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Abstract

While conventional backdoor attacks on deep neural networks
(DNNs) assume the attacker can manipulate the training data
or process, recent research introduces a more practical threat
model by injecting backdoors during the inference stage.
These approaches exploit bit flip attacks to modify model
weights, leveraging memory fault injection techniques like
Rowhammer. However, they face a significant limitation—
requiring multiple bits to be flipped simultaneously, which is
highly difficult in practice. Additionally, they primarily target
quantized models, leaving the feasibility of inference-time
backdoor attacks on full-precision models unclear. To address
these limitations, we propose ONEFLIP, the first one-bit-flip
backdoor attack on full-precision models. Unlike prior meth-
ods that rely on optimization-based bit searches and require
flipping multiple bits, our algorithm selects a weight for the
attack and flips a single bit of the weight to insert a back-
door. We evaluate ONEFLIP on the CIFAR-10, CIFAR-100,
GTSRB, and ImageNet datasets, covering different DNN ar-
chitectures, including a vision transformer. The results demon-
strate that ONEFLIP achieves high attack success rates (up
t0 99.9%, with an average of 99.6%) while causing minimal
degradation to benign accuracy (as low as 0.005%, averaging
0.06%). Moreover, ONEFLIP is resilient to backdoor defenses.
Our findings underscore a critical threat to DNNs: flipping
just one bit in full-precision models is sufficient to execute a
successful backdoor attack.

1 Introduction

Deep neural networks (DNNs) have become integral to numer-
ous applications, making their security increasingly critical.
Among the many threats, backdoor attacks have emerged as
particularly stealthy [9, 16,29,40,49,55,61,64,81, 84]. Back-
door attacks insert trojans into a model such that it behaves
normally on clean inputs but produces unexpected outputs
when a pre-determined trigger is applied.
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Conventional backdoor attacks assume attackers can poison
the training data or manipulate the training process [16,29,54],
making the threat model less practical. For instance, training
datasets can be inspected for data poisoning [15,21, 38, 56].
Moreover, numerous methods are available to detect trojan-
infected models before deployment [30,32,53,73,78]. Recent
work has developed backdoor injection methods that do not
rely on access to the training facilities [2, 6, 14, 68, 88]. They
exploit bit-flip attacks (BFAs), such as Rowhammer [43], to
modify model weights in the inference stage. Extensive re-
search has demonstrated that Rowhammer attacks can flip
specific targeted bits in memory [28, 39,43, 45,76, 86], en-
abling the insertion of backdoors without requiring control
over the training.

However, existing inference-time backdoor injection meth-
ods have significant limitations. First, they require flipping
multiple bits, which is highly challenging and often infeasi-
ble [22,46,66,70,86]. The sparse distribution of flippable cells
in DRAM makes it difficult to locate physical memory pages
with multiple flippable cells that align with the target bits [36].
Second, many DNN deployments favor full-precision models
to achieve higher accuracy [8,79,83]; however, existing attack
methods focus on quantized models, leaving the feasibility
of inference-time backdoor attacks on full-precision models
unclear. Prior research has shown that flipping a single bit of
a weight can cause a DNN to malfunction entirely (i.e., fault
injection attacks) [36,67]. However, how to inject a backdoor
by flipping a single bit has not yet been explored.

We present ONEFLIP, the first one-bit-flip backdoor in-
jection method on full-precision models. To make the attack
efficient, stealthy, and effective, the following challenges have
to be addressed.

* Challenge 1: Large Search Space. A full-precision
model has significantly more bits compared to its quan-
tized counterpart, resulting in a much larger search space
for potential bit flips. Exhaustively flipping bits to evalu-
ate the attack effect would be highly inefficient.

* Challenge 2: Preserving Benign Accuracy. Under the
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Figure 1: The workflow of ONEFLIP. (a) Target Weight Identification: it identifies a weight and one of its bits suitable for
one-bit-flip backdoor injection. (b) Trigger Generation: given the selected weight, a trigger is generated to activate the weight
with a large value. (c¢) Backdoor Activation: once the target bit is flipped, an input containing the trigger is fed to the model,
producing the attacker-desired output. (a) and (b) are conducted offline, while (c) is online.

one-bit-flip constraint, achieving an effective backdoor
attack often requires a substantial change to a weight
value. This poses the challenge of avoiding model mal-
functions and maintaining high benign accuracy.

e Challenge 3: Generating Effective Triggers. Many
prior methods rely on pre-selected triggers for backdoor
attacks [11, 14, 68, 88]. However, with only a single bit
flip, the pre-selected trigger may not activate the weight
containing the flipped bit, failing to generate the attacker-
desired output. Therefore, developing an effective trigger
generation strategy that aligns with single bit flipping is
a critical challenge.

To address Challenge 1, one might attempt to adapt ex-
isting bit-search methods designed for quantized models to
full-precision models. However, weights in quantized models
are represented using two’s complement integers, whereas
weights in full-precision models typically use floating-point
representation. As a result, bit-search methods designed for
quantized models perform poorly for full-precision models
(detailed in Section 6.3). Different from optimization-based
bit search as used in prior methods, we propose a novel, simple
method to directly identify weights suitable for trojan injec-
tion. To handle Challenge 2, we develop an intuitive strategy
for selecting the bit to flip, ensuring that the resulting weight
change is substantial enough to inject a backdoor while mini-
mizing its impact on benign accuracy. To tackle Challenge
3, as shown in Figure 1, we introduce a new workflow for
the offline stages. Many prior approaches optimize bit search
based on a pre-selected trigger [11, 14,68, 88], whereas our
approach reverses the process by conducting trigger search
based on a pre-selected bit flip. This ensures that the selected
trigger effectively activates the weight containing the flipped
bit, achieving the attacker’s desired outcome.

Extensive experiments on four commonly used datasets
and multiple model architectures demonstrate that our method
can achieve high attack success rates (up to 99.9%, averaging

99.6%) with minimal degradation to benign accuracy (as low
as 0.005%, averaging 0.06%). The contributions of this paper
are as follows.

* We propose ONEFLIP, the first inference-time backdoor
attack leveraging a single bit flip, significantly enhancing
the practicality of backdoor attacks. Moreover, unlike
prior inference-time backdoor attacks, ONEFLIP is the
first approach effective on full-precision models.

Unlike existing optimization-based iterative bit search
techniques, we introduce an efficient algorithm that di-
rectly identifies potential weights. We also devise a
novel workflow, which selects the bit to flip first and
then searches for a trigger activating the altered weight.

Our evaluation demonstrates that flipping just one bit is
sufficient to execute a backdoor attack on a variety of
full-precision models. ONEFLIP achieves near-perfect
attack success rates with negligible impact on benign
accuracy. Moreover, ONEFLIP exhibits strong resilience
against defenses.

We have made our demonstration materials and source
code available to facilitate replication and further explo-
ration.!

2 Background

2.1 Rowhammer Attack

The Rowhammer attack is a hardware-based fault injection
technique that exploits vulnerabilities in dynamic random-
access memory (DRAM) to induce unintended bit flips [43].
DRAM cells, with one cell per bit, store data as electrical
charges in capacitors arranged in rows. The charge state of
each capacitor represents a single binary value, either 1 or
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0. Over time, as DRAM cells are packed closer together to
increase memory density, the electrical interactions between
adjacent rows become more pronounced. The Rowhammer
attack leverages this phenomenon by rapidly accessing (or
"hammering") one or more rows of memory to disturb the
electrical charges in adjacent rows, leading to bit flips in those
neighboring rows.

