-
thought despite the lack of cybersecurity-specific train-
ing (Mohammed and Hossain 2024). These preliminary
efforts show LLMs can aid cybersecurity tasks with
promising results.

Despite the initial efforts of LLMs in cybersecurity,
the field still faces several challenges (Das et al. 2024;
Pankajakshan et al. 2024). First, many studies rely on
case studies without comprehensive methodology,
raising concerns about scalability and reproducibility.
In addition, the field lacks connectivity and in-depth
analysis between studies. With the rapid increase in
the amount of LLM research in this field, conducting a
systematic overview is essential to guide the field into
a new stage of development, in which the application
of LLM is not just experimental but also has a strategic
impact (de Jesus Coelho da Silva and Westphall 2024;
Motlagh et al. 2024; Yigit et al. 2024). Therefore, this
work aims to conduct an extensive review of domain-
specific LLMs tailored for cybersecurity, explore the
breadth of LLM applications in this area, and identify
emerging challenges to lay the foundation for future
studies.

This survey aims to provide a comprehensive over-
view of the application of LLM in cybersecurity. We
seek to address three key questions:

• RQ1: How to construct cybersecurity-oriented
domain LLMs?

• RQ2: What are the potential applications of LLMs in
cybersecurity?

• RQ3: What are the challenge and further research for
the application of LLMs in cybersecurity?

By exploring these questions, we aim to bridge the
gap between the advancement in LLMs and its potential
impact on enhancing cybersecurity practices. We will
delve into various cybersecurity tasks and applications to
which LLMs are applicable, including vulnerability detec-
tion, secure code generation, program repair, binary, IT
operations, threat intelligence, anomaly detection, and
LLM-assisted attack, as shown in Table 1.

For the first question, we summarize the princi-
ples of existing cybersecurity LLMs, detailing their key
techniques, the data used for model construction, and
well-trained domain LLMs for special tasks. We pro-
vide insights into constructing domain models, which
are valuable for researchers and practitioners looking
to build customized LLMs based on specific require-
ments, such as computational limits, private data, and
local knowledge bases (Sect. RQ1: How to construct
cybersecurity-oriented domain LLMs?). For the second
question, we conduct an extensive survey on the usage
of existing LLMs in more than 10 cybersecurity tasks,
including threat intelligence, vulnerability detection, pro-
gram repairing, and others. This analysis not only helps
us understand how LLMs benefit cybersecurity in vari-
ous aspects but also allows us to identify their strengths
when applied to domain-specific tasks. By demonstrat-
ing the diverse capabilities of LLMs, we aim to illustrate
their potential to enhance and transform the cybersecu-
rity field (Sect. RQ2: What are the potential applications
of LLMs in cybersecurity?). The third question highlights
the challenges that need to be overcome when apply-
ing LLMs in cybersecurity. LLMs’ inherent vulnerabili-
ties and susceptibilities lead to these attack challenges,
especially attacks against LLMs and LLM jailbreaking.
Additionally, we also explore further research directions
for applying LLM to cybersecurity, guiding researchers
and practitioners to promote advancement in this field
(Sect. RQ3: What are the challenge and further research
for the application of LLMs in cybersecurity?).

Table 1 The main cybersecurity tasks and applications where LLMs have been utilized

Vulnerability
detection

(In)secure code
generation

Program
repairing

Binary IT operations Threat
intelligence

Anomaly
detection

LLM assisted
attack

Others

RQ1 � � � � � – – – �

RQ2 � � � – – � � � �

RQ3 – – – – � – � � –

Page 3 of 41Zhang et al. Cybersecurity (2025) 8:55

In summary, this paper contributes by providing a
comprehensive review of the state-of-the-art LLM appli-
cations in cybersecurity, highlighting the potential advan-
tages and challenges, and proposing future research
directions. The subsequent sections of this paper are
organized as follows. Section Preliminaries outlines
the scope of this paper. Section RQ1: How to construct
cybersecurity-oriented domain LLMs? summarizes exist-
ing LLMs for cybersecurity. Section RQ2: What are the
potential applications of LLMs in cybersecurity? details
how LLMs can be applied to various cybersecurity tasks.
Section RQ3: What are the challenge and further research
for the application of LLMs in cybersecurity? highlights
the challenges and promising opportunities for future
research. Section Conclusion draws the conclusion.

Preliminaries
In this review paper, we systematically investigate the
progress of LLMs’ applications in cybersecurity, cover-
ing more than 300 academic papers since 2023. Through
an exhaustive study and comprehensive analysis, we
aim to provide a detailed overview of the current state,
challenges, and future directions of LLM applications in
cybersecurity. As shown in Fig. 1, this emerging research
field continues to gain attention, and LLMs can be used
to solve various tasks. This not only highlights the cur-
rent and potential impact of LLMs in cybersecurity, but
also offers practical guidance for future research. There-
fore, this section first summarizes the surveyed papers
from two aspects: one is the LLMs used in cybersecurity,
and the other is the category of cybersecurity tasks to
which LLMs can be applied.

LLMs in cybersecurity
LLMs have emerged as a transformative technology in
the field of artificial intelligence, demonstrating remark-
able capabilities in natural language understanding, gen-
eration, and reasoning (Brown et al. 2020; Zoph et al.
2022; Minaee et al. 2024). These models, trained with
large amounts of data, have the potential to revolution-
ize various fields, including the critical area of cyberse-
curity (Motlagh et al. 2024; Yigit et al. 2024), as shown
in Table 2. The application of LLMs in cybersecurity is
expected to enhance threat detection, automated vul-
nerability analysis, intelligent defense mechanisms, and
more.

LLMs can be categorized into two main types: open-
source and closed-source models. Open-source LLMs
(e.g., Llama (Touvron et al. 2023a) and Mixtral (Jiang
et al. 2024a)) provide model weights, and researchers
can fine-tune the models for specific cybersecurity tasks.
This adaptability is particularly valuable in cybersecurity
scenarios, such as private data and models fine-tuned to
customized needs. However, open-source LLMs may lack
the performance and scale of closed-source LLMs. On
the other hand, closed-source LLMs (often referred to as
commercial LLMs, e.g., ChatGPT (Ouyang et al. 2022)
and Gemini (Team et al. 2023)), provide state-of-the-art
performance and are maintained by commercial entities,
often with access restrictions. While these models excel
in accuracy and efficiency, their lack of transparency can
raise concerns about potential biases and limitations in
cybersecurity applications.

In the field of cybersecurity, there is a growing need
for intelligent tools that can understand, analyze, and
generate secure code. Code-based LLMs (e.g., CodeL-
lama (Roziere et al. 2023) and StarCoder (Li et al. 2023d;
Lozhkov et al. 2024)) are particularly well suited to

Fig. 1 Statistic of surveyed papers

Page 4 of 41Zhang et al. Cybersecurity (2025) 8:55

address this demand. Unlike text-based LLMs that are
trained on vast amounts of natural language data, code-
based LLMs are specifically designed to understand
and work with programming languages. Code-based
LLMs are trained on large code bases covering multiple
programming languages, allowing them to capture the
complexity of syntax, semantics, and common coding
patterns. This specialized training enables them to per-
form a variety of tasks, including code completion, bug
detection, and automated code review. In the context of
cybersecurity, these capabilities are useful for identifying
potential vulnerabilities, suggesting secure coding prac-
tices, and remediating security vulnerabilities.

Cybersecurity categories of LLMs application
Cybersecurity has become a critical concern due to
the increasing reliance on interconnected systems
and the continued emergence of sophisticated cyber
threats (Thakur et al. 2015; Ghelani 2022). The field of
cybersecurity encompasses a wide range of practices,
technologies, and strategies aimed at protecting com-
puter systems, networks, and data from unauthorized
access, attacks, damage, or disruption (Li and Liu 2021;

Aslan et al. 2023). AI techniques, especially LLMs, have
shown great potential in revolutionizing various aspects
of cybersecurity (Yigit et al. 2024). The applications of
LLMs in cybersecurity are wide-ranging, including threat
intelligence, vulnerability detection, malware detection,
and anomaly detection, fuzz and program repair, LLM
assisted attack(in)secure code generation, and others.

• Threat Intelligence: It is very difficult to extract
information from a large number of threat intelli-
gence documents. Some researchers turn to LLMs
to organize and analyze these massive and cluttered
data.

• Vulnerability Detection: This is a critical task in
cybersecurity, and has seen novel approaches emerge
through the integration of LLMs.

• Malware Detection: LLMs can serve as both the
static analysis assistant and the dynamic debugging
assistant, improving the efficiency and effectiveness
of the process.

• Anomaly Detection: It mainly refers to security
anomalies such as malicious traffic in the flow, virus
files in the system, anomalies in logs, etc.

Table 2 A Summary of LLMs used in cybersecurity (this paper)

Organization LLMs Size Open-Source Count Link

OpenAI GPT-3.5 175B × 86 https:// chat. openai. com/

GPT-4 – × 56 https:// chat. openai. com/

Codex – × 13 https:// openai. com/ blog/ openai- codex

davinci(-002,-003) 175B × 9 https:// openai. com/ blog/ openai- api

Google Bard&Gemini – × 12 https:// gemini. google. com/

PaLM(-1,-2) 540B × 7 https:// ai. google. dev/ models/ palm

Anthropic Claude(-1,-2) – × 2 https:// claude. ai/

Github Copilot – × 2 https:// github. com/ featu res/ copil ot

Microsoft BingChat – × 2 https:// www. bing. com/ chat

EleutherAI GPT-J 6B � 2 https:// huggi ngface. co/ Eleut herAI/ gpt-j- 6b

GPT-Neo 2.7B � 3 https:// huggi ngface. co/ Eleut herAI/ gpt- neo-2. 7B

Meta Llama(-1,-2) 7B/13B/70B � 38 https:// huggi ngface. co/ meta- llama

LlamaGuard 7B � 1 https:// huggi ngface. co/ meta- llama/ Llama Guard- 7b

InCoder 1B/6B � 4 https:// huggi ngface. co/ faceb ook/ incod er- 1B

LMSYS Vicuna 7B/13B � 12 https:// huggi ngface. co/ lmsys/ vicuna- 7b- v1.5

LianjiaTech BELLE 7B/13B � 1 https:// github. com/ Lianj iaTech/ BELLE/

Databricks Dolly 6B � 3 https:// huggi ngface. co/ datab ricks/ dolly- v1- 6b

– Guanaco 7B � 2 https:// huggi ngface. co/ Josep husCh eung/ Guana co

Salesforce CodeGen(-1,-2) 3B/7B/16B � 9 https:// github. com/ sales force/ CodeG en/

CodeT5 6B � 3 https:// huggi ngface. co/ Sales force/ codet 5p- 6b

BigCode StarCoder(-1,-2) 3B/7B/15B � 3 https:// huggi ngface. co/ bigco de/

THUDM ChatGLM 6B � 8 https:// github. com/ THUDM/ ChatG LM- 6B

KaistAI Prometheus 7B/13B � 1 https:// github. com/ kaist AI/ Prome theus

MistralAI Mistral 7B � 6 https:// huggi ngface. co/ mistr alai/ Mistr al- 7B- v0.1

Mixtral 8*7B � 5 https:// huggi ngface. co/ mistr alai/ Mixtr al- 8x7B- v0.1

https://chat.openai.com/
https://chat.openai.com/
https://openai.com/blog/openai-codex
https://openai.com/blog/openai-api
https://gemini.google.com/
https://ai.google.dev/models/palm
https://claude.ai/
https://github.com/features/copilot
https://www.bing.com/chat
https://huggingface.co/EleutherAI/gpt-j-6b
https://huggingface.co/EleutherAI/gpt-neo-2.7B
https://huggingface.co/meta-llama
https://huggingface.co/meta-llama/LlamaGuard-7b
https://huggingface.co/facebook/incoder-1B
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://github.com/LianjiaTech/BELLE/
https://huggingface.co/databricks/dolly-v1-6b
https://huggingface.co/JosephusCheung/Guanaco
https://github.com/salesforce/CodeGen/
https://huggingface.co/Salesforce/codet5p-6b
https://huggingface.co/bigcode/
https://github.com/THUDM/ChatGLM-6B
https://github.com/kaistAI/Prometheus
https://huggingface.co/mistralai/Mistral-7B-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1

Page 5 of 41Zhang et al. Cybersecurity (2025) 8:55

• Fuzz: Traditional fuzzing techniques are effective in
discovering software vulnerabilities, but their inher-
ent limitations can affect their efficiency and effec-
tiveness. The LLM-based approach for fuzzing is a
promising area of research.

• Program Repair: Program repair is task-intensive and
patching defects requires sufficient experience and
knowledge. Many studies have proved the effective-
ness of LLMs about this issue.

• LLM-Assisted Attacks: Many are not satisfied with
LLMs’ positive applications. They have discovered
the effectiveness of LLMs in launching network
attacks such as phishing emails and penetration test-
ing.

• (In)secure Code Generation: Is there a risk in the
code generated by LLMs? Moreover, can LLMs cor-
rect their code through some strategies?

• Others: In addition to the aspects mentioned above,
we have also collected some researches which prove
the importance of LLMs in the field of cybersecurity,
there are fewer application studies of LLM in its field.

RQ1: How to construct cybersecurity‑oriented
domain LLMs?
The cybersecurity domain is facing escalating threats,
demanding intelligent and efficient solutions to address
complex and evolving attacks (Kaur et al. 2023; Kumar
et al. 2023; Mijwil et al. 2023). LLMs provide new oppor-
tunities for the cybersecurity community (de Jesus Coe-
lho da Silva and Westphall 2024; Motlagh et al. 2024).
Trained on massive data, LLMs have acquired rich
knowledge and developed strong understanding and rea-
soning capabilities, providing powerful decision-making
for cybersecurity.

Advancing cybersecurity requires LLMs tailored to the
field, leveraging their potential to learn domain-specific
data and knowledge. This section firstly introduces sev-
eral domain datasets for evaluating the cybersecurity
capabilities of LLMs (Tihanyi et al. 2024b; Bhatt et al.
2023; Tony et al. 2023), while can guide the selection of
an appropriate LLM as the base model when constructing
cybersecurity LLMs. Then, we focus on key technologies
for constructing cybersecurity LLMs, including training
methods such as continual pre-training (CPT) (Çağatay
Yıldız et al. 2024; Zhang et al. 2024e) and supervised
fine-tuning (SFT) (Zhang et al. 2023c; Dong et al. 2023)
of LLMs, as well as technical implementations like full-
parameters fine-tuning and parameter-efficient fine-
tuning (PEFT) (Ding et al. 2023). Finally, we summarize
existing customized LLMs for specific cybersecurity
tasks (Ferrag et al. 2023; Zhang et al. 2023b), including
vulnerability detection, program repair, secure code gen-
eration, etc (Fig. 2).

Selection of base model for constructing domain LLM
by evaluating cybersecurity capabilities
It is challenging to train a cybersecurity LLM from
scratch. The general practice is to choose a general-pur-
pose LLM as the base model and then fine-tune it. How-
ever, how do we select the appropriate base model among
various LLMs? The basic idea is to choose the LLM with
strong cybersecurity capabilities or those that perform
well in specific security tasks. Such models are better
at understanding and addressing security-related prob-
lems. Existing evaluation of LLM cybersecurity capabili-
ties can be divided into several categories: cybersecurity
knowledge, secure code generation, IT operations, Cap-
ture-the-Flag (CTF), and cyber intelligence, as listed in
Table 3.

Fig. 2 An overview of RQ1

Page 6 of 41Zhang et al. Cybersecurity (2025) 8:55

Cybersecurity knowledge evaluation focuses on evalu-
ating the model’s understanding of cybersecurity con-
cepts and its ability to provide accurate information
on security threats and mitigation strategies. Cyber-
Bench (Liu et al. 2024f) is a domain-specific, multi-task
benchmarking tool for evaluating LLMs’ capabilities
in cybersecurity tasks. It offers a generic and consist-
ent approach that alleviates the limitations previously
encountered in evaluating LLMs in this domain. SecE-
val (Li et al. 2023a) is designed to evaluate cybersecu-
rity knowledge in LLMs. It provides more than 2000
multiple-choice questions in 9 domains: Software Secu-
rity, Application Security, System Security, Web Security,
Cryptography, Memory Safety, Network Security, and
PenTest. By facilitating the evaluation of ten state-of-the-
art foundational models, this study provides new insights
into their performance in the cybersecurity domain. By
combining expert knowledge with the collaboration of
LLMs, Tihanyi et al. (2024b) create the CyberMetric
benchmark dataset, which contains 10,000 questions and
is designed to evaluate the cybersecurity knowledge of
various LLMs within the cybersecurity field. SecQA (Liu
2023) is a dataset of multiple-choice questions generated
by GPT-4 based on the textbook “Computer Systems
Security: Planning for Success,” which is designed spe-
cifically to assess LLMs’ understanding and application of
security principles. SecQA provides questions at two tiers
of complexity, which can not only serve as an assessment
tool but also facilitate the advancement of LLM applica-
tions in environments that require a high level of secu-
rity awareness. In addition, SECURE (Bhusal et al. 2024)

is a benchmark designed to assess LLMs’ performance in
realistic cybersecurity scenarios, which includes 6 data-
sets to evaluate the capabilities of knowledge extraction,
understanding, and reasoning in the Industrial Control
System scenarios.

Secure code generation tests the model’s capability
to generate code that is not only functional but also
adheres to security best practices, aiming to mini-
mize vulnerabilities. CyberSecEval (Bhatt et al. 2023)
is a security coding benchmark that aims at assessing
the potential security risks and tendencies to facilitate
cyber attacks when LLMs generate code. By evaluat-
ing seven models including Llama 2, Code Llama, and
OpenAI’s GPT, CyberSecEval effectively pinpoints key
cybersecurity risks and provides practical insights for
model improvement. LLMSecEval (Tony et al. 2023)
is a dataset of 150 natural language prompts based on
the narrative descriptions of various vulnerabilities
that appear in MITRE’s Top 25 Common Weakness
Enumeration (CWE) rankings. LLMSecEval evaluates
the security of LLM-generated code by comparing it
to secure implementation examples for each prompt.
SecurityEval (Siddiq and Santos 2022) focuses on the
security evaluation of code generation models to pre-
vent the creation of vulnerable code and thus avoid
potential misuse by developers. This dataset includes
130 samples covering 75 types of vulnerabilities
mapped to CWE. PythonSecurityEval (Alrashedy and
Aljasser 2024) is a real-world dataset collected from
actual scenarios on Stack Overflow, which is designed
to evaluate LLMs’ ability to generate secure Python

Table 3 A summary of datasets used for evaluating LLMs’ cybersecurity capabilities

Catagory Name Count Link

Cybersecurity knowledge CyberBench 60000+ https:// github. com/ jpmor ganch ase/ Cyber Bench

CyberMetric 10000 https:// github. com/ cyber metric/ Cyber Metric

SecEval 2000+ https:// github. com/ Xuanw uAI/ SecEv al/

SecQA 242 https:// huggi ngface. co/ datas ets/ zefang- liu/ secqa

SECURE 3602 https:// github. com/ aifor sec/ SECURE

Secure code generation CyberSecEval 7000+ https:// github. com/ faceb ookre search/ Purpl eLlama

LLMSeceval 150 https:// github. com/ tuhh- softs ec/ LLMSe cEval/

SecurityEval 121 https:// github. com/ s2e- lab/ Secur ityEv al

DegugBench 4253 https:// github. com/ thunlp/ Debug Bench

PythonSecurityEval 470 https:// github. com/ Kamel 773/ LLM- code- refine

Eyeballvul 24,000+ https:// github. com/ timot hee- chauv in/ eyeba llvul

IT operations NetEval 5732 https:// huggi ngface. co/ datas ets/ NASP/ netev al- exam

OpsEval 8920 https:// github. com/ NetMa nAIOps/ OpsEv al- Datas ets

CTF NYU CTF Dataset 200 https:// github. com/ NYU- LLM- CTF/ NYU_ CTF_ Bench

Cybench 40 https:// github. com/ andyz origin/ cyben ch/

Cyber threat intelligence SEvenLLM 90000+ https:// github. com/ CSJia nYang/ SEeve nLLM

CTIBench 2500 https:// github. com/ xashru/ cti- bench

https://github.com/jpmorganchase/CyberBench
https://github.com/cybermetric/CyberMetric
https://github.com/XuanwuAI/SecEval/
https://huggingface.co/datasets/zefang-liu/secqa
https://github.com/aiforsec/SECURE
https://github.com/facebookresearch/PurpleLlama
https://github.com/tuhh-softsec/LLMSecEval/
https://github.com/s2e-lab/SecurityEval
https://github.com/thunlp/DebugBench
https://github.com/Kamel773/LLM-code-refine
https://github.com/timothee-chauvin/eyeballvul
https://huggingface.co/datasets/NASP/neteval-exam
https://github.com/NetManAIOps/OpsEval-Datasets
https://github.com/NYU-LLM-CTF/NYU_CTF_Bench
https://github.com/andyzorigin/cybench/
https://github.com/CSJianYang/SEevenLLM
https://github.com/xashru/cti-bench

Page 7 of 41Zhang et al. Cybersecurity (2025) 8:55

code and their capacity to fix security vulnerabilities.
DebugBench (Tian et al. 2024) has 4,253 instances cov-
ering four major bug categories and 18 minor types in
C++, Java, and Python. This comprehensive evaluation
clarifies the advantages and disadvantages of LLMs in
automated debugging, which marks a major step in
understanding their applicability and restraint in prac-
tical coding scenarios. EvilInstructCoder (Hossen et al.
2024) is designed to assess the cybersecurity vulner-
abilities of instruction-tuned Code LLMs to adversarial
attacks. By incorporating practical threat models to
reflect real-world adversaries with varying capabilities
and evaluating the exploitability of instruction-tuned
Code LLMs under these diverse adversarial attack
scenarios. Eyeballvul (Chauvin 2024) is a benchmark
designed to test the vulnerability detection capabili-
ties of language models at scale, which have contained
24,000+ vulnerabilities across 6,000+ revisions and
5,000+ repositories.

IT operations capability is used to evaluate the
model’s proficiency in managing and securing IT
infrastructures, including awareness of security situ-
ations, security threat analysis, and incident response.
NetEval (Miao et al. 2023) is an evaluation set designed
to measure the common knowledge and reasoning
abilities of LLMs in NetOps. This set contains 5,732
questions related to NetOps, covering five different
NetOps subdomains. With NetEval, researchers sys-
tematically evaluate the NetOps capabilities of 26 pub-
licly available LLMs. Additionally, OpsEval (Liu et al.
2024b) contains 7184 multi-choice questions and 1736
question-answering formats in English and Chinese.
It aims to analyze the root cause of faults, operational
script generation, and alert information summarization
to evaluate the performance of LLMs in IT operational
tasks comprehensively. Donadel et al. (2024) develop
a thorough framework for evaluating LLMs’ capabili-
ties in various network-related tasks and conduct an
exhaustive study on LLMs’ comprehension of computer
networks.

In addition, NYU CTF Dataset (Shao et al. 2024) and
Cybench (Zhang et al. 2024a) are used to assess LLMs
capacity to solve Capture the Flag (CTF) challenges
in cybersecurity, aiming to improve the efficiency of
LLMs in interactive cybersecurity tasks and automated
task planning. SEvenLLM (Ji et al. 2024) is a framework
to benchmark, elicit, and improve cybersecurity inci-
dent analysis and response abilities in LLMs for secu-
rity events. CTIBench (Alam et al. 2024) is a benchmark
designed to evaluate the performance of LLMs in Cyber
Threat Intelligence (CTI) applications, encompassing
multiple datasets focused on assessing the knowledge
acquired by LLMs within the cyber-threat landscape.

The evaluation of LLMs’ cybersecurity capabilities not
only guides the basic model during fine-tuning but also
demonstrates that general LLMs have certain cybersecu-
rity capabilities. This supports the feasibility of directly
using LLMs (without fine-tuning) to aid cybersecurity
applications, as discussed in section 4. Furthermore,
these studies help researchers and developers recognize
the limitations of LLMs in the field of cybersecurity,
thereby providing the direction for artificial intelligence
toward higher standards and more professional security
development.

Key technologies in constructing domain LLMs
LLMs have demonstrated remarkable language under-
standing and generation capabilities by leveraging the
transformer architecture and self-supervised pre-training
strategies (Vaswani et al. 2017; Radford and Narasimhan
2018; Brown et al. 2020). However, developing a special-
ized LLM for cybersecurity from scratch requires a lot of
computational resources, which is impractical for most
research teams. Fortunately, existing general LLMs have
acquired extensive knowledge and demonstrated excel-
lent generalization capabilities (Touvron et al. 2023a, b;
Yang et al. 2023; Jiang et al. 2024a). By combining these
pre-trained LLMs with domain datasets for training, we
can adopt a more efficient approach to enhance the mod-
el’s cybersecurity capabilities. This approach not only
significantly reduces the computational demands of pre-
training, but also maximizes the use of the knowledge
that LLMs have learned. Thereby, the model can under-
stand and perform cybersecurity-related tasks, such as
automated threat detection, vulnerability identification,
and security policy recommendations.

To apply general LLMs to cybersecurity, researchers
mainly employ two approaches: continual pre-training
(CPT) and supervised fine-tuning (SFT).

Continual pre-training involves further training of
pre-trained LLMs using a large amount of unlabeled
domain-specific data (Çağatay Yıldız et al. 2024; Zhang
et al. 2024e; Wu et al. 2024c; Ibrahim et al. 2024). This
method aims to improve the model’s understanding and
application of domain knowledge, significantly improving
its broad applicability within the cybersecurity field. CPT
is based on the core assumption that even after extensive
pre-training, the model still has the potential for further
enhancement, especially in specific domains or tasks. The
process usually involves several key steps: first, select a
dataset that can appropriately represent the characteris-
tics of the target domain; second, determine the strategy
for continuous pre-training; and finally, perform pre-
training and adjust the model architecture or optimiza-
tion algorithm as needed to adapt to the new training
objectives.

Page 8 of 41Zhang et al. Cybersecurity (2025) 8:55

Supervised Fine-Tuning uses labeled domain-spe-
cific data for training, enabling direct optimization
of the model’s performance on specific cybersecurity
tasks (Zhang et al. 2023c; Dong et al. 2023). Compared
to CPT, SFT focuses on improving the performance of
a specific task. In SFT, the model weights are refined via
gradients calculated from a task-specific loss function.
This function quantifies the deviation between the mod-
el’s predictions and the actual labels, thus promoting the
learning of task-oriented patterns. SFT relies on the utili-
zation of high-quality, human-annotated data, which is a
collection of prompts and their corresponding responses.
SFT is important for LLMs such as ChatGPT, which are
designed to follow user instructions and focus on specific
tasks in context. This specific type of fine-tuning is also
referred to as instruction fine-tuning.

In the context of CPT and SFT, researchers have the
option of employing either full-parameter fine-tuning
(FULL) or parameter-efficient fine-tuning (PEFT).

Full-parameter fine-tuning is a classical approach that
adjusts all parameters of the model during training. This
allows the model to fully adapt and specialize to the tar-
get domain. By optimizing all parameters, the model
can achieve optimal performance for specific tasks or
datasets. However, full parameter updates require con-
siderable computing power and time, posing challenges
in efficiency and scalability, especially as the number of
LLM parameters continues to increase.

Conversely, PEFT methods fine-tune only a small
number of model parameters or additional parameters
while freezing most parameters of the pre-trained LLMs,
which greatly reduces the computational costs. It also
helps in portability, and users can fine-tune the model
using PEFT methods to obtain tiny checkpoints of only a
few MB in size. In summary, PEFT methods are favored
because they enable users to obtain comparable per-
formance to full fine-tuning while having only a small
number of trainable parameters. There are several PEFT
methods, such as adapter tuning, prefix tuning, prompt
tuning, LoRA, QLoRA, and so on:

Adapter tuning (He et al. 2021) inserts adapters after
the multi-head attention and feed-forward layers in the
transformer architecture, which updates only the param-
eters in the adapter during fine-tuning while keeping
the rest of the model parameters frozen. P-tuning (Liu
et al. 2023e) automatically learns optimal task-specific
prompt embeddings by introducing trainable prompt
tokens, eliminating the need for manual prompt design
and potentially improving performance with the addition
of anchor tokens. Prefix tuning (Liu et al. 2021) keeps
the language model parameters frozen and optimizes
small, continuous, task-specific vectors called prefixes.
Prompt tuning (Lester et al. 2021) fine-tunes for specific

tasks through learning soft prompts by backpropagat-
ing and merging labeled examples. LoRA (Hu et al. 2022)
is a small trainable submodule that can be inserted into
the transformer architecture. It freezes the pre-trained
model weights and inserts a trainable low-rank decom-
position matrix into each layer of the model, reducing the
number of trainable parameters for downstream tasks.
After training, the matrix parameters are combined
with the original LLM. QLoRA (Dettmers et al. 2024) is
a further optimization of LoRA, which carries out gradi-
ent backpropagation to a low-rank adapter with a frozen
4-bit quantized pre-trained language model, reducing the
memory requirement for fine-tuning while being almost
comparable to full fine-tuning.

