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Abstract

Recent work has shown that orthonormal matrix updates speed up neural network
optimization, improve training stability, and offer better hyperparameter transfer
across model sizes. Applying these updates efficiently when model weights and
optimizer states are sharded across a large-scale distributed LLM training system
remains a major challenge. We introduce Dion (DIstributed OrthoNormalization), a
scalable and communication-efficient orthonormalizing optimizer. Dion leverages
low-rank approximation and decoupled momentum buffers, eliminating the need
for full gradient synchronization while producing numerically equivalent results. It
is compatible with simultaneous DDP, FSDP, and TP parallelism, and it computes
an orthonormalized update without unsharding a full parameter matrix on any
single device. We evaluate Dion on language models from 120M to 3B parameters

and find that its benefits improve with increasing model size and batch size.

1 Introduction

Training state-of-the-art AI models consumes
millions of GPU-hours, so improvements to
the optimizer’s update rule directly reduce cost
and increase iteration speed. In this work, we
propose a new update rule for matrix-valued
parameters—such as the attention and MLP ma-
trices in Transformer models—which constitute
the bulk of modern neural network weights.

The Muon optimizer [Jordan et al., 2024b] has
recently shown that orthonormalizing the weight
update matrix can give large speedups for neu-
ral network training. By conditioning weight
updates to induce consistent changes in hidden
states [Bernstein, 2025], orthonormalized up-
dates yield faster convergence, greater training
stability, and more robust hyperparameter trans-
fer across model scales [Bernstein and New-

house, 2024a, Large et al., 2024, Pethick et al.,
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Figure 1: Speed-up to reach target loss. We report
wall-clock time (relative to AdamW) for training a 3B
parameter model to reach each given validation loss.
Dion consistently outperforms Muon and demonstrates
2-3x training efficiency over AdamW. See Section 5.4
for experiment details.

2025]. A large-scale study by Moonshot Al [Liu

et al., 2025a] has shown that Muon achieves nearly twice the computational efficiency of AdamW
[Loshchilov and Hutter, 2019] when training 16B parameter models. Similarly, Essential AI [Shah
et al., 2025] has found improvements with larger batch sizes.

Yet a fundamental obstacle remains. Muon’s orthonormalization procedure relies on Newton-Schulz
iteration [Bernstein and Newhouse, 2024a,b, Jordan et al., 2024b], involving dense matrix-matrix
multiplications that do not respect the ways in which modern LLM training shards parameters across
devices. The Moonshot Al reference implementation of Muon [Liu et al., 2025a] therefore executes
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the full matrix computation redundantly on every shard. As estimated in Appendix A, this design
would add over 278 days (!) of extra optimizer compute to a Llama 3 405B scale training run—a
clearly unsustainable cost. See also [Essential-Al, 2025] for a discussion of the overhead introduced
by alternative sharding strategies. This bottleneck motivates a central question:

Can we devise a communication- and compute-efficient orthonormalized update rule?

We introduce Dion (DIstributed OrthoNormalization), which uses low-rank approximation to create
an efficient orthonormalizing update rule. Dion is compatible with DDP, FSDP, and TP parallelism,
computing orthonormalized updates without unsharding a full parameter matrix on any single device.
While Muon orthogonalizes the entire weight update matrix using Newton-Schulz iteration, Dion
relies on orthogonalizing smaller matrices using QR and Cholesky decompositions. Combined
with decoupled momentum buffers, Dion further compresses the standard data-parallel gradient
synchronization while maintaining mathematically equivalent results.

Low-rank approximation allows Dion to exchange between compute and communication efficiency
versus per-step update efficiency, through adjusting a rank fraction hyperparameter. We observe
that larger models are more robust to update sparsification, experiencing smaller declines relative to
full-rank learning performance with a given level of rank reduction. We further note that full-rank
Dion gives improved per-step update efficiency over Muon, which we attribute to QR decomposition
producing more accurate orthonormalization than Newton-Schulz iteration.