This attack has significant implications for security, as it
can enable unauthorized access or data corruption, bypass-
ing memory protection mechanisms [41]. Rowhammer at-
tacks have been widely demonstrated across various platforms
and scenarios [19,28,75,77], for example, via network inter-
faces [75] or JavaScript [19], and on mobile devices [77] or
servers [62,71,85].

As pointed out in [22,46,66,70,86], the Rowhammer attack
for one bit flip has evolved to achieve remarkable precision,
but flipping multiple targeted bits simultaneously remains a
significant challenge. Locating multiple vulnerable cells that
align with target bit positions is difficult because of the sparse
and unpredictable distribution of such cells in DRAM. Addi-
tionally, hammering techniques designed to flip one bit often
do not translate to flipping other bits, further complicating
multi-bit targeting.

While various techniques have been proposed to mitigate
such a vulnerability [24, 25, 72, 87], Rowhammer remains
a persistent threat to commodity DRAMs [11]. For exam-
ple, DRAM vendors have introduced Target Row Refresh
(TRR) [60], which has been bypassed through the many-sided
Rowhammer attack [25]. Notably, With the continued scaling
of technology nodes, future DRAMs are expected to become
increasingly vulnerable to Rowhammer [39]. While error-
correction code (ECC) makes Rowhammer attacks more diffi-
cult, ECC-RAM remains uncommon in most consumer-grade
systems [28].

2.2 Quantized vs. Full-Precision Models

Quantized models and full-precision models are both widely
used, each with specific advantages and use cases depending
on the task requirements and hardware constraints. On the
one hand, Quantized models are often employed in scenarios
where computational and memory resources are limited, such
as in mobile devices, edge computing, and IoT devices. On
the other hand, full-precision models are generally used in
applications requiring high accuracy. They are favored in
environments where there are abundant resources [8,79, 83].

The key distinction between quantized and full-precision
models lies in the representation of their weights. In quantized
models, weights are typically stored as low-bit-width integers
(e.g., 8-bit or 16-bit) using a two’s complement representation,
allowing for more compact storage and faster computation. In
contrast, full-precision models use 32-bit floating-point num-
bers, which offers a greater dynamic range and finer precision,
enabling higher accuracy of full-precision models.

Mantissa

10000000000000000000000 |

Sign Exponent
075 |0 o111110 |

-0.75 | 1] 01111110 | 10000000000000000000000 |

25x10%| 0| 11111110 | 10000000000000000000000 |

15 |0 o111111 | 10000000000000000000000 |

0.875 | 0| 01111110 | 11000000000000000000000 |

Figure 2: Examples of value changes due to a single bit flip
in different positions of a 32-bit floating-point number.

Modifying individual bits in the two’s complement repre-

sentation of integers results in easy-to-predict value changes,
as each bit directly corresponds to a specific power of two. In
contrast, altering the bits of a 32-bit floating-point number can
produce non-continuous and abrupt changes, as modifications
can affect the sign, exponent, or mantissa. These changes are
non-linear, with the impact on the number’s value depending
on which part of the representation is altered. The interaction
between the three parts means that the change to the overall
value can vary in a more complex manner.
Floating-Point Number. As shown in Figure 2, weights
in full-precision models are typically represented as 32-bit
floating-point numbers, following the IEEE 754 standard [42].
This format comprises three key components: the sign bit, ex-
ponent, and mantissa. The value of the floating-point number
is calculated using the following formula:

v = (—1)%E0  pexponent=127 (] | mantissa). (1)

Figure 2 also illustrates examples of value changes result-
ing from a single bit flip. For instance, altering a bit can
transform the value 0.75 into -0.75, 2.5 x 10%%, 1.5, or 0.875,
depending on which bit is modified.

3 Related Work
3.1 Backdoor Attacks

Backdoor attacks on deep neural networks (DNNs) represent
a class of adversarial techniques where an attacker subtly
manipulates the model to behave inappropriately on specific
inputs, while maintaining high performance on benign inputs.
These attacks are typically divided into two main categories
based on the stage in which a backdoor is added: the training
stage and the inference stage.

Training-Stage Backdoor Injection. Backdoor injection
in the training stage primarily involves either poisoning
the training data or manipulating the training process it-
self [9,16,29,40,49,55,61, 64,81, 84]. For example, through
data poisoning, the attacker inserts specially crafted backdoor



Table 1: A comparison between prior inference-time backdoor injection methods and ours, ONEFLIP, reveals that they share
most aspects of the threat model, such as a white-box attack and the use of a small set of benign samples. However, unlike these
prior methods, ONEFLIP is the first to be effective on injecting backdoors into full-precision models and also the first to require

only a single bit flip.

Similarities Differences
Method
White-Box  Training Dataset Benign Samples  Attacking Phase  Target Model  Bits to Flip
TBT [68] v X v Inference Quantized ~ 102
Troj ViT [88] v X v Inference Quantized ~ 10%
Deep-TROJ [2] v X v Inference Quantized ~ 102
ProFlip [14] v X v Inference Quantized ~ 10!
HPT [6] v X v Inference Quantized ~ 10!
ONEFLIP (Ours) v X v Inference Full-Precision 1

triggers into the training dataset alongside benign examples.
These backdoor triggers are designed to activate malicious
behavior when the model encounters them during inference
stage, causing the model to produce an attacker-desired out-
put. Besides, some works also attempt to inject backdoors
during retraining or fine-tuning [11,54].

These attacks need to access the training facility to work,
making the threat model less practical [2,6,14,68,88]. Gaining
access to the training facility is typically not feasible in many
real-world situations, especially when robust security mea-
sures are in place to protect the model’s training environment.
Data poisoning, for example, can be detected and removed
by carefully checking the training data [15,21, 38,56, 65]. In
addition, many methods, such as backdoor detection and fine-
tuning, can be employed to identify and remove backdoors
before deployment, reducing the effectiveness of training-time
attacks [30,53,55,63,73,78,82].

Inference-Stage Backdoor Injection. Recent works have
proposed more practical threat models that do not rely on
access to the training facility. These approaches primarily
employ bit-flip attacks (BFAs), such as the Rowhammer at-
tack, to alter model weights and inject backdoors into DNNs
during the inference stage [2, 6, 14, 68, 88]. For example,
TBT is the first method for inference-time backdoor injec-
tion [68]. ProFlip further enhances the attack by reducing the
number of bits that need to be flipped [14]. TrojViT extends
backdoor-oriented BFAs to Vision Transformers, showcas-
ing their applicability beyond traditional architectures [88].
Deep-TROJ injects backdoors by manipulating frame num-
bers stored in the page table [2]. HPT aims to improve the
stealth of backdoor-oriented BFAs by increasing the imper-
ceptibility of triggers [6]. Table | provides a comparison of
our approach, ONEFLIP, with prior inference-time backdoor
attacks. While all these attacks share a similar threat model
(Section 4), our approach is the first one effective on full-
precision models. ONEFLIP also distinguishes itself as the
first one-bit-flip backdoor attack, significantly improving the

practicality of backdoor attacks.

3.2 Other Bit-Flip Attacks on DNNs

In addition to backdoor attacks, bit flips have been employed
to inject faults into DNNSs to significantly degrade their in-
ference accuracy (i.e., fault injection attacks) [17,36,46,52,
67,86]. Unlike backdoor-oriented BFAs, sample-wise BFAs
make the flipped model misclassify adversary-specified sam-
ples [7,22,69].