By integrating these techniques, researchers can select
appropriate methods to construct LLMs tailored to the
specific needs of the cybersecurity domain, as shown in
Fig. 3. Furthermore, emerging technologies also provide
insights for the construction of cybersecurity LLMs. For
example, model editing techniques (Yao et al. 2023b;
Zhang et al. 2024c) can precisely modify LLMs to incor-
porate cybersecurity knowledge without negatively
affecting other knowledge. Prompt engineering (Boz-
kurt and Sharma 2023; Ye et al. 2023; Sahoo et al. 2024),
by designing effective prompts to guide LLMs towards
desired outputs, can alleviate the bottleneck of training
data and resources required for constructing cybersecu-
rity LLMs.

Fine-tuned domain LLMs for cybersecurity
The researchers have used the above techniques and base
models to customize LLMs to address specific problems
in the field of cybersecurity, as shown in Table 4. These
efforts highlight the great potential of integrating
domain-specific knowledge to enhance the capabilities
of LLMs, especially for key applications including vulner-
ability detection, fault Localization, program repair, and
so on.

Vulnerability detection involves identifying and classi-
fying potential security vulnerabilities in software code.
Shestov et al. (2024) fine-tunes WizardCoder (Luo et al.
2024) with LoRA specifically for vulnerability detection,
focusing on the binary classification of whether Java func-
tions contain vulnerabilities. Ferrag et al. (2023) performs
partial parameters fine-tuning on FalconLLM (Almaz-
rouei et al. 2023) using C code samples to obtain Secure-
Falcon, which can distinguish between vulnerable and
non-vulnerable samples with a detection accuracy of
up to 96%, and further proposes a method for repair-
ing vulnerabilities using FalconLLM. Yang et al. (2024a)
introduces a new fault localization method based on the
language model, named LLMAO. LLMAO adds bidirec-
tional adapter layers on CodeGen (Nijkamp et al. 2023b,

Page 9 of 41Zhang et al. Cybersecurity (2025) 8:55

a), enabling the model to learn bidirectional representa-
tions of codes and predict the probability of defects in
code lines. Detect Llama (Ince et al. 2024) is fine-tuned
on Code-Llama with 17k dataset, outperforming GPT-4
in smart contract vulnerability detection.

Secure code generate via LLMs aims to improve the
security of automatically generated code by mitigat-
ing vulnerability risks. Storhaug et al. (2023) proposes a
new approach called vulnerability-constrained decoding,
which integrates vulnerability tags during model train-
ing. By avoiding generating code with these labels, the

model significantly reduces the generation of vulnerable
code. Fine-tuning on GPT-J (Wang 2021) shows a nota-
ble reduction in vulnerabilities in the generated code. He
et al. (2024) focuses on improving the security of code
generation by LLMs via instruction tuning. They con-
vert CodeLlama (Roziere et al. 2023) to SafeCoder using
supervised fine-tuning on a dataset containing both
secure and insecure programs. This approach achieves
significant security improvements (approximately 30%)
across various popular LLMs and datasets while remain-
ing practical.

Fig. 3 Comparison of domain LLM training approaches. Continual Pre-Training and Supervised Fine-Tuning offer methods to enhance
domain-specific performance based on existing LLMs, while Full Parameter Fine-Tuning and Parameter-Efficient Fine-Tuning represent different
technical pathways within these training processes

Table 4 A summary of fine-tuned domain LLMs for cybersecurity

Description Base model Training methods Open source

SecureFalcon Software vulnerability classification Falcon SFT(PEFT) No

VulLLM Vulnerability detection StarCoder SFT(PEFT) No

SC-GPT Vulnerability constraint decoding GPT-J SFT(FULL) No

RepairLLaMA Automatic program repair Llama SFT(PEFT) Yes

LLMAO Fault location CodeGen SFT(PEFT) No

OWL IT operation Llama SFT(PEFT) No

SafeCoder Secure code generation Llama SFT(PEFT) No

HackMentor Security knowledge QA Llama SFT(PEFT) Yes

IoT-LM Internet of Things Llama CPT+SFT(PEFT) No

Nove Binary code analysis DeepSeek-Coder CPT+SFT(FULL) Yes

Page 10 of 41Zhang et al. Cybersecurity (2025) 8:55

Automated program repair aims to automatically fix
software bugs without human intervention. Silva et al.
(2023) proposes a new program repair approach called
RepairLLaMA, which significantly improves LLMs’ pro-
gram repair capabilities by applying LoRA fine-tuning
to CodeLlama. It outperforms GPT-4 on the Java bench-
marks Defects4J and HumanEval-Java. Li et al. (2024a)
first creates an instruction dataset APR-INSTRUC-
TION by using prompt engineering, then fine-tunes
LLMs using four different PEFT methods based on this
data to improve the model’s automated program repair
capabilities.

Binary is the most basic form of computer code, it is
important to learn what it means and how to use it.
Jiang et al. (2023a) demonstrates the benefits of LLMs
for binary analysis. They continually train StarCoder (Li
et al. 2023d; Lozhkov et al. 2024) on specialized binary
code corpus and new tasks, leading to the development
of Nova and Nova+ . After SFT, the enhanced LLMs effec-
tively address specific tasks such as binary code similar-
ity detection, binary code translation, and binary code
recovery.

IT operations manage routine tasks and activities to
keep the infrastructure running for other services. Guo
et al. (2024a) describes a specialized LLM for IT opera-
tions, named Owl, which is supervised fine-tuned of
Llama on the collected Owl-Instruct dataset. Owl out-
performs existing models in IT-related tasks and dem-
onstrates effective generalization capabilities on the
Owl-Bench benchmark.

Cybersecurity knowledge assistants help to improve
users’ security awareness and assist users in defending
against cyber attacks through interaction with users.
Zhang et al. (2023b) proposes Hackmentor, a cyberse-
curity knowledge assistant. They develop a dataset of
cybersecurity instructions and conversations and train
Hackmentor using LoRA by fine-tuning on Llama and
Vicuna (Chiang et al. 2023). CyberPal (Levi et al. 2024)
is fine-tuned using SecKnowledge, a domain knowledge-
driven cybersecurity instruction dataset, to build a secu-
rity-specialized LLM capable of answering and following
complex security-related instructions. This demonstrates
the potential of LLMs in cybersecurity applications.

In addition to enhancing the cybersecurity capabili-
ties of general LLMs through SFT and CPT, specialized
security-oriented LLMs can be developed by leveraging
innovative model architectures and proprietary large-
scale datasets for independent pretraining. The Machine
Language Model (MLM) is a large model designed for
the machine language domain, utilizing an innovative
architecture to align multimodal data across machine
language, natural language, and source code (Liu et al.
2018; Wang et al. 2022, 2024b). This approach not only
addresses the limitations of existing LLMs in compre-
hending machine language but also introduces trans-
formative advancements in software reverse engineering
and software security detection. TrafficFormer (Zhou
et al. 2024a) is an efficient pre-training model designed
for traffic data. Given the characteristics of traffic data, it
introduces fine-grained multi-classification tasks in the
pre-training stage to enhance the representation of traffic
data; in the fine-tuning stage, it uses the random initiali-
zation characteristics of the field to propose a traffic data
enhancement method to help the traffic model focus on
key information. In this way, the accuracy of the model’s
traffic detection and protocol understanding is improved.
These developments pave the way for novel research
directions in the field of cybersecurity.

Page 11 of 41Zhang et al. Cybersecurity (2025) 8:55

RQ2: What are the potential applications of LLMs
in cybersecurity?
This section introduces the application of LLMs in vari-
ous cybersecurity tasks, encompassing offline defense
(e.g., threat intelligence), online defense (e.g., vulner-
ability detection, malware detection, and anomaly detec-
tion), software testing (e.g., fuzz and program repair),
attack assistance (e.g., LLM assisted attack), source code
generation and analysis (e.g., (in)secure code generation),
and other security-related applications (e.g., honeypot,

botnet, SoC security, etc.). By reviewing the key advance-
ments in each topic, this paper aims to offer a compre-
hensive perspective on the evolution of the cybersecurity
landscape driven by LLMs integration (Fig. 4).

Threat intelligence
Since LLMs have shown excellent analysis and summa-
rization capabilities in natural language processing tasks,
it is natural for LLMs to be used to process threat intelli-
gence text. For example, Clairoux-Trepanier et al. (2024)

Fig. 4 An overview of RQ2

Table 5 LLMs for cyber threat intelligent

Category Related work

CTI generation (5) Mitra et al. (2024), Perrina et al. (2023), Fayyazi and Yang (2023), Schwartz et al. (2024), Michelet and Breitinger
(2024)

CTI information extraction (8) Clairoux-Trepanier et al. (2024), Siracusano et al. (2023), Hu et al. (2024), Zhang et al. (2024g), Fieblinger et al.
(2024), Wu et al. (2024e), Fayyazi et al. (2024), Singla et al. (2023)

CTI report deduplication (1) Zhang et al. (2023d)

LLMs as security response experts (5) Lin et al. (2023), Kaheh et al. (2023), Jin et al. (2024), Tseng et al. (2024a), Rajapaksha et al. (2024)

Page 12 of 41Zhang et al. Cybersecurity (2025) 8:55

assesses the performance of an LLM system built on the
GPT to extract CTI information, highlight the relevance
of using LLMs for CTI. Researchers have used LLMs to
assist in the generation and analysis of cyber threat intel-
ligence (CTI), as shown in Table 5.

Mitra et al. (2024) introduces a framework known
as LocalIntel, which aims to provide users with reli-
able threat intelligence by allowing LLMs to summarize
knowledge after querying global and local knowledge
databases. Global knowledge mainly refers to well-doc-
umented reports on cybersecurity threats from CWE
and CVE, while local knowledge is customized by the
organization for practical purposes to supplement global
knowledge. Perrina et al. (2023) also conducts similar
work to extract security knowledge from a wide range
of knowledge bases and automatically generate reports
using LLMs. A few similar efforts are as follows. Fayyazi
and Yang (2023) employs LLM to generate descriptions
of cyber attacks and fine-tune the model using informa-
tion collected from ATT&CK and CAPEC. Then, they
compare the performance of the fine-tuned LLMs with
the directly used LLMs (GPT−3.5) in describing attacks.
LMCloudHunter (Schwartz et al. 2024) leverages LLMs
to automatically generate generic signature detection rule
candidates from textual and visual OSCTI data.

Specifically for digital forensics, Michelet and Bre-
itinger (2024) proposes a method to automate the gen-
eration of reports. They study the structure of forensic
reports to identify common sections and assess the fea-
sibility of LLMs in generating these sections. Through a
case study approach, the article evaluates the strengths
and limitations of LLMs in creating different sections of
forensic reports.

Given that most threat intelligence providers offer
information in an unstructured format, Siracusano et al.
(2023) and Hu et al. (2024) propose innovative solu-
tions to the common problem of extracting useful infor-
mation from threat intelligence. The former designs a
framework named aCTIon, which includes downloading
and parsing raw reports, extracting useful information
with LLM, and exporting structured reports follow-
ing STIX (Barnum 2012) standard. The latter constructs
the knowledge graph of unstructured threat intelligence
and fine-tunes LLMs to automate information extrac-
tion tasks. Also, by leveraging the capabilities of LLMs
in instruction prompting and in-context learning, Zhang
et al. (2024g) propose a fully automatic LLM-based
framework, AttacKG, which comprises four consecutive
modules: rewriter, parser, identifier, and summarizer, to
construct attack knowledge graphs from CTI. Fieblinger
et al. (2024) explore the application of open-source LLMs
for extracting meaningful triples from CTI texts. Then,
the extracted data is utilized to construct a knowledge

graph, offering a structured and queryable representation
of threat intelligence. Besides, considering the quality
assessment of threat intelligence provided by intelligence
platforms, Wu et al. (2024e) propose a novel CTI quality
assessment framework that combines knowledge graphs
and LLMs. In this verifier, LLMs automatically extract
OSCTI key claims to be verified and utilize a knowledge
graph consisting of paragraphs for fact-checking. This
significantly improves the performance of LLMs in intel-
ligence quality assessment.

In another work, Fayyazi et al. (2024) studies the appli-
cation of LLMs in cybersecurity to explain and summa-
rize cyberattack Tactics, Techniques, and Procedures
(TTPs) from the MITRE ATT&CK framework. It reveals
that RAG significantly improves the explanation of TTPs
by providing relevant context, highlighting the potential
of LLMs in threat intelligence. Singla et al. (2023) dis-
cusses the capability of LLMs to automatically analyze
and summarize software supply chain security vulner-
abilities. Their results show that LLMs show good poten-
tial, especially when the data is comprehensive, but still
cannot replace human analysts in this specific field.

In addition to extracting valuable information from
large amounts of text, report deduplication is also an
important research focus in this field. Zhang et al.
(2023d) uses LLMs to alleviate the problem of bug report
deduplication. They leverage LLMs as an intermedi-
ate step to improve the performance of REP (Sun et al.
2011) (a traditional method of measuring the similarity
between bug reports) by identifying keywords, thereby
improving its effectiveness.

There are also studies that attempt to use LLMs as
experienced security response experts. Lin et al. (2023)
uses LLMs as suggestion providers to mitigate vulnerabil-
ities through prompt engineering. They design a system
that is able to retrieve relative CVE & CWE information
after the user enters a vulnerability description. LLMs’
mitigation suggestions are a subcomponent of the sys-
tem. Kaheh et al. (2023) believes that LLMs are not only
question-answering assistants with expertise but also able
to perform actions based on the user’s description (e.g.,
instructing the host’s intrusion detection system to block
a specific IP). To enhance strategic reasoning in cyber-
security, Jin et al. (2024) introduces Crimson, a system
that uses LLMs to associate CVEs with MITRE ATT&CK
techniques to improve threat prediction and defense. The
core concept is the Retrieval-Aware Training (RAT) pro-
cess, which refines LLMs to generate accurate cybersecu-
rity strategies, thereby significantly reducing errors and
hallucinations. By integrating real-time data retrieval and
domain-specific fine-tuning, Crimson enhances the mod-
els’ interpretability and strategic consistency, providing a
proactive approach to cybersecurity threat intelligence.

Page 13 of 41Zhang et al. Cybersecurity (2025) 8:55

Tseng et al. (2024a) develop an AI agent designed to auto-
mate the labor-intensive and repetitive tasks associated
with analyzing CTI reports. By leveraging the advanced
capabilities of LLMs, the AI agent can accurately extract
important information from large volumes of text and
generate Regex to help SOC analysts accelerate the pro-
cess of establishing correlation rules. Rajapaksha et al.
(2024) introduces a QA model based on Retrieval Aug-
mented Generation (RAG) techniques together with
LLMs and provides answers to the users’ queries based
on the knowledge base that contains curated information
about cyber-attacks investigations and attribution or on
outside resources provided by the users.

Vulnerability detection
This section provides an overview of the main stud-
ies on vulnerability detection using LLMs (we blur the
concepts of “vulnerability” and “software defect” in this
part). Through these studies, we aim to shed light on the
progress, challenges, and future directions of leveraging
LLMs to enhance cyber security (Table 6).

Whether LLMs have the ability to detect vulnerabili-
ties? The following papers conduct preliminary studies
on this question. Although their results may vary due to
some unknown reasons (e.g., they may use different data-
sets), in general, they all show that LLMs are promising
for vulnerability detection (Zhou et al. 2024c; Tamberg
and Bahsi 2024; Zhou et al. 2024d; Mahyari 2024; Mao
et al. 2024a).

Cheshkov et al. (2023) initially evaluates whether
GPT-3 and GPT−3.5 could identify some known CWE
vulnerabilities in Java code. The results show that the
application effect in vulnerability detection tasks is not
good and needs further improvement and research. In
another work, Purba et al. (2023) uses LLMs (includ-
ing GPT−3.5, CodeGen, and GPT-4) to analyze several
common vulnerabilities (e.g., SQL injection, overflow).
The conclusion confirms that LLMs do have the abil-
ity to detect vulnerabilities, but the false positive rate

is high. However, Omar and Shiaeles (2023) fine-tunes
GPT on various vulnerable code benchmarks to detect
software vulnerabilities and achieve good performances.
Similarly, Khare et al. (2023) concludes that LLMs are
generally able to perform better vulnerability detec-
tion than existing static analysis and deep learning-
based tools. With carefully designed prompts, desirable
results can be obtained on synthetic datasets, but per-
formance degrades on more challenging real-world
datasets. Jensen et al. (2024) compares the performance
of a wide range of open-source and proprietary models
with Python code snippets in assisting vulnerability dis-
covery. Their research suggests that LLMs can be effec-
tively used to enhance the efficiency and quality of code
reviews, particularly in detecting security issues within
software code. Shestov et al. (2024) fine-tunes Wizard-
Coder for vulnerability detection and investigate whether
the encountered performance limit is due to the lim-
ited capacity of CodeBERT-like models. Their results
suggest that this is indeed the case and that LLMs have
great potential for application in vulnerability detection.
Li et al. (2023c) presents LLift, a framework that lever-
ages LLMs to assist static program analysis, specifically
for detecting use-before-initialization (UBI) defects. LLift
interacts with static analysis tools and LLMs, demon-
strating 50% accuracy in real-world scenarios and iden-
tifying 13 previously unknown UBI bugs in the Linux
kernel. Kouliaridis et al. (2024) assess the ability of vari-
ous LLMs to detect Android code vulnerabilities listed in
the latest Open Worldwide Application Security Project
(OWASP) Mobile Top 10. While the reported findings
regarding code vulnerability analysis show promise, they
also reveal significant discrepancies among the differ-
ent LLMs. Moreover, Guo et al. (2024b) thoroughly ana-
lyzes the capabilities of LLMs in detecting vulnerabilities
within source code by testing the models beyond their
usual applications. It also paves the way for LLM-based
vulnerability detection by addressing two key aspects:
model training and dataset curation

Table 6 LLMs for vulnerability detection

Category Related work

Vulnerability detection capability assessment (14) Zhou et al. (2024c), Tamberg and Bahsi (2024), Zhou et al. (2024d), Mahyari
(2024), Mao et al. (2024a), Cheshkov et al. (2023), Purba et al. (2023), Omar
and Shiaeles (2023), Khare et al. (2023), Jensen et al. (2024), Shestov et al.
(2024), Li et al. (2023c), Kouliaridis et al. (2024), Guo et al. (2024b)

Vulnerability detection capability improvement (18) Wang et al. (2023b), Bakhshandeh et al. (2023), Mathews et al. (2024), Zhang
et al. (2024b), Lee et al. (2024), Yang et al. (2025), Wang et al. (2024g), Yang et al.
(2024e), Du et al. (2024b), Hu et al. (2023b), Liu et al. (2023g), Sun et al. (2024b),
Du et al. (2024a), Sun et al. (2024a), Mao et al. (2024b), Li et al. (2024d), Chen
et al. (2023a), Liu et al. (2023c)

Vulnerability detection datasets preparation (4) Chen et al. (2023b), Gao et al. (2023), Tihanyi et al. (2023), Gonçalves et al.
(2024)

Page 14 of 41Zhang et al. Cybersecurity (2025) 8:55

Improving detection capabilities through different
strategies. Instead of directly providing code to LLM and
asking it to answer, many researchers would adopt vari-
ous strategies in advance. They believe that simply pro-
viding code is not enough and that the code needs to be
further preprocessed or more information needs to be
provided to LLMs for vulnerability reasoning.

Wang et al. (2023b) proposes a code sequence embed-
ding (CSE) that combines the AST, DFG, and CFG of the
code as input to the model. Then, the model captures the
semantic information with the help of conformer mecha-
nism (Gulati et al. 2020), an improved architecture of
Transformer. Zhang et al. (2024b) not only provides the
code to GPT but also provides the API call sequence and
data flow diagrams. Bakhshandeh et al. (2023) conducts
a similar experiment to compare the performance of the
model when different levels of information are given,
including asking for the vulnerability point directly, giv-
ing some CWE information, and telling LLMs what vul-
nerabilities are in the code. Mathews et al. (2024) focuses
on Android platform vulnerabilities and compares the
performance of LLMs on three conditions: asking LLMs
to find vulnerabilities directly, providing vulnerability
summaries before asking and granting LLMs permission
to request any file in the APK after providing the APK
core (AndroidManifest.xml and MainActivity.java). Lee
et al. (2024) focuses on the security of Android systems
against filesystem vulnerabilities. They present PathSen-
tinel, which leverages LLMs to generate targeted exploit
code based on the identified vulnerabilities and generated
input payloads, reducing the engineering effort required
for writing test applications. DLAP (Yang et al. 2025)
combines the advantages of deep learning models for
specific tasks and LLM’s powerful general understand-
ing ability, and achieves excellent vulnerability detection
performance. Wang et al. (2024g) reframes vulnerability
detection as an anomaly detection task by viewing vul-
nerable code as an anomaly within the LLM’s predicted
code distribution. This approach frees the model from
the need for labeled data, allowing it to learn a represen-
tation of vulnerable code. Ultimately, it results in a detec-
tor that identifies software vulnerabilities at the line-level
granularity.

There are some studies that use retrieval-augmented
generation (RAG) based on additional knowledge bases
to facilitate LLM for vulnerability detection. Yang et al.
(2024e) explores three different strategies for augment-
ing both single and multi-statement vulnerabilities using
LLMs: Mutation, Injection, and Extension. These strate-
gies potentially alleviate the shortage of data. Du et al
(2024b) proposed Vul-RAG, which leverages knowledge-
level RAG framework to detect vulnerability. And the
vulnerability knowledge generated by Vul-RAG can serve

as high-quality explanations to further improve the man-
ual detection accuracy.

In addition to the above efforts, researchers have also
proposed many innovative ideas to improve the vul-
nerability detection ability of LLMs. Hu et al. (2023b)
proposes an innovative two-stage framework named
GPTLENS, which includes two adversarial agent roles:
auditor and critic. The auditor performs during the gen-
eration phase and its main goal is to identify potential
vulnerabilities in the smart contract. In contrast, the
critic works during the identification phase its main goal
is to evaluate the vulnerabilities generated by the auditor.
Liu et al. (2023g) uses traditional algorithms (TF-IDF and
BM25) to match the code under analysis with the code in
the vulnerability corpus to determine similarity. The code
under analysis is presented to LLMs together with similar
corpus entries. Based on in-context learning, LLMs can
more accurately determine whether the code contains the
identified vulnerability type. Sun et al. (2024b) specifically
focuses on vulnerability detection in smart contracts and
introduce a tool called GPTScan. GPTScan first parses
the smart contract project to determine the reachability
of the functions, retaining only those that may have vul-
nerabilities. Subsequently, GPTScan uses GPT to match
candidate functions with predefined vulnerability types.
Finally, GPTScan asks GPT to confirm the vulnerability.
VulLLM (Du et al. 2024a) combines multi-task learning
with LLMs, introducing two auxiliary tasks-vulnerability
localization and vulnerability explanation-in addition to
the primary vulnerability detection task. This approach
enhances the model’s ability to understand the root
causes of code vulnerabilities, thereby improving its gen-
eralization capabilities.

To improve LLM’s ability to reason about vulnerabili-
ties, Sun et al. (2024a) proposes LLM4Vuln, which sep-
arates the vulnerability reasoning capabilities of LLMs
from others (e.g., proactively seeking more information,
employing relevant vulnerability knowledge, and fol-
lowing instructions to output structured results). They
allow LLMs to request additional contextual informa-
tion about the target code. Moreover, they conclude
that the more information input to LLMs is not the
better. Too much information such as full vulnerabili-
ties report, and a large amount of invocation context,
may lead to distractions. Mao et al. (2024b) proposes a
new method called MuCoLD, which simulates a multi-
role code review process for vulnerability detection in
software. By playing different roles, such as developers
and testers, LLMs participate in discussions to reach
a consensus on the existence and classification of vul-
nerabilities. IRIS (Li et al. 2024d) combines LLMs with
static analysis to enable reasoning over the entire code-
base. It automatically infers taint specifications and

Page 15 of 41Zhang et al. Cybersecurity (2025) 8:55

performs contextual analysis, thereby reducing reli-
ance on human-generated specifications and manual
inspection.

In addition to detecting vulnerabilities in specific pro-
grams, recent studies have attempted to use LLMs to infer
lists of affected libraries from vulnerability reports. Chen
et al. (2023a) observes that many vulnerability reports in
the national vulnerability database (NVD) either omit-
ted affected libraries or provided incomplete or incorrect
library names, increasing the risk of third-party library
vulnerabilities. To address this problem, they propose
VulLibGen, a method designed to detect vulnerabilities
in third-party libraries. VulLibGen takes only vulnerabil-
ity descriptions as input and uses the inherent knowledge
of LLMs to generate a list of library names that may be
affected by the reported vulnerabilities.

Liu et al. (2023c) explores the application of ChatGPT
for vulnerability management. They evaluate ChatGPT’s
capabilities in predicting security bugs, evaluating sever-
ity, repairing vulnerabilities, and verifying patch correct-
ness. The results reveal that while ChatGPT can assist
in identifying and mitigating software security threats,
it needs enhancements to perform more nuanced tasks,
such as vulnerability prioritization and patch validation.

Construction of vulnerability detection datasets. In
addition to the methods of retraining or fine-tuning the
models, the construction of the dataset is also important
for vulnerability detection.

Chen et al. (2023b) introduces a new vulnerable source
code dataset called DiverseVul, which contains 18,945
vulnerable functions (covering 150 CWEs) and 330,492
non-vulnerable functions, all written in C/C++. They
also explore 11 different deep learning architectures and
conclude that despite the remarkable success of LLMs,
they still face challenges such as high false positive rates,

low F1 scores, and difficulty in identifying complex
CWEs for vulnerability detection. Gao et al. (2023) intro-
duces a comprehensive vulnerability benchmark dataset
called VulBench, which includes high-quality data from
CTF challenges and real-world applications with detailed
annotations of vulnerability types and causes for each
vulnerable function. Tihanyi et al. (2023) creates a data-
set containing 112,000 vulnerable C code instances with
detailed information about the specific vulnerability,
including CWE number, location, and function name.
Notably, all the code in this dataset is generated by GPT−
3.5, which illustrates the application potential of vulner-
able code synthesized by LLMs. Source Code Processing
Engine (SCoPE) (Gonçalves et al. 2024) is a framework
that incorporates strategized techniques to reduce the
size and normalize C/C++ functions. Additionally,
SCoPE refines the CVEFixes dataset, which can be used
for fine-tuning pre-trained LLMs for software vulnerabil-
ity detection.

Malware detection
In malware detection, LLMs can serve as both the static
analysis assistant and the dynamic debugging assistant,
improving the efficiency and effectiveness of the process,
and making it an important part of defending against
cyber threats (Table 7).

LLMs as the static analysis assistant
Pearce et al. (2022b) explores the application of LLMs,
such as OpenAI’s Codex, in the field of reverse engineer-
ing, particularly in understanding software functional-
ity and extracting information from the code. LLMs are
primarily used to analyze the functionality of C code
provided by reverse engineering tools such as Ghidra.
These C codes are obtained from binary files through

Table 7 LLMs for malware detection

Category Related work

Static analysis assistant (10) Pearce et al. (2022b), Tan et al. (2024), Fang et al. (2024a),Zhao et al. (2023),
Palacio et al. (2023), Yan et al. (2023), Fujima et al. (2023), Wang (2023),
Zahan et al. (2024), Lu et al. (2024)

Dynamic debugging assistant (3) Tian et al. (2024), Liu et al. (2024e), Ahmad et al. (2023a)

Table 8 LLMs for anomaly detection

Category Related work

Log-based anomaly detection (6) Karlsen et al. (2024), Liu et al. (2023b), Qi et al. (2023), Han et al. (2023), Liu et al. (2024c), Zhang et al.
(2024f)

Web content security (9) Jamal and Wimmer (2023), Wu et al. (2024d), Nahmias et al. (2024), Heiding et al. (2023), Vörös et al. (2023),
Guastalla et al. (2023), Ferrag et al. (2024b), Ziems et al. (2023), Ali and Kostakos (2023)

Digital forensic (1) Scanlon et al. (2023)

Page 16 of 41Zhang et al. Cybersecurity (2025) 8:55

the process of decompilation. Decompilation is also an
important task in reverse engineering. Tan et al. (2024)
introduces an LLM tailored for decompilation that
focuses on converting compiled machine code back into
human-readable source code. They fine-tune a model
called DeepSeek-Coder on a large number of C code and
assembly code pairs and evaluate the performance of
their work by recompiling and executing the decompiled
code. Fang et al. (2024a) explores the potential and limi-
tations of LLMs for code analysis tasks, especially when
dealing with obfuscated code. In the experiments, they
conduct tests that allow LLMs to generate de-obfuscated
versions of code, i.e., to recover more readable original
code from obfuscated code.