We evaluate Dion on language models ranging from 120M to 3B parameters and analyze its scaling
behavior with respect to both model size and batch size. Across both axes, we observe better scaling
relative to either AdamW or Muon for both per-FLOP and per-step improvements, suggesting that
Dion may be the preferred optimizer for training the largest scale models.

2 Parallelism Techniques for Large-Scale Training

Modern neural networks have far outgrown single-GPU training. To fit trillion-parameter models
and keep GPU utilization high, practitioners simultaneously apply many dimensions of parallelism.
Model parameters and intermediate states are sharded over a network of devices, and collective
communication operations (e.g., all-reduce, reduce-scatter, all-gather) are used to move data at every
step. To better understand the advantages of Dion, let us first recall three common parallelism
techniques used for large-scale model training:

* Data Parallelism (DP). All model weights and optimizer states are replicated across the DP
dimension. Each rank processes a different batch of data, so gradients must be averaged (typically
by an all-reduce [Agarwal et al., 2014]) before the optimizer step. Canonical implementations
include PyTorch DDP [Li et al., 2020] and Horovod [Sergeev and Del Balso, 2018].

* Fully Sharded Data Parallelism (FSDP). FSDP shards model parameters, gradients, and optimizer
states to reduce memory usage [Rajbhandari et al., 2020, Zhao et al., 2023]. Each layer’s parameters
are gathered just-in-time and re-sharded immediately after use. Only one full model layer needs to
be materialized at any time, and the optimizer only needs to update its local shard.

* Tensor Parallelism (TP). TP scales compute by slicing individual weight tensors so that every
device computes only a fraction of a layer’s forward and backward work [Shoeybi et al., 2019,
Narayanan et al., 2021]. Parameters, gradients, and optimizer states are permanently sharded in the
TP dimension, while intermediate activations are synchronized across devices.

FSDP can be combined with DP, with sharding across an FSDP axis and replication across a different
DP axis, in a configuration known as hybrid-sharded data parallel [Zhao et al., 2023]. Further scaling
is achievable using TP along a third axis. The combination of DP x FSDP x TP covers all common
parallelization and sharding strategies relevant to Dion. For simplicity, we refer to this setup as 3D
parallelism throughout. Other parallelism techniques (e.g. pipeline or expert parallelism) leave the
parameters of a single layer intact, and thus require no changes to the optimizer algorithm. Any
parallelism axis with different data and gradients can be merged into the DP all-reduce.!

'See, e.g., https://main-horse.github.io/posts/visualizing-6d/ for an illustration.
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Algorithm 1 Centralized Dion (see Algorithm 3 for distributed implementation)

Require: Learning rate 7, momentum decay p, rank r, momentum My = 0 € R™*™ right factor
Qo € R™*" (randomly initialized).
I: fort =1toT do

2 Compute gradient G

3 By + M; 1+ Gt

4 P;, Ry + PoweRITER1(By;; Q¢—1) > approximate By ~ PR/
5 A¢ = B, — PR > approximation error
6 M; + pBe + (1 — p)A; >error feedback
7 (<= M; + B, — (1 - p)PR/)

8: Q)¢ < COLUMNNORMALIZE(R;)

9: X+ Xi—1 —ny/m/n PtQtT > scaled orthonormal update
10: end for

1: function PowerITER1(B; Q) >single power iteration (from Q)
2 P+ BQ

3 P + OrTHOGONALIZE(P) >using QR decomposition
4 R+ B'P

5: return P, R > P is orthonormal
6: end function

3 Warm-up: Centralized Dion

To build intuition behind Dion, we begin by considering a simplified scenario without weight sharding
or distributed computation. For clarity, we consider optimizing a single m X n parameter matrix,
denoted by X. At each step t, let X, represent the current parameter, GG, the gradient, and M, the
momentum matrix.