Among these works, TBD [36], FrameFlip [46], and
TBA [22] also achieve their goals using a single bit flip. How-
ever, TBD [36] and FrameFlip [46] focus on fault injection at-
tacks, which aim to induce misclassification on benign inputs.
In contrast, backdoor attacks require the model to maintain
correct predictions on benign inputs, while misclassifying
only trigger-embedded inputs. Training-assisted Bit-flip At-
tack (TBA) [22] assumes that the attacker manipulates the
training process to move the model closer to the decision
boundary; plus, it ensures that only one specific sample is
misclassified, without generalizing the effect to unspecified
samples. In contrast, backdoor attacks require the model to
produce an attacker-desired output when presented with any
input containing the trigger, making backdoor-oriented BFAs
a greater threat to DNNs. To the best of our knowledge, we
are the first to demonstrate a one-bit-flip backdoor attack.

4 Threat Model

As summarized in Table 1, our attack adopts a threat model
consistent with the attacker capabilities defined in prior
inference-time backdoor attacks [2, 6, 14, 68, 88]. Similar
to these methods, we assume a white-box attacker with ac-
cess to the model’s weights, architecture, and a small set of
benign samples. Our attack does not need to access training-
related information (e.g., training data, hyperparameters) or
participate in the training process.



The attacking process is assumed to co-reside on the same
machine as the victim model. It can then execute a bit-
flip attack, typically Rowhammer, on the memory contain-
ing the victim model’s weights to flip the target bit. This
is consistent with the scenario considered in recent stud-
ies [11,22,36,46,71,86]. However, unlike existing inference-
time backdoor injection attacks, which require flipping multi-
ple bits (as shown in the last column of Table 1), our approach
only needs to flip a single bit, making it significantly more
practical (Section 2.1).

Although our work primarily considers Rowhammer-based
attacks, our one-bit-flip attack can also be implemented us-
ing other bit-flip techniques [1, 10, 18,26, 51]. Moreover, if
the bit-flip attack is launched during the final stage of train-
ing [11], the backdoor can be permanently injected into the
saved model.

5 Design of ONEFLIP

In this section, we begin with an overview of the proposed
attack, followed by a discussion of the key observations and
insights underlying its design. Finally, we detail the three
steps involved in executing the attack.

5.1 Attack Overview

As illustrated in Figure |, the workflow of ONEFLIP consists
of three steps:

» Target Weight Identification. Among the large number
of weights in a model, we identify a weight and one of
its bits suitable for the one-bit-flip attack. Specifically,
under the constraint of altering only a single weight, we
focus on the weights in the final classification layer, as
modifying a weight here can produce the significant im-
pact required for a backdoor attack. Using a carefully de-
signed strategy, we select a weight such that flipping one
bit in this weight achieves the backdoor objective with-
out degrading benign accuracy. For instance, as shown
in Figure 1, the weight value 0.75 can be altered to 1.5
through a single bit flip.

» Trigger Generation. Given the identified target weight
w, which connects a neuron N, in the feature layer and
a neuron N, in the classification layer, we generate a
trigger via optimization. This trigger is crafted to remain
stealthy while ensuring the neuron output from N; (also
referred to as the input over w) becomes significantly
larger (e.g., increasing from 0.1 to 10 in Figure 1).

* Backdoor Activation. A bit-flip attack, typically
Rowhammer, is employed to flip the targeted bit. Once
this is achieved, an input containing the crafted trigger is
fed into the model, resulting in the attacker-desired out-
put. This occurs because the modified weight, combined

with the amplified neuron output from Ny, produces a
substantial input to N; (e.g., 10 x 1.5 = 15 in Figure 1).

Steps (a) and (b) are performed offline, while Step (c) is
executed online on the machine hosting the victim model.
The attacker has three main goals: effectiveness, stealthiness,
and efficiency.

* Effectiveness: The backdoored model should be able to
classify inputs with the attacker’s specified trigger into
the attacker-desired class.

* Stealthiness: The backdoored model should perform nor-
mally for clean samples, meaning that the model’s be-
nign accuracy is not changed much.

* Efficiency: The attacker should be able to implement the
backdoor attack by flipping only one bit.

5.2 Observations and Analysis

A. Are there any weights suitable for one-bit flip attacks?
The first step of our attack is to identify a potential weight as
the bit flip target. Based on the consensus regarding model
overparameterization [3-5,48,89], we hypothesize that certain
weights in the model have minimal impact on classification.
Consequently, slight modifications to these weights will not
degrade the model’s benign accuracy, fulfilling the attacker’s
stealthiness goal. By modifying a weight in the classification
layer and generating a specific trigger that increases the neu-
ron input to this weight, we can induce malicious output for
the class associated with the weight, thereby achieving the
attack’s effectiveness. Finally, as long as only a one-bit flip
can change the weight to the targeted value, the attack meets
the efficiency goal.

To validate this idea, we conducted an experiment. We first
trained a benign ResNet-18 [33] on the CIFAR-10 dataset [44].
We then sequentially modified each classification layer weight
of ResNet-18 using values from the list {1,5,10,20,30,40}
and measured the difference in benign accuracy on the test
dataset compared to the original model (referred to as be-
nign accuracy degradation). For each weight modification,
we increased the input over the modified weight to a higher
value (e.g., 2, to simulate the trigger effect) and recorded the
proportion of test samples classified into the class, which
is represented by the neuron N in the classification layer
that connects the modified weight, by the modified ResNet
(referred to as attack success rate). The scatter plot of the be-
nign accuracy degradation and attack success rate pairs for all
weights in the classification layer under different weight mod-
ification values is shown in Figure 3. This plot demonstrates
that many weight modifications have minimal impact on be-
nign accuracy but a high attack success rate. Additionally,
the reasonable range for modifying these weights is between
[1,30]. This is because, as shown in Figure 3, when the modi-
fication value is within the range of [1,30], the key weights
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Figure 3: The scatter plot shows the benign accuracy degradation and attack success rate for all weights of the classification
layer of the ResNet-18 model trained on the CIFAR-10 dataset under different modified weight values. Each point represents the
backdoored model’s “Benign Accuracy Degradation” and the model’s backdoor “Attack Success Rate” when a specific weight is
modified to the “Modified Value” (and the input over that weight is increased to 2). The red-circled regions indicate weights that
can achieve a high attack success rate without significantly degrading the model’s benign accuracy, which are the key ones to
focus on. This figure illustrates that many weights in the classification layer can be modified within the range of [1,30] without
significantly degrading benign accuracy, making them suitable for backdoor attacks.

(i.e., those within the red-circled region) appear more densely.
In contrast, when the modification value becomes larger (e.g.,
40), the density of such weights within the red-circled region
decreases noticeably.

Observation #1

A backdoor can be potentially injected by modifying
any of many weights in the classification layer of a
DNN, without degrading benign accuracy.

B. Which combination method should be employed?

Since our attack relies on the combined effects of a weight
modification and a trigger, there are two different methods,
as summarized in Table 2. Method 1 involves increasing the
weight to a very large value (e.g., 10) and generating a trigger
that produces a relatively large activation value (e.g., 1.5) over
the weight. This contributes 1.5 x 10 = 15 to the logit of the
target class, usually sufficient to classify the input into that
class. Method 2 uses a trigger to raise the activation to a
very large value (e.g., 10) and sets the weight to a relatively
large value (e.g., 1.5), yielding 15 also and achieving the same
classification effect.

An intuitive choice is Method 1 since it does not have two
drawbacks that Method 2 has. Drawback 1: Modifying a
weight only affects the classification towards the connected
target class (Method 1), whereas increasing the activation

value from N; impacts all classification classes (Method 2).

Table 2: Comparison between Method 1 and Method 2, and
their feasibility. AWeight denotes the weight value due to
one-bit flip; AActivation denotes the change of the activation
value from N; due to our trigger.

AWeight AActivation Feasibility
Method 1 very large relatively large X
Method 2 relatively large very large v

Drawback 2: Method 2 requires the trigger to substantially
increase the activation value from Ny, which might reduce the
trigger’s invisibility.