Zhao et al. (2023) focuses on how to improve LLM’s
semantic understanding of programs through fuzz test-
ing. Their core idea is that programs with their basic units
(e.g., functions, and subroutines) are designed to exhibit
diverse behaviors and provide possible outputs given dif-
ferent inputs. Thus, through fuzz testing, various inputs
trigger different functions of the code that can help LLMs
understand the behavior and semantics of the program
more thoroughly.. Palacio et al. (2023) introduces ASTx-
plainer, an explainability method for LLMs in coding
scenarios. It aligns token predictions with Abstract Syn-
tax Tree (AST) nodes, enabling detailed evaluation and
visualization of model predictions. ASTxplainer consists
of AsC-Eval for structural performance estimation, AsC-
Causal for causal analysis, and AsC-Viz for visualization.
These components provide a more comprehensive expla-
nation of how LLMs work when generating or analyzing
code.

Yan et al. (2023) focuses on how LLMs can be utilized
to aid in dynamic analysis of malware. The core idea of
the research is to use GPT-4 to generate explanatory text
for each API call, and then use BERT to generate a series
of API sequences to be executed based on the previous
analysis. This approach can theoretically generate rep-
resentations for all API calls without the need to train
the dataset during the generation process. Fujima et al.
(2023) uses LLM (specifically ChatGPT) to analyze the
linguistic and strategic elements of ransomware com-
munications. By examining a range of ransomware sam-
ples, the study identifies patterns and strategies used in
ransom notes, revealing the evolution of ransomware
strategies characterized by sophisticated language use
and psychological manipulation. Wang (2023) also dis-
cusses the potential and challenges of LLMs in generat-
ing strategies against ransomware. Zahan et al. (2024)
employs GPT-3 and GPT-4 to detect potential malware
in the npm ecosystem by analyzing JavaScript packages.
The study introduces SocketAI Scanner, a multi-stage
workflow that utilizes iterative self-refinement, zero-shot

role-playing, and chain of thought prompting techniques
to enhance the model’s ability to identify malicious intent
within code. By comparing LLMs’ performance with
static analysis tools, the paper demonstrates that LLMs
can effectively pinpoint malware with higher precision
and lower false positive rates.

Binary malware summarization aims to automatically
generate human-readable descriptions of malware behav-
iors from executable files, facilitating tasks like malware
cracking and detection. Lu et al. (2024) introduces a
novel code summarization framework, namely MAL-
SIGHT, which can iteratively generate descriptions of
binary malware by exploring malicious source code and
benign pseudocode. At the same time, they construct the
first malware summary dataset, MalS and MalP, to sup-
port further research.

LLMs as the dynamic debugging assistant
Tian et al. (2024) introduces DebugBench, a benchmark
for evaluating LLMs’ debugging capabilities in program-
ming. It consists of 4253 instances across various bug
categories in C++, Java, and Python. The benchmark is
constructed by collecting code snippets from LeetCode,
implanting bugs with GPT-4, and conducting rigor-
ous quality assessment. Liu et al. (2024e) addresses the
challenge of automated Graphical User Interface (GUI)
testing for mobile applications. They propose a novel
approach called GPTDroid that formulates the GUI test-
ing as a question and answering (Q&A) task, where the
LLM is asked to chat with the mobile apps by passing
GUI page information to generate testing scripts. These
scripts are executed and iterations of the application’s
responses are fed back to the model to guide further
exploration. Ahmad et al. (2023a) proposes an approach
called FLAG to assist human debuggers in identify-
ing and localizing security and functional bugs in code.
FLAG takes a code file as input and regenerates each line
in the file for comparison. It compares the original code
with LLM-generated code to flag notable differences as
anomalies for further inspection.

Anomaly detection
We investigate some methods to incorporate LLMs into
cybersecurity frameworks for anomaly detection, under-
scoring their critical role in maintaining network integ-
rity and safeguarding against cyber intrusions (Table 8).

Log‑based anomaly detection
Karlsen et al. (2024) tests 60 language models fine-tuned
for log analysis, including models with different archi-
tectures such as BERT, RoBERTa, DistilRoBERTa, GPT-2
and GPT-Neo. The results show that these fine-tuned
models can be effectively used for log analysis, especially

Page 17 of 41Zhang et al. Cybersecurity (2025) 8:55

for domain adaptation for specific log types. Targeting
service logs on Huawei Cloud, Liu et al. (2023b) pro-
poses a framework called ScaleAD, which aims to pro-
vide an accurate, lightweight, and adaptive solution for
log anomaly detection in cloud systems. When ScaleAD’s
Trie-based Detection Agent (TDA) detects suspicious
anomaly logs, it queries the LLM to validate these logs.
The LLM determines whether the logs are anomalous
or not by understanding the semantics of the log con-
tent and gives the corresponding confidence scores. Qi
et al. (2023) proposes a log anomaly detection framework
named LogGPT. This framework consists of three main
components: log preprocessing, prompt construction,
and response parser. The log preprocessing component
filters, parses and groups raw log messages into a struc-
tured format for further analysis. The response parser
extracts the output returned by ChatGPT for detailed
analysis and evaluation of the detected anomalies. Han
et al. (2023) performs similar work. The difference is that
they fine-tune GPT-2 by introducing a Top-K reward
metric, which directs the model to focus on the most rel-
evant parts of the log sequence, thus improving the accu-
racy of anomaly detection. Liu et al. (2024c) introduces
an online log analysis method called LogPrompt. They
employ LLMs to parse unstructured logs and generate
reports with a specific structure. LogPrompt then utilizes
chain of thought and in-context learning methods to pro-
gressively reason about log content and provide normal/
abnormal judgments. Zhang et al. (2024f) introduces
LEMUR, a cutting-edge log parsing framework that
enhances log analysis with entropy sampling for efficient
log clustering and semantic understanding using LLMs.
LEMUR addresses the limitations of traditional pars-
ers by discarding manual rules and focusing on seman-
tic information. Relying on semantic understanding of
LLMs, the framework accurately distinguishes between
parameters and invariant tokens, leading to impressive
efficiency and state-of-the-art performance in log tem-
plate merging and categorization.

Web content security
LLMs can assist in the detection of phishing and spam.
Jamal and Wimmer (2023) presents a model named
Improved Phishing and Spam Detection Model (IPSDM),
a fine-tuned model based on DistilBERT and RoBERTa.
They emphasizes the potential of LLMs to revolutionize
the field of email security and suggests that these
models can be valuable tools for improving the security
of information systems. Another work also conduct
spam detection with LLMs, Wu et al. (2024d) evaluate
ChatGPT’s performance in spam detection and find it
outperforms BERT on a low-resource Chinese dataset
but lags on a larger English dataset. The study also

highlights the positive impact of increasing prompts on
ChatGPT’s accuracy. Nahmias et al. (2024) introduces
a spear-phishing detection approach utilizing LLMs
to generate “prompted contextual document vectors.”
By posing targeted questions to LLMs about email
content, the method quantifies the presence of common
persuasion principles, creating vectors that capture
the malicious intent within spear-phishing emails. The
approach utilizes the reasoning capabilities of LLMs and
outperforms traditional phishing detection methods. In
addition to detecting phishing emails, there are studies
on generating phishing emails using LLMs. Heiding et al.
(2023) evaluates the performance of GPT-4 in creating
phishing emails and compare its effectiveness with
traditional phishing methods called V-Triad method,
which relys on manual design based on general rules
and cognitive heuristics. They also explore the use of
LLMs in detecting phishing emails, where models like
GPT, Claude, PaLM, and LLaMA demonstrate strong
capabilities in identifying malicious intent, sometimes
surpassing human detection rates.

In addition, LLMs can be used for malicious URLs,
DDoS attacks, and other cyber threat detection. Based on
the website content, Vörös et al. (2023) uses the knowl-
edge distillation approach to detect malicious URLs.
Specifically, unlabeled URLs are classified and labels are
generated by a teacher model. The student model trained
with this label improves accuracy with significantly fewer
parameters and is therefore suitable for malicious URL
detection. Guastalla et al. (2023) explores the potential
of LLMs in detecting DDoS attacks by investigating the
performance of LLMs on two datasets. For the CICIDS
2017 dataset, they fine-tune LLMs with labeled pcap files
to enable traffic classification through few-shot learning.
Urban IoT dataset is a real-world anonymized dataset
containing 4060 IoT devices. Considering the complexity
of this dataset, they fine-tune LLMs separately depend-
ing on whether the correlation of traffic between IoT
devices is considered or not. Ferrag et al. (2024b) encodes
the network traffic by employing a novel encoding tech-
nique called Privacy-Preserving Fixed-Length Encoding
(PPFLE). Then they train a model named SecurityBERT
with these encoded data to perform a classification task
on network traffic. Specifically, their model targets IoT
devices to achieve efficient and accurate cyber threat
detection on resource-limited IoT devices. Ziems et al.
(2023) studies the interpretation of decision tree models
in network intrusion detection (NID) systems. They con-
vert the path and structure data of the decision tree into
text format and provide it to LLMs to generate explana-
tions. Moreover, LLMs provide additional background
knowledge to help users understand why certain features
are important in categorization. Ali and Kostakos (2023)

Page 18 of 41Zhang et al. Cybersecurity (2025) 8:55

introduces HuntGPT, a system that integrates LLMs with
traditional machine learning for anomaly detection. The
system utilizes a random forest classifier trained on the
KDD99 dataset to identify cyber threats. To enhance
interpretability, the system employs XAI techniques such
as SHAP and Lime and combines them with the GPT−
3.5 conversational agent.

Digital forensic
Scanlon et al. (2023) assesses the applicability of Chat-
GPT for digital forensics. ChatGPT is used to help
determine if a file has been downloaded to a PC and if
the file has been executed by a specific user. In addition,
ChatGPT is also used to detect browser history, Win-
dows event logs, and interactions with cloud platform
machines.

Fuzz
Although traditional fuzzing techniques are effective in
discovering software vulnerabilities, their inherent limi-
tations can affect their efficiency and effectiveness. One
significant drawback is that traditional fuzzers operate in
a largely random or semi-random manner, which is time-
consuming and inefficient because they may not explore
all possible execution paths. Additionally, the mutated
seeds are usually artificially crafted, which makes the
time and labor costs high. Although all of the above
problems have been studied for many years and there
are many ways to mitigate them, the emergence of LLMs
provides a new way of thinking in the field of fuzz test-
ing (Jiang et al. 2024b; Wang et al. 2024a), as shown in
Table 9.

What are the advantages of LLMs fuzz over traditional
methods?
Zhang et al. (2023f) evaluates the performance of Chat-
GPT in generating test cases directly (without tuning)
and compare it with two traditional testing tools (i.e.,
SIEGE, and TRANSFER). Their experiments show that
LLMs outperform traditional methods in generating test
cases when a detailed description of the vulnerability,
possible exploits, and code context are given.

There are some advantages of LLMs over traditional
tools. One of the most important factors is that LLMs
lead to a shift from random mutation to guided mutation.
Hu et al. (2023a) introduces a GPT-based seed mutator
to the traditional gray-box fuzz testing, selecting seeds
from a seed pool and requesting variants from Chat-
GPT to generate higher-quality inputs. Another factor
is that LLMs have a strong understanding of program-
ming languages, enabling them to perform testing tasks
in multiple languages. Most traditional methods can only
fuzz specific programming languages. Xia et al. (2024)
tests 6 languages code (i.e., C, C++, Go, SMT2, Java,
and Python) with a method named Fuzz-Loop, which
automatically mutates test cases based on LLMs. Most
traditional fuzz methods fail to achieve high code cover-
age in all codes, while LLMs have mastered the logic of
code and can generate more targeted test cases for areas
with low coverage. For example, Lemieux et al. (2023)
uses Codex to generate test cases against low-coverage
functions when SBST (Search-Based Software Testing, a
traditional fuzz method) reaches coverage plateau. Spe-
cifically, the raw character sequences generated by the
Codex are deserialized into an internal test case repre-
sentation compatible with SBST to leverage its mutation
operations and fitness functions.

Specific fuzzing strategies for different testing objects
Depending on the test subject, the strategy should be
adjusted when fuzzing with LLMs. For testing against
general APIs, Zhang et al. (2023a) investigates the effec-
tiveness of LLMs in generating invocation code. They
compare LLM-based generation with traditional pro-
gram analysis methods and find that LLMs can automati-
cally generate a large number of effective fuzzing drivers
while reducing human intervention. The research intro-
duces query strategies, iterative improvements, and the
use of examples to enhance LLM performance. Although
it’s all about testing APIs, the strategy for testing against
deep-learning libraries needs to be modified. Because
programs that call deep learning libraries usually have
strict requirements on tensor dimensions, ignoring this
would cause the fuzzer to perform meaningless tests.

Table 9 LLMs for Fuzz

Category Related work

Fuzz capability assessment (6) Jiang et al. (2024b), Wang et al. (2024a), Zhang et al.
(2023f), Hu et al. (2023a), Xia et al. (2024), Lemieux et al.
(2023)

Testing against General APIs (1) Zhang et al. (2023a)

Testing against DL Libraries (2) Deng et al. (2023b), Deng et al. (2023c)

Testing against Protocol (1) Meng et al. (2024)

Testing against BusyBox (1) Asmita et al. (2024)

Page 19 of 41Zhang et al. Cybersecurity (2025) 8:55

Deng et al. (2023b) proposes TitanFuzz, a tool specifically
for generating test cases for deep learning libraries. Their
training corpus contains a large number of code snippets
that call the DL library APIs, so that the language syn-
tax and semantics, and complex DL API constraints can
be learned to efficiently generate DL programs. FuzzGPT
(Deng et al. 2023c) is also about fuzzing the DL library.
The difference is that FuzzGPT focuses on using histori-
cal error-triggered code snippets to guide LLMs to gen-
erate test cases.

In addition to the above research, we have collected
some studies targeting other testing objects. Testing
against Protocol. Meng et al. (2024) discusses how to
find security vulnerabilities in protocol implementations
in the absence of a machine-readable protocol specifi-
cation. They train LLMs with massive human-readable
protocol documents and ask LLMs to mutate interactive
messages for protocol fuzz (e.g., HTTP). Testing against
BusyBox. Specifically targeting BusyBox, a popular utility
in Linux-based devices, Asmita et al. (2024) introduces
two fuzzing methods. One is to use LLMs to generate
target-specific initial seeds for fuzzing, which signifi-
cantly improves the efficiency of identifying crashes and
potential vulnerabilities. The other is crash reuse, which
employs previously acquired crash data to streamline the
testing process for new targets.

Program repairing
The software development lifecycle is deeply impacted by
the presence of bugs, with their detection and resolution
being costly. Researchers are motivated to find new ways
to automatically identify and correct bugs/vulnerabilities
with LLMs (Zhang et al. 2024d), as shown in Table 10.

Evaluation of existing LLMs on program repairing
For state-of-the-art LLMs (open-sourced or proprietary),
many studies have evaluated their capabilities for pro-
gram repairing. Prenner and Robbes (2021) explores the
application of OpenAI’s Codex to the field of automatic
program repair (APR), specifically its ability to locate and

fix bugs in software. They use the QuixBugs benchmark,
which includes 40 bugs in Python and Java, to evaluate
the effectiveness of Codex in APR tasks. Notably, Codex
outperforms numerous existing APR methods even with-
out retraining. Sobania et al. (2023) conducts similar
work with the previous one. Both studies evaluate LLMs
for automatic program repair on QuixBugs benchmark.
In this work, ChatGPT is evaluated instead of Codex.
Keller and Nowakowski (2024) discusses the applica-
tion of Gemini in automating the repair of software vul-
nerabilities, especially for vulnerabilities found by the
sanitizer tool in C/C++, Java, and Go code. The authors
argue that while the success rate seems low, it has the
potential to significantly reduce engineering effort over
time. Yu et al. (2024) evaluates the performance of three
LLMs, Gemini Pro, GPT-4, and GPT−3.5, on codes with
identified vulnerabilities from real-world code reviews.
The findings indicate that GPT-4 outperforms the other
models, but all LLMs have great potential, especially for
conciseness, clarity, and accuracy of responses. Xia et al.
(2022) selects 9 LLMs and compare them with traditional
automated program repair methods, demonstrating the
superior effectiveness of LLMs in this field.

Pearce et al. (2023) explores the potential of LLMs for
zero-shot vulnerability repair in code. Through extensive
experiments with various LLMs in synthetic, artifactual,
and real-world security scenarios, they demonstrate that
while LLMs show promise in repairing simple cases, they
struggle with more complex, real-world examples. The
study reveals the limitations and strengths of LLMs in
cybersecurity and urges further research into the applica-
tion of LLMs in program repairing. Wu et al. (2023) com-
pares the capabilities of LLMs and deep learning-based
APR models in fixing Java vulnerabilities. They evaluate
the performance of 5 LLMs (Codex, CodeGen, CodeT5,
PLBART, and InCoder), 4 fine-tuned LLMs, and 4 deep
learning-based APR techniques on two real-world Java
vulnerability benchmarks (i.e., Vul4J and VJBench). They
design code transformations to address the overlapping
of train and test sets faced by Codex, and create a new

Table 10 LLMs for program repairing

Category Related work

Program repairing capability assessment (8) Prenner and Robbes (2021), Sobania et al. (2023), Keller and Nowakowski (2024), Yu et al. (2024),Xia
et al. (2022), Pearce et al. (2023), Wu et al. (2023), Xiang et al. (2024)

Program repairing capability improvement (16) Xu et al. (2024a), Chen et al. (2024a), Ahmed and Devanbu (2023), Kulsum et al. (2024),Zhao et al.
(2024a), Yang et al. (2024b), Yin et al. (2024),Wei et al. (2023), Islam et al. (2024), Wang et al. (2024h),
Kong et al. (2024),Chen et al. (2024b), Yang et al. (2024c), de-Fitero-Dominguez et al. (2024), Zhao et al.
(2024d),Dehghan et al. (2024)

Combined LLMs with static analysis tools (2) Alrashedy and Aljasser (2024),Jin et al. (2023)

Target-specific program repairing (6) Tol and Sunar (2023), Paria et al. (2023), Ahmad et al. (2023b), Charalambous et al. (2024), Le et al.
(2024), Xu et al. (2024c)

Page 20 of 41Zhang et al. Cybersecurity (2025) 8:55

Java vulnerability remediation benchmark, VJBench, to
better evaluate LLMs and APR techniques. Xiang et al.
(2024) investigate LLM-based function-level APR, focus-
ing on the effects of the few-shot learning mechanism
and the inclusion of auxiliary repair-relevant information.
The study shows that LLMs with zero-shot learning are
already effective for function-level APR, but applying the
few-shot learning mechanism results in varying repair
performance. Additionally, they find that directly incor-
porating auxiliary repair-relevant information into LLMs
significantly enhances function-level repair performance.

Combined LLMs with static analysis tools
Instead of using LLMs alone for program repair, some
studies have combined them with traditional program
analysis tools to increase the efficiency of those tools.
Alrashedy and Aljasser (2024) proposes a new approach
called Feedback-Driven Security Patching (FDSP), which
passes feedback from Bandit to LLM. With the help of
the static code analysis tool, LLM can generate potential
solutions to address security vulnerabilities. Each sug-
gested solution, along with the corresponding vulnerable
code segment, is fed back to LLM for verification and
validation. Jin et al. (2023) introduces a program repair
framework called InferFix that incorporates the latest
static analyzers for fixing critical security and perfor-
mance vulnerabilities. Inferfix consists of two main com-
ponents: a retriever and a generator. The retriever aims
to search for semantically similar vulnerabilities and their
associated fixes. The generator is fine-tuned on vulnera-
bility fix data, with prompts enhanced by bug type anno-
tations and semantically similar fixes, thereby improving
the model’s ability to generate effective proposals.

Improving repair capabilities through different strategies
To improve the performance of LLMs on program repair
tasks, researchers have proposed some methodologies.
D4C (Xu et al. 2024a) is a straightforward prompting
framework for APR. By aligning the output to LLMs
training objective and allowing LLMs to refine the whole
program without first identifying faulty statements,
D4C greatly improve LLM’s APR capability. Chen
et al. (2024a) proposes an approach called SELF-
DEBUGGING. Even if there is no human feedback
about the correctness of the code or error messages,
this method can identify the error by observing the
execution results and explaining the code generated by
natural language. Ahmed and Devanbu (2023) explores
the application of Self-Consistency (an approach for
improving model reasoning ability (Wang et al. 2023d))
in program repair. By incorporating commit-logs as
reasoning paths in few-shot prompts, Self-Consistency
enables LLMs to generate diverse solutions. The most

frequent solution from multiple samples is selected to
improve patch accuracy. Similarly, VRpilot (Kulsum
et al/ 2024) is based on reasoning and patch validation
feedback. The method uses a chain-of-thought prompt
to reason about a vulnerability before generating patch
candidates and iteratively refines the prompts based on
feedback from external tools on previously generated
patches, improving patch accuracy. DRCodePilot (Zhao
et al. 2024a) is designed to enhance GPT-4-Turbo’s APR
capabilities by incorporating design rationales (DR) into
the prompt instruction, along with a utility feedback-
based self-reflective framework. This framework prompts
GPT-4 to reconsider and refine its outputs by referencing
the provided patch and suggested identifiers.

Additionally, Yang et al. (2024b) introduces a novel
approach that leverages the entropy of LLMs in
combination with prior APR tools to enhance all stages
of the APR process. By using entropy-delta for patch
ranking and classification, this method can rank correct
patches more effectively than state-of-the-art machine
learning tools. ThinkRepair (Yin et al. 2024) is an LLM-
based autonomous two-stage automatic program repair
framework. In the collection stage, CoT prompts guide
the LLM to automatically gather various reasoning
chains that form the foundation of the repair knowledge.
In the repair stage, sample selection is performed for
few-shot learning, with interactive feedback from the
LLM. This approach significantly improves LLMs’ bug
fixing capability. Wei et al. (2023) proposes a program
repair framework named Repilot. It starts by masking the
buggy code segment and then utilizes LLMs to generate
candidate patches. During the generation, Repilot
consults the completion engine to prune infeasible tokens
and proactively completes the code when necessary. This
approach enhances the compilation rate and correctness
of patches while reducing the number of invalid attempts
in the generation process. Islam et al. (2024) introduces
SecRepair, a system that uses LLMs to detect and fix code
vulnerabilities in the software. It utilizes reinforcement
learning with the semantic reward mechanism to
improve the model’s ability to generate accurate code
comments and descriptions, guiding developers to
address security issues. ARJA-CLM (Wang et al. 2024h)
integrates a multi-objective evolutionary algorithm with
a code language model to fix multi-location bugs in Java
projects. It does this by predicting the correct statement
for masked buggy positions using the powerful code-
filling capabilities of CodeLLMs. Kong et al. (2024)
launches Contrastrepair to provide more accurate
feedback by providing LLMs with contrastive test case
pairs (a failing test and a passing test), thereby enhancing
conversation-driven repair framework. The key insight is
to minimize the difference between the generated passing

Page 21 of 41Zhang et al. Cybersecurity (2025) 8:55

test and the failing one, effectively isolating bug causes.
ContrastRepair interacts with ChatGPT repeatedly to
generate patches until a plausible fix is generated. Unlike
previous function-level approaches, Chen et al. (2024b)
investigates the performance of LLMs in repository-level
program repair, which needs to consider interactions
and dependencies between code that may span multiple
functions or files. In this work, they propose a benchmark
named RepoBugs, which includes 124 bugs from open
source repositories to evaluate the performance of LLMs.

Fine-tuning is also necessary to unlock state-of-the-
art performance in program repair. MORepair (Yang
et al. 2024c) is a multi-objective fine-tuning approach
that instructs LLMs to generate high-quality patches. It
involves adapting the LLM parameters to the syntactic
nuances of code transformation and specifically fine-tun-
ing the model to understand the logical reasoning behind
code changes in the training data. This fine-tuning strat-
egy enables LLM to achieve superior performance in pro-
gram repair. de-Fitero-Dominguez et al. (2024) fine-tunes
LLM on datasets containing C code vulnerabilities. They
specifically design a structured representation of the code
and provide it to LLM, including the line number of the
code that needs to be repaired, the vulnerability descrip-
tion (i.e., CWE description), and the complete source
code. The output of LLM is also structured and can be
directly patched, which enables the code to be repaired
automatically without manual intervention. Zhao et al.
(2024d) explores how LLMs can achieve excellent APR
performance through process supervision and feedback.
They first construct a dataset called CodeNet4Repair,
which is filled with multiple repair records for supervised
fine-tuning. Then,they develop a reward model that pro-
vides feedback on the fine-tuned LLM’s actions, progres-
sively optimizing its policy for better repair. Dehghan
et al. (2024) proposes continual merging and empirically
studies the capabilities of merged adapters in Code LLMs
for the APR task. Specifically, task-specific adapters are
first trained for the LLM, and then MergeRepair is used

to merge multiple task-specific adapters, considering the
order and weight of the merged adapters for better APR.

Target‑specific program repairing
We also investigate some studies on program repair-
ing for some specific targets. Tol and Sunar (2023) pro-
poses a framework called ZeroLeak, which explore how
LLMs can be used to automatically generate repair code
to address side-channel vulnerabilities in software. Zero-
Leak guides LLMs to generate patches for specific vul-
nerabilities through zero-shot learning. Once generated,
these patches are inspected by dynamic analysis tools
to ensure that they not only function correctly, but also
prevent information leakage. Paria et al. (2023) intro-
duces a novel framework named DIVAS. The framework
maps user-defined SoC specifications to Common Weak-
ness Enumerations (CWEs), generates SystemVerilog
Assertions (SVAs) for verification, and enforces security
policies. DIVAS automates the process of vulnerabil-
ity detection and policy enforcement, reducing manual
effort and enhancing SoC security. Ahmad et al. (2023b)
constructs a corpus of hardware security vulnerabilities
and utilize LLMs to automatically remediate Verilog code
containing these vulnerabilities. Charalambous et al.
(2024) focuses on the software implementation of neu-
ral networks and related memory safety issues, includ-
ing NULL pointer dereferencing, out-of-bounds access,
double-free errors, and memory leaks. They propose
detecting these vulnerabilities and automatically repair-
ing them with the help of LLMs. Le et al. (2024) focuses
on the application of LLMs (e.g., ChatGPT and Bard)
in repairing security vulnerabilities in JavaScript pro-
grams. Using the top 25 CWEs of 2023 as a reference,
they selecte JavaScript-related vulnerabilities to evalu-
ate the accuracy of the models in generating the correct
patches. Their findings highlight the potential of LLMs
for JavaScript security, emphasizing the effectiveness of
LLMs for programming languages used for web devel-
opment. To convert a regular C/C++ program into its

Table 11 LLM assisted cyber attack

Category Related work

Penetration testing (4) Deng et al. (2023a), Happe and Cito (2023), Huang
and Zhu (2023), Pratama et al. (2024)

Full-life-cycle cyberattack (3) Xu et al. (2024b), Wang et al. (2024e), Usman et al. (2024)

Phishing website/email generation (3) Begou et al. (2023), Roy et al. (2024), Francia et al. (2024)

Privilege escalation attacks (1) Happe et al. (2023)

Payload generation (1) Charan et al. (2023)

Attack graph generation (1) Prapty et al. (2024)

CTF challenges (3) Tann et al. (2023), Shao et al. (2024), Zhang et al. (2024a)

Proxies for attacks (1) Beckerich et al. (2023)

Page 22 of 41Zhang et al. Cybersecurity (2025) 8:55

HLS-compatible counterpart (HLS-C), Xu et al. (2024c)
proposes an LLM-driven program repair framework that
takes standard C/C++ code as input and automatically
generates the corresponding HLS-C code for synthesis,
minimizing human repair effort.