3.1 Design Intuition Behind Dion

The Muon optimizer [Jordan et al., 2024b] introduces an effective update rule for matrix parameters
based on approximate zeroth-power orthonormalization. Muon maintains a momentum matrix that
accumulates gradients over time:

Mt — ,U‘Mt—l + Gta for IS (07 1)7
and then applies an update based on the zeroth power of this matrix. Specifically, it approximates
UV,", where M;=UX,V,"

is the singular value decomposition (SVD) of the momentum matrix. To approximate this zeroth-
power orthonormalization efficiently, Jordan et al. [2024b] employ Newton-Schulz iterations. How-
ever, Newton-Schulz iteration requires computing full matrix-matrix products, which faces challenges
in distributed training when matrices are sharded over many GPUs. Element-wise optimizer algo-
rithms such as Adam, on the other hand, are unaffected by sharding (see Table 2).

To address the limitations of Muon, we propose using lower-rank updates, with rank r < m, n. We
efficiently compute a rank-r approximation of the momentum matrix using power iteration, followed
by column normalization to ensure the update is orthonormal. Using a technique from PowerSGD
[Vogels et al., 2019], we warm-start power iteration with the result from the previous optimizer step,
so that a single step of power iteration suffices to produce an accurate low-rank approximation. We
empirically validate the effectiveness of this approach through an ablation study comparing it with a
low-rank approximation using truncated SVD, presented in Section B.1.

Because a low-rank update cannot capture all the information in its input, we apply an error feedback
mechanism to compensate. Unlike PowerSGD’s error feedback, we reuse the momentum buffer
itself and require no additional optimizer state memory. In Section B.2, we present an ablation study
demonstrating the importance of error feedback.

Specifically, at each step, we first form the buffer B, = M;_1 + G; and use power iteration to
compute a rank-r approximation

PR ~ B;, where P, € R™*" and R, € R™*".



(Here P, and R, have orthogonal columns.) We then incorporate the error of approximation into the
next momentum update:

M; « uB; + (1 — p)A; where A; =B, — PR,/ .

This is equivalently written as My < B; — (1 — u) PR, . This way, information not captured by the
low-rank approximation may propagate across iterations.

Lastly, we apply a scaling factor of y/m/n to the orthonormalized update. This scaling has been
found to improve learning rate transferability across different model sizes [Bernstein and Newhouse,
2024b, Pethick et al., 2025]. We empirically validate Dion’s learning rate transferability in Section 5.5.

3.2 Non-Matrix Parameters and Learning Rate Compatibility

Parameter Shape Norm Scaling factor
Weight dow X din  Spectral v/ dout/din
Bias dout X 1 RMS 1
Embedding dout X 1 RMS 1
Unembedding 1 X dig RMS 1/ din
Normalization 1x1 RMS 1

Table 1: Normalization and scaling factors for various parameter types. For learning rate transfer, the parameter
update should be unit-normed in the specified norm, and the base learning rate should be multiplied by the
specified scaling factor. Refer to Appendix D for a more detailed explanation.

Dion’s orthonormal update is designed specifically for matrix-shaped weights. For other parameters—
such as biases, embedding and unembedding vectors, and learned normalization factors—we instead
apply a different element-wise (scalar) optimizer algorithm. The same practice is used for Muon, as
illustrated by the works of Jordan et al. [2024b] and Liu et al. [2025a]. In experiments here, we show
the compatibility of Dion with AdamW [Loshchilov and Hutter, 2019] and Lion [Chen et al., 2023].

The simultaneous use of two optimizer algorithms raises an important question: How do we find the
best learning rates for each optimizer? We demonstrate a simple yet effective approach that scales
a shared base learning rate for each parameter type and shape. This technique preserves Dion’s
hyperparameter transfer properties across model sizes, allowing a single learning rate to be used for
two optimizers across any model scale. See Section 5.5 for experimental results.

We begin by observing that the parameter updates produced by the optimizer algorithms here (before
applying the learning rate) are unit-normed. Dion and Muon compute orthonormalized matrices,
giving a spectral norm of one. Lion computes a sign function, giving an RMS norm of one. Adam
has been empirically found to produce an approximately constant RMS norm [Liu et al., 2025a].
Following Yang et al. [2023], we then scale the base learning rate by a per-parameter factor, chosen to
let each layer’s parameter updates maintain a roughly constant input-to-output mapping. The learning
rate scaling factors are given in Table 1, and a detailed derivation can be found in Appendix D.