However, we find Method 1 infeasible in practice because
the weights in DNNs are typically small, generally falling
within the range of approximately [—1, 1] due to their normal
distribution [36]. The exponent of a floating-point number
in this range lies between [00000000,01111111]. (Note that,
given the one-bit flip constraint, we do not intend to modify
the sign bit, as the sign bit flip would keep the value within
the range of [—1,1]. Thus, we rely on changing a non-sign
bit of a positive weight value.) Flipping the most significant
bit (MSB) of the exponent would result in an dramatically
large value (see the example in Figure 2), violating the stealth-
iness requirement (as illustrated in Figure 3, even when the
modified value becomes 40, the benign accuracy degrades sig-
nificantly). On the other hand, flipping a 0 bit in any non-MSB
position of the exponent cannot increase the floating-point



value beyond 2, as the highest resulting exponent value is
01111111, which yields a value in the range [1, 2 —27%3] (its
value is close to 2, i.e., 2 — 2723 when the mantissa is all 1s;
and exactly 1 when the mantissa is all Os). In conclusion, a
single bit flip typically cannot produce a very large weight
value, ruling out Method 1.

Given the value range of a modified weight, we adopt
Method 2, which involves increasing the weight that connects
N to the classification-layer neuron N, (corresponding to the
attacker-desired class) to a value greater than 1, significantly
larger than other weights connecting N; to classification-layer
neurons. We then identify a trigger that generates a sufficiently
large activation from N;. Because the modified weight is rel-
atively larger than the others, the trigger ensures neuron N,
produces a large logit, resulting in the attacker-desired class.
The two drawbacks are addressed in the following sections.

Observation {2

Given a selected weight, we choose to flip a non-MSB
position of the exponent to increase it to be greater
than 1 and generate a trigger producing a sufficiently
large activation over that weight.

5.3 Target Weight Identification

C. How to flip one bit to make a weight larger than others?
Target Weight Identification is the first offline step aimed at
identifying a weight that is suitable for a single bit flip. Based
on the previous analysis, we need to find a single bit that can
increase a weight in the range of [—1,1] to a value greater
than 1. Our observation is that, for a positive weight whose
MSB of its exponent is 0 and only one of the remaining 7 bits
is0(e.g.,01111110,01111101), flipping that non-MSB 0 to
1 can increase the weight value beyond 1.

Given the identified target weight w, which connects a neu-
ron Nj in the feature layer to a neuron N, in the classification
layer corresponding to the attacker-targeted class, the trigger
causes a large output from N;. While this output influences
the inputs across all weights connecting N; to classification-
layer neurons, the modified value of w is significantly larger
than other weights. This ensures that the target class receives
the highest probability, mitigating Drawback 1: increasing
the activation value from N impacts all classification classes.

In summary, among the classification-layer weights, a posi-
tive weight whose MSB is 0 and exactly one of the remaining
7 bits is 0 (the eligible pattern) is considered eligible for our
one-flip attack, which flips that non-MSB O to 1, producing
a weight value significantly larger than others. All eligible
weights are then filtered based on benign accuracy degrada-
tion measured on the attacker’s clean samples. Only those
with degradation below a predefined degrad_threshold form
the potential weight set, ensuring stealthiness. The Target
Weight Identification algorithm is shown in Algorithm 1.

Algorithm 1: Target Weight Identification.

Input: Target model f

Data: Clean sample set D

Output: Potential weight set W

a,b < size of the classification layer weights of f;

// calculate the accuracy of original f on D;

ori_acc < inference(f,D);

potential weight set W + {};

for i < Otoado

for j < Oto b do

w < classification layer weight at index (i, j);

if w matches the eligible pattern then

f' + flip target bit of win f;

// calculate the accuracy of f' on D;

acc « inference(f',D);

/I ensure the attacker’s stealthiness goal;

if ori_acc — acc < degrad_threshold then
‘ W —WuU{w};

end

end
end

end
return W

Observation £3

A positive weight whose MSB is 0 and exactly one
of the remaining 7 bits is also 0 (e.g., 01111110) is
considered eligible. A one-bit flip attack can increase
its value to be greater than other weights by flipping
the only 0 bit among the 7 non-MSB bits.

5.4 Trigger Generation

D. How to generate trigger patterns?

Given a selected potential weight w connecting N; to N,
Trigger Generation is the second offline step, designed to
create a trigger that significantly amplifies the output of Nj.
Traditional backdoor attacks often predefine a trigger pattern.
This approach is unsuitable for our method since predefined
triggers cannot reliably increase the output of N;. To address
this limitation, we formalize trigger injection as follows:

X=0-m)-x+m-A 2)

, where x represents the clean sample, and A denotes the
trigger pattern, a three-dimensional matrix of pixel color in-
tensities with the same dimensions as x. The clean sample and
the trigger are combined through element-wise multiplication
with a two-dimensional mask matrix m, which controls the
extent to which the trigger modifies the original image.

To generate a trigger composed of a pattern A and a mask
m, we freeze the weights and use gradient descent to jointly



optimize A and m, guided by the following objective function:

argminZL(f((l—m)-x+m~A),y,)+ A-|m]|,
m.A N——
Increase neuron output of last feature layer ~ Increase trigger invisibility

3)
, where the left term is used to increase the neuron output of
Ni, ensuring the success of the backdoor attack. Here, f )
represents the DNN without its classification layer, which
takes a sample as input and outputs y, the last feature layer’s
output of the DNN. y; is the target output of the last feature
layer specified by the attacker, having the same dimension
as y, with a value of 1 at the neuron index corresponding to
Ni, and 0 elsewhere. The loss function L(-,-) calculates the
loss for gradient descent by comparing y and y;. Specifically,
we first apply the softmax function to y to convert the output
into a probability range [0, 1], then calculate the loss between
softmax(y) and y; using the cross-entropy loss function. This
design enables us to derive a A and a m that can significantly
increase the specified neuron output of Ny, thus realizing the
attack. Additionally, to mitigate Drawback 2: substantially
increasing the output of a specific neuron would reduce the
trigger’s invisibility, we constrain the L; norm of m to en-
hance the invisibility of the trigger. Equation 3 thus forms
a bi-objective optimization problem, where the parameter A
balances the trade-off between two objectives. The attacker
should decrease A if prioritizing the attack performance, and
increase A if prioritizing the trigger invisibility. After balanc-
ing the trade-off and tuning A, the generated trigger pattern
achieves a certain level of invisibility while effectively in-
creasing the neuron output of N; to execute the attack.
Naively, one could optimize a separate trigger for each
weight in the potential weight set. However, all weights that
share the same N; can use the same trigger. Thus, we com-
pute a single optimized trigger for all weights connected to
the same Np, as detailed in Algorithm 2. Once all triggers
have been optimized, we assign to each weight the trigger
pattern corresponding to its Nj, and then evaluate the attack
success rate based on this weight-trigger pair. To ensure the
attacker’s effectiveness goal, only pairs that achieve an attack
success rate greater than or equal to the attack_threshold are
considered exploitable and retained in the set of exploitable
weight-trigger pairs.

5.5 Backdoor Activation

E. How to activate the backdoor online?
In the online stage, the attacker utilizes a Rowhammer attack
to alter the target weight. Mature techniques exist for locating
a target weight of a DNN model and flipping a target bit [11,
22] for various DRAMs. We have successfully reproduced
them on DDR3 (16GB Samsung) and DDR4 (8 GB Hynix).
Specifically, the attacker first profiles the vulnerable flip-
pable cells in the memory module of the machine hosting
the victim’s target model. Next, the attacker selects an ex-

Algorithm 2: Trigger Generation.