LLM assisted attack
A report (Barrett et al. 2023) from the workshop organ-
ized by Google on January 1, 2024 highlight the dual-
use issue of Generative Artificial Intelligence (GenAI).
These techniques can be used for both positive pur-
poses and potentially for malicious attacks. In this sec-
tion, we discuss current attacks with the help of LLMs in
detail (Table 11).

Current status of LLM‑assisted attacks
Sharma and Dash (2023) points out that ChatGPT has
both positive and potentially negative impacts on cyber-
security. They list various types of threats to cyberse-
curity today, including malware attacks, phishing, and
password attacks. They also mention the potential appli-
cation of ChatGPT in social engineering attacks. Gupta
et al. (2023) also conduct similar work on the impact of
generative AI in cybersecurity and privacy. Furthermore,
Moskal et al. (2023) explores the potential of LLMs for
network threat testing, particularly in supporting threat-
related actions and decisions. Experimenting on virtual
machines, they discuss in detail how automated attacks
guided by LLMs can be launched against devices in a
network. They conclude that while this work is prelimi-
nary, it demonstrates that LLMs shows strong potential
for cyber threats. For existing accessible malicious LLMs,
Lin et al. (2024) conducts a systematic study of 212 real-
world Malla (malicious LLM), revealing how they spread
and work in the underground market. They examine in
detail the Malla ecosystem, development frameworks,
exploitation techniques, and the effectiveness of Malla in
generating various malicious content. They also provide
insights into how cybercriminals utilize LLMs and strate-
gies for combating such cybercrime.

Specifically, there are various means of executing auto-
matic attacks with the help of LLMs.

LLM‑enabled automated penetration testing
Deng et al. (2023a) introduces a tool called PentestGPT
designed to perform automated penetration tests.
PentestGPT consists of three modules: inference,
generation and parsing. Each module reflects a specific
role in the penetration testing team so that the system
can more realistically simulate automated penetration
tests. Happe and Cito (2023) also conducts a study on
penetration testing with the help of LLMs. The study
investigates two use cases: high-level task planning for

security testing and low-level vulnerability hunting within
vulnerable virtual machines. They cerate a feedback
loop between LLM-generated operations and the virtual
machine, allowing LLMs to analyze the state of the system
to find vulnerabilities and suggest attack vectors. Huang
and Zhu (2023) points out the importance of integrating
penetration testing with vulnerability remediation into a
cohesive system. They proposes PenHeal, a two-stage LLM-
based framework designed to autonomously identify and
mitigate security vulnerabilities. The framework integrates
two LLM-enabled components: the Pentest Module,
which detects multiple vulnerabilities within a system, and
the Remediation Module, which recommends optimal
remediation strategies. Pratama et al. (2024) developes
CIPHER (Cybersecurity Intelligent Penetration-testing
Helper for Ethical Researchers), a LLM trained using over
300 high-quality write-ups of vulnerable machines, hacking
techniques, and documentation of open-source penetration
testing tools. Additionally, they introduce the Findings,
Action, Reasoning, and Results (FARR) Flow augmentation
to enhance penetration testing write-ups, establishing a fully
automated pentesting simulation benchmark tailored for
LLMs.

LLM‑assisted automatic full‑life‑cycle cyberattack
Xu et al. (2024b) proposes AUTOATTACKER, a sys-
tem that leverages LLMs to automate the execution of
“keystroke-operated” cyberattacks that mimic human
operations. The system employs LLMs to generate pre-
cise attack commands for various techniques and envi-
ronments, transforming potential manual operations
into automated and efficient processes. AUTOAT-
TACKER consists of multiple modules that interact
iteratively with the LLM to construct complex attack
sequences using functions such as summarization,
planning, and action selection. AURORA (Wang et al.
2024e) is another automatic end-to-end framework for
cyberattack construction and emulation. It can auton-
omously build multi-stage cyberattack plans based on
CTI reports, construct the emulation infrastructure,
and execute the attack procedures. Usman et al. (2024)
introduces Occupy AI, a customized and fine-tuned
LLM specifically designed to automate and execute
cyberattacks. This specialized AI-driven tool is profi-
cient in crafting attack steps and generating executable
code for various cyber threats, including phishing, mal-
ware injection, and system exploitation.

LLM‑assisted phishing website/email generation
Begou et al. (2023) uses LLM to automatically gener-
ate advanced phishing attacks. In the proposed attack
method, LLMs are used for the following functions:

Page 23 of 41Zhang et al. Cybersecurity (2025) 8:55

cloning target websites, modifying login forms to cap-
ture credentials, obfuscating code, automating domain
name registration, and automating script deployment.
Roy et al. (2024) examines the potential of LLMs like
ChatGPT, GPT-4, Claude, and Bard to generate phish-
ing attacks. The study finds that these models can effec-
tively create convincing phishing websites and emails,
mimicking well-known brands and employing evasive
tactics to avoid detection. The research also develops
a BERT-based detection tool that achieves high accu-
racy in identifying malicious prompts, serving as a
countermeasure against the misuse of LLMs for phish-
ing scams. Francia et al. (2024) compares the effective-
ness of smishing (SMS phishing) messages created by
GPT-4 and human authors, demonstrating that LLM-
generated messages are generally perceived as more
convincing than those authored by humans. The study
also finds that targets are unable to identify whether
a message was AI-generated or human-authored and
struggle to pinpoint criteria that could help make this
distinction. This poses a challenge against personalized
AI-enabled social engineering attacks.

LLM‑assisted privilege escalation attacks
Happe et al. (2023) uses LLM to assist in completing
penetration tests. They develop an automated Linux
privilege escalation benchmark to evaluate the perfor-
mance of different LLMs. At the same time, they design
a tool called Wintermute to quickly explore the ability
of LLMs to bootstrap privilege escalation.

LLM‑assisted payload generation
Charan et al. (2023) proposes to write payloads with the
help of LLMs to launch cyber attacks. This study shows
the high efficiency of LLMs by generating executable
code for the top 10 MITRE weaknesses observed in
2022 using ChatGPT and Bard respectively. In addition,
LLM-generated payloads tend to be more complex and
targeted than manually crafted payloads.

LLM‑assisted attack graph generation
Prapty et al. (2024) explores the approach of leveraging
LLMs to automate the generation of attack graphs by
intelligently chaining CVEs based on their precondi-
tions and effects. They also show how to utilize LLMs
to create attack graphs from threat reports.

LLM‑assisted capture the flag (CTF) challenges
Tann et al. (2023) investigates the potential of exist-
ing LLMs in solving CTF competitions. They select a
number of representative challenges from common
CTF categories to evaluate the performance of LLMs,
including GPT−3.5, PaLM2, and Prometheus. Their

research results demonstrate that LLMs can indeed
help participants cope with CTF challenges to a certain
extent, albeit not comprehensively.

Proxies for attacks Beckerich et al. (2023) uses Chat-
GPT as a proxy between the victim and the network
controlled by the attackers (C&C), which allows the
attacker to remotely control the victim’s system with-
out communicating directly, making it difficult to track
down the attackers.

(In)secure code generation
There have been many previous works that have con-
firmed that LLMs do have good code comprehension
capabilities (He et al. 2024; Luo et al. 2024; Roziere
et al. 2023; Li et al. 2023d). However, the security of
the generated code is very important, and some studies
have explored this issue (Table 12).

Evaluation of the security of LLM-generated code. It
is very important to know whether the code generated
by LLMs has security risks. Sandoval et al. (2023)
conducts an experiment to explore whether code
written by undergraduate computer science students
with the help of LLMs poses any additional security
risks. Participants are tasked with implementing a
singly-linked ’shopping list’ structure in C and they are
divided into two groups: a control group that doesn’t
have access to Codex, and an assisted group that does.
The results show that LLM does not significantly
increase the risk of introducing security vulnerabilities
when used as a code assistant. Tambon et al. (2024)
conducts an empirical study investigating bugs in
code generated by LLMs, focusing on three models:
CodeGen, PanGu-Coder, and Codex. The research
identifies 10 unique bug patterns among 333 collected

Table 12 LLMs for (In)secure code generation

Category Related work

Generate Code Evaluation (11) Sandoval et al. (2023),
Tambon et al. (2024),
Tihanyi et al. (2024a),
Pearce et al. (2022a),
Wang et al. (2024d), Wang
et al. (2023f), Liu et al.
(2024g),
Siddiq and Santos (2023),
Liu et al. (2024a), Ullah
et al. (2023), Buscemi
(2023)

Secure Code Generation (7) Khoury et al. (2023),
Kavian et al. (2024), He
and Vechev (2023),
Li et al. (2024b), He et al.
(2024), Tang et al. (2024),
Wong et al. (2024)

Page 24 of 41Zhang et al. Cybersecurity (2025) 8:55

errors, and these patterns are confirmed by 34 LLM
practitioners and researchers. Tihanyi et al. (2024a)
study how LLMs generate vulnerabilities when writing
simple C programs using a neutral zero-shot prompt.
They collected code generated by Gemini-pro, GPT-4,
Falcon-180B, CodeLLama2-13B, and other LLMs under
neutral prompts, which constitute the FormAI-v2
dataset. The study found that at least 63.47% of the
generated programs are vulnerable, highlighting the
risks of using LLM-generated code.

There are many studies exploring the security of code
generated by state-of-the-art LLMs. Pearce et al. (2022a)
investigates the security of code generated by GitHub
Copilot. They design 89 different execution scenarios for
Copilot, resulting in 1,689 programs. These programs are
then analyzed for vulnerabilities, particularly focusing
on the top 25 CWEs identified by MITRE. Wang et al.
(2024d) introduces CodeSecEval, a meticulously curated
dataset designed to address 44 critical vulnerability types
with 180 distinct samples. The dataset is then used for
precisely evaluating and enhancing the security aspects
of code generated by LLMs. The study reveals that cur-
rent models frequently overlook security issues dur-
ing both code generation and repair processes, leading
to the creation of vulnerable code. Wang et al. (2023f)
delves into the potential of LLMs in security-oriented
program analysis. Their evaluation focuses on two rep-
resentative LLMs, ChatGPT and CodeBERT, evaluating
their performance on analysis tasks of varying difficulty,
including vulnerability analysis, bug fixing, fuzzing, and
assembly code analysis. Liu et al. (2024g) evaluates the
code generated by ChatGPT, focusing on aspects such
as correctness, understandability, and security. Through
an empirical study using LeetCode questions and CWE
scenarios, they analyze the quality of code snippets gen-
erated by ChatGPT and its ability to improve the code
through multi-round dialogue. The results reveal that
while ChatGPT is able to generate functionally correct
code, it encounters challenges in complex reasoning and
ensuring code security.

On the other hand, Siddiq and Santos (2023) proposes
a framework called SALLM specifically for evaluating
the security of code generated by LLMs. SALLM
consists of three components: a prompt dataset detailing
Python programs, a code generation environment that
requires different solutions from LLMs, and a systematic
evaluation model that leverages Docker to execute the
generated code. Liu et al. (2024a) focuses on enhancing
the quality evaluation of code generation. Recognizing
that existing benchmarks often have a limited set of
test cases, they introduced a code synthesis evaluation
framework, EvalPlus. EvalPlus significantly expands
the number of test cases in the evaluation dataset

by deploying an automatic test input generator that
combines LLMs with a mutation-based strategy. Ullah
et al. (2023) collects 228 code scenarios and analyze
8 LLMs in an automated framework to determine
whether LLMs can reliably identify security-related
vulnerabilities. They point out that current LLMs fall
short in automated vulnerability detection tasks and
outline several limitations exhibited by current LLMs.
Buscemi (2023) evaluates the performance of ChatGPT−
3.5 on generating code, including an examination of code
security in 10 programming languages.

Do LLMs know whether the generated code is safe or
not?Khoury et al. (2023) conducts a series of experiments
to evaluate the security of LLM-generated code and to
discover vulnerabilities in generated code under various
scenarios. The results show that while LLMs may iden-
tify vulnerabilities in the generated code when prompted
for review, they still generate unsafe code unless explicitly
instructed otherwise. A significant challenge they faced
stems from the uninterpretability of deep neural net-
works, which causes LLMs to give inconsistent responses
when repeatedly asked about code security, without a
clear strategy to maximize successful identification.

To ensure the generation of secure codes, LLM-
SecGuard (Kavian et al. 2024) enhance code security
through the synergy between static code analyzers
and LLMs. He and Vechev (2023) takes a more direct
approach to customize LLMs through specific mecha-
nisms. They propose a method named svGen, which
makes LLMs generate safe or unsafe code based on the
user’s security preferences. In addition to the descrip-
tions for the generated code, they also introduce prop-
erty-specific continuous vectors (called prefixes), which
are sequences of vectors that match the shape of the
LLMs’ hidden states. These prefixes are optimized to
influence the LLM’s generation process by setting ini-
tial hidden states that steer the code toward meeting
the desired security criteria, all without modifying the
underlying weights of the LLM.

Fine-tuning LLMs for secure code generation is feasi-
ble. Li et al. (2024b) reveals that fine-tuning LLMs can
improve secure code generation by 6.4% for C language
and 5.4% for C++ language. Additionally, fine-tuning
with function-level and block-level datasets achieves
the best performance in secure code generation, com-
pared to file-level and line-level datasets. He et al. (2024)
introduces SafeCoder, an innovative instruction tuning
approach that enhances the security of code generation
by LLMs. SafeCoder combines traditional instruction
tuning with security-specific fine-tuning using a high-
quality dataset collected through an automated pipeline
from GitHub. This approach significantly enhances code
security without compromising the LLMs’ utility across

Page 25 of 41Zhang et al. Cybersecurity (2025) 8:55

various tasks, demonstrating its adaptability and effec-
tiveness in enhancing the security of LLM-generated
code.

In addressing the question of how to best iteratively
refine code, Tang et al. (2024) points out that the pro-
cess exposes an explore-exploit tradeoff, which can be
framed as a multi-armed bandit problem, and solved
using Thompson Sampling. The resulting LLM-based
program synthesis algorithm is widely applicable. Wong
et al. (2024) discusses iterative code repair in both high
and low-resource languages, where an LLM fixes an
incorrect program by reasoning about errors and gener-
ating new code. Specifically, they delve into guiding the
model to generate secure code through chain-of-thought
reasoning.

Others
Apart from the previously described categories, there are
a few scattered studies on the application of LLMs in the
field of cybersecurity, which are also of research value.

IoT fingerprint
Sarabi et al. (2023) proposes a method for Internet
devices fingerprint generation. Their approach is divided
into two steps. First, raw text data obtained from web
scans is converted into a stable embedded representation
with RoBERTa. Next, the embedding is clustered using
the HDBSCAN and the fingerprint is generated based on
the clustering.

Botnet
Yang and Menczer (2023) introduces a LLM-driven bot-
net called fox8 on Twitter. The fox8 botnet contains over
one thousand users controlled by AI. They post machine-
generated content and stolen images to spread fake and
harmful information, engaging with each other through
replies and retweets.

Security patch detection
Tang et al. (2023) proposes a system named LLMDA,
whose main goal is to improve the identification of secu-
rity patches in open-source software (OSS). LLMs are
used to generate explanatory descriptions of patches and
synthetic data, which helps to augment existing datasets.

SoC security
Saha et al. (2024) explores the potential of integrating
LLMs into the system-on-chip (SoC) security verification
paradigm. They provide a systematic evaluation of LLM
applications about vulnerability insertion, security
assessment, security verification, and countermeasure
development.

Taint analysis
Liu et al. (2023d) introduces LATTE, a static binary taint
analysis tool supported by LLMs. LLMs help to identify
the chain of data dependencies between taint sources
and possible vulnerability triggers. LLMs could provide
an understanding of code structure and semantics in the
process.

LLMs’ input–output safeguard
Inan et al. (2023) proposes Llama Guard to detect the risk
in LLM’s prompt and response. Using labeled security
risk text, they perform instruction tuning on Llama2-7b
to obtain this model.

Honeypot
Sladic et al. (2024) designs a dynamic and real-time fake
honeypot by giving response generated by LLMs, which
mainly focus on changing the limitation that honeypots
are easily recognizable. In their experiment, most people
can’t recognize whether the remote host is a real one or
a honeypot generated by LLMs. Reti et al. (2024) system-
atically investigates the use of LLMs to create a variety of
honeytokens. They design different types of honeytokens
to evaluate the optimal prompts, including configura-
tion files, databases, and log files. They test 210 different
prompt structures, based on 16 prompt-building blocks,
and demonstrate that LLMs can generate a wide array of
honeytokens using the presented prompt structures. LLM-
Pot (Vasilatos et al. 2024) is a novel approach for design-
ing honeypots in ICS networks that harnesses the power
of LLMs. It aims to automate and optimize the creation
of realistic honeypots with vendor-agnostic configura-
tions, applicable to any control logic, thereby eliminating
the manual effort and specialized knowledge traditionally
required.

Incidence response
Hays and White (2024) advocates for the application of
ChatGPT to enhance incident response planning (IRP) in
cybersecurity. It suggests that LLMs can draft initial plans,
recommend best practices, and identify documentation
gaps. The paper highlights the potential of LLMs to stream-
line IRP processes, emphasizing the value of human over-
sight to ensure accuracy and relevance.

Network management
Mani et al. (2023) explores how LLMs can be used to
generate task-specific code from natural language queries
to improve network management. They develop and
release a test benchmark, NeMoEval, covering two network
management applications: network traffic analysis and
network lifecycle management.

Page 26 of 41Zhang et al. Cybersecurity (2025) 8:55

Vulnerabilities reproduction
Feng and Chen (2024) proposes an approach called Adb-
GPT that utilizes LLMs to automatically reproduce vulner-
abilities in vulnerability reports by prompting engineering
without training or hard coding.

Expertise Q&A on cybersecurity domain
Kabir et al. (2024) conducts an empirical study of Chat-
GPT’s performance in answering Stack Overflow

programming questions. The main drawbacks of the LLM
answers are fake information and excessive length of the
content. Still some testers like its comprehensiveness and
good style of language presentation. Due to the difficulty of
recognizing misleading information given by LLMs, this is
an area that has yet to be researched.

Fig. 5 An overview of RQ3

Table 13 LLM agents for cybersecurity

Category Related work

Complex Tasks (3) Cui et al. (2024), Rigaki et al. (2024), Huang et al. (2023b)

Cyber Attacks (4) Fang et al. (2024c), Moskal et al. (2023), Fang et al. (2024b), Fang et al. (2024d)

Cyber Defense (4) An et al. (2024), Kaheh et al. (2023), Cao et al. (2024), Tseng et al. (2024b)

Page 27 of 41Zhang et al. Cybersecurity (2025) 8:55

RQ3: What are the challenge and further research
for the application of LLMs in cybersecurity?
Challenge
The application of LLMs in cybersecurity represents
a cutting-edge field, demonstrating the power of
LLMs in dealing with complex and dynamic cyber
threats. However, despite their strengths, LLMs are
not without challenges, especially their inherent
vulnerabilities and susceptibilities to attacks (Yao
et al. 2024b; Zhao et al. 2024c). Among the critical
concerns are the phenomena of LLMs-oriented attacks
and LLMs jailbreaking. These vulnerabilities highlight
the double-edged nature of LLM applications in
cybersecurity (Pasupuleti et al. 2023). On one hand,
the powerful comprehension and predictive capabilities
of LLMs can significantly promote the intelligence
of cybersecurity systems. On the other hand, their
intrinsic weaknesses facilitate exploitation and pose
serious security risks, undermining their reliability and
integrity in cybersecurity applications.

In this part, we discuss attacks against LLMs and
model risks separately, depending on whether the secu-
rity challenges arise from intentional attackers or from
risks inherent in the model itself (Fig. 5).

Attacks against LLMs
The vulnerabilities of LLMs make them susceptible to
attacks by malicious users (Kumar et al. 2024; Esmradi
et al. 2023; Wu et al. 2024b). There are various types of
attack against LLMs, including backdoor attack, prompt
injection, and jailbreaking.

Backdoor attack manipulates model outputs to achieve
attackers’ objectives by embedding specific triggers in
the model or its inputs. Shi et al. (2023) proposes a novel
backdoor attack methodology called BadGPT, specifically
targeting language models that have been fine-tuned
through reinforcement learning, such as ChatGPT. This
approach involves embedding backdoors within the
reward model, which can be activated via specific trig-
ger prompts. Such activation allows attackers to con-
trol the model’s output to align with their preferences,
showcasing a critical security vulnerability. In another
study, Zhao et al. (2024b) introduces a novel backdoor
attack strategy, ICLAttack, which aims at exploiting
the inherent context learning capabilities of LLMs. The
ICLAttack framework encompasses two primary attack
vectors: poisoning demonstration examples and poison-
ing demonstration prompts. By embedding backdoor
triggers within the model’s context, ICLAttack is able to
influence the model’s behavior without the need for fine-
tuning, thus revealing universal vulnerabilities within
LLMs. Furthermore, Yao et al. (2024a) reveals a back-
door attack mechanism tailored to prompt-based LLMs,

called PoisonPrompt. The method injects backdoors into
the language model through two steps: poisoned prompt
generation and bi-level optimization. PoisonPrompt
can alter the normal prediction of the model in case of
specific trigger activations without affecting the perfor-
mance of the model on downstream tasks, posing a sub-
tle but powerful threat to the integrity of LLMs.

Prompt injections involve attackers inserting special
commands into inputs, compelling the model to execute
actions aligned with the attackers’ intentions. Pedro
et al. (2023) conducts a comprehensive investigation of
prompt-to-SQL (P2SQL) injection attacks against web
applications based on the Langchain framework. These
attacks utilize user-input prompts to generate malicious
SQL queries, thereby enabling attackers to tamper with
databases or steal sensitive information. Jiang et al.
(2023b) introduces the Compositional Instruction Attack
(CIA), unveiling the susceptibility of LLMs to attacks that
utilize synthetic instructions with potentially malicious
intentions. Through two transformation methods,
Talking-CIA and Writing-CIA, harmful instructions are
masked as conversational or writing tasks, preventing
the model from recognizing potentially malicious intent
and thus generating harmful content. Liu et al. (2023f)
proposes a novel black-box prompt injection attack
technique named HOUYI for applications integrated
with LLMs. HOUYI executes attacks through three key
elements: pre-constructed prompts, injection prompts,
and malicious payloads. Its deployment across 36 real-
world scenarios demonstrates its efficacy in discovering
and exploiting vulnerabilities within LLM-integrated
applications. Yan et al. (2024a) focuses on Virtual Prompt
Injection (VPI) attacks against instruction-tuned LLMs,
which allow attackers to manipulate model behavior by
specifying virtual prompts without directly injecting
into model inputs, leading to the model disseminating
biased information. Piet et al. (2024) uses instruction-
tuned models to generate datasets for specific tasks.
These datasets are then utilized to fine-tune foundational
models, enhancing their robustness to resist most
prompt injection attacks. Additionally, Kour et al. (2023)
constructs an adversarial attack dataset named AttaQ
in a semi-automated manner, aiming to evaluate the
security of LLMs in the face of harmful or inappropriate
inputs. Vulnerabilities are exposed by analyzing
model responses to the AttaQ dataset, and specialized
clustering techniques are further applied to identify and
characterize the models’ vulnerable semantic areas.

Jailbreaking refers to the phenomenon of LLMs gen-
erating unsafe or unintended content when prompted
in certain ways, despite being designed with safe-
guards (Chu et al. 2024; Xu et al. 2024e). Owing to the
advancing capabilities of LLMs, this issue has attracted

Page 28 of 41Zhang et al. Cybersecurity (2025) 8:55

significant attention in recent years. Shen et al. (2023)
studies the security issues of LLMs when facing jail-
break prompts. They collect and analyze 6,387 prompts
to reveal the characteristics and attack strategies of these
prompts. Despite various security measures implemented
by LLMs, they found that effective jailbreak prompts still
successfully induce models to generate harmful content,
indicating the need for further improvements in the
security of LLMs. Chu et al. (2024) conducts a compre-
hensive evaluation of LLMs jailbreaking, revealing the
effectiveness of these attack methods and the vulnerabili-
ties of LLMs across various violation categories.

There are various methods for generating adversarial
prompts for jailbreaking. Zou et al. (2023) combines
greedy search and gradient-based optimization tech-
niques to propose a method that automatically generates
adversarial suffixes to prompt models, both open-source
and commercial, to produce inappropriate content. Lapid
et al. (2023) introduces a novel approach to black-box
jailbreak attacks using genetic algorithms, which can
manipulate LLMs to produce unexpected and potentially
harmful outputs without accessing the model’s inter-
nal structure and parameters by optimizing a universal
adversarial prompt. Ding et al. (2024) conceptualizes the
jailbreaking process as prompt rewriting and scenario
nesting. They then introduce ReNeLLM, a jailbreaking
prompt generation framework that utilizes LLMs to gen-
erate effective jailbreaking prompts. Compared to exist-
ing baselines, ReNeLLM achieves high attack success
rates on multiple LLMs while significantly reducing the
time cost. Deng et al. (2024) explores jailbreak attacks
on LLM Chatbots and proposes a framework named
MASTERKEY to automate this process. Through tem-
poral feature analysis and automated prompt generation,
MASTERKEY reveals and bypasses the defense mecha-
nisms of LLM chatbots, offering new perspectives for
LLM security research and guidance for service providers
to improve their security measures.

Research on LLMs jailbreaking can also be used for
red-teaming. Zhu et al. (2024) proposes AutoDAN,
an interpretable and gradient-based adversarial attack
method. By combining the dual objectives of jailbreak-
ing and readability, it generates interpretable and diverse
attack prompts capable of effectively bypass perplexity fil-
ters and demonstrates robust generalization in scenarios
with limited training data. This method not only offers a
novel approach for red-teaming of LLMs but also helps
to understand the mechanics of jailbreak attacks. Yu et al.
(2023) presents a new black-box jailbreak fuzzing frame-
work named GPTFUZZER. By collecting human-written
jailbreak templates from the internet as initial seeds, and
then iterating through a process of seed selection, muta-
tion, and evaluating the success of attacks, GPTFUZZER

significantly enhances the efficiency and scalability of red
team testing. Yao et al. (2023a) introduces FuzzLLM, a
novel and universally applicable fuzz testing framework
designed to proactively discover jailbreak vulnerabilities
in LLMs. FuzzLLM employs a template-based strategy
that generates a variety of jailbreak prompts and identify
potential security vulnerabilities through automated test-
ing. It demonstrates efficiency and comprehensiveness
across various LLMs, effectively identifying and assessing
jailbreak vulnerabilities.

Additionally, Wang et al. (2023e) introduces the con-
cept of a semantic firewall to describe the defense mech-
anisms of LLMs against malicious prompts and proposes
a self-deception attack method to bypass LLMs seman-
tic firewalls. This method designs a customizable dia-
logue template for experimenting with specific illegal
payloads and automatically achieving LLM jailbreak.
Qiu et al. (2023) develops a potential jailbreak prompt
dataset embedded with malicious instructions and pro-
poses a hierarchical annotation framework to analyze
the performance of LLMs under different conditions(e.g.,
instruction positions, word substitutions, and instruc-
tion replacements). This is aimed at evaluating the secu-
rity and output robustness of LLMs when processing
texts containing potential malicious instructions. Li et al.
(2023b) investigates the potential privacy threats asso-
ciated with ChatGPT and the Bing search engine inte-
grated with ChatGPT. By introducing a novel multi-step
jailbreaking prompt, they successfully extract personally
identifiable information from ChatGPT and demonstrate
the privacy threats posed by the new Bing under direct
prompts.

Model safety risks
Even in the absence of direct adversarial attacks, inherent
risks within these models limit their application in cyber-
security, including LLMs trustworthy concerns, lack of
interpretability, and frontier risks.

LLMs trustworthy Concerns The surge of LLMs brings
significant concerns regarding their trustworthiness,
especially considering the inherent risks in the models
themselves, which pertain to the aspects and extent to
which humans can trust AI. Existing research in AI gov-
ernance and trustworthy LLMs has provided guidance for
the concern dimensions of trustworthy LLMs (Tabassi
2023; Liu et al. 2023a; Wang et al. 2023a).