For many experiments in this paper, we use AdamW as the scalar optimizer to enable fair comparisons
with existing baselines. However, we empirically find that Dion is more compatible with Lion due to
Lion’s unit-RMS update property (see Figure 7). As a result, we recommend using the Dion+Lion
combination with the scaling factors in Table 1, and we adopt this setting for the speed run experiments
reported in Section 5.4.

4 Distributed Dion

4.1 Notational Conventions

The key advantage of Dion lies in its efficient support for distributed training, when model weights
are sharded across multiple parallelism dimensions. We use the following notation:

* DP, FS, and TP denote data parallel, fully sharded data parallel, and tensor parallel dimensions.
* FS and TP shard indices are ¢ and j, respectively; DP does not shard weights.

« Sharded tensors are indexed as X (#7) G(1:7) M(0:3) € R™i % and Q(47) € R %7,

 Hat notation (e.g., M , G) refers to per-device local states, which may differ across the DP axis.
* All-reduce by mean and by sum are denoted with £ and X, respectively.



4.2 Distributed Orthogonalization

Algorithm 2 DISTRIBUTED-ORTHOGONALIZE(P (7))

Require: Oversampling factor k > r (default value k = [1.25r]).

1: SU) ¢« RFX™i ~ N(O, 1/\/%) > generate random sketching matrix
2: GUY) « §U) pL) >begin 1st iteration using randomized QR
3: G+ Xrp (G(j)) > TP sharded matrix multiply
4: _, R + QrR(G) >only R component needed
5. BU) «— PUIR!

6: HO) (B(j))TB(j) >begin 2nd iteration using Cholesky QR
7. H < X1p (H(j)) > TP sharded matrix multiply
8 Ry + CHOLESKY(H) >only upper triangular component needed
9: PU) « BUIR;!

10: return PU)

An important component of Dion is distributed orthogonalization of sharded matrices. Given a
matrix P € R™*" partitioned row-wise across s shards as P ¢ Rmixr (i.e. m = s-m;), the
objective is to orthonormalize P without reconstructing the full matrix.

The method given in Algorithm 2 is a distributed adaptation of the randomized Cholesky QR
algorithm [Fan et al., 2021, Epperly, 2024]. For the random sketching matrix, Melnichenko et al.
[2025] recommend an oversampling factor £ = 1.25r, which we experimentally find to be effective.
Lemma G.1 establishes equivalence between the distributed procedure and a centralized version,
provided for reference in Appendix G.

4.3 3D-Parallel Dion

The main result is a 3D-parallel algorithm for computing the Dion update. This algorithm admits
four possible variants, depending on whether the power iteration is transposed and whether the Fully
Sharded (FS) and Tensor Parallel (TP) axes are swapped. We present one representative variant in
Algorithm 3, and describe the remaining alternatives in Appendix E.

The following theorem establishes that the distributed algorithm is mathematically equivalent to
centralized Dion.

Theorem 4.1. The distributed implementation of Dion (Algorithm 3) is equivalent to the centralized
version (Algorithm 1).

Proof. See Appendix F for the proof. O

4.4 Decoupled Momentum

A subtle yet important feature of Algorithm 3 is decoupled momentum. Although each data-
parallel device maintains a separate local momentum buffer, the final optimizer updates remain fully
synchronized and are provably equivalent to those of centralized Dion. This stands in contrast to
prior methods such as DeMo [Peng et al., 2024], whose decoupled momentum only approximates
synchronous momentum and does not result in such equivalence.