Input: Target model f, Epoch E, Potential weight set W
Data: Clean sample set D
Qutput: Set P of exploitable weigh-trigger pairs
Set P+ {};
Neuron set N + {};
// find all neurons in the feature layer whose output needs to
be increased;
for each w in W do
/I Ny is the neuron in the feature layer connected to w;
if N not in N then
N=NU{N};
end
end
/I generate a trigger for each neuron in N;
for each Ny in N do
initialize m and A;
for z < O to E do
optimize Equation 3 to calculate m and A;
end
end
for each w in W do
retrieve m and A corresponding to Ny;
use Equation 2 to generate attack dataset D’ based on D;
specify the label of backdoor images in D’ to be the
class corresponding to N;;
f' « flip target bit of win f;
// calculate the attack success rate on D';
asr < inference(f',D’);
/l ensure the attacker’s effectiveness goal;
if asr > attack_threshold then
| P=PU{{w,Am}};
end

end
return P

ploitable weight-trigger pair and determines the target bit to
attack based on the weight. Then, the attacker maps the target
bit to a previously identified flippable cell. Subsequently, a
Rowhammer attack is performed to induce the target bit flip-
ping. After successfully flipping the target bit, the attacker
feeds input samples with the trigger embedded, activating
the backdoor. Notably, to enhance the flexibility and stealthi-
ness of ONEFLIP, the attacker can continually switch between
different exploitable weight-trigger pairs.

6 Evaluation

In this section, we conduct a comprehensive evaluation of
ONEFLIP. We report the experimental setup and the Rowham-
mer exploitation in Section 6.1 and Section 6.2 respectively.
We then evaluate ONEFLIP’s performance in Section 6.3, time
efficiency in Section 6.4, and eligible weight prevalence in
Section 6.5. We also compare ONEFLIP with adversarial ex-
ample attacks in Section 6.6. Finally, we conduct parameter
and ablation studies in Section 6.7.



6.1 Experimental Setup

Hardware Setup. All DNNs are trained on the NVIDIA
H100 NVL GPU platform. The offline steps are also con-
ducted here. The inference service of DNNs runs on two
testbed machines running Ubuntu 22.04: Intel 17-4790 with
16GB Samsung DDR3 and i7-8700K processor with four
8GB modules of Hynix DDR4 memory.

Datasets. We evaluate our method on four widely used
datasets: CIFAR-10 [44], CIFAR-100 [44], GTSRB [37], and
ImageNet [20]. CIFAR-10, CIFAR-100, and GTSRB all con-
sist of 32x32 color images. CIFAR-10 has 50,000 training
images and 10,000 test images in 10 classes with 6,000 im-
ages for each class. CIFAR-100 is a more challenging variant,
with the same number of images but divided into 100 classes.
The German Traffic Sign Recognition Benchmark (GTSRB)
consists of over 50,000 images of traffic signs belonging to
43 different classes, which is split into approximately 39,000
training images and 12,000 test images. ImageNet consists
of 224 x224 color images, we use the ILSVRC-2012 subset,
which contains over 1.2 million training images and 50,000
validation images, each labeled with one of 1,000 object cat-
egories. These datasets are widely used by previous related
works [2,6,7,11,14,22,68, 88].

Models. We choose popular DNN architectures for image
classification tasks for the datasets. For CIFAR-10, we adopt
ResNet-18 [33]. For GTSRB, we adopt VGG-16 [74], For
CIFAR-100, we adopt PreAct-ResNet-18 [34]. All the above
models are trained from scratch. The SGD optimizer is con-
sistently used across all datasets, with a momentum of 0.9 and
a weight decay of 5 x 10~*. The batch size is set to 512. For
GTSRB, training is conducted for 100 epochs with a fixed
learning rate of 1 x 1072, For CIFAR-10 and CIFAR-100
datasets, training spans 200 epochs, starting with an initial
learning rate of 1 x 10~!, which is adjusted over time using a
cosine annealing learning rate scheduler. For ImageNet, we
use the pre-trained ViT-B-16 [23] released by PyTorch.”

Attack Configurations. In this study, we select TBT [68],
TBA [22], and DeepVenom [11] as comparison methods. We
compare with TBT, a classic backdoor-oriented BFA designed
for 8-bit quantized models, to demonstrate that the fine-tuning-
based bit search method is not well-suited for full-precision
models. We compare with TBA, a state-of-the-art (SOTA) one-
bit-flip sample-wise attack method. Note that we are aware
that the threat model of TBA assumes the attacker manipulates
the training process and it aims at sample-wise attacks. We
involve it to show that the one-bit search optimization method
designed for 8-bit quantized models cannot be effectively ap-
plied to full-precision models. The significantly larger number
of bits in full-precision model weights creates a much larger
optimization search space, making the bit search methods for

2https://pytorch.org/vision/main/models/vision_
transformer.html

8-bit quantized models ineffective for full-precision models.
Additionally, we compare with DeepVenom, a novel SOTA
method that injects backdoors during fine-tuning. Still, the
results demonstrate that our method achieves superior effec-
tiveness, stealthiness, and efficiency.

For a fair comparison, we adapted both TBT* and TBA” for
full-precision models (denoted as TBT-fp32 and TBA-fp32)
based on their source codes, and implemented DeepVenom
based on its source code.” Moreover, we provided an identical
clean sample set of 1,024 samples across all datasets for all
attacks. All other parameters are kept consistent with those
in the original papers. For A in ONEFLIP, we set it uniformly
to 0.001 across all datasets. We set degrad_threshold in Al-
gorithm 1 and attack_threshold in Algorithm 2 as 0.1% and
100% respectively. The results of ONEFLIP are the averages
obtained from 5 independent trials across all classes.

Metrics. The attacker has three goals to achieve, as mentioned
in Section 5: effectiveness, stealthiness, and efficiency. (1)
To evaluate the effectiveness, we use the attack success rate
(ASR), which is commonly used to evaluate the effectiveness
of backdoor attacks. ASR calculates the percentage of sam-
ples in the test dataset, embedded with the trigger pattern, that
are correctly classified into the target class by the backdoored
model. (2) To evaluate the stealthiness, we use the benign
accuracy degradation (BAD), which measures the benign
accuracy degradation between the backdoored model and the
original model on the test dataset. (3) To evaluate the effi-
ciency, we calculate the bits to flip required for implementing
the attacks.

It is worth clarifying that TBA is a sample-wise BFA,
which only misclassifies a specific sample into the target
class. Therefore, it is incompatible with the ASR metric used
in backdoor attacks. On the other hand, DeepVenom is de-
signed to perform BFAs during the model fine-tuning process
(training phase), so it is not applicable for evaluating the BAD
metric, which measures the accuracy difference between the
benign model and its backdoored counterpart before and after
bit-flipping during the inference phase.

6.2 Rowhammer Attack

We follow Blacksmith® [39] to implement the Rowhammer
attack, as it introduces a non-uniform access pattern to bypass
TRR [60]. The attack has two stages: offline and online. In the
offline stage, the attacker profiles the target DRAM module
to identify flippable cells and prepares to align them with
the target bit of the selected exploitable weight. We identify
22,918 flippable cells (11,660 0 — 1 and 11,258 1 — 0) and
locate their exact positions (e.g., row and page offset) on two

3https://github.com/adnansirajrakin/TBT-CVPR2020/tree/
master

“https://github.com/jianshuod/TBA/tree/main

Shttps://github.com/casrl/DeepVenom/tree/main

6https://qithub.com/comsecfgroup/blacksmith
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Table 3: The performance of ONEFLIP compared with TBT, TBA, and DeepVenom on multiple datasets and architectures. BAD
(benign accuracy degradation) measures the benign accuracy degradation compared to the original ACC on the test dataset after
injecting backdoors. ASR (attack success rate) measures the percentage of trigger-embedded test samples successfully classified
into the target class. 1 indicates that a higher value is better, while | indicates that a lower value is better.