Hallucination is a response generated by AI that
contains false or misleading information presented
as fact (Maynez et al. 2020; Ji et al. 2023). Ensuring the
authenticity of content generated by language models is
a critical issue that requires urgent attention. In practical
applications, the content produced by LLMs may exhibit

Page 29 of 41Zhang et al. Cybersecurity (2025) 8:55

factual hallucinations, which severely impact the reli-
ability of their outputs. Several studies have explored the
causes of hallucinations and proposed mitigation strate-
gies (Huang et al. 2023a; Zhang et al. 2023e). The causes
of hallucinations are typically attributed to issues arising
during the data, training, and inference stages, such as
poor data quality, misinformation, outdated knowledge,
flaws in model architecture and strategies, and random-
ness in the inference process. Although hallucinations are
difficult to eliminate completely (Xu et al. 2024d), they
can be mitigated through various methods, such as build-
ing high-quality datasets, optimizing decoding strategies,
and enhancing external knowledge through techniques
like Retrieval-Augmented Generation (RAG). Address-
ing the hallucination issue is of significant importance for
improving the trustworthiness of LLMs in cybersecurity
applications.

Toxicity in language models is characterized as rude,
disrespectful, or unreasonable commentary that is likely
to drive individuals away from a discussion (Welbl
et al. 2021). This is an inherent property of LLMs,
stemming from their inevitable exposure to toxic
content during training. For instance, an analysis of the
LLaMA2 pretraining corpus revealed that approximately
0.2% of the documents could be identified as toxic
content (Touvron et al. 2023b). The detoxification of
LLMs can be broadly categorized into two approaches.
The first category involves internal modifications to
the model to prevent the generation of toxic content,
such as employing Reinforcement Learning with
Human Feedback (RLHF) to align the model with safety
guidelines (Ouyang et al. 2022) or employing knowledge
editing techniques to precisely modify toxic regions
within the LLMs (Wang et al. 2024f). The second
approach involves using external classifiers to filter the
model’s outputs (Inan et al. 2023). In summary, reducing
the toxicity of generated content is essential to preventing
harm to individuals, groups, and broader societies.

Fairness in LLMs encapsulates the ethical principle
that necessitates the equitable design, training, and
deployment of LLMs and related AI systems, preventing
biased or discriminatory outcomes (Wang et al. 2023c).
Language models may exhibit discrimination and bias,
primarily due to the characteristics of their training
data and model design (Li et al. 2023e). The training
data collected from the internet reflects real-world
biases, including those related to race, gender, culture,
religion, and social status. It is difficult to completely
filter and clean all biased content. Additionally, in the
design of generative AI models, there is a lack of effective
mechanisms to mitigate biases, which results in the
models capturing discriminatory patterns from the

training data. In response, various strategies have been
proposed to improve fairness in LLMs, ranging from
holistic approaches to mitigating specific types of biases,
such as biases in internal components of LLMs and biases
arising from user interactions (Dev et al. 2023; Dong
et al. 2024), thereby promoting AI models’ adherence to
fairness and anti-discrimination principles.

Privacy means the norms and practices that help to
safeguard human and data autonomy, identity, and dig-
nity (Tabassi 2023). Unlike previous concerns that pri-
marily focused on sensitive data protection, advanced
generative AI models trained on massive datasets posses
sophisticated memory mechanisms that may result in
privacy leaks (Carlini et al. 2021, 2022; Peris et al. 2023).
And various privacy protection methods have been
developed for AI models, including data anonymization,
federated learning, differential privacy, and unlearning,
each addressing distinct privacy challenges (Murthy et al.
2019; Nagy et al. 2023; Vasa and Thakkar 2023; Sekhari
et al. 2021). Nevertheless, privacy protection for gener-
ative AI is still in its early stages, and exploring how to
fully utilize the capabilities of these models while safe-
guarding personal privacy remains a challenge.

Robustness in LLMs refers to their stability and perfor-
mance when faced with various input conditions. This
includes their ability to effectively handle diverse inputs,
noise, interference, adversarial attacks, and changes
in data distribution, among other factors (Huang et al.
2024). In addition to the model’s performance against
malicious attacks discussed in the previous chapter, the
performance of the model on noisy data and out-of-
distribution (OOD) data is also used to assess robust-
ness (Wang et al. 2021, 2024c). This capability is crucial
for LLMs in real-world applications, as it enables the
models to respond appropriately when dealing with
unknown or new inputs. Therefore, the application of
LLMs in the cybersecurity domain requires a high level
of robustness.

Beyond the key dimensions discussed above, there are
other important aspects of model trustworthiness that
warrant attention, including accountability, machine eth-
ics, environmental well-being, data governance, repro-
ducibility, and human oversight, among others. These are
crucial for building trustworthy and responsible AI sys-
tems, and significantly impact the application of models
in specific areas such as cybersecurity.

Lack of Interpretability Interpretability refers to the abil-
ity of an AI system to explain its decisions and outputs in a
manner understandable to humans. The underlying prin-
ciple is to design models or algorithms that can generate

Page 30 of 41Zhang et al. Cybersecurity (2025) 8:55

corresponding explanations when making predictions or
decisions (Zhang et al. 2021).

As AI systems grow increasingly advanced, it has
become challenging for humans to understand and trace
how algorithms produce their results. The computational
process has thus evolved into what is commonly referred
to as a “black box” - a system with opaque internal mech-
anisms. The complexity of these systems and their lack of
transparency pose significant risks, especially in sensitive
and critical domains such as cybersecurity.

Research into the interpretability of AI models not
only guides model improvement and optimization but
also enhances user trust in their safe application. Studies
explore interpretability from various perspectives,
including the data level (analyzing inputs, outputs,
datasets, and data modalities), the model level
(examining tokens, features, neurons, network layers,
and architecture), and the training and reasoning
process (investigating how models are trained and
how they perform during inference) (Dang et al. 2024).
For instance, OpenAI uses GPT-4 to generate natural
language explanations of neuron behaviors in GPT-2
and rates these explanations (Bills et al. 2023). Anthropic
employs dictionary learning to isolate repeated neuron
activation patterns across different contexts, aiding in
understanding how concepts are represented in language
models (Templeton et al. 2024). Additionally, studies on

circuits and sparse autoencoders have been conducted to
uncover the behaviors of black-box models (Elhage et al.
2022, 2021; Huben et al. 2023; Gao et al. 2024).

Despite numerous attempts to explain neuron behav-
iors, little progress has been made in understanding
the underlying mechanisms that generate these behav-
iors (Bills et al. 2023). The black-box nature of AI models
remains largely unresolved. Moreover, as the number of
model parameters increases and more complex emergent
behaviors arise, the lack of interpretability will persist as a
significant challenge in AI development and application.

Frontier risks
With the advancement of AI, some researchers have
raised concerns about the potential catastrophic risks
posed by AI. Carlsmith (2022) highlights that imperfectly
controlled agents may deliberately seek power over
humans, and such power-seeking AIs could result
in human disempowerment, leading to catastrophic
outcomes. Similarly, issues such as proxy gaming (Clark
and Amodei 2016) and goal drift (Hendrycks et al.
2023) could cause highly intelligent AIs to lose control,
further exacerbating these risks. Hubinger et al. (2024)
investigates the deceptive behaviors that LLMs may
exhibit under specific trigger conditions, finding that
these behaviors could persist even after safety alignment,
thereby posing a potential threat to AI system security.

Regarding emerging frontier risks, Li et al. (2024c) and
Stewart (2024) discuss how LLMs could contribute to
the proliferation of chemical, biological, radiological, and
nuclear weapons. Given that LLMs have been trained on
vast amounts of computer code and possess the ability to
generate scripts and code, they could facilitate engineer-
ing design and computer simulations related to specific
CBRN production processes. Therefore, caution is nec-
essary when deploying LLMs in sensitive fields, and it is
critical to implement mitigation measures to prevent the
generation of problematic outputs.

Further research
Despite the significant research into LLMs within the
field of cybersecurity, the exploration and application
of such models remain in their initial stages and have
great potential for development (de Jesus Coelho da Silva
and Westphall 2024; Motlagh et al. 2024). The complex-
ity of cybersecurity stems not only from the diversity
of attack methods but also from the intricate nature of
network environments, which requires the integrated
application of various tools and strategies to achieve
effective protection (Azizi and Haass 2023; Mtsweni
et al. 2018). Facing these challenges requires AI systems
to have stronger capabilities in planning, reasoning, tool
use, and memory. Consequently, the concept of LLM
Agent has emerged and attracted a lot of attention from
researchers (Table 13).

LLM Agent is “a system that can use an LLM to reason
through a problem, create a plan to solve the problem,

Page 31 of 41Zhang et al. Cybersecurity (2025) 8:55

and execute the plan with the help of a set of tools (Var-
shney 2023).” By simulating complex network behaviors
and attack patterns, and integrating advanced natural
language processing capabilities, LLM agents introduce
new perspectives and solutions to the field of cybersecu-
rity (Kaheh et al. 2023; Moskal et al. 2023; Cui et al. 2024;
Rigaki et al. 2024; Fang et al. 2024c; An et al. 2024). With
the continuous advancement of technology and in-depth
research, LLM agents are expected to play a key role in
defense strategy generation, threat detection, and secu-
rity policy formulation, significantly improving the effi-
ciency and intelligence level of cybersecurity defenses.

The AI Agents framework based on LLMs possesses
the critical capabilities required to solve complex
problems (Ruan et al. 2023). Xi et al. (2023) proposes
an LLM Agent architecture that includes brain,
perception, and action components to provide a wide
range of applications in single-agent scenarios, multi-
agent environments, and human-agent collaboration.
Moreover, the incorporation of Tool & API calls endows
LLM agents with the capacity to interact with the real
world. Qin et al. (2024) develops the ToolBench dataset
and the DFSDT algorithm to enable LLMs to successfully
handle complex tasks involving numerous real-world
APIs. Liu et al. (2024d) introduces a sophisticated tool
invocation mechanism that enhances LLMs’ interaction
with external tools by summarizing and making
decisions. Additionally, Yang et al. (2024d) demonstrates
that integrating code into LLMs significantly enhances its
ability to perform more complex tasks as an intelligent
agent. Qiao et al. (2023) proposes TaskWeaver, a code-
first agent framework for seamlessly planning and
executing data analytics tasks.

LLM agents can be applied to address complex cyber-
security tasks. Cui et al. (2024) proposes an innova-
tive framework named LLMind, which utilizes LLM as
a coordinator to perform complex tasks by integrating
with IoT devices and domain-specific AI modules. The
framework employs finite state machine methods to gen-
erate control scripts, thereby enhancing the accuracy
and success rate of task execution. In addition, LLMind
introduces a mechanism for accumulating experience,
which allows the system to continually learn and pro-
gress through ongoing interactions between users and
machines. Rigaki et al. (2024) demonstrates the use of
LLMs as agents within cybersecurity environments.
Experiments show that LLM agents can achieve perfor-
mance comparable to or better than extensively trained
agents in sequential decision-making tasks, even without
additional training. Furthermore, the study introduces
the NetSecGame environment, a highly modular and
adaptive cybersecurity environment designed to sup-
port complex multi-agent scenarios. Huang et al. (2023b)

proposes ChatNet, a domain-specific network LLM
framework with access to a variety of external network
tools. ChatNet significantly reduces the time required for
tedious network planning tasks, thereby greatly increas-
ing efficiency.

LLM agents can be employed to perform automated
attacks. Fang et al. (2024c) reveals the potential of LLM
agents in cybersecurity attacks, particularly the capabil-
ity of GPT-4 to autonomously conduct complex hacker
attacks on websites without prior knowledge of vulner-
abilities. The study shows that LLM agents have a success
rate of up to 73.3% in hacking attempts and can autono-
mously discover vulnerabilities in real-world websites.
Moskal et al. (2023) demonstrates the potential applica-
tion of LLMs in cyber threat testing, especially in auto-
mating cyber attack activities. With prompt engineering
and automated agents, LLMs can understand and exe-
cute complex cyber attacks. Fang et al. (2024b) collects a
dataset of 15 zero-day vulnerabilities. Based on this data-
set, the study shows that LLM agents can autonomously
exploit these zero-day vulnerabilities in real-world sys-
tems. Fang et al. (2024d) also shows that teams of LLM
agents can exploit real-world, zero-day vulnerabilities by
designing a system of agents with a planning agent that
can launch subagents.

LLM agents can also be utilized to assist in cyber
defense. An et al. (2024) designs a multi-agent system
(Nissist) to precisely understand user queries and provide
effective mitigation plans. Nissist utilizes troubleshooting
guides and incident mitigation history to provide sug-
gestions, which significantly reduces the time for event
mitigation, reduces the workload of on-duty engineers,
and enhances the reliability of services. Cyber Senti-
nel (Kaheh et al. 2023) is a dialogue agent based on GPT-
4, which can interpret potential cyber threats and execute
security actions based on user instructions. The poten-
tial impact of Cyber Sentinel in cyber security includes
improved threat detection and response capabilities,
enhanced operational efficiency, real-time collaboration,
and knowledge sharing. PhishAgent (Cao et al. 2024) is
a multimodal agent that combines a wide range of tools,
integrating both online and offline knowledge bases with
Multimodal LLMs, showing strong resilience against
various types of adversarial attacks. Tseng et al. (2024b)
develops an AI agent to replace the labor intensive repet-
itive tasks involved in analyzing CTI reports. By leverag-
ing the advanced capabilities of LLMs, the AI agent can
accurately extract important information from large vol-
umes of text and generate Regex to help SOC analysts
accelerate the process of establishing correlation rules.

LLM agents enhance cybersecurity applications with
their remarkable capabilities, yet the security risks inher-
ent in agent systems (Yuan et al. 2024) pose challenges

Page 32 of 41Zhang et al. Cybersecurity (2025) 8:55

for their deployment in cybersecurity environments.
Wu et al. (2024a) introduces the concept of Web-based
Indirect Prompt Injection (WIPI), a novel cyber threat
that embeds malicious instructions in web pages to indi-
rectly control these agents, achieving high success rates
and robustness across different user inputs. Zhan et al.
(2024) highlights that LLM agents integration with exter-
nal tools may lead to the risk of indirect prompt injection
attacks, in which attackers embed malicious commands
in the content processed by LLMs to manipulate these
agents to perform actions harmful to users.

In conclusion, the application of LLM-based agents
in cybersecurity opens up new avenues for dealing with
cyber security threats. Although research in this area is
still in its early stages, and the inherent security vulner-
abilities of agents have not yet been addressed, this line of
research promises to significantly enhance the capability
to counter complex cyber threats and has the potential
to revolutionize the working methods of security profes-
sionals, thereby unleashing greater productivity. There-
fore, further research into the application of LLM agents
in cybersecurity is crucial for developing adaptive, intel-
ligent, and comprehensive cybersecurity solutions.

In summary, we bridges the gap between LLM
advancements and cybersecurity demands, laying the
groundwork for researchers and practitioners. It guides
them to harness the transformative potential of LLMs
while addressing the unique challenges that arise in this
field. Further research and exploration would open up
new pathways for future cybersecurity practice, ensuring
that we have more comprehensive and professional strat-
egies in the face of increasingly complex cyber threats.

Acknowledgements
We would like to extend our heartfelt gratitude to the editor and the review-
ers of this paper. Their professional advice and valuable feedback significantly
contributed to the quality of this research.

Author contributions
All authors read and approved the manuscript.

Funding
This work is supported by the Strategic Priority Research Programr of Chinese
Academy of Sciences, the System of Cybersecurity Large Model.

Availablity of data and materials
Not applicable.

Conclusion
This paper introduces the methodologies for
constructing cybersecurity-oriented domain LLMs,
detailing how existing models can be fine-tuned to
meet specific needs using target data. The investigation
into the applications of LLMs has shows that LLMs
have great potential for a wide range of cybersecurity
tasks, such as threat intelligence, vulnerability
detection, secure code generation and others. However,
we has also acknowledged the inherent vulnerabilities
of LLMs, particularly the susceptibility to attacks
such as jailbreaking, which pose significant security
risks. Mitigating these vulnerabilities is crucial to
securely deploying LLMs in sensitive environments.
Additionally, we propose future research directions,
such as extending the tool-use and API-call capabilities
of LLMs, and developing autonomous intelligent agents
for complex cybersecurity operations.

Declarations

Competing interests
The authors declare that they have no Conflict of interest.

Received: 29 November 2024 Accepted: 8 January 2025

References
Ahmed T, Devanbu P (2023) Better patching using llm prompting, via self-

consistency. In: 2023 38th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp 1742–1746, https:// doi. org/
10. 1109/ ASE56 229. 2023. 00065

Ahmad B, Tan B, Karri R et al (2023a) Flag: finding line anomalies (in code) with
generative AI. Preprint at arXiv: 2306. 12643

Ahmad B, Thakur S, Tan B et al (2023b) Fixing hardware security bugs with
large language models. Preprint at arXiv: 2302. 01215

Alam MT, Bhusal D, Nguyen L et al (2024) CTIBench: a benchmark for evaluat-
ing LLMs in cyber threat intelligence. In: The Thirty-eight Conference on
Neural Information Processing Systems Datasets and Benchmarks Track

https://doi.org/10.1109/ASE56229.2023.00065
https://doi.org/10.1109/ASE56229.2023.00065
http://arxiv.org/abs/2306.12643
http://arxiv.org/abs/2302.01215

Page 33 of 41Zhang et al. Cybersecurity (2025) 8:55

Ali T, Kostakos P (2023) Huntgpt: integrating machine learning-based anomaly
detection and explainable AI with large language models (llms). Pre-
print at arXiv: 2309. 16021

Almazrouei E, Alobeidli H, Alshamsi A et al (2023) The falcon series of open
language models. Preprint at arXiv: 2311. 16867

Alrashedy K, Aljasser A (2024) Can llms patch security issues? Preprint at arXiv:
2312. 00024

An K, Yang F, Lu J et al (2024) Nissist: an incident mitigation copilot based
on troubleshooting guides. In: Endriss U, Melo FS, Bach K et al (eds)
ECAI 2024 - 27th European Conference on Artificial Intelligence, 19-24
October 2024, Santiago de Compostela, Spain - Including 13th Confer-
ence on Prestigious Applications of Intelligent Systems (PAIS 2024),
Frontiers in Artificial Intelligence and Applications, vol 392. IOS Press, pp
4471–447https:// doi. org/ 10. 3233/ FAIA2 41032

Aslan Ö, Aktuğ SS, Ozkan-Okay M et al (2023) A comprehensive review of
cyber security vulnerabilities, threats, attacks, and solutions. Electronics
12(6):1333

Asmita, Oliinyk Y, Scott M et al (2024) Fuzzing busybox: leveraging LLM and
crash reuse for embedded bug unearthing. In: Balzarotti D, Xu W (eds)
33rd USENIX Security Symposium, USENIX Security 2024, Philadelphia,
PA, USA, August 14-16, 2024. USENIX Association, https:// www. usenix.
org/ confe rence/ useni xsecu rity24/ prese ntati on/ asmita

Azizi N, Haass O (2023) Cybersecurity issues and challenges. Handbook of
research on cybersecurity issues and challenges for business and
FinTech applications. IGI Global, Palmdale, pp 21–48

Bakhshandeh A, Keramatfar A, Norouzi A et al (2023) Using chatgpt as a static
application security testing tool. Preprint at arXiv: 2308. 14434

Barnum S (2012) Standardizing cyber threat intelligence information
with the structured threat information expression (stix). Mitre Corp
11:1–22

Barrett C, Boyd B, Bursztein E et al (2023) Identifying and mitigating the
security risks of generative AI. Found Trends® Priv Secur 6(1):1–52

Beckerich M, Plein L, Coronado S (2023) Ratgpt: turning online llms into
proxies for malware attacks. Preprint at arXiv: 2308. 09183

Begou N, Vinoy J, Duda A et al (2023) Exploring the dark side of ai:
Advanced phishing attack design and deployment using chatgpt.
In: 2023 IEEE Conference on Communications and Network Security
(CNS), pp 1–6, https:// doi. org/ 10. 1109/ CNS59 707. 2023. 10288 940

Bhatt M, Chennabasappa S, Nikolaidis C et al (2023) Purple llama cyberse-
ceval: A secure coding benchmark for language models. Preprint at
arXiv: 2312. 04724

Bhusal D, Alam MT, Nguyen L et al (2024) Secure: benchmarking generative
large language models for cybersecurity advisory. Preprint at arXiv:
2405. 20441

Bills S, Cammarata N, Mossing D et al (2023) Language models can explain
neurons in language models. https:// opena ipubl ic. blob. core. windo
ws. net/ neuron- expla iner/ paper/ index. html

Bozkurt A, Sharma RC (2023) Generative ai and prompt engineering: The
art of whispering to let the genie out of the algorithmic world. Asian
Journal of Distance Education 18(2):i–vii

Brown T, Mann B, Ryder N et al (2020) Language models are few-shot learn-
ers. Adv Neural Inf Process Syst 33:1877–1901

Buscemi A (2023) A comparative study of code generation using chatgpt
3.5 across 10 programming languages. Preprint at arXiv: 2308. 04477

Cao T, Huang C, Li Y et al (2024) Phishagent: a robust multimodal agent for
phishing webpage detection. Preprint at arXiv: 2408. 10738

Carlini N, Tramer F, Wallace E et al (2021) Extracting training data from large
language models. In: USENIX Security, pp 2633–2650

Carlini N, Jagielski M, Zhang C et al (2022) The privacy onion effect: memori-
zation is relative. In: NeurIPS, http:// papers. nips. cc/ paper_ files/ paper/
2022/ hash/ 564b5 f8289 ba846 ebc49 8417e 834c2 53- Abstr act- Confe
rence. html

Carlsmith J (2022) Is power-seeking AI an existential risk? Preprint at arXiv:
2206. 13353

Charalambous Y, Manino E, Cordeiro LC (2024) Automated repair of AI code
with large language models and formal verification. Preprint at arXiv:
2405. 08848

Charan PVS, Chunduri H, Anand PM et al (2023) From text to mitre tech-
niques: Exploring the malicious use of large language models for
generating cyber attack payloads. Preprint at arXiv: 2305. 15336

Chauvin T (2024) eyeballvul: a future-proof benchmark for vulnerability
detection in the wild. Preprint at arXiv: 2407. 08708

Chen T, Li L, Zhu L et al (2023a) Vullibgen: Identifying vulnerable third-party
libraries via generative pre-trained model. Preprint at arXiv: 2308.
04662

Chen Y, Ding Z, Alowain L et al (2023b) Diversevul: a new vulnerable source
code dataset for deep learning based vulnerability detection. In: Pro-
ceedings of the 26th International Symposium on Research in Attacks,
Intrusions and Defenses. Association for Computing Machinery, New
York, NY, USA, RAID ’23, p 654-668, https:// doi. org/ 10. 1145/ 36071 99.
36072 42

Chen X, Lin M, Schärli N et al (2024a) Teaching large language models to
self-debug. In: The Twelfth International Conference on Learning Repre-
sentations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
https:// openr eview. net/ forum? id= KuPix IqPiq

Chen Y, Wu J, Ling X et al (2024b) When large language models confront
repository-level automatic program repair: how well they done? In:
Proceedings of the 2024 IEEE/ACM 46th International Conference on
Software Engineering: Companion Proceedings, ICSE Companion 2024,
Lisbon, Portugal, April 14-20, 2024. ACM, pp 459–471, https:// doi. org/
10. 1145/ 36394 78. 36476 33

Cheshkov A, Zadorozhny P, Levichev R (2023) Evaluation of chatgpt model for
vulnerability detection. Preprint at arXiv: 2304. 07232

Chiang WL, Li Z, Lin Z et al (2023) Vicuna: an open-source chatbot impressing
gpt-4 with 90%* chatgpt quality. See https://vicuna lmsys org. 2(3):6.
Accessed 14 April 2023

Chu J, Liu Y, Yang Z et al (2024) Comprehensive assessment of jailbreak attacks
against llms. Preprint at arXiv: 2402. 05668

Clairoux-Trepanier V, Beauchamp IM, Ruellan E et al (2024) The use of large
language models (llm) for cyber threat intelligence (cti) in cybercrime
forums. Preprint at arXiv: 2408. 03354

Clark J, Amodei D (2016) Faulty reward functions in the wild. Internet: https://
blogopenaicom/faulty-reward-functions

Cui H, Du Y, Yang Q et al (2024) Llmind: Orchestrating ai and iot with llm for
complex task execution. Preprint at arXiv: 2312. 09007

Dang Y, Huang K, Huo J et al (2024) Explainable and interpretable multimodal
large language models: a comprehensive survey. Preprint at arXiv: 2412.
02104

Das BC, Amini MH, Wu Y (2024) Security and privacy challenges of large lan-
guage models: a survey. Preprint at arXiv: 2402. 00888

de Fitero-Dominguez D, García-López E, García-Cabot A (2024) Enhanced
automated code vulnerability repair using large language models. Eng
Appl Artif Intell 138:109291. https:// doi. org/ 10. 1016/J. ENGAP PAI. 2024.
109291

de Jesus Coelho da Silva G, Westphall CB (2024) A survey of large language
models in cybersecurity. Preprint at arXiv: 2402. 16968

Dehghan M, Wu JJ, Fard FH et al (2024) Mergerepair: An exploratory study on
merging task-specific adapters in code llms for automated program
repair. Preprint at arXiv: 2408. 09568

Deng G, Liu Y, Mayoral-Vilches V et al (2023a) Pentestgpt: An llm-empowered
automatic penetration testing tool. Preprint at arXiv: 2308. 06782

Deng Y, Xia CS, Peng H et al (2023b) Large language models are zero-shot
fuzzers: fuzzing deep-learning libraries via large language models. In:
Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis. Association for Computing Machinery,
New York, NY, USA, ISSTA 2023, p 423-435, https:// doi. org/ 10. 1145/
35979 26. 35980 67

Deng Y, Xia CS, Yang C et al (2023c) Large language models are edge-case
fuzzers: Testing deep learning libraries via fuzzgpt. Preprint at arXiv:
2304. 02014

Deng G, Liu Y, Li Y et al (2024) Masterkey: automated jailbreaking of large lan-
guage model chatbots. In: Proceedings 2024 Network and Distributed
System Security Symposium. Internet Society, NDSS 2024, https:// doi.
org/ 10. 14722/ ndss. 2024. 24188

Dettmers T, Pagnoni A, Holtzman A et al (2024) Qlora: efficient finetuning of
quantized llms. Adv Neural Inf Process Syst. 36

Dev S, Jha A, Goyal J et al (2023) Building stereotype repositories with llms and
community engagement for scale and depth. Cross-Cultural Considera-
tions in NLP@ EACL 84

Ding N, Qin Y, Yang G et al (2023) Parameter-efficient fine-tuning of large-scale
pre-trained language models. Nat Machi Intell 5(3):220–235

http://arxiv.org/abs/2309.16021
http://arxiv.org/abs/2311.16867
http://arxiv.org/abs/2312.00024
http://arxiv.org/abs/2312.00024
https://doi.org/10.3233/FAIA241032
https://www.usenix.org/conference/usenixsecurity24/presentation/asmita
https://www.usenix.org/conference/usenixsecurity24/presentation/asmita
http://arxiv.org/abs/2308.14434
http://arxiv.org/abs/2308.09183
https://doi.org/10.1109/CNS59707.2023.10288940
http://arxiv.org/abs/2312.04724
http://arxiv.org/abs/2405.20441
http://arxiv.org/abs/2405.20441
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
https://openaipublic.blob.core.windows.net/neuron-explainer/paper/index.html
http://arxiv.org/abs/2308.04477
http://arxiv.org/abs/2408.10738
http://papers.nips.cc/paper_files/paper/2022/hash/564b5f8289ba846ebc498417e834c253-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/564b5f8289ba846ebc498417e834c253-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/564b5f8289ba846ebc498417e834c253-Abstract-Conference.html
http://arxiv.org/abs/2206.13353
http://arxiv.org/abs/2206.13353
http://arxiv.org/abs/2405.08848
http://arxiv.org/abs/2405.08848
http://arxiv.org/abs/2305.15336
http://arxiv.org/abs/2407.08708
http://arxiv.org/abs/2308.04662
http://arxiv.org/abs/2308.04662
https://doi.org/10.1145/3607199.3607242
https://doi.org/10.1145/3607199.3607242
https://openreview.net/forum?id=KuPixIqPiq
https://doi.org/10.1145/3639478.3647633
https://doi.org/10.1145/3639478.3647633
http://arxiv.org/abs/2304.07232
http://arxiv.org/abs/2402.05668
http://arxiv.org/abs/2408.03354
http://arxiv.org/abs/2312.09007
http://arxiv.org/abs/2412.02104
http://arxiv.org/abs/2412.02104
http://arxiv.org/abs/2402.00888
https://doi.org/10.1016/J.ENGAPPAI.2024.109291
https://doi.org/10.1016/J.ENGAPPAI.2024.109291
http://arxiv.org/abs/2402.16968
http://arxiv.org/abs/2408.09568
http://arxiv.org/abs/2308.06782
https://doi.org/10.1145/3597926.3598067
https://doi.org/10.1145/3597926.3598067
http://arxiv.org/abs/2304.02014
http://arxiv.org/abs/2304.02014
https://doi.org/10.14722/ndss.2024.24188
https://doi.org/10.14722/ndss.2024.24188