In Algorithm 3, each DP worker keeps its own local momentum shard Mt(i’{), which drifts apart
as workers process different data. However, Mt(i’l) is only used to update the buffer Bt(w ), which
subsequently is only used through two linear projections:

PO = BIDQW  and RY = (BT P,

Both projections are immediately followed by a mean all-reduce over the DP axis. Because the
momentum update, buffer update, and all-reduce are all linear operations, we have for instance

o) = Bonl 5012 = Bl 591012, = BIQ),



Algorithm 3 Dion (3D-parallel implementation)

Require: Learning rate n, momentum decay p, rank r
1: fort =1to T do o
2: Compute local gradient GE” )

3: Q:El—)l < ALLGATHERTp( EZ_JI)) >unshard () along TP dimension
4: ét(i’j) — Mt(zjl) + égi’j) >accumulate new gradient
5: Pt(j), Rgi) — DISTRIBUTED—PDWE‘.RITE‘.R].(Bt(i’j); iz_)l)

6: Mt(i’j) — Bﬁi,j) —(1—p) Pt(j)(Rgi))T > error feedback
7: ,Ei) — DISTRIBUTED—CDLUMNNDRMALIZE(REi))

8: Xt(i’j) — Xt(fjl) —ny/m/n Pt(j)(Qii))T > scaled orthonormal update
9: Qti’j) — SHARDTP(QEU) >reshard Q along TP dimension
10: end for

function D1sTRIBUTED-PoWERITERL(B (1), Q)
PU) o BEDQE)
PU) « EppXrs (P(j)) >FS sharded matrix multiply and DP sync
PY) ¢ DISTRIBUTED-ORTHOGONALIZE (P())
RO (g(i,j))Tp(j)
R EppX1p (R(i)) > TP sharded matrix multiply and DP sync

return P R
end function

AN A

1: function DISTRIBUTED—COLUMNNORMAI__.IZE‘.(Q(i))

2: ) < CoLumN-NorM-SQuaRED(Q(?))

3: ¢ 4 \/Sps c®) >all-reduce sum over FS
4: return Q(i)/c > column-wise divide
5:

end function

where Bgi’j ) is the corresponding shard of the synchronous buffer in the centralized Algorithm 1. A
similar equivalence applies to Epp [Rﬁz)] This yields Pt(] ) and Rgz) that are identical to a globally-
synchronous momentum up to numerical precision. Consequently, the orthonormal parameter update
and error-feedback subtraction match those of centralized Dion.

4.5 Computational Complexity

For an m x n weight matrix, rank  Dion on an FS x TP grid incurs

8mnr  13mr? 13 4

— FLOP
FS~TP+ 5Tp +6r + O(mn) s
per device per optimizer step. Details are provided in Appendix H. All O(mnr) computations are
sharded over both parallelism axes. The O(mr?) term is sharded over TP only. The replicated term is
merely O(r?) and becomes negligible when 7 is much smaller than m, n. The O(mn) term captures
element-wise operations, which do not dominate the asymptotic runtime.

For comparison, the five Newton-Schulz iterations used by Muon require
20mn? + 10n® + O(mn) FLOPs

independently of sharding [Jordan et al., 2024b, Liu et al., 2025a]. Even in Dion’s worst-case scenario
with no sparsity and no sharding (r = n and FS = TP = 1), Dion needs approximately

14.5mn? +2.17n% < 20mn? + 1013,

cutting the O(n?) term by over 3x and the O(mn?) term by ~ 25%. With practical ranks (r < n)
and parallelism, Dion’s advantage widens with both decreased r and with increased FS x TP sharding.



4.6 Communication and Memory Footprint

Optimizer DP I/O FSDP I/O TP I/O0 Memory
Adam mn 0 0 2mn
Muon mn mn mn mn
Dion (m+n)r (m+1r 2nr+2.25r7 mn+nr

Table 2: Extra optimizer-step communication and total optimizer state memory required for an m x n matrix.
Dion’s I/O traffic depends on the low-rank factor r < m, n.

Table 2 compares the additional optimizer-step communication for a single m x n weight matrix.
Details are provided in Appendix I. Notably, Dion’s communication volume scales with the low-rank
factor rather than with both matrix dimensions. Dion can have significantly lower I/O overhead than
Adam or Muon when r < m, n.