Dataset/Model Method Original ACC (%) BAD (%)) ASR (%) BitstoFlip|
TBT-fp32 [68] 1.26+0.64 96.86+t1.89  2051.0+295
TBA-fp32 [22] 2.61+052 - 5219.4+260.7
CIFAR-10/ResNet-18 DeepVenom [11] 87.45 - 96.83+2.72 20.7409
ONEFLIP (Ours) 0.01+0.01 99.96-0.01 1
TBT-fp32 [68] 4.7940.23 95.43+067 2116.2+1438
TBA-fp32 [22] 2.4940.93 - 5723.1+1805
GTSRB/VGG-16 DeepVenom [11] 90.85 - 97.33+1.84 32.3490
ONEFLIP (Ours) 0.16+0.07 99.35+-0.68 1
TBT-fp32 [68] 4.2040.14 96.91+0.34 2087.8+6.4
TBA-fp32 [22] 0.32+0.29 - 5385.1+3325
CIFAR-100/PreAct-ResNet-13 DeepVenom [11] 7496 - 97.64+3.42 39.3+49
ONEFLIP (Ours) 0.05=+0.01 99.93+0.01 1
TBT-fp32 [68] 2.4240.89 98.414029 2071.6430.9
. TBA-fp32 [22] 0.1340.14 - 8254.04579.4
ImageNet/ViT-B-16 DeepVenom [11] 81.07 ; 9723423  27.74+35
ONEFLIP (Ours) 0.003+0.004 99.33+0.92 1

machines. In the online stage, the attacker relocates the page
containing the target bit to store it in one of the flippable cells
using memory waylaying [28], then triggers the bit flip using
the pre-designed access pattern. Once flipped, inputs with the
ONEFLIP-generated trigger activate the backdoor, causing
misclassification into the target class.

We also validate the reproducibility of bit flipping on the
same cells following system reboots and confirm that the
discovered cells consistently remain susceptible to attacks.

6.3 Performance

Table 3 presents a comparison between our proposed method,
ONEFLIP, and prior methods regarding stealthiness, effec-
tiveness, and efficiency. As shown, ONEFLIP significantly
outperforms the prior methods across all the four datasets
and three metrics. For stealthiness, ONEFLIP preserves the
benign accuracy of the original models with minimal devi-
ation, achieving an average BAD of only 0.06%. This re-
sult indicates that flipping a single bit in the clean model
weights using our bit identification method does not substan-
tially degrade its benign performance, outperforming the prior
methods. In terms of effectiveness, ONEFLIP achieves a near-
perfect ASR of almost 100% across all datasets, demonstrat-
ing its ability to classify inputs with the trigger into the target
class consistently. This surpasses all comparison methods,
which require flipping significantly more bits to reach a com-
parable ASR. Lastly, ONEFLIP is highly efficient, requiring
only one-bit-flip to convert a benign model into a backdoored

one. This contrasts sharply with existing methods, which often
require flipping multiple or even thousands of bits, rendering
them less practical in real-world scenarios. This efficiency
highlights ONEFLIP’s suitability for full-precision models.
Overall, ONEFLIP achieves near-perfect ASR with minimal
impact on benign accuracy, using just one bit flip. This val-
idates its capability as a strong and efficient injection-time
backdoor attack on DNNs.

Furthermore, the experimental results of adapting TBT
and TBA, initially designed for quantized models, to full-
precision models further validate Challenge 1 (Section 1). The
bit search optimization methods tailored for quantized mod-
els prove ineffective for full-precision models due to the in-
creased complexity of binary representations in full-precision
weights. As shown in Table 3, while TBT-fp32 and TBA-
fp32 successfully perform backdoor attacks on full-precision
models, they require flipping thousands of bits, making them
nearly impractical for real-world use. Even DeepVenom, de-
signed for full-precision models, requires dozens of bit flips
to execute an attack and fails to achieve near-perfect ASR. In
contrast, ONEFLIP implements a backdoor attack with only
one bit flip while maintaining near-perfect ASR.

6.4 Time Efficiency of Offline Stage

In this section, we evaluate the time efficiency of ONEFLIP
compared to TBT and DeepVenom. All experiments are con-
ducted under identical hardware and software environments,
measuring only the offline execution time for each method.



Table 4: Execution time of ONEFLIP, TBT, and DeepVenom.

Datasets Models Time (s)
TBT-fp32 [68] 14599.1

CIFAR-10  DeepVenom [11]  76200.0
ONEFLIP (Ours) 1410.9

TBT-fp32 [68] 67797.2

GTSRB DeepVenom [11] 82560.0
ONEFLIP (Ours) 7059.5

TBT-fp32 [68] 189329.9

CIFAR-100 DeepVenom [11]  259046.7
ONEFLIP (Ours) 16211.4

TBT-fp32 [68] 437548.3

ImageNet  DeepVenom [11] 433159.2

ONEFLIP (Ours) 259439.3

The results, presented in Table 4, show that ONEFLIP con-
sistently achieves a shorter execution time across all four
datasets, highlighting its time efficiency.

As outlined in Algorithm [, the execution time of ONE-
FLIP is primarily determined by the dimension of the last
classification layer weights of the target DNN. Assuming the
matrix dimensions are a X b, the time complexity of ONEFLIP
is O(a-b). For the datasets used in our experiments (CIFAR-
10, GTSRB, CIFAR-100, and ImageNet), the dimensions of
the classification weights are 512 x 10, 512 x 43, 512 x 100,
768 x 1000, respectively. This aligns with the increasing trend
in execution time observed in Table 4. The higher cost for
ImageNet stems from its larger image resolution and ViT’s
parameter size, which both increase inference time.

6.5 Prevalence of Eligible Weights

We evaluate the prevalence of eligible weights in the classifi-
cation layer, to substantiate that weights of the eligible pattern
described in Observation 3 commonly exists in DNNs. For
each dataset/model combination introduced in Section 6.1,
we report both the minimum and total number of eligible
weights observed across all classes in Table 5. For example,
for CIFAR-10/ResNet-18, where the classification layer’s size
is 512 x 10, the minimum number of eligible weights for a
single class is 69, and the total across all classes reaches 789.
These results confirm that eligible weights are prevalent in
DNNSs and across all classes. This supports that ONEFLIP can
flexibly choose any class as the target and remains effective
across various model architectures.

6.6 Comparison with AE Attacks

We compare ONEFLIP with adversarial example (AE) attacks,
as both operate at the inference stage. AE attacks employ
sample-specific [12,27,57] or universal perturbations [35,58].

Table 5: Eligible weight counts (minimum and total) across
datasets and architectures.

Datase | CIFAR-10  GTSRB  CIFAR-100  ImageNet
AL (512x10)  (512x43)  (512x100) (768 x 1000)
Minimum 69 27 51 30
Total 789 1618 6898 57574

Table 6: The ASR between T-UAP and ONEFLIP on multiple
datasets and architectures.