Page 34 of 41Zhang et al. Cybersecurity (2025) 8:55

Ding P, Kuang J, Ma D et al (2024) A wolf in sheep’s clothing: Generalized
nested jailbreak prompts can fool large language models easily. In:
Duh K, Gómez-Adorno H, Bethard S (eds) Proceedings of the 2024
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024. Asso-
ciation for Computational Linguistics, pp 2136–2153, https:// doi. org/ 10.
18653/ V1/ 2024. NAACL- LONG. 118

Donadel D, Marchiori F, Pajola L et al (2024) Can llms understand computer
networks? towards a virtual system administrator. Preprint at arXiv: 2404.
12689

Dong G, Yuan H, Lu K et al (2023) How abilities in large language models are
affected by supervised fine-tuning data composition. Preprint at arXiv:
2310. 05492

Dong X, Wang Y, Yu PS et al (2024) Disclosure and mitigation of gender bias in
llms. Preprint at arXiv: 2402. 11190

Du X, Wen M, Zhu J et al (2024a) Generalization-enhanced code vulnerability
detection via multi-task instruction fine-tuning. In: Ku L, Martins A, Sri-
kumar V (eds) Findings of the Association for Computational Linguistics,
ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024.
Association for Computational Linguistics, pp 10507–10521, https:// doi.
org/ 10. 18653/ V1/ 2024. FINDI NGS- ACL. 625

Du X, Zheng G, Wang K et al (2024b) Vul-rag: Enhancing llm-based vulnerabil-
ity detection via knowledge-level rag. Preprint at arXiv: 2406. 11147

Elhage N, Nanda N, Olsson C et al (2021) A mathematical framework for trans-
former circuits. Trans Circuits Thread 1(1):12

Elhage N, Hume T, Olsson C et al (2022) Toy models of superposition. Trans
Circuits Thread

Esmradi A, Yip DW, Chan C (2023) A comprehensive survey of attack tech-
niques, implementation, and mitigation strategies in large language
models. In: Wang G, Wang H, Min G et al (eds) Ubiquitous Security
- Third International Conference, UbiSec 2023, Exeter, UK, November
1-3, 2023, Revised Selected Papers, Communications in Computer and
Information Science, vol 2034. Springer, pp 76–95, https:// doi. org/ 10.
1007/ 978- 981- 97- 1274-8_6

Fang C, Miao N, Srivastav S et al (2024a) Large language models for code
analysis: Do llms really do their job? In: Balzarotti D, Xu W (eds) 33rd
USENIX Security Symposium, USENIX Security 2024, Philadelphia, PA,
USA, August 14-16, 2024. USENIX Association, https:// www. usenix. org/
confe rence/ useni xsecu rity24/ prese ntati on/ fang

Fang R, Bindu R, Gupta A et al (2024b) Llm agents can autonomously exploit
one-day vulnerabilities. Preprint at arXiv: 2404. 08144

Fang R, Bindu R, Gupta A et al (2024c) Llm agents can autonomously hack
websites. Preprint at arXiv: 2402. 06664

Fang R, Bindu R, Gupta A et al (2024d) Teams of llm agents can exploit zero-
day vulnerabilities. Preprint at arXiv: 2406. 01637

Fayyazi R, Yang SJ (2023) On the uses of large language models to interpret
ambiguous cyberattack descriptions. Preprint at arXiv: 2306. 14062

Fayyazi R, Taghdimi R, Yang SJ (2024) Advancing ttp analysis: Harnessing
the power of encoder-only and decoder-only language models with
retrieval augmented generation. Preprint at arXiv: 2401. 00280

Feng S, Chen C (2024) Prompting is all you need: Automated android bug
replay with large language models. In: Proceedings of the 46th IEEE/
ACM International Conference on Software Engineering, ICSE 2024,
Lisbon, Portugal, April 14-20, 2024. ACM, pp 67:1–67:13,https:// doi. org/
10. 1145/ 35975 03. 36081 37

Ferrag MA, Battah A, Tihanyi N et al (2023) Securefalcon: The next cyber rea-
soning system for cyber security. Preprint at arXiv: 2307. 06616

Ferrag MA, Alwahedi F, Battah A et al (2024a) Generative ai and large language
models for cyber security: All insights you need. Preprint at arXiv: 2405.
12750

Ferrag MA, Ndhlovu M, Tihanyi N et al (2024b) Revolutionizing cyber threat
detection with large language models: a privacy-preserving bert-based
lightweight model for iot/iiot devices. IEEE Access 12:23733–23750.
https:// doi. org/ 10. 1109/ ACCESS. 2024. 33634 69

Fieblinger R, Alam MT, Rastogi N (2024) Actionable cyber threat intelligence
using knowledge graphs and large language models. In: 2024 IEEE
European Symposium on Security and Privacy Workshops (EuroS &PW),
IEEE, pp 100–111

Francia J, Hansen D, Schooley B et al (2024) Assessing AI vs human-authored
spear phishing sms attacks: An empirical study using the trapd method.
Preprint at arXiv: 2406. 13049

Fujima H, Kumamoto T, Yoshida Y (2023) Using chatgpt to analyze ransomware
messages and to predict ransomware threats. https:// doi. org/ 10. 21203/
rs.3. rs- 36459 67/ v1

Gao L, la Tour TD, Tillman H et al (2024) Scaling and evaluating sparse autoen-
coders. Preprint at arXiv: 2406. 04093

Gao Z, Wang H, Zhou Y et al (2023) How far have we gone in vulnerability
detection using large language models. Preprint at arXiv: 2311. 12420

Ge Y, Hua W, Mei K et al (2024) Openagi: When llm meets domain experts. Adv
Neural Inf Process Syst. 36

Ghelani D (2022) Cyber security, cyber threats, implications and future per-
spectives: a review. Authorea Preprints

Gonçalves J, Dias T, Maia E et al (2024) Scope: Evaluating llms for software
vulnerability detection. Preprint at arXiv: 2407. 14372

Guastalla M, Li Y, Hekmati A et al (2023) Application of large language models
to ddos attack detection. In: International Conference on Security and
Privacy in Cyber-Physical Systems and Smart Vehicles, Springer, pp
83–99

Gulati A, Qin J, Chiu C et al (2020) Conformer: Convolution-augmented
transformer for speech recognition. In: Meng H, Xu B, Zheng TF (eds)
21st Annual Conference of the International Speech Communication
Association, Interspeech 2020, Virtual Event, Shanghai, China, October
25-29, 2020. ISCA, pp 5036–5040, https:// doi. org/ 10. 21437/ INTER
SPEECH. 2020- 3015

Guo H, Yang J, Liu J et al (2024a) OWL: A large language model for IT opera-
tions. In: The Twelfth International Conference on Learning Represen-
tations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net,
https:// openr eview. net/ forum? id= SZOQ9 RKYJu

Guo Y, Patsakis C, Hu Q et al (2024b) Outside the comfort zone: Analysing llm
capabilities in software vulnerability detection. In: European sympo-
sium on research in computer security, Springer, pp 271–289

Gupta M, Akiri C, Aryal K et al (2023) From chatgpt to threatgpt: impact of
generative AI in cybersecurity and privacy. IEEE Access 11:80218–80245.
https:// doi. org/ 10. 1109/ ACCESS. 2023. 33003 81

Han X, Yuan S, Trabelsi M (2023) Loggpt: Log anomaly detection via GPT. In:
He J, Palpanas T, Hu X et al (eds) IEEE International Conference on Big
Data, BigData 2023, Sorrento, Italy, December 15-18, 2023. IEEE, pp
1117–1122, https:// doi. org/ 10. 1109/ BIGDA TA590 44. 2023. 10386 543

Happe A, Cito J (2023) Getting pwn’d by AI: Penetration testing with large
language models. In: Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering. Association for Computing Machinery, New
York, NY, USA, ESEC/FSE 2023, p 2082-2086, https:// doi. org/ 10. 1145/
36116 43. 36130 83

Happe A, Kaplan A, Cito J (2023) Evaluating llms for privilege-escalation sce-
narios. Preprint at arXiv: 2310. 11409

Hays S, White DJ (2024) Employing llms for incident response planning and
review. Preprint at arXiv: 2403. 01271

He J, Vechev M (2023) Large language models for code: Security harden-
ing and adversarial testing. In: Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security. ACM, CCS ’23,
https:// doi. org/ 10. 1145/ 35769 15. 36231 75

He J, Vero M, Krasnopolska G et al (2024) Instruction tuning for secure code
generation. In: Forty-first International Conference on Machine Learn-
ing, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net,
https:// openr eview. net/ forum? id= MgTzM aYHvG

He R, Liu L, Ye H et al (2021) On the effectiveness of adapter-based tuning
for pretrained language model adaptation. In: Zong C, Xia F, Li W et al
(eds) Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021. Association for Computational
Linguistics, pp 2208–2222, https:// doi. org/ 10. 18653/ V1/ 2021. ACL-
LONG. 172

Heiding F, Schneier B, Vishwanath A et al (2023) Devising and detecting
phishing: Large language models vs. smaller human models. Preprint at
arXiv: 2308. 12287

Hendrycks D, Mazeika M, Woodside T (2023) An overview of catastrophic AI
risks. Preprint at arXiv: 2306. 12001

https://doi.org/10.18653/V1/2024.NAACL-LONG.118
https://doi.org/10.18653/V1/2024.NAACL-LONG.118
http://arxiv.org/abs/2404.12689
http://arxiv.org/abs/2404.12689
http://arxiv.org/abs/2310.05492
http://arxiv.org/abs/2310.05492
http://arxiv.org/abs/2402.11190
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.625
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.625
http://arxiv.org/abs/2406.11147
https://doi.org/10.1007/978-981-97-1274-8_6
https://doi.org/10.1007/978-981-97-1274-8_6
https://www.usenix.org/conference/usenixsecurity24/presentation/fang
https://www.usenix.org/conference/usenixsecurity24/presentation/fang
http://arxiv.org/abs/2404.08144
http://arxiv.org/abs/2402.06664
http://arxiv.org/abs/2406.01637
http://arxiv.org/abs/2306.14062
http://arxiv.org/abs/2401.00280
https://doi.org/10.1145/3597503.3608137
https://doi.org/10.1145/3597503.3608137
http://arxiv.org/abs/2307.06616
http://arxiv.org/abs/2405.12750
http://arxiv.org/abs/2405.12750
https://doi.org/10.1109/ACCESS.2024.3363469
http://arxiv.org/abs/2406.13049
https://doi.org/10.21203/rs.3.rs-3645967/v1
https://doi.org/10.21203/rs.3.rs-3645967/v1
http://arxiv.org/abs/2406.04093
http://arxiv.org/abs/2311.12420
http://arxiv.org/abs/2407.14372
https://doi.org/10.21437/INTERSPEECH.2020-3015
https://doi.org/10.21437/INTERSPEECH.2020-3015
https://openreview.net/forum?id=SZOQ9RKYJu
https://doi.org/10.1109/ACCESS.2023.3300381
https://doi.org/10.1109/BIGDATA59044.2023.10386543
https://doi.org/10.1145/3611643.3613083
https://doi.org/10.1145/3611643.3613083
http://arxiv.org/abs/2310.11409
http://arxiv.org/abs/2403.01271
https://doi.org/10.1145/3576915.3623175
https://openreview.net/forum?id=MgTzMaYHvG
https://doi.org/10.18653/V1/2021.ACL-LONG.172
https://doi.org/10.18653/V1/2021.ACL-LONG.172
http://arxiv.org/abs/2308.12287
http://arxiv.org/abs/2306.12001

Page 35 of 41Zhang et al. Cybersecurity (2025) 8:55

Hossen MI, Zhang J, Cao Y et al (2024) Assessing cybersecurity vulnerabilities
in code large language models. Preprint at arXiv: 2404. 18567

Hou X, Zhao Y, Liu Y et al (2023) Large language models for software engineer-
ing: a systematic literature review. ACM Trans Softw Eng Methodol

Hu EJ, Shen Y, Wallis P et al (2022) Lora: Low-rank adaptation of large language
models. In: The Tenth International Conference on Learning Represen-
tations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net,
https:// openr eview. net/ forum? id= nZeVK eeFYf9

Hu J, Zhang Q, Yin H (2023a) Augmenting greybox fuzzing with generative AI.
Preprint at arXiv: 2306. 06782

Hu S, Huang T, Ilhan F et al (2023b) Large language model-powered smart
contract vulnerability detection: New perspectives. In: 5th IEEE Interna-
tional Conference on Trust, Privacy and Security in Intelligent Systems
and Applications, TPS-ISA 2023, Atlanta, GA, USA, November 1-4, 2023.
IEEE, pp 297–306, https:// doi. org/ 10. 1109/ TPS- ISA58 951. 2023. 00044

Hu Y, Zou F, Han J et al (2024) LLM-TIKG: threat intelligence knowledge
graph construction utilizing large language model. Comput Secur
145:103999. https:// doi. org/ 10. 1016/J. COSE. 2024. 103999

Huang J, Zhu Q (2023) Penheal: a two-stage llm framework for automated
pentesting and optimal remediation. In: Proceedings of the Workshop
on Autonomous Cybersecurity, pp 11–22

Huang L, Yu W, Ma W et al (2023a) A survey on hallucination in large language
models: principles, taxonomy, challenges, and open questions. ACM
Trans Inf Syst

Huang Y, Du H, Zhang X et al (2023b) Large language models for networking:
Applications, enabling techniques, and challenges. Preprint at arXiv:
2311. 17474

Huang Y, Sun L, Wang H et al (2024) Trustllm: Trustworthiness in large language
models. In: Forty-first International Conference on Machine Learning,
ICML 2024,Vienna, Austria, July 21-27, 2024

Huben R, Cunningham H, Smith LR et al (2023) Sparse autoencoders find
highly interpretable features in language models. In: The Twelfth Inter-
national Conference on Learning Representations

Hubinger E, Denison C, Mu J et al (2024) Sleeper agents: Training deceptive
llms that persist through safety training. Preprint at arXiv: 2401. 05566

Ibrahim A, Thérien B, Gupta K et al (2024) Simple and scalable strategies to
continually pre-train large language models. Preprint at arXiv: 2403.
08763

Inan H, Upasani K, Chi J et al (2023) Llama guard: Llm-based input-output
safeguard for human-AI conversations. Preprint at arXiv: 2312. 06674

Ince P, Luo X, Yu J et al (2024) Detect Llama - Finding Vulnerabilities in Smart
Contracts Using Large Language Models, Springer, Singapore, p 424-
443. https:// doi. org/ 10. 1007/ 978- 981- 97- 5101-3_ 23

Islam NT, Khoury J, Seong A et al (2024) Llm-powered code vulnerability repair
with reinforcement learning and semantic reward. Preprint at arXiv:
2401. 03374

Jamal S, Wimmer H (2023) An improved transformer-based model for detect-
ing phishing, spam, and ham: a large language model approach.
Preprint at arXiv: 2311. 04913

Jensen RIT, Tawosi V, Alamir S (2024) Software vulnerability and functionality
assessment using llms. Preprint at arXiv: 2403. 08429

Ji H, Yang J, Chai L et al (2024) Sevenllm: Benchmarking, eliciting, and enhanc-
ing abilities of large language models in cyber threat intelligence.
Preprint at arXiv: 2405. 03446

Ji Z, Lee N, Frieske R et al (2023) Survey of hallucination in natural language
generation. ACM Comput Surv 55(12):1–38

Jiang N, Wang C, Liu K et al (2023a) Nova+: Generative language models for
binaries. Preprint at arXiv: 2311. 13721

Jiang S, Chen X, Tang R (2023b) Prompt packer: deceiving llms through com-
positional instruction with hidden attacks. Preprint at arXiv: 2310. 10077

Jiang AQ, Sablayrolles A, Roux A et al (2024a) Mixtral of experts. Preprint at
arXiv: 2401. 04088

Jiang Y, Liang J, Ma F et al (2024b) When fuzzing meets llms: Challenges and
opportunities. In: Companion Proceedings of the 32nd ACM Interna-
tional Conference on the Foundations of Software Engineering, pp
492–496

Jin J, Tang B, Ma M et al (2024) Crimson: Empowering strategic reasoning in
cybersecurity through large language models. Preprint at arXiv: 2403.
00878

Jin M, Shahriar S, Tufano M et al (2023) Inferfix: end-to-end program repair with
llms. In: Chandra S, Blincoe K, Tonella P (eds) Proceedings of the 31st

ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2023, San
Francisco, CA, USA, December 3-9, 2023. ACM, pp 1646–1656https://
doi. org/ 10. 1145/ 36116 43. 36138 92

Kabir S, Udo-Imeh DN, Kou B et al (2024) Is stack overflow obsolete? an empiri-
cal study of the characteristics of chatgpt answers to stack overflow
questions. In: Mueller FF, Kyburz P, Williamson JR et al (eds) Proceed-
ings of the CHI Conference on Human Factors in Computing Systems,
CHI 2024, Honolulu, HI, USA, May 11-16, 2024. ACM, pp 935:1–935:17,
https:// doi. org/ 10. 1145/ 36139 04. 36425 96

Kaheh M, Kholgh DK, Kostakos P (2023) Cyber sentinel: Exploring conversa-
tional agents in streamlining security tasks with gpt-4. Preprint at arXiv:
2309. 16422

Karlsen E, Luo X, Zincir-Heywood N et al (2024) Benchmarking large language
models for log analysis, security, and interpretation. J Netw Syst Manag
32(3):59. https:// doi. org/ 10. 1007/ S10922- 024- 09831-X

Kaur P, Kashyap GS, Kumar A et al (2024) From text to transformation: A
comprehensive review of large language models’ versatility. Preprint at
arXiv: 2402. 16142

Kaur R, Gabrijelčič D, Klobučar T (2023) Artificial intelligence for cybersecurity:
Literature review and future research directions. Information Fusion
NA:101804

Kavian A, Pourhashem Kallehbasti MM, Kazemi S et al (2024) Llm security
guard for code. In: Proceedings of the 28th International Conference on
Evaluation and Assessment in Software Engineering, pp 600–603

Keller J, Nowakowski J (2024) Ai-powered patching: the future of automated
vulnerability fixes. Tech. rep., google

Khare A, Dutta S, Li Z et al (2023) Understanding the effectiveness of large
language models in detecting security vulnerabilities. Preprint at arXiv:
2311. 16169

Khoury R, Avila AR, Brunelle J et al (2023) How secure is code generated by
chatgpt? In: IEEE International Conference on Systems, Man, and Cyber-
netics, SMC 2023, Honolulu, Oahu, HI, USA, October 1-4, 2023. IEEE, pp
2445–2451, https:// doi. org/ 10. 1109/ SMC53 992. 2023. 10394 237

Kong J, Cheng M, Xie X et al (2024) Contrastrepair: Enhancing conversation-
based automated program repair via contrastive test case pairs.
Preprint at arXiv: 2403. 01971

Kouliaridis V, Karopoulos G, Kambourakis G (2024) Assessing the effectiveness
of llms in android application vulnerability analysis. Preprint at arXiv:
2406. 18894

Kour G, Zalmanovici M, Zwerdling N et al (2023) Unveiling safety vulnerabilities
of large language models. Preprint at arXiv: 2311. 04124

Kulsum U, Zhu H, Xu B et al (2024) A case study of llm for automated vulner-
ability repair: Assessing impact of reasoning and patch validation
feedback. In: Proceedings of the 1st ACM International Conference on
AI-Powered Software, pp 103–111

Kumar S, Gupta U, Singh AK et al (2023) Artificial intelligence: revolutionizing
cyber security in the digital era. J Comput Mech Manag 2(3):31–42

Kumar SS, Cummings M, Stimpson A (2024) Strengthening llm trust bounda-
ries: A survey of prompt injection attacks surender suresh kumar dr.
ml cummings dr. alexander stimpson. In: 2024 IEEE 4th International
Conference on Human-Machine Systems (ICHMS), IEEE, pp 1–6

Lai J, Gan W, Wu J et al (2024) Large language models in law: a survey. AI Open.
5:181

Lapid R, Langberg R, Sipper M (2023) Open sesame! universal black box jail-
breaking of large language models. Preprint at arXiv: 2309. 01446

Le TK, Alimadadi S, Ko SY (2024) A study of vulnerability repair in javascript
programs with large language models. In: Chua T, Ngo C, Lee RK et al
(eds) Companion Proceedings of the ACM on Web Conference 2024,
WWW 2024, Singapore, Singapore, May 13-17, 2024. ACM, pp 666–669,
https:// doi. org/ 10. 1145/ 35893 35. 36514 63

Lee YT, Vijayakumar H, Qian Z et al (2024) Static detection of filesystem vulner-
abilities in android systems. Preprint at arXiv: 2407. 11279

Lemieux C, Inala JP, Lahiri SK et al (2023) Codamosa: Escaping coverage pla-
teaus in test generation · with pre-trained large language models. In:
2023 IEEE/ACM 45th International Conference on Software Engineering
(ICSE), pp 919–931, https:// doi. org/ 10. 1109/ ICSE4 8619. 2023. 00085

Lester B, Al-Rfou R, Constant N (2021) The power of scale for parameter-
efficient prompt tuning. In: Moens M, Huang X, Specia L et al (eds)
Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2021, Virtual Event / Punta Cana,

http://arxiv.org/abs/2404.18567
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/2306.06782
https://doi.org/10.1109/TPS-ISA58951.2023.00044
https://doi.org/10.1016/J.COSE.2024.103999
http://arxiv.org/abs/2311.17474
http://arxiv.org/abs/2311.17474
http://arxiv.org/abs/2401.05566
http://arxiv.org/abs/2403.08763
http://arxiv.org/abs/2403.08763
http://arxiv.org/abs/2312.06674
https://doi.org/10.1007/978-981-97-5101-3_23
http://arxiv.org/abs/2401.03374
http://arxiv.org/abs/2401.03374
http://arxiv.org/abs/2311.04913
http://arxiv.org/abs/2403.08429
http://arxiv.org/abs/2405.03446
http://arxiv.org/abs/2311.13721
http://arxiv.org/abs/2310.10077
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2403.00878
http://arxiv.org/abs/2403.00878
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/3611643.3613892
https://doi.org/10.1145/3613904.3642596
http://arxiv.org/abs/2309.16422
http://arxiv.org/abs/2309.16422
https://doi.org/10.1007/S10922-024-09831-X
http://arxiv.org/abs/2402.16142
http://arxiv.org/abs/2311.16169
http://arxiv.org/abs/2311.16169
https://doi.org/10.1109/SMC53992.2023.10394237
http://arxiv.org/abs/2403.01971
http://arxiv.org/abs/2406.18894
http://arxiv.org/abs/2406.18894
http://arxiv.org/abs/2311.04124
http://arxiv.org/abs/2309.01446
https://doi.org/10.1145/3589335.3651463
http://arxiv.org/abs/2407.11279
https://doi.org/10.1109/ICSE48619.2023.00085

Page 36 of 41Zhang et al. Cybersecurity (2025) 8:55

Dominican Republic, 7-11 November, 2021. Association for Compu-
tational Linguistics, pp 3045–3059, https:// doi. org/ 10. 18653/ V1/ 2021.
EMNLP- MAIN. 243

Levi M, Alluouche Y, Ohayon D et al (2024) Cyberpal. ai: Empowering llms with
expert-driven cybersecurity instructions. Preprint at arXiv: 2408. 09304

Li G, Li Y, Guannan W et al (2023a) Seceval: A comprehensive benchmark for
evaluating cybersecurity knowledge of foundation models. https://
github. com/ Xuanw uAI/ SecEv al

Li H, Guo D, Fan W et al (2023b) Multi-step jailbreaking privacy attacks on
chatgpt. In: Bouamor H, Pino J, Bali K (eds) Findings of the Association
for Computational Linguistics: EMNLP 2023, Singapore, December 6-10,
2023. Association for Computational Linguistics, pp 4138–4153, https://
doi. org/ 10. 18653/ V1/ 2023. FINDI NGS- EMNLP. 272

Li H, Hao Y, Zhai Y et al (2023c) The hitchhiker’s guide to program analysis: a
journey with large language models. Preprint at arXiv: 2308. 00245

Li R, Allal LB, Zi Y et al (2023d) Starcoder: may the source be with you! Trans
Mach Learn Res 2023. https:// openr eview. net/ forum? id= KoFOg 41haE

Li Y, Du M, Song R et al (2023e) A survey on fairness in large language models.
Preprint at arXiv: 2308. 10149

Li Y, Wang S, Ding H et al (2023f) Large language models in finance: a survey.
In: Proceedings of the Fourth ACM International Conference on AI in
Finance, pp 374–382

Li G, Zhi C, Chen J et al (2024a) Exploring parameter-efficient fine-tuning of
large language model on automated program repair. In: Proceedings of
the 39th IEEE/ACM International Conference on Automated Software
Engineering, pp 719–731

Li J, Rabbi F, Cheng C et al (2024b) An exploratory study on fine-tuning large
language models for secure code generation. Preprint at arXiv: 2408.
09078

Li N, Pan A, Gopal A et al (2024c) The WMDP benchmark: Measuring and
reducing malicious use with unlearning. In: Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July
21-27, 2024. OpenReview.net

Li Z, Dutta S, Naik M (2024d) Llm-assisted static analysis for detecting security
vulnerabilities. Preprint at arXiv: 2405. 17238

Li Y, Liu Q (2021) A comprehensive review study of cyber-attacks and cyber
security; emerging trends and recent developments. Energy Rep
7:8176–8186

Lin YZ, Mamun M, Chowdhury MA et al (2023) Hw-v2w-map: Hardware vulner-
ability to weakness mapping framework for root cause analysis with
gpt-assisted mitigation suggestion. Preprint at arXiv: 2312. 13530

Lin Z, Cui J, Liao X et al (2024) Malla: Demystifying real-world large language
model integrated malicious services. In: Balzarotti D, Xu W (eds) 33rd
USENIX Security Symposium, USENIX Security 2024, Philadelphia, PA,
USA, August 14-16, 2024. USENIX Association, https:// www. usenix. org/
confe rence/ useni xsecu rity24/ prese ntati on/ lin- zilong

Liu B, Huo W, Zhang C et al (2018) αdiff: cross-version binary code similarity
detection with dnn. In: Proceedings of the 33rd ACM/IEEE international
conference on automated software engineering, pp 667–678

Liu H, Wang Y, Fan W et al (2023a) Trustworthy ai: A computational perspec-
tive. ACM Transactions on Intelligent Systems and Technology p 1-59.
https:// doi. org/ 10. 1145/ 35468 72, http:// dx. doi. org/ 10. 1145/ 35468 72

Liu J, Huang J, Huo Y et al (2023b) Log-based anomaly detection based on evt
theory with feedback. Preprint at arXiv: 2306. 05032

Liu P, Liu J, Fu L et al (2023c) How chatgpt is solving vulnerability management
problem. Preprint at arXiv: 2311. 06530

Liu P, Sun C, Zheng Y et al (2023d) Harnessing the power of llm to support
binary taint analysis. Preprint at arXiv: 2310. 08275

Liu X, Zheng Y, Du Z et al (2023e) Gpt understands, too. AI Open. NA
Liu Y, Jia Y, Geng R et al (2023f) Prompt injection attacks and defenses in llm-

integrated applications. Preprint at arXiv: 2310. 12815
Liu X, Ji K, Fu Y et al (2021) P-tuning v2: Prompt tuning can be comparable to

fine-tuning universally across scales and tasks. Preprint at arXiv: 2110.
07602

Liu Z (2023) Secqa: A concise question-answering dataset for evaluating large
language models in computer security. Preprint at arXiv: 2312. 15838

Liu J, Xia CS, Wang Y et al (2024a) Is your code generated by chatgpt really
correct? rigorous evaluation of large language models for code genera-
tion. Adv Neural Inf Process Syst. 36

Liu Y, Pei C, Xu L et al (2024b) Opseval: A comprehensive it operations bench-
mark suite for large language models. Preprint at arXiv: 2310. 07637