Dion stores a momentum buffer M € R™*™ and a warm-start basis () € R™*", for a total size of
mn +nr—close to Muon’s mn when 7 is small, and never greater than Adam’s 2mn. Both optimizer
states can be doubly sharded across FS and TP, further shrinking the per-GPU memory footprint.

5 Experimental Results

We present a range of experimental results for Dion, comparing to baselines of AdamW [Loshchilov
and Hutter, 2019], Muon [Jordan et al., 2024b], and DeMo [Peng et al., 2024]. All experiments
are conducted using GPT-style decoder-only Transformer models at various scales, trained on the
FineWeb dataset [Penedo et al., 2024] or the FineWeb-Edu dataset [Lozhkov et al., 2024], following
the setup of the modded-nanoGPT codebase [Jordan et al., 2024a]. For additional details on training
configurations and hyperparameters, please refer to Appendix J.

5.1 Performance Across Model Size
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——- Muon
—— Dion (r/d)
3.5 3.5 3.5
9]
3 1/16
a 1/4
3.0 12 3.0 3.0
1/16
ﬂ% 1/16
2.5 2.5 2.5 ﬂ‘z‘
0 2000 4000 0 5000 10000 0 10000 20000 30000
Steps Steps Steps

Figure 2: Validation loss for Dion at three low-rank settings (r = d/2, d/4, d/16) versus (full-rank) Muon.
As the model size increases, Dion with r = d/2 or d/4 gradually matches Muon, while even the highly sparse
d /16 variant converges within a small margin.

Figure 2 shows validation loss curves across three model sizes. We compare Dion with rank fraction
r/d=1/2,1/4, and 1/16, where r is Dion’s low-rank factor and d is the hidden dimension of each
Transformer model. Larger models appear more robust towards sparsification. At a scale of 3B
parameters, Dion with 7 = d/2 and d/4 roughly match Muon, even though Muon uses full-rank
orthonormalization. Furthermore, the gap between r = d/16 and r = d/2 diminishes as the model
size increases. Considering that modern LLMs are typically far larger than 3B parameters, these
results suggest that 1/16 and potentially lower rank fractions are realistic for practical use.

In Figure 3 (left), we compare the peak convergence rates of Dion and Muon across multiple model
sizes. We use r = d for Dion, since Muon computes full-rank updates. For each size, we define a
target validation loss, selected to match the loss achieved by AdamW after consuming approximately
80% of the Chinchilla-optimal token count. We show the steps ratio—the number of steps required
by AdamW to reach the target loss, divided by the steps required by Dion or Muon. Dion consistently
achieves a faster reduction in loss per training step than both Muon and AdamW across all model
scales. See Section J.1 for full experimental details.
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Figure 3: Scaling experiments along three axes: model size, batch size, and update density.

Left: model size. Convergence rate across model sizes for Dion (with » = d) and Muon. To measure relative
speedup compared to AdamW, we show the steps ratio (AdamW steps / Dion or Muon steps). Higher is better.
Middle: batch size. Scaling behavior with increasing batch size. We show the steps ratio relative to AdamW for
Dion (with r = d and r = d/4) and Muon. Higher is better.

Right: update density. Dion compared to DeMo, Muon, and AdamW as the rank fraction r/d increases. Dion
improves with higher update density, matching DeMo at r/d = 1/32 and AdamW atr/d = 1/8.

5.2 Performance Across Batch Size

In Figure 3 (middle), we evaluate optimizer performance across a range of batch sizes by measuring
the number of steps required to reach a target validation loss of 3.4. We show the steps ratio for
Dion (with » = d and r = d/4) and Muon. As batch size increases, all configurations exhibit greater
advantages relative to AdamW. All experiments use 120M-parameter models with a fixed sequence
length of 1024 tokens. Additional hyperparameter details are specified in Section J.2. A further
analysis of critical batch size in the style of Zhang et al. [2025] is provided in Appendix C.