ASR (%)
Datasets
T-UAP ONEFLIP (Ours)
CIFAR-10/ResNet-18 44.15+14.46 99.96+0.01
GTSRB/VGG-16 28.54+5.85 99.354+0.68
CIFAR-100/PreAct-ResNet-18  34.384+13.26 99.93+0.01
ImageNet/ViT-B-16 56.28+10.36 99.3940.92

Since backdoor attacks aim to achieve targeted misclassifi-
cation using a universal trigger, only targeted universal ad-
versarial perturbations (T-UAP) [35] share the same objec-
tive. Therefore, we compare our method with T-UAP. Similar
to ONEFLIP, we optimize the universal perturbations using
1,024 clean samples. The optimization is performed over 50
epochs, with 20 iterations per epoch. The results are averaged
over all classes and presented in Table 6. T-UAP achieves a
very low ASR, indicating that the universal perturbations it
generates fails to generalize well to unseen inputs. In contrast,
the trigger generated by ONEFLIP remains highly effective
across arbitrary inputs.

6.7 Parameter and Ablation Studies

In this section, we conduct parameter studies on ONEFLIP
to assess the influence of various parameters and ablation
studies on our modules and dataset/model combinations.

6.7.1 Impact of A

We first evaluate the impact of A on ONEFLIP. As discussed in
Section 5.4, A in Equation 3 primarily influences the specified
neuron output value of the last feature layer during Trigger
Generation, which directly affects attack performance, and
the L; norm of the trigger, which measures the invisibility of
the generated trigger.

Theoretically, increasing A enhances the invisibility of the
trigger but may reduce the attack performance, and vice versa.
To test this hypothesis, we set A to various values and evaluate
ONEFLIP’s performance on models trained on CIFAR-10.
Specifically, we measure the average neuron output value and
average L; norm of the trigger under the potential weight set.
The results, shown in Figure 4a, confirm the hypothesis. As
A increases, the output value of the target neuron decreases,
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Figure 4: Impact of different parameters on neuron output
value and the L; norm of the triggers generated by ONEFLIP.

leading to fewer exploitable weight-trigger pairs. Simultane-
ously, the invisibility of the trigger improves significantly, as
indicated by the lower L norm.

Additionally, Figure 5a displays example images from the
CIFAR-10 test set with triggers generated under varying A
value for the same neuron in the feature layer. The leftmost
image is the original sample, and as A increases, the trigger
becomes progressively less visible. When A > 0.001, the trig-
ger is nearly invisible; however, the neuron output value drops
significantly. Conversely, for A < 0.001, the triggers produce
high neuron output values, but the trigger becomes more no-
ticeable. To strike a balance between the attack performance
and trigger invisibility, we set A to 0.001 uniformly across all
main experiments.

6.7.2 Impact of Sample Set Size

In this section, we evaluate the impact of the size of the clean
sample set available to the attacker on ONEFLIP. Theoreti-
cally, the sample set size influences the optimization space
for Trigger Generation. Following a similar approach to the
evaluation of A’s impact, we vary the number of samples and
measure the average neuron output value and average L; norm
of the trigger under the potential weight set for models trained
on CIFAR10. The results, presented in Figure 4b, reveal that
as the number of samples increases, the output value of the
target neuron improves slightly. Similarly, the invisibility of
the trigger, as measured by the L; norm, remains largely un-
affected by the sample set size.

Additionally, Figure 5b provides example images from the

Table 7: The ASR under the potential weight set with just the
“Trigger” module or with just the “Bit-Flipping” module or
with them both.

ASR (%)
Datasets
Trigger Bit-Flipping ~ Trigger+Bit-Flipping
CIFAR-10 14.26+1.18  10.2440.08 99.9610.01
GTSRB 4.57£1.80 3.2740.55 99.35+0.68
CIFAR-100 1.3640.03 1.27+0.03 99.931+0.01
ImageNet 0.65+2.22 0.11£0.02 99.33+0.92

Table 8: The performance of ONEFLIP on more dataset/model
combinations. ResNet-18-V and VGG-16-V refer to the
ResNet-18 and VGG-16 variants tailored for 32x32 images.

Dataset/Model ACC (%) BAD (%) ASR (%)
CIFAR-10/ResNet-18-V 94.46 0.0140.02  99.9340.04
GTSRB/VGG-16-V 96.09 0.0240.04  99.984-0.04
CIFAR-10/VGG-16 89.31 0.0140.03  99.9140.02
ImageNet/ResNet-18 68.79 0.06+0.01  99.84+40.13

CIFAR-10 test set with triggers generated using different sam-
ple set sizes. As the sample set size increases, the invisibility
of the trigger shows no significant variation, consistent with
the trend observed in Figure 4b.

6.7.3 Ablation Study: Trigger Generation and Bit Flips

In this section, we evaluate the impact of two critical mod-
ules in ONEFLIP: Trigger Generation and Bit Flipping on
the attack performance of ONEFLIP. Specifically, we test
two scenarios: 1) using only the Trigger Generation module
without performing bit flipping (denoted as "Trigger") and 2)
using only the Bit-Flipping module without applying a trigger
to the input (denoted as "Bit-Flipping"). For each scenario,
we calculate the average ASR under the potential weight set.
The results, presented in Table 7, indicate that when either
the Trigger Generation module or the Bit-Flipping module is
used in isolation, the maximum ASR achieved by ONEFLIP
does not exceed 15%. Moreover, as the number of classes
in the dataset increases, the ASR drops below 1%, highlight-
ing the limited effectiveness of either module on its own.
In contrast, combining the Trigger Generation module with
the Bit-Flipping module yields an ASR approaching 100%.
These results demonstrate that both modules are essential
and complementary for achieving the high ASR observed in
ONEFLIP.

6.7.4 Ablation Study: More Dataset/Model Combina-
tions

In this section, we evaluate ONEFLIP’s performance on more
dataset/model combinations to demonstrate that ONEFLIP is
agnostic to classification accuracy, dataset choice, and model
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Figure 5: The impact of different parameters on the visibility of generated triggers of ONEFLIP. Example images are from the

CIFAR-10 test dataset.

architecture, thereby generalizing well across different set-
tings. To examine the impact of classification accuracy, we use
ResNet-18 and VGG-16 variants tailored for 32 x32 images
to obtain a better accuracy on CIFAR-10 and GTSRB, respec-
tively. To assess the influence of dataset and architecture, we
include CIFAR-10/VGG-16 and ImageNet/ResNet-18 in our
evaluation. For ImageNet/ResNet-18, we use the pre-trained
model released by PyTorch. Other combinations are trained
from scratch using the same training settings as described in
Section 6.1. The attack configuration also follows Section 6.1.
As shown in Table 8, ONEFLIP consistently achieves high
attack performance, indicating that it is not specific to model
accuracy, dataset, or architecture. This ablation study con-
firms that ONEFLIP remains effective across a wide range of
DNN models.

7 Discussions on Defenses

In this section, we analyze the resistance of ONEFLIP against
backdoor defenses. Common backdoor defense methods in-
clude backdoor detection, backdoor mitigation, and input fil-
tering. These methods allow the victim user to identify or
neutralize compromised models or filter malicious inputs dur-
ing training or deployment.

Resistance to Detection. Backdoor detection methods aim
to identify target classes of backdoor attacks by reverse en-
gineering triggers and applying outlier detection on those
triggers [13,30,32,53,73,78,80]. Neural Cleanse [78], for ex-
ample, employs gradient descent to reverse engineer triggers
for each class of the model and uses the Median Absolute

Deviation (MAD) algorithm to detect outliers in the L; norm
of these triggers. Labels associated with outliers are flagged
as potential backdoor target labels. (After detecting a back-
doored model, users will attempt to mitigate the backdoor by
fine-tuning the model [47,50, 55,59, 63, 82].)