Liu Y, Tao S, Meng W et al (2024c) Interpretable online log analysis using large
language models with prompt strategies. In: Steinmacher I, Linares-
Vásquez M, Moran KP et al (eds) Proceedings of the 32nd IEEE/ACM
International Conference on Program Comprehension, ICPC 2024,
Lisbon, Portugal, April 15-16, 2024. ACM, pp 35–46, https:// doi. org/ 10.
1145/ 36439 16. 36444 08

Liu Y, Yuan Y, Wang C et al (2024d) From summary to action: Enhancing large
language models for complex tasks with open world apis. Preprint at
arXiv: 2402. 18157

Liu Z, Chen C, Wang J et al (2024e) Make LLM a testing expert: Bringing
human-like interaction to mobile GUI testing via functionality-aware
decisions. In: Proceedings of the 46th IEEE/ACM International Confer-
ence on Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20,
2024. ACM, pp 100:1–100:13, https:// doi. org/ 10. 1145/ 35975 03. 36391 80

Liu Z, Shi J, Buford JF (2024f) Cyberbench: A multi-task benchmark for evaluat-
ing large language models in cybersecurity. In: AAAI 2024 Workshop on
Artificial Intelligence for Cyber Security

Liu Z, Liao Q, Gu W et al (2023g) Software vulnerability detection with gpt and
in-context learning. In: 2023 8th International Conference on Data Sci-
ence in Cyberspace (DSC), pp 229–236, https:// doi. org/ 10. 1109/ DSC59
305. 2023. 00041

Liu Z, Tang Y, Luo X et al (2024) No need to lift a finger anymore? assessing
the quality of code generation by chatgpt. IEEE Trans Software Eng
50(6):1548–1584. https:// doi. org/ 10. 1109/ TSE. 2024. 33924 99

Lozhkov A, Li R, Allal LB et al (2024) Starcoder 2 and the stack v2: The next
generation. Preprint at arXiv: 2402. 19173

Lu H, Peng H, Nan G et al (2024) Malsight: Exploring malicious source code
and benign pseudocode for iterative binary malware summarization.
Preprint at arXiv: 2406. 18379

Luo Z, Xu C, Zhao P et al (2024) Wizardcoder: Empowering code large
language models with evol-instruct. In: The Twelfth International
Conference on Learning Representations, ICLR 2024, Vienna, Austria,
May 7-11, 2024. OpenReview.net, https:// openr eview. net/ forum? id=
UnUwS IgK5W

Mahyari AA (2024) Harnessing the power of llms in source code vulnerability
detection. Preprint at arXiv: 2408. 03489

Mani SK, Zhou Y, Hsieh K et al (2023) Enhancing network management using
code generated by large language models. In: Proceedings of the 22nd
ACM Workshop on Hot Topics in Networks. Association for Computing
Machinery, New York, NY, USA, HotNets ’23, p 196-204, https:// doi. org/
10. 1145/ 36261 11. 36281 83

Mao Q, Li Z, Hu X et al (2024a) Towards effectively detecting and explaining
vulnerabilities using large language models. Preprint at arXiv: 2406.
09701

Mao Z, Li J, Li M et al (2024b) Multi-role consensus through llms discussions for
vulnerability detection. Preprint at arXiv: 2403. 14274

Mathews NS, Brus Y, Aafer Y et al (2024) Llbezpeky: Leveraging large language
models for vulnerability detection. Preprint at arXiv: 2401. 01269

Maynez J, Narayan S, Bohnet B et al (2020) On faithfulness and factuality in
abstractive summarization. In: Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics. Association for Com-
putational Linguistics, Online, pp 1906–1919, https:// doi. org/ 10. 18653/
v1/ 2020. acl- main. 173

Meng R, Mirchev M, Böhme M et al (2024) Large language model guided
protocol fuzzing. In: 31st Annual Network and Distributed System
Security Symposium, NDSS 2024, San Diego, California, USA, February
26 - March 1, 2024. The Internet Society, https:// www. ndss- sympo sium.
org/ ndss- paper/ large- langu age- model- guided- proto col- fuzzi ng/

Miao Y, Bai Y, Chen L et al (2023) An empirical study of netops capability of pre-
trained large language models. Preprint at arXiv: 2309. 05557

Michelet G, Breitinger F (2024) Chatgpt, llama, can you write my report? an
experiment on assisted digital forensics reports written using (local)
large language models. Forensic Sci Int Digit Investig 48:301683.
https:// doi. org/ 10. 1016/J. FSIDI. 2023. 301683

Mijwil M, Aljanabi M et al (2023) Towards artificial intelligence-based
cybersecurity: the practices and chatgpt generated ways to combat
cybercrime. Iraqi J Comput Sci Math 4(1):65–70

Minaee S, Mikolov T, Nikzad N et al (2024) Large language models: a survey.
Preprint at arXiv: 2402. 06196

https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
http://arxiv.org/abs/2408.09304
https://github.com/XuanwuAI/SecEval
https://github.com/XuanwuAI/SecEval
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.272
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.272
http://arxiv.org/abs/2308.00245
https://openreview.net/forum?id=KoFOg41haE
http://arxiv.org/abs/2308.10149
http://arxiv.org/abs/2408.09078
http://arxiv.org/abs/2408.09078
http://arxiv.org/abs/2405.17238
http://arxiv.org/abs/2312.13530
https://www.usenix.org/conference/usenixsecurity24/presentation/lin-zilong
https://www.usenix.org/conference/usenixsecurity24/presentation/lin-zilong
https://doi.org/10.1145/3546872
http://dx.doi.org/10.1145/3546872
http://arxiv.org/abs/2306.05032
http://arxiv.org/abs/2311.06530
http://arxiv.org/abs/2310.08275
http://arxiv.org/abs/2310.12815
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2312.15838
http://arxiv.org/abs/2310.07637
https://doi.org/10.1145/3643916.3644408
https://doi.org/10.1145/3643916.3644408
http://arxiv.org/abs/2402.18157
https://doi.org/10.1145/3597503.3639180
https://doi.org/10.1109/DSC59305.2023.00041
https://doi.org/10.1109/DSC59305.2023.00041
https://doi.org/10.1109/TSE.2024.3392499
http://arxiv.org/abs/2402.19173
http://arxiv.org/abs/2406.18379
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
http://arxiv.org/abs/2408.03489
https://doi.org/10.1145/3626111.3628183
https://doi.org/10.1145/3626111.3628183
http://arxiv.org/abs/2406.09701
http://arxiv.org/abs/2406.09701
http://arxiv.org/abs/2403.14274
http://arxiv.org/abs/2401.01269
https://doi.org/10.18653/v1/2020.acl-main.173
https://doi.org/10.18653/v1/2020.acl-main.173
https://www.ndss-symposium.org/ndss-paper/large-language-model-guided-protocol-fuzzing/
https://www.ndss-symposium.org/ndss-paper/large-language-model-guided-protocol-fuzzing/
http://arxiv.org/abs/2309.05557
https://doi.org/10.1016/J.FSIDI.2023.301683
http://arxiv.org/abs/2402.06196

Page 37 of 41Zhang et al. Cybersecurity (2025) 8:55

Mitra S, Neupane S, Chakraborty T et al (2024) Localintel: Generating organi-
zational threat intelligence from global and local cyber knowledge.
Preprint at arXiv: 2401. 10036

Mohammed SP, Hossain G (2024) Chatgpt in education, healthcare, and
cybersecurity: Opportunities and challenges. In: 2024 IEEE 14th Annual
Computing and Communication Workshop and Conference (CCWC),
IEEE, pp 0316–0321

Moskal S, Laney S, Hemberg E et al (2023) Llms killed the script kiddie: How
agents supported by large language models change the landscape of
network threat testing. Preprint at arXiv: 2310. 06936

Motlagh FN, Hajizadeh M, Majd M et al (2024) Large language models in
cybersecurity: state-of-the-art. Preprint at arXiv: 2402. 00891

Mtsweni J, Gcaza N, Thaba M (2018) A unified cybersecurity framework for
complex environments. In: Proceedings of the Annual Conference of
the South African Institute of Computer Scientists and Information
Technologists, pp 1–9

Murthy S, Bakar AA, Rahim FA et al (2019) A comparative study of data
anonymization techniques. In: HPSC, IEEE, pp 306–309

Nagy B, Hegedűs I, Sándor N et al (2023) Privacy-preserving federated learning
and its application to natural language processing. Knowledge-Based
Syst 268:110475

Nahmias D, Engelberg G, Klein D et al (2024) Prompted contextual vectors for
spear-phishing detection. Preprint at arXiv: 2402. 08309

Nijkamp E, Hayashi H, Xiong C et al (2023a) Codegen2: Lessons for training
llms on programming and natural languages. Preprint at arXiv: 2305.
02309

Nijkamp E, Pang B, Hayashi H et al (2023b) Codegen: An open large language
model for code with multi-turn program synthesis. In: The Eleventh
International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, https:// openr eview.
net/ forum? id= iaYcJ KpY2B_

Omar M, Shiaeles S (2023) Vuldetect: A novel technique for detecting software
vulnerabilities using language models. In: IEEE International Conference
on Cyber Security and Resilience, CSR 2023, Venice, Italy, July 31 - Aug.
2, 2023. IEEE, pp 105–110, https:// doi. org/ 10. 1109/ CSR57 506. 2023.
10224 924

Ouyang L, Wu J, Jiang X et al (2022) Training language models to follow
instructions with human feedback. Adv Neural Inf Process Syst
35:27730–27744

Palacio DN, Velasco A, Rodriguez-Cardenas D et al (2023) Evaluating and
explaining large language models for code using syntactic structures.
Preprint at arXiv: 2308. 03873

Pankajakshan R, Biswal S, Govindarajulu Y et al (2024) Mapping llm security
landscapes: a comprehensive stakeholder risk assessment proposal.
Preprint at arXiv: 2403. 13309

Paria S, Dasgupta A, Bhunia S (2023) Divas: An llm-based end-to-end frame-
work for soc security analysis and policy-based protection. Preprint at
arXiv: 2308. 06932

Pasupuleti R, Vadapalli R, Mader C (2023) Cyber security issues and challenges
related to generative ai and chatgpt. In: 2023 Tenth International
Conference on Social Networks Analysis, Management and Security
(SNAMS), pp 1–5, https:// doi. org/ 10. 1109/ SNAMS 60348. 2023. 10375 472

Pearce H, Ahmad B, Tan B et al (2022a) Asleep at the keyboard? assessing the
security of github copilot’s code contributions. In: 2022 IEEE Sympo-
sium on Security and Privacy (SP), pp 754–768, https:// doi. org/ 10. 1109/
SP462 14. 2022. 98335 71

Pearce H, Tan B, Krishnamurthy P et al (2022b) Pop quiz! can a large language
model help with reverse engineering? Preprint at arXiv: 2202. 01142

Pearce H, Tan B, Ahmad B et al (2023) Examining zero-shot vulnerability repair
with large language models. In: 2023 IEEE Symposium on Security and
Privacy (SP), pp 2339–2356, https:// doi. org/ 10. 1109/ SP462 15. 2023.
10179 324

Pedro R, Castro D, Carreira P et al (2023) From prompt injections to sql injec-
tion attacks: How protected is your llm-integrated web application?
Preprint at arXiv: 2308. 01990

Peris C, Dupuy C, Majmudar J et al (2023) Privacy in the time of language
models. In: WSDM, pp 1291–1292

Perrina F, Marchiori F, Conti M et al (2023) AGIR: automating cyber threat intel-
ligence reporting with natural language generation. In: He J, Palpanas
T, Hu X et al (eds) IEEE International Conference on Big Data, BigData

2023, Sorrento, Italy, December 15-18, 2023. IEEE, pp 3053–3062,
https:// doi. org/ 10. 1109/ BIGDA TA590 44. 2023. 10386 116

Piet J, Alrashed M, Sitawarin C et al (2024) Jatmo: Prompt injection defense
by task-specific finetuning. In: García-Alfaro J, Kozik R, Choras M et al
(eds) Computer Security - ESORICS 2024 - 29th European Symposium
on Research in Computer Security, Bydgoszcz, Poland, September
16-20, 2024, Proceedings, Part I, Lecture Notes in Computer Sci-
ence, vol 14982. Springer, pp 105–124, https:// doi. org/ 10. 1007/
978-3- 031- 70879-4_6

Prapty RT, Kundu A, Iyengar A (2024) Using retriever augmented large lan-
guage models for attack graph generation. Preprint at arXiv: 2408. 05855

Pratama D, Suryanto N, Adiputra AA et al (2024) Cipher: Cybersecurity
intelligent penetration-testing helper for ethical researcher. Sensors
24(21):6878. https:// doi. org/ 10. 3390/ s2421 6878

Prenner JA, Robbes R (2021) Automatic program repair with openai’s codex:
Evaluating quixbugs. Preprint at arXiv: 2111. 03922

Purba MD, Ghosh A, Radford BJ et al (2023) Software vulnerability detection
using large language models. In: 2023 IEEE 34th International Sym-
posium on Software Reliability Engineering Workshops (ISSREW), pp
112–119, https:// doi. org/ 10. 1109/ ISSRE W60843. 2023. 00058

Qi J, Huang S, Luan Z et al (2023) Loggpt: Exploring chatgpt for log-based
anomaly detection. In: IEEE International Conference on High Perfor-
mance Computing & Communications, Data Science & Systems, Smart
City & Dependability in Sensor, Cloud & Big Data Systems & Application,
HPCC/DSS/SmartCity/DependSys 2023, Melbourne, Australia, Decem-
ber 17-21, 2023. IEEE, pp 273–280, https:// doi. org/ 10. 1109/ HPCC- DSS-
SMART CITY- DEPEN DSYS6 0770. 2023. 00045

Qiao B, Li L, Zhang X et al (2023) Taskweaver: A code-first agent framework.
Preprint at arXiv: 2311. 17541

Qin Y, Liang S, Ye Y et al (2024) Toolllm: Facilitating large language models to
master 16000+ real-world apis. In: The Twelfth International Confer-
ence on Learning Representations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net, https:// openr eview. net/ forum? id= dHng2 O0Jjr

Qiu H, Zhang S, Li A et al (2023) Latent jailbreak: A benchmark for evaluating
text safety and output robustness of large language models. Preprint at
arXiv: 2307. 08487

Radford A, Narasimhan K (2018) Improving language understanding by gen-
erative pre-training. https:// api. seman ticsc holar. org/ Corpu sID: 49313 245

Rajapaksha S, Rani R, Karafili E (2024) A rag-based question-answering solution
for cyber-attack investigation and attribution. Preprint at arXiv: 2408.
06272

Reti D, Becker N, Angeli T et al (2024) Act as a honeytoken generator! an
investigation into honeytoken generation with large language models.
Preprint at arXiv: 2404. 16118

Rigaki M, Lukás O, Catania CA et al (2024) Out of the cage: How stochastic par-
rots win in cyber security environments. In: Rocha AP, Steels L, van den
Herik HJ (eds) Proceedings of the 16th International Conference on
Agents and Artificial Intelligence, ICAART 2024, Volume 3, Rome, Italy,
February 24-26, 2024. SCITEPRESS, pp 774–781, https:// doi. org/ 10. 5220/
00123 91800 003636

Roy SS, Thota P, Naragam KV et al (2024) From chatbots to phishbots? –
preventing phishing scams created using chatgpt, google bard and
claude. Preprint at arXiv: 2310. 19181

Roziere B, Gehring J, Gloeckle F et al (2023) Code llama: Open foundation
models for code. Preprint at arXiv: 2308. 12950

Ruan J, Chen Y, Zhang B et al (2023) Tptu: Large language model-based ai
agents for task planning and tool usage. Preprint at arXiv: 2308. 03427

Saha D, Tarek S, Yahyaei K et al (2024) LLM for soc security: a paradigm shift.
IEEE Access 12:155498–155521. https:// doi. org/ 10. 1109/ ACCESS. 2024.
34273 69

Sahoo P, Singh AK, Saha S et al (2024) A systematic survey of prompt engineer-
ing in large language models: Techniques and applications. Preprint at
arXiv: 2402. 07927

Sandoval G, Pearce H, Nys T et al (2023) Lost at c: A user study on the security
implications of large language model code assistants. In: 32nd USENIX
Security Symposium (USENIX Security 23). USENIX Association, Ana-
heim, CA, pp 2205–2222, https:// www. usenix. org/ confe rence/ useni
xsecu rity23/ prese ntati on/ sando val

Sarabi A, Yin T, Liu M (2023) An llm-based framework for fingerprinting
internet-connected devices. In: Proceedings of the 2023 ACM on Inter-
net Measurement Conference. Association for Computing Machinery,

http://arxiv.org/abs/2401.10036
http://arxiv.org/abs/2310.06936
http://arxiv.org/abs/2402.00891
http://arxiv.org/abs/2402.08309
http://arxiv.org/abs/2305.02309
http://arxiv.org/abs/2305.02309
https://openreview.net/forum?id=iaYcJKpY2B_
https://openreview.net/forum?id=iaYcJKpY2B_
https://doi.org/10.1109/CSR57506.2023.10224924
https://doi.org/10.1109/CSR57506.2023.10224924
http://arxiv.org/abs/2308.03873
http://arxiv.org/abs/2403.13309
http://arxiv.org/abs/2308.06932
https://doi.org/10.1109/SNAMS60348.2023.10375472
https://doi.org/10.1109/SP46214.2022.9833571
https://doi.org/10.1109/SP46214.2022.9833571
http://arxiv.org/abs/2202.01142
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1109/SP46215.2023.10179324
http://arxiv.org/abs/2308.01990
https://doi.org/10.1109/BIGDATA59044.2023.10386116
https://doi.org/10.1007/978-3-031-70879-4_6
https://doi.org/10.1007/978-3-031-70879-4_6
http://arxiv.org/abs/2408.05855
https://doi.org/10.3390/s24216878
http://arxiv.org/abs/2111.03922
https://doi.org/10.1109/ISSREW60843.2023.00058
https://doi.org/10.1109/HPCC-DSS-SMARTCITY-DEPENDSYS60770.2023.00045
https://doi.org/10.1109/HPCC-DSS-SMARTCITY-DEPENDSYS60770.2023.00045
http://arxiv.org/abs/2311.17541
https://openreview.net/forum?id=dHng2O0Jjr
http://arxiv.org/abs/2307.08487
https://api.semanticscholar.org/CorpusID:49313245
http://arxiv.org/abs/2408.06272
http://arxiv.org/abs/2408.06272
http://arxiv.org/abs/2404.16118
https://doi.org/10.5220/0012391800003636
https://doi.org/10.5220/0012391800003636
http://arxiv.org/abs/2310.19181
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.03427
https://doi.org/10.1109/ACCESS.2024.3427369
https://doi.org/10.1109/ACCESS.2024.3427369
http://arxiv.org/abs/2402.07927
https://www.usenix.org/conference/usenixsecurity23/presentation/sandoval
https://www.usenix.org/conference/usenixsecurity23/presentation/sandoval

Page 38 of 41Zhang et al. Cybersecurity (2025) 8:55

New York, NY, USA, IMC ’23, p 478-484, https:// doi. org/ 10. 1145/ 36182
57. 36248 45

Scala NM, Reilly AC, Goethals PL et al (2019) Risk and the five hard problems of
cybersecurity. Risk Anal 39(10):2119–2126

Scanlon M, Breitinger F, Hargreaves C et al (2023) Chatgpt for digital forensic
investigation: the good, the bad, and the unknown. Forensic Sci Int
Digit Investig. 46:301609. https:// doi. org/ 10. 1016/j. fsidi. 2023. 301609
(https:// www. scien cedir ect. com/ scien ce/ artic le/ pii/ S2666 28172 30012
1X)

Schwartz Y, Benshimol L, Mimran D et al (2024) Llmcloudhunter: Harnessing
llms for automated extraction of detection rules from cloud-based cti.
Preprint at arXiv: 2407. 05194

Sekhari A, Acharya J, Kamath G et al (2021) Remember what you want to for-
get: Algorithms for machine unlearning. In: NeurIPS, pp 18075–18086

Shao M, Jancheska S, Udeshi M et al (2024) Nyu ctf dataset: A scalable open-
source benchmark dataset for evaluating llms in offensive security.
Preprint at arXiv: 2406. 05590

Sharma P, Dash B (2023) Impact of big data analytics and chatgpt on cyber-
security. In: 2023 4th International Conference on Computing and
Communication Systems (I3CS), pp 1–6, https:// doi. org/ 10. 1109/ I3CS5
8314. 2023. 10127 411

Shen X, Chen Z, Backes M et al (2023) “do anything now”: Characterizing and
evaluating in-the-wild jailbreak prompts on large language models.
Preprint at arXiv: 2308. 03825

Shestov A, Levichev R, Mussabayev R et al (2024) Finetuning large language
models for vulnerability detection. Preprint at arXiv: 2401. 17010

Shi J, Liu Y, Zhou P et al (2023) Badgpt: Exploring security vulnerabilities of
chatgpt via backdoor attacks to instructgpt. Preprint at arXiv: 2304.
12298

Siddiq ML, Santos JCS (2022) Securityeval dataset: mining vulnerability
examples to evaluate machine learning-based code generation
techniques. In: Proceedings of the 1st International Workshop on
Mining Software Repositories Applications for Privacy and Security.
Association for Computing Machinery, New York, NY, USA, MSR4P &S
2022, p 29-33, https:// doi. org/ 10. 1145/ 35490 35. 35611 84

Siddiq ML, Santos JCS (2023) Generate and pray: Using sallms to evaluate
the security of llm generated code. Preprint at arXiv: 2311. 00889

Silva A, Fang S, Monperrus M (2023) Repairllama: Efficient representations
and fine-tuned adapters for program repair. Preprint at arXiv: 2312.
15698

Singla T, Anandayuvaraj D, Kalu KG et al (2023) An empirical study on using
large language models to analyze software supply chain security
failures. In: Proceedings of the 2023 Workshop on Software Supply
Chain Offensive Research and Ecosystem Defenses. Association
for Computing Machinery, New York, NY, USA, SCORED ’23, p 5-15,
https:// doi. org/ 10. 1145/ 36057 70. 36252 14

Siracusano G, Sanvito D, Gonzalez R et al (2023) Time for action: Automated
analysis of cyber threat intelligence in the wild. Preprint at arXiv:
2307. 10214

Sladic M, Valeros V, Catania CA et al (2024) LLM in the shell: Generative
honeypots. In: IEEE European Symposium on Security and Privacy
Workshops, EuroS &PW 2024, Vienna, Austria, July 8-12, 2024. IEEE, pp
430–435, https:// doi. org/ 10. 1109/ EUROS PW613 12. 2024. 00054

Sobania D, Briesch M, Hanna C et al (2023) An analysis of the automatic bug
fixing performance of chatgpt. In: IEEE/ACM International Workshop
on Automated Program Repair, APR@ICSE 2023, Melbourne, Australia,
May 16, 2023. IEEE, pp 23–30, https:// doi. org/ 10. 1109/ APR59 189.
2023. 00012

Stewart I (2024) A framework to evaluate the risks of llms for assisting cbrn
production processes. https:// nonpr olife ration. org/a- frame work- to-
evalu ate- the- risks- of- llms- for- assis ting- cbrn- produ ction- proce sses/,
Accessed 31 Dec 2024

Storhaug A, Li J, Hu T (2023) Efficient avoidance of vulnerabilities in auto-
completed smart contract code using vulnerability-constrained decod-
ing. In: 2023 IEEE 34th International Symposium on Software Reliability
Engineering (ISSRE), IEEE, pp 683–693

Sun C, Lo D, Khoo S et al (2011) Towards more accurate retrieval of duplicate
bug reports. In: Alexander P, Pasareanu CS, Hosking JG (eds) 26th IEEE/
ACM International Conference on Automated Software Engineering
(ASE 2011), Lawrence, KS, USA, November 6-10, 2011. IEEE Computer
Society, pp 253–262, https:// doi. org/ 10. 1109/ ASE. 2011. 61000 61

Sun Y, Wu D, Xue Y et al (2024a) Llm4vuln: A unified evaluation framework for
decoupling and enhancing llms’ vulnerability reasoning. Preprint at
arXiv: 2401. 16185

Sun Y, Wu D, Xue Y et al (2024b) Gptscan: Detecting logic vulnerabilities in
smart contracts by combining GPT with program analysis. In: Proceed-
ings of the 46th IEEE/ACM International Conference on Software
Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM, pp
166:1–166:13, https:// doi. org/ 10. 1145/ 35975 03. 36391 17

Tabassi E (2023) Artificial intelligence risk management framework (AI rmf
1.0). https:// doi. org/ 10. 6028/ NIST. AI. 100-1, https:// tsapps. nist. gov/ publi
cation/ get_ pdf. cfm? pub_ id= 936225

Tamberg K, Bahsi H (2024) Harnessing large language models for software
vulnerability detection: A comprehensive benchmarking study. Preprint
at arXiv: 2405. 15614

Tambon F, Dakhel AM, Nikanjam A et al (2024) Bugs in large language models
generated code: an empirical study. Preprint at arXiv: 2403. 08937

Tan H, Luo Q, Li J et al (2024) Llm4decompile: Decompiling binary code
with large language models. In: Al-Onaizan Y, Bansal M, Chen Y (eds)
Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2024, Miami, FL, USA, November 12-16,
2024. Association for Computational Linguistics, pp 3473–3487, https://
aclan tholo gy. org/ 2024. emnlp- main. 203

Tang H, Hu K, Zhou JP et al (2024) Code repair with llms gives an exploration-
exploitation tradeoff. Preprint at arXiv: 2405. 17503

Tang X, Chen Z, Kim K et al (2023) Just-in-time security patch detection – llm
at the rescue for data augmentation. Preprint at arXiv: 2312. 01241

Tann W, Liu Y, Sim JH et al (2023) Using large language models for cybersecu-
rity capture-the-flag challenges and certification questions. Preprint at
arXiv: 2308. 10443

Team G, Anil R, Borgeaud S et al (2023) Gemini: A family of highly capable
multimodal models. Preprint at arXiv: 2312. 11805

Templeton A, Conerly T, Marcus J et al (2024) Scaling monosemanticity:
extracting interpretable features from claude 3 sonnet. Transformer
Circuits Thread

Thakur K, Qiu M, Gai K et al (2015) An investigation on cyber security threats
and security models. In: 2015 IEEE 2nd international conference on
cyber security and cloud computing, IEEE, pp 307–311

Tian R, Ye Y, Qin Y et al (2024) Debugbench: Evaluating debugging capabil-
ity of large language models. In: Ku L, Martins A, Srikumar V (eds)
Findings of the Association for Computational Linguistics, ACL 2024,
Bangkok, Thailand and virtual meeting, August 11-16, 2024. Associa-
tion for Computational Linguistics, pp 4173–4198, https:// doi. org/ 10.
18653/ V1/ 2024. FINDI NGS- ACL. 247

Tihanyi N, Bisztray T, Jain R et al (2023) The formai dataset: Generative AI in
software security through the lens of formal verification. In: Proceed-
ings of the 19th International Conference on Predictive Models and
Data Analytics in Software Engineering. Association for Computing
Machinery, New York, NY, USA, PROMISE 2023, p 33-43, https:// doi.
org/ 10. 1145/ 36175 55. 36178 74

Tihanyi N, Bisztray T, Ferrag MA et al (2024a) Do neutral prompts produce
insecure code? formai-v2 dataset: Labelling vulnerabilities in code
generated by large language models. Preprint at arXiv: 2404. 18353

Tihanyi N, Ferrag MA, Jain R et al (2024b) Cybermetric: A benchmark dataset
for evaluating large language models knowledge in cybersecurity.
Preprint at arXiv: 2402. 07688

Tol MC, Sunar B (2023) Zeroleak: Using llms for scalable and cost effective
side-channel patching. Preprint at arXiv: 2308. 13062

Tony C, Mutas M, Ferreyra NED et al (2023) Llmseceval: A dataset of natural
language prompts for security evaluations. In: 20th IEEE/ACM Inter-
national Conference on Mining Software Repositories, MSR 2023,
Melbourne, Australia, May 15-16, 2023. IEEE, pp 588–592, https:// doi.
org/ 10. 1109/ MSR59 073. 2023. 00084

Touvron H, Lavril T, Izacard G et al (2023a) Llama: Open and efficient founda-
tion language models. Preprint at arXiv: 2302. 13971