5.3 Performance Across Rank Fraction

Dion can decrease communication requirements by lowering the rank fraction r/d. We compare Dion
to DeMo, an optimizer that reduces communication using Discrete Cosine Transform (DCT) based
compression. DeMo uses two hyperparameters to adjust compression: top-k frequency selection and
chunk size s x s. To draw a fair comparison with DeMo, we define the update density for Dion as
r/d and for DeMo as k/s2, the number of selected elements out of the total per chunk. AdamW and
Muon do not use compression, and can be regarded as having a fixed update density of 1.

In Figure 3 (right), we see that Dion remains highly competitive with our baselines across moderate
levels of compression. For instance, Dion consistently surpasses DeMo beyond update density
1/32, outperforms AdamW starting at 1/8, and slightly outperforms Muon at full rank (r = d). All
experiments here use 120M parameter models trained with a batch size of 4M tokens and a sequence
length of 1024. Additional hyperparameters are specified in Section J.3.

Perhaps unsurprisingly, Dion performs best at full rank. It undergoes a smooth and predictable
decline in performance as the rank fraction decreases. DeMo, on the other hand, achieves its
best performance at an update density of 1/32, and begins to show poorer performance with both
increasing and decreasing compression. We note that for a sufficiently low update density, DeMo will
surpass Dion. In Appendix K, we explore a modification to Dion that improves low-rank performance.

5.4 Speed Runs for 3B Models

Motivated by the observation that full-rank Dion (i.e., r = d) yields higher-quality updates than
Muon, we conduct a speed run experiment on 3B-parameter models trained on the FineWeb dataset.
We measure the wall-clock time each optimizer takes to reach a series of target validation losses, and
normalize these times relative to AdamW. Timings are measured with 16 NVIDIA H100 GPUs.

The results are shown in Figure 1. Consistent with previous findings [Jordan et al., 2024b, Liu et al.,
2025a, Shah et al., 2025], Muon achieves a noticeable speedup over AdamW. Remarkably, full-rank
Dion outperforms Muon even in wall-clock time, highlighting the advantage of Dion’s update quality.
Note that the smaller state of Muon and Dion optimizers allows larger batch sizes, which is part but
not all of the improvement observed here.
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Figure 4: Learning rate versus loss for four model scales. Dion maintains hyperparameter transferability trends
of Muon across both model size and different rank fractions.

5.5 Hyperparameter Transfer

Previous work [Bernstein, 2025, Bernstein and Newhouse, 2024a, Pethick et al., 2025] has shown
that Muon can exhibit learning rate transfer across model size via shape-dependent scale factors
(Section 3.2). To empirically verify that Dion inherits this property, we sweep learning rates for Muon
and Dion with rank fractions 1/4 and 1/16 across four model sizes, each trained for a Chinchilla-
optimal number of tokens [Hoffmann et al., 2022]. As shown in Figure 4, optimal learning rates are
approximately identical for all model sizes. Detailed hyperparameters are given in Section J.5.

6 Related Work and Conclusion

Prior work on preconditioned optimizer update rules includes Shampoo [Gupta et al., 2018] and
SOAP [Vyas et al., 2025]. These second-order optimization algorithms have substantial compute and
memory overheads, motivating the development of distributed [Anil et al., 2020, Shi et al., 2023]
and quantized [Wang et al., 2024] implementations of Shampoo. However, distributed Shampoo
and SOAP are outperformed by Muon both on a per-step and wall-clock basis [Jordan et al., 2024b],
suggesting that Muon’s orthonormalizing update rule is algorithmically and computationally superior.
In contrast, full-rank Dion can outperform Muon, particularly at larger batch sizes. Recent work such
as COSMOS [Liu et al., 2025b] has shown promising results from combining SOAP- and Muon-style
updates across different eigenspaces.

Prior approaches to reducing communication overhead include gradient sparsification [Wang et al.,
2023] and federated averaging [McMahan et al., 2017, Douillard et al., 2023]. We consider these
techniques as complementary to Dion. Dion aims to be an efficient optimizer in itself, and it can be
combined with these techniques to further lower communication.