However, one major limitation of these defenses is that they
can only detect the backdoor when the backdoor is injected
during the training process or in the supply chain [2,6, 14, 68,
88]. They cannot effectively defend against inference-time
backdoor injection during runtime when the inference has
already started. As a result, ONEFLIP, as an inference-time
backdoor injection method, can be considered practically im-
mune to such defenses. Additionally, these detection methods
can also be conducted during the inference stage, similar
to other integrity checking techniques. However, they are
typically applied periodically, allowing an attacker to flip a
bit between checks. Moreover, performing frequent integrity
checks introduces computational overhead in terms of both
CPU usage and memory bandwidth consumption.

Resistance to Mitigation. Victims may still want to retrain
the model, which can be effective against inference-time back-
door injection methods, as it modifies the model’s parameters,
preventing the attacker from knowing the updated weights,
thereby rendering bit flipping ineffective. To evaluate ONE-
FLIP’s resistance to retraining, we further train the target
models for 5 epochs on all datasets using the corresponding
training dataset with a learning rate of 0.0001.

In response, the attacker employs an adaptive strategy. Be-
yond flipping the originally designated bit, the attacker sys-
tematically flips each of the other 6 lower bits in the same



Table 9: The benign accuracy (BA), and the average and
maximum attack success rate (ASR) for the retrained model
using adaptive ONEFLIP on the entire weight and trigger
pairs. The retrained models are collected at the end of each
retraining epoch (e.g., E1 represents the retrained model after
Epoch 1).

Dataset Metric El E2 E3 E4 E5
BA (%) 86.47  86.61 86.56 86.74  86.49
CIFAR-10 Mean ASR (%) 13.31 13.31 13.29 13.30 13.29
Max ASR (%) 99.88  99.92 99.89  99.87  99.88
BA (%) 90.79  90.78  90.89  90.86  90.84

GTSRB Mean ASR (%) 5.28 5.26 5.25 5.24 5.23
Max ASR (%) 99.47 9934 9925  99.16  99.06

BA (%) 7529 7535 7522 7523 7527

CIFAR-100  Mean ASR (%) 1.41 1.41 1.40 1.40 1.40
Max ASR (%) 99.88 9992 9992 9995  99.93

BA (%) 7997 7986  79.75  79.69  79.63

ImageNet Mean ASR (%) 2.16 2.15 2.15 2.15 2.15
Max ASR (%) 99.11 99.01 98.97 9893  98.89

Table 10: The difference in the average neuron output of the
retrained model compared to the original target model when
inputting test samples from the test set added with ONEFLIP-
generated triggers. The retrained models are collected at the
end of each retraining epoch (e.g., E1 represents the retrained
model after Epoch 1).

Neuron Output Difference
El E2 E3 E4 E5

CIFAR-10  0.0009 0.0006 0.002 0.002 0.003
GTSRB 0.004 0.011  0.017 0.020 0.023
CIFAR-100  0.071 0.057 0.025 0.005 0.028
ImageNet 0.611 0.707  0.770 0.842 0.891

Dataset

weight’s exponent (excluding the highest bit) one by one.
This adaptive approach is feasible because 32-bit floating-
point weights are stored contiguously in memory. Knowing
the target bit’s location allows the attacker to easily identify
and manipulate adjacent bits of the same weight. For each
fine-tuning epoch, we measured the BA of the fine-tuned
model and the average and maximum ASR on the fine-tuned
model using the adaptive ONEFLIP across all weight-trigger
pairs. The results in Table 9 demonstrate that while backdoor
mitigation significantly reduces ONEFLIP’s average ASR to
nearly unusable levels, the attacker can nevertheless identify
bit-trigger pairs that achieve an ASR close to 100%, posing a
continued threat to DNNs.

To investigate why ONEFLIP can still work even when
the model’s parameters are modified, we input the test sam-
ples from the test set added with ONEFLIP-generated triggers
into these retrained models and compute the average neuron
output. We then calculate the difference in the average neu-
ron output compared to the target model. The experimental
results, shown in Table 10, highlight the transferability of
ONEFLIP-generated triggers. Although retraining alters the

model’s weight parameters, the triggers generated by ONE-
FLIP remain effective, continuing to significantly increase
the corresponding neuron output in retrained models with
minimal difference. Furthermore, adaptive ONEFLIP sequen-
tially flips the other 6 non-MSB bits (excluding the origi-
nally identified bit), increasing the chances of encountering
a new eligible pattern in the retrained model’s weights. This
ensures that the Bit-Flipping module remains operational.
Consequently, adaptive ONEFLIP can still identify bit-trigger
pairs that achieve very high attack success rates on fine-tuned
models, as evidenced by the Max ASR in Table 9.

Resistance to Filtering. Input filtering methods aim to detect
and filter malicious samples during the training or inference
phases of a model [15,31,38,56,90,91]. Filtering methods
employed during the inference phase may pose a challenge
to ONEFLIP, as it relies on feeding trigger-embedded inputs
to the model during deployment to execute the attack. Never-
theless, many existing works have proposed highly stealthy
trigger designs for backdoor attacks [40, 81]. These stealthy
methods can be integrated into ONEFLIP to enhance its ability
to evade detection and filtering during the inference phase,
further improving its robustness against filtering-based de-
fenses.

8 Conclusion

We present ONEFLIP, the first inference-time backdoor attack
that requires only a single bit flip, significantly enhancing the
practicality of backdoor attacks. Unlike previous inference-
time backdoor attacks, ONEFLIP is also the first approach ef-
fective on full-precision models. It relies on a novel workflow
that first identifies potential weights and then generates effec-
tive triggers, ensuring that the altered weight is activated by
the trigger. The attack is demonstrated on DDR3 and DDR4.
We evaluate ONEFLIP on various DNN architectures, includ-
ing a vision transformer. The results show that ONEFLIP sig-
nificantly outperforms prior methods, achieving near-perfect
attack success rates (up to 99.9%, with an average of 99.6%)
while causing minimal degradation to benign accuracy (as
low as 0.005%, averaging 0.06%). Our work reveals a criti-
cal hardware-based vulnerability in DNNs: a highly effective
backdoor can be injected into a full-precision model through
a single bit flip. This highlights the need for robust defenses
to safeguard deep learning applications from such attacks.
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Ethics Considerations

Our paper proposes a novel inference-stage backdoor attack,
ONEFLIP, which injects a backdoor into a full-precision
model via a single bit flip. This work aims to advance the
understanding of model vulnerabilities and support the devel-
opment of more robust machine learning systems. However,
we acknowledge the potential security risks of such research.
ONEFLIP may threaten stakeholders such as MLaaS providers
on multi-tenant platforms and their users. A successful attack
could compromise models of MLaaS, damage the reputation
of their providers and users, and pose public safety risks in
applications like autonomous driving or medical imaging. We
carefully evaluated the likelihood of real-world harm from
ONEFLIP and identified several factors that mitigate its prac-
tical threat level. First, ONEFLIP assumes white-box access,
meaning the attacker must obtain the target model, while
many companies keep their models confidential. Second, the
attacker-controlled process must reside on the same physi-
cal machine as the target model, which may be difficult to
achieve. Overall, we conclude that while the theoretical risks
are non-negligible, the practical risk remains low, and the po-
tential benefit of exposing previously unknown vulnerabilities
outweighs these concerns. All experiments of the study were
conducted on publicly available datasets and models within
a private execution environment. Additionally, we note that
Rowhammer is a publicly known hardware vulnerability; our
work does not introduce new attack vectors at the hardware
level, and thus, no additional disclosure is warranted.

Open Science

The source code, datasets, representative trained models, con-
figuration files, and experimental scripts are publicly released
via Zenodo at https://zenodo.org/records/15612334.
The release includes detailed instructions for installation and
execution, as well as examples of victim models and models
backdoored by ONEFLIP, as discussed in the paper. These re-
sources are intended to support and enhance the reproducibil-
ity and replicability of our scientific findings.
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