Touvron H, Martin L, Stone K et al (2023b) Llama 2: Open foundation and
fine-tuned chat models. Preprint at arXiv: 2307. 09288

Tseng P, Yeh Z, Dai X et al (2024a) Using llms to automate threat intelligence
analysis workflows in security operation centers. Preprint at arXiv:
2407. 13093

https://doi.org/10.1145/3618257.3624845
https://doi.org/10.1145/3618257.3624845
https://doi.org/10.1016/j.fsidi.2023.301609
https://www.sciencedirect.com/science/article/pii/S266628172300121X
https://www.sciencedirect.com/science/article/pii/S266628172300121X
http://arxiv.org/abs/2407.05194
http://arxiv.org/abs/2406.05590
https://doi.org/10.1109/I3CS58314.2023.10127411
https://doi.org/10.1109/I3CS58314.2023.10127411
http://arxiv.org/abs/2308.03825
http://arxiv.org/abs/2401.17010
http://arxiv.org/abs/2304.12298
http://arxiv.org/abs/2304.12298
https://doi.org/10.1145/3549035.3561184
http://arxiv.org/abs/2311.00889
http://arxiv.org/abs/2312.15698
http://arxiv.org/abs/2312.15698
https://doi.org/10.1145/3605770.3625214
http://arxiv.org/abs/2307.10214
http://arxiv.org/abs/2307.10214
https://doi.org/10.1109/EUROSPW61312.2024.00054
https://doi.org/10.1109/APR59189.2023.00012
https://doi.org/10.1109/APR59189.2023.00012
https://nonproliferation.org/a-framework-to-evaluate-the-risks-of-llms-for-assisting-cbrn-production-processes/
https://nonproliferation.org/a-framework-to-evaluate-the-risks-of-llms-for-assisting-cbrn-production-processes/
https://doi.org/10.1109/ASE.2011.6100061
http://arxiv.org/abs/2401.16185
https://doi.org/10.1145/3597503.3639117
https://doi.org/10.6028/NIST.AI.100-1
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936225
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=936225
http://arxiv.org/abs/2405.15614
http://arxiv.org/abs/2403.08937
https://aclanthology.org/2024.emnlp-main.203
https://aclanthology.org/2024.emnlp-main.203
http://arxiv.org/abs/2405.17503
http://arxiv.org/abs/2312.01241
http://arxiv.org/abs/2308.10443
http://arxiv.org/abs/2312.11805
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.247
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.247
https://doi.org/10.1145/3617555.3617874
https://doi.org/10.1145/3617555.3617874
http://arxiv.org/abs/2404.18353
http://arxiv.org/abs/2402.07688
http://arxiv.org/abs/2308.13062
https://doi.org/10.1109/MSR59073.2023.00084
https://doi.org/10.1109/MSR59073.2023.00084
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2407.13093
http://arxiv.org/abs/2407.13093

Page 39 of 41Zhang et al. Cybersecurity (2025) 8:55

Tseng P, Yeh Z, Dai X et al (2024b) Using llms to automate threat intelligence
analysis workflows in security operation centers. Preprint at arXiv:
2407. 13093

Ullah S, Han M, Pujar S et al (2023) Can large language models identify and
reason about security vulnerabilities? not yet. Preprint at arXiv: 2312.
12575

Usman Y, Upadhyay A, Gyawali P et al (2024) Is generative ai the next tacti-
cal cyber weapon for threat actors? unforeseen implications of ai
generated cyber attacks. Preprint at arXiv: 2408. 12806

Varshney T (2023) Introduction to llm agents. https:// devel oper. nvidia. com/
blog/ intro ducti on- to- llm- agents/

Vasa J, Thakkar A (2023) Deep learning: differential privacy preservation in
the era of big data. J Comput Inf Syst 63(3):608–631

Vasilatos C, Mahboobeh DJ, Lamri H et al (2024) Llmpot: Automated llm-
based industrial protocol and physical process emulation for ics
honeypots. Preprint at arXiv: 2405. 05999

Vaswani A, Shazeer N, Parmar N et al (2017) Attention is all you need. Adv
Neural Inf Process Syst. 30

Vörös T, Bergeron SP, Berlin K (2023) Web content filtering through knowl-
edge distillation of large language models. In: IEEE International
Conference on Web Intelligence and Intelligent Agent Technology,
WI-IAT 2023, Venice, Italy, October 26-29, 2023. IEEE, pp 357–361,
https:// doi. org/ 10. 1109/ WI- IAT59 888. 2023. 00058

Wang B (2021) Mesh-Transformer-JAX: Model-Parallel Implementation of
Transformer Language Model with JAX. https:// github. com/ kingo
flolz/ mesh- trans former- jax

Wang B, Xu C, Wang S et al (2021) Adversarial GLUE: A multi-task benchmark
for robustness evaluation of language models. In: Proceedings of
the Neural Information Processing Systems Track on Datasets and
Benchmarks 1, NeurIPS Datasets and Benchmarks 2021, December
2021, virtual

Wang H, Qu W, Katz G et al (2022) Jtrans: Jump-aware transformer for binary
code similarity detection. In: Proceedings of the 31st ACM SIGSOFT
International Symposium on Software Testing and Analysis, pp 1–13

Wang F (2023) Using large language models to mitigate ransomware threats.
Preprints

Wang B, Chen W, Pei H et al (2023a) Decodingtrust: A comprehensive assess-
ment of trustworthiness in gpt models. In: Thirty-seventh Conference
on Neural Information Processing Systems Datasets and Benchmarks
Track

Wang J, Huang Z, Liu H et al (2023b) Defecthunter: A novel llm-driven
boosted-conformer-based code vulnerability detection mechanism.
Preprint at arXiv: 2309. 15324

Wang L, Song M, Rezapour R et al (2023c) People’s perceptions toward bias
and related concepts in large language models: a systematic review.
Preprint at arXiv: 2309. 14504

Wang X, Wei J, Schuurmans D et al (2023d) Self-consistency improves chain of
thought reasoning in language models. In: The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, https:// openr eview. net/ forum? id=
1PL1N IMMrw

Wang Z, Xie W, Chen K et al (2023e) Self-deception: Reverse penetrating the
semantic firewall of large language models. Preprint at arXiv: 2308.
11521

Wang Z, Zhang L, Cao C et al (2023f) The effectiveness of large language mod-
els (chatgpt and codebert) for security-oriented code analysis. Available
at SSRN 4567887

Wang L, Wang J, Jung K et al (2024e) From sands to mansions: Enabling
automatic full-life-cycle cyberattack construction with llm. Preprint at
arXiv: 2407. 16928

Wang B, Chen M, Lin Y et al (2024a) An exploratory study on using large lan-
guage models for mutation testing. Preprint at arXiv: 2406. 09843

Wang H, Gao Z, Zhang C et al (2024b) Clap: Learning transferable binary code
representations with natural language supervision. In: Proceedings of
the 33rd ACM SIGSOFT International Symposium on Software Testing
and Analysis, pp 503–515

Wang J, Hu X, Hou W et al (2024c) On the robustness of chatgpt: an adversarial
and out-of-distribution perspective. IEEE Data Eng Bull 47(1):48–62

Wang J, Luo X, Cao L et al (2024d) Is your ai-generated code really safe?
evaluating large language models on secure code generation with
codeseceval. Preprint at arXiv: 2407. 02395

Wang M, Zhang N, Xu Z et al (2024f) Detoxifying large language models via
knowledge editing. In: Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers),
ACL 2024, Bangkok, Thailand, August 11-16, 2024. Association for
Computational Linguistics, pp 3093–3118, https:// doi. org/ 10. 18653/ V1/
2024. ACL- LONG. 171

Wang W, Liu E, Guo X et al (2024g) Anvil: Anomaly-based vulnerability identifi-
cation without labelled training data. Preprint at arXiv: 2408. 16028

Wang Y, Guo T, Huang Z et al (2024h) Revisiting evolutionary program repair
via code language model. Preprint at arXiv: 2408. 10486

Wei Y, Xia CS, Zhang L (2023) Copiloting the copilots: Fusing large language
models with completion engines for automated program repair. In:
Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing. Association for Computing Machinery, New York, NY, USA, ESEC/
FSE 2023, p 172-184, https:// doi. org/ 10. 1145/ 36116 43. 36162 71

Welbl J, Glaese A, Uesato J et al (2021) Challenges in detoxifying language
models. In: Findings of the Association for Computational Linguis-
tics: EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic,
16-20 November, 2021. Association for Computational Linguistics, pp
2447–2469, https:// doi. org/ 10. 18653/ V1/ 2021. FINDI NGS- EMNLP. 210

Wong K, Amayuelas A, Pan L et al (2024) Investigating the transferability of
code repair for low-resource programming languages. Preprint at arXiv:
2406. 14867

Wu Y, Jiang N, Pham HV et al (2023) How effective are neural networks for
fixing security vulnerabilities. In: Proceedings of the 32nd ACM SIGSOFT
International Symposium on Software Testing and Analysis. ACM, ISSTA
’23, https:// doi. org/ 10. 1145/ 35979 26. 35981 35

Wu F, Wu S, Cao Y et al (2024a) Wipi: A new web threat for llm-driven web
agents. Preprint at arXiv: 2402. 16965

Wu F, Zhang N, Jha S et al (2024b) A new era in llm security: Exploring security
concerns in real-world llm-based systems. Preprint at arXiv: 2402. 18649

Wu T, Luo L, Li YF et al (2024c) Continual learning for large language models: a
survey. Preprint at arXiv: 2402. 01364

Wu Y, Si S, Zhang Y et al (2024d) Evaluating the performance of chatgpt for
spam email detection. Preprint at arXiv: 2402. 15537

Wu Z, Tang F, Zhao M et al (2024e) Kgv: Integrating large language models
with knowledge graphs for cyber threat intelligence credibility assess-
ment. Preprint at arXiv: 2408. 08088

Xi Z, Chen W, Guo X et al (2023) The rise and potential of large language
model based agents: a survey. Preprint at arXiv: 2309. 07864

Xia CS, Wei Y, Zhang L (2022) Practical program repair in the era of large pre-
trained language models. Preprint at arXiv: 2210. 14179

Xia CS, Paltenghi M, Tian JL et al (2024) Fuzz4all: Universal fuzzing with large
language models. In: Proceedings of the 46th IEEE/ACM International
Conference on Software Engineering, ICSE 2024, Lisbon, Portugal, April
14-20, 2024. ACM, pp 126:1–126:13, https:// doi. org/ 10. 1145/ 35975 03.
36391 21

Xiang J, Xu X, Kong F et al (2024) How far can we go with practical function-
level program repair? Preprint at arXiv: 2404. 12833

Xu J, Fu Y, Tan SH et al (2024a) Aligning llms for fl-free program repair. Preprint
at arXiv: 2404. 08877

Xu J, Stokes JW, McDonald G et al (2024b) Autoattacker: A large language
model guided system to implement automatic cyber-attacks. Preprint
at arXiv: 2403. 01038

Xu K, Zhang GL, Yin X et al (2024c) Automated c/c++ program repair for high-
level synthesis via large language models. In: Proceedings of the 2024
ACM/IEEE International Symposium on Machine Learning for CAD, pp
1–9

Xu Z, Jain S, Kankanhalli M (2024d) Hallucination is inevitable: An innate limita-
tion of large language models. Preprint at arXiv: 2401. 11817

Xu Z, Liu Y, Deng G et al (2024e) Llm jailbreak attack versus defense tech-
niques—a comprehensive study. Preprint at arXiv: 2402. 13457

Yan J, Yadav V, Li S et al (2024a) Backdooring instruction-tuned large language
models with virtual prompt injection. In: Duh K, Gómez-Adorno H,
Bethard S (eds) Proceedings of the 2024 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 1: Long Papers), NAACL 2024,
Mexico City, Mexico, June 16-21, 2024. Association for Computational
Linguistics, pp 6065–6086, https:// doi. org/ 10. 18653/ V1/ 2024. NAACL-
LONG. 337

http://arxiv.org/abs/2407.13093
http://arxiv.org/abs/2407.13093
http://arxiv.org/abs/2312.12575
http://arxiv.org/abs/2312.12575
http://arxiv.org/abs/2408.12806
https://developer.nvidia.com/blog/introduction-to-llm-agents/
https://developer.nvidia.com/blog/introduction-to-llm-agents/
http://arxiv.org/abs/2405.05999
https://doi.org/10.1109/WI-IAT59888.2023.00058
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
http://arxiv.org/abs/2309.15324
http://arxiv.org/abs/2309.14504
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
http://arxiv.org/abs/2308.11521
http://arxiv.org/abs/2308.11521
http://arxiv.org/abs/2407.16928
http://arxiv.org/abs/2406.09843
http://arxiv.org/abs/2407.02395
https://doi.org/10.18653/V1/2024.ACL-LONG.171
https://doi.org/10.18653/V1/2024.ACL-LONG.171
http://arxiv.org/abs/2408.16028
http://arxiv.org/abs/2408.10486
https://doi.org/10.1145/3611643.3616271
https://doi.org/10.18653/V1/2021.FINDINGS-EMNLP.210
http://arxiv.org/abs/2406.14867
http://arxiv.org/abs/2406.14867
https://doi.org/10.1145/3597926.3598135
http://arxiv.org/abs/2402.16965
http://arxiv.org/abs/2402.18649
http://arxiv.org/abs/2402.01364
http://arxiv.org/abs/2402.15537
http://arxiv.org/abs/2408.08088
http://arxiv.org/abs/2309.07864
http://arxiv.org/abs/2210.14179
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1145/3597503.3639121
http://arxiv.org/abs/2404.12833
http://arxiv.org/abs/2404.08877
http://arxiv.org/abs/2403.01038
http://arxiv.org/abs/2401.11817
http://arxiv.org/abs/2402.13457
https://doi.org/10.18653/V1/2024.NAACL-LONG.337
https://doi.org/10.18653/V1/2024.NAACL-LONG.337

Page 40 of 41Zhang et al. Cybersecurity (2025) 8:55

Yan L, Sha L, Zhao L et al (2024b) Practical and ethical challenges of large
language models in education: a systematic scoping review. Br J Educ
Technol 55(1):90–112

Yan P, Tan S, Wang M et al (2023) Prompt engineering-assisted malware
dynamic analysis using gpt-4. Preprint at arXiv: 2312. 08317

Yang A, Xiao B, Wang B et al (2023) Baichuan 2: Open large-scale language
models. Preprint at arXiv: 2309. 10305

Yang AZ, Le Goues C, Martins R et al (2024a) Large language models for test-
free fault localization. In: Proceedings of the 46th IEEE/ACM Interna-
tional Conference on Software Engineering, pp 1–12

Yang AZH, Kolak S, Hellendoorn VJ et al (2024b) Revisiting unnaturalness
for automated program repair in the era of large language models.
Preprint at arXiv: 2404. 15236

Yang B, Tian H, Ren J et al (2024c) Multi-objective fine-tuning for enhanced
program repair with llms. Preprint at arXiv: 2404. 12636

Yang K, Liu J, Wu J et al (2024d) If llm is the wizard, then code is the wand: A
survey on how code empowers large language models to serve as
intelligent agents. Preprint at arXiv: 2401. 00812

Yang KC, Menczer F (2023) Anatomy of an ai-powered malicious social botnet.
Preprint at arXiv: 2307. 16336

Yang X, Rajbahadur GK, Lin D et al (2024) Simclone: detecting tabular data
clones using value similarity. ACM Trans Softw Eng Methodol. https://
doi. org/ 10. 1145/ 36769 61

Yang Y, Zhou X, Mao R et al (2025) Dlap: a deep learning augmented large
language model prompting framework for software vulnerability
detection. J Syst Softw 219:112234

Yao D, Zhang J, Harris IG et al (2023a) Fuzzllm: A novel and universal fuzzing
framework for proactively discovering jailbreak vulnerabilities in large
language models. Preprint at arXiv: 2309. 05274

Yao Y, Wang P, Tian B et al (2023b) Editing large language models: Problems,
methods, and opportunities. In: Bouamor H, Pino J, Bali K (eds) Proceed-
ings of the 2023 Conference on Empirical Methods in Natural Language
Processing, EMNLP 2023, Singapore, December 6-10, 2023. Association
for Computational Linguistics, pp 10222–10240, https:// doi. org/ 10.
18653/ V1/ 2023. EMNLP- MAIN. 632

Yao H, Lou J, Qin Z (2024a) Poisonprompt: Backdoor attack on prompt-based
large language models. In: IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2024, Seoul, Republic of Korea,
April 14-19, 2024. IEEE, pp 7745–7749, https:// doi. org/ 10. 1109/ ICASS
P48485. 2024. 10446 267

Yao Y, Duan J, Xu K et al (2024b) A survey on large language model (llm)
security and privacy: The good, the bad, and the ugly. High-Confidence
Computing p 100211

Ye Q, Axmed M, Pryzant R et al (2023) Prompt engineering a prompt engineer.
Preprint at arXiv: 2311. 05661

Yigit Y, Buchanan WJ, Tehrani MG et al (2024) Review of generative AI methods
in cybersecurity. Preprint at arXiv: 2403. 08701

Yin X, Ni C, Wang S et al (2024) Thinkrepair: Self-directed automated program
repair. In: Proceedings of the 33rd ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pp 1274–1286

Yu J, Lin X, Yu Z et al (2023) Gptfuzzer: Red teaming large language models
with auto-generated jailbreak prompts. Preprint at arXiv: 2309. 10253

Yu J, Liang P, Fu Y et al (2024) Security code review by llms: a deep dive into
responses. Preprint at arXiv: 2401. 16310

Yuan T, He Z, Dong L et al (2024) R-judge: Benchmarking safety risk awareness
for LLM agents. In: Al-Onaizan Y, Bansal M, Chen Y (eds) Findings of the
Association for Computational Linguistics: EMNLP 2024, Miami, Florida,
USA, November 12-16, 2024. Association for Computational Linguistics,
pp 1467–1490, https:// aclan tholo gy. org/ 2024. findi ngs- emnlp. 79

Çağatay Yıldız, Ravichandran NK, Punia P et al (2024) Investigating continual
pretraining in large language models: Insights and implications. Pre-
print at arXiv: 2402. 17400

Zahan N, Burckhardt P, Lysenko M et al (2024) Shifting the lens: Detecting
malware in npm ecosystem with large language models. Preprint at
arXiv: 2403. 12196

Zhan Q, Liang Z, Ying Z et al (2024) Injecagent: Benchmarking indirect prompt
injections in tool-integrated large language model agents. In: Ku L,
Martins A, Srikumar V (eds) Findings of the Association for Computa-
tional Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting,
August 11-16, 2024. Association for Computational Linguistics, pp
10471–10506, https:// doi. org/ 10. 18653/ V1/ 2024. FINDI NGS- ACL. 624

Zhang Y, Tiňo P, Leonardis A et al (2021) A survey on neural network interpret-
ability. IEEE Trans Emerg Topics Comput Intell 5(5):726–742

Zhang C, Bai M, Zheng Y et al (2023a) Understanding large language model
based fuzz driver generation. Preprint at arXiv: 2307. 12469

Zhang J, Wen H, Deng L et al (2023b) Hackmentor: Fine-tuning large language
models for cybersecurity. In: 2023 IEEE International Conference on
Trust, Security and Privacy in Computing and Communications (Trust-
Com), IEEE

Zhang S, Dong L, Li X et al (2023c) Instruction tuning for large language mod-
els: a survey. Preprint at arXiv: 2308. 10792

Zhang T, Irsan IC, Thung F et al (2023d) Cupid: Leveraging chatgpt for more
accurate duplicate bug report detection. Preprint at arXiv: 2308. 10022

Zhang Y, Li Y, Cui L et al (2023e) Siren’s song in the ai ocean: a survey on hal-
lucination in large language models. Preprint at arXiv: 2309. 01219

Zhang Y, Song W, Ji Z et al (2023f) How well does llm generate security tests?
Preprint at arXiv: 2310. 00710

Zhang AK, Perry N, Dulepet R et al (2024a) Cybench: A framework for evaluat-
ing cybersecurity capabilities and risks of language models. Preprint at
arXiv: 2408. 08926

Zhang C, Liu H, Zeng J et al (2024b) Prompt-enhanced software vulnerabil-
ity detection using chatgpt. In: Proceedings of the 2024 IEEE/ACM
46th International Conference on Software Engineering: Companion
Proceedings, ICSE Companion 2024, Lisbon, Portugal, April 14-20, 2024.
ACM, pp 276–277, https:// doi. org/ 10. 1145/ 36394 78. 36430 65

Zhang N, Yao Y, Tian B et al (2024c) A comprehensive study of knowledge edit-
ing for large language models. Preprint at arXiv: 2401. 01286

Zhang Q, Fang C, Xie Y et al (2024d) A systematic literature review on large
language models for automated program repair. Preprint at arXiv: 2405.
01466

Zhang T, Chen X, Qu C et al (2024e) Leveraging ai predicted and expert revised
annotations in interactive segmentation: Continual tuning or full train-
ing? Preprint at arXiv: 2402. 19423

Zhang W, Guo H, Le A et al (2024f) Lemur: Log parsing with entropy sampling
and chain-of-thought merging. Preprint at arXiv: 2402. 18205

Zhang Y, Du T, Ma Y et al (2024g) Attackg+: Boosting attack knowledge graph
construction with large language models. Preprint at arXiv: 2405. 04753

Zhao J, Rong Y, Guo Y et al (2023) Understanding programs by exploiting (fuzz-
ing) test cases. In: Rogers A, Boyd-Graber JL, Okazaki N (eds) Findings
of the Association for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023. Association for Computational Linguistics, pp
10667–10679, https:// doi. org/ 10. 18653/ V1/ 2023. FINDI NGS- ACL. 678

Zhao J, Yang D, Zhang L et al (2024a) Enhancing automated program repair
with solution design. In: Proceedings of the 39th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pp 1706–1718

Zhao S, Jia M, Luu AT et al (2024b) Universal vulnerabilities in large language
models: Backdoor attacks for in-context learning. In: Al-Onaizan Y,
Bansal M, Chen Y (eds) Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, EMNLP 2024, Miami, FL,
USA, November 12-16, 2024. Association for Computational Linguistics,
pp 11507–11522, https:// aclan tholo gy. org/ 2024. emnlp- main. 642

Zhao X, Yang X, Pang T et al (2024c) Weak-to-strong jailbreaking on large
language models. Preprint at arXiv: 2401. 17256

Zhao Y, Huang Z, Ma Y et al (2024d) Repair: Automated program repair with
process-based feedback. In: Ku L, Martins A, Srikumar V (eds) Findings
of the Association for Computational Linguistics, ACL 2024, Bangkok,
Thailand and virtual meeting, August 11-16, 2024. Association for
Computational Linguistics, pp 16415–16429, https:// doi. org/ 10. 18653/
V1/ 2024. FINDI NGS- ACL. 973

Zhao Z, Ma D, Chen L et al (2024e) Chemdfm: Dialogue foundation model for
chemistry. Preprint at arXiv: 2401. 14818

Zhou G, Guo X, Liu Z et al (2024a) Trafficformer: an efficient pre-trained model
for traffic data

Zhou H, Liu F, Gu B et al (2024b) A survey of large language models in medi-
cine: Progress, application, and challenge. Preprint at arXiv: 2311. 05112

Zhou X, Cao S, Sun X et al (2024c) Large language model for vulnerability
detection and repair: Literature review and roadmap. Preprint at arXiv:
2404. 02525

Zhou X, Tran DM, Le-Cong T et al (2024d) Comparison of static application
security testing tools and large language models for repo-level vulner-
ability detection. Preprint at arXiv: 2407. 16235

http://arxiv.org/abs/2312.08317
http://arxiv.org/abs/2309.10305
http://arxiv.org/abs/2404.15236
http://arxiv.org/abs/2404.12636
http://arxiv.org/abs/2401.00812
http://arxiv.org/abs/2307.16336
https://doi.org/10.1145/3676961
https://doi.org/10.1145/3676961
http://arxiv.org/abs/2309.05274
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.632
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.632
https://doi.org/10.1109/ICASSP48485.2024.10446267
https://doi.org/10.1109/ICASSP48485.2024.10446267
http://arxiv.org/abs/2311.05661
http://arxiv.org/abs/2403.08701
http://arxiv.org/abs/2309.10253
http://arxiv.org/abs/2401.16310
https://aclanthology.org/2024.findings-emnlp.79
http://arxiv.org/abs/2402.17400
http://arxiv.org/abs/2403.12196
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.624
http://arxiv.org/abs/2307.12469
http://arxiv.org/abs/2308.10792
http://arxiv.org/abs/2308.10022
http://arxiv.org/abs/2309.01219
http://arxiv.org/abs/2310.00710
http://arxiv.org/abs/2408.08926
https://doi.org/10.1145/3639478.3643065
http://arxiv.org/abs/2401.01286
http://arxiv.org/abs/2405.01466
http://arxiv.org/abs/2405.01466
http://arxiv.org/abs/2402.19423
http://arxiv.org/abs/2402.18205
http://arxiv.org/abs/2405.04753
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.678
https://aclanthology.org/2024.emnlp-main.642
http://arxiv.org/abs/2401.17256
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.973
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.973
http://arxiv.org/abs/2401.14818
http://arxiv.org/abs/2311.05112
http://arxiv.org/abs/2404.02525
http://arxiv.org/abs/2404.02525
http://arxiv.org/abs/2407.16235

Page 41 of 41Zhang et al. Cybersecurity (2025) 8:55

Zhu S, Zhang R, An B et al (2024) Autodan: interpretable gradient-based
adversarial attacks on large language models. In: First Conference on
Language Modeling

Ziems N, Liu G, Flanagan J et al (2023) Explaining tree model decisions in
natural language for network intrusion detection. Preprint at arXiv:
2310. 19658

Zoph B, Raffel C, Schuurmans D et al (2022) Emergent abilities of large lan-
guage models. TMLR

Zou A, Wang Z, Carlini N et al (2023) Universal and transferable adversarial
attacks on aligned language models. Preprint at arXiv: 2307. 15043

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Hui Wen is currently an associate professor at the Institute of Infor-
mation Engineering, Chinese Academy of Sciences. His research
interests are related to malware analysis and IoT security.

Hongsong Zhu is currently a researcher at the Institute of Informa-
tion Engineering, Chinese Academy of Sciences. The research field
is cyberspace security. Research interests include: Internet of Things
security, network confrontation, intelligent attack and defense, cyber-
space security measurement and threat situation awareness, etc.

http://arxiv.org/abs/2310.19658
http://arxiv.org/abs/2310.19658
http://arxiv.org/abs/2307.15043

	When LLMs meet cybersecurity: a systematic literature review
	Abstract
	Introduction
	Preliminaries
	LLMs in cybersecurity
	Cybersecurity categories of LLMs application

	RQ1: How to construct cybersecurity-oriented domain LLMs?
	Selection of base model for constructing domain LLM by evaluating cybersecurity capabilities
	Key technologies in constructing domain LLMs
	Fine-tuned domain LLMs for cybersecurity

	RQ2: What are the potential applications of LLMs in cybersecurity?
	Threat intelligence
	Vulnerability detection
	Malware detection
	LLMs as the static analysis assistant
	LLMs as the dynamic debugging assistant

	Anomaly detection
	Log-based anomaly detection
	Web content security
	Digital forensic

	Fuzz
	What are the advantages of LLMs fuzz over traditional methods?
	Specific fuzzing strategies for different testing objects

	Program repairing
	Evaluation of existing LLMs on program repairing
	Combined LLMs with static analysis tools
	Improving repair capabilities through different strategies
	Target-specific program repairing

	LLM assisted attack
	Current status of LLM-assisted attacks
	LLM-enabled automated penetration testing
	LLM-assisted automatic full-life-cycle cyberattack
	LLM-assisted phishing websiteemail generation
	LLM-assisted privilege escalation attacks
	LLM-assisted payload generation
	LLM-assisted attack graph generation
	LLM-assisted capture the flag (CTF) challenges
	Proxies for attacks

	(In)secure code generation
	Others
	IoT fingerprint
	Botnet
	Security patch detection
	SoC security
	Taint analysis
	LLMs’ input–output safeguard
	Honeypot
	Incidence response
	Network management
	Vulnerabilities reproduction
	Expertise Q&A on cybersecurity domain

	RQ3: What are the challenge and further research for the application of LLMs in cybersecurity?
	Challenge
	Attacks against LLMs
	Model safety risks
	LLMs trustworthy Concerns
	Lack of Interpretability

	Frontier risks

	Further research

	Conclusion
	Acknowledgements
	References