Dion takes inspiration from DeMo [Peng et al., 2024], which uses decoupled momentum and lowers
communication requirements through lossy compression based on the discrete cosine transform.
DeMo is quite effective when very aggressive compression is necessary, but it underperformed Dion
at more modest levels of compression. Unlike DeMo, Dion’s decoupled momentum also guarantees
exact equivalence to synchronous momentum.

Dion also connects to recent studies on low-rank updates [Cosson et al., 2023, Jadbabaie et al.,
2023] and memory-efficient optimizers like GaLore [Zhao et al., 2024]. In contrast to observations
from Song et al. [2025], the results here suggest that low-rank training can succeed when paired with
an effective error feedback rule.

Lastly, we highlight a few directions for future work:

* Quantization: Dion’s optimizer states may be quantizable to lower precision formats to reduce
memory use. The column-normalized () matrix may be particularly quantization-friendly. In
addition, expensive steps like QR decomposition may also be faster in reduced-precision arithmetic.

* Error feedback: Refining the error feedback rule may improve convergence at lower ranks. A
variant explored in Appendix K shows promising results in this regime.

* Beyond LLMs: While experiments here focus on GPT-style models, any architecture with matrix-
shaped parameters and dense activation vectors may benefit from orthonormalized updates.
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A Is Muon Scalable for LLM Training?

Moonshot Al [Liu et al., 2025a] successfully applied Muon for training a 16B parameter language
model. In this section, we estimate if Muon continues to scale for larger models.

Let us revisit the flagship Llama 3 405B training run [Grattafiori et al., 2024], which processes 15.6T
tokens in batches of 16M tokens—about 10° optimization steps in total. The public report lists the
following parallelism recipe:

Tensor parallel (TP) 8
Context parallel (CP) 1
Pipeline parallel (PP) 16
Fully-sharded data parallel (FS) 128
Total GPUs 16384

Suppose we use the implementation of Liu et al. [2025a] that runs Newton-Schulz iterations locally.
Consequently, all 8 x 128 GPUs in a TP x FS grid perform identical work, and only the 16 pipeline
stages process disjoint parameters.

(a) One MLP weight matrix. Each MLP matrix weighs in at 53248 x 16384, for 8.7 x 10%
parameters. For this matrix size, a single H100 GPU is benchmarked as taking roughly 1 second
to run five Newton-Schulz iterations in bf 16 precision.

(b) Per pipeline stage. Every transformer block contains three such matrices. With 126 blocks
total, each PP rank processes
126 x 3/16 ~ 24

MLP matrices, costing around 24 seconds per optimizer step.

(c) End-to-end cost. 24 s x 10% steps = 2.4 x 107 s ~ 278 days (!) of extra compute to
orthogonalize MLP matrices alone.

Even in the absence of any communication bottlenecks, Muon is therefore compute-bound at 405B
scale. In practice the situation is worse: attention matrices still need to be orthogonalized, and any
time spent on Newton-Schulz is purely in addition to the forward/backward pass.

This result challenges the claim in Jordan et al. [2024b] of a 0.5% overhead for using Muon on a
Llama 405B scale training run. The theoretical 0.5% figure assumes no replicated work, yet the
current real-world implementation of distributed Muon [Liu et al., 2025a] cannot avoid redundant
computation across the TP x FS dimensions. Consequently, we see a 0.5% x 8 x 128 =~ 500%
overhead in wall-clock time.

We note that it is theoretically possible to distribute the compute of Muon more efficiently and reduce
the amount of redundant computation. More advanced parallelism strategies have been proposed,’
but to the best of our knowledge such ideas have yet to be validated in any existing implementation of
Muon. Further distributing Muon’s compute would lead to a substantially increased communication
burden, which may limit the potential room for improvement.

B Ablation Studies

We conduct ablation studies to evaluate two core components of Dion: the error feedback mechanism
and the use of a single power iteration for low-rank approximation. For these ablation studies, we
train 120M parameter models and set the batch size to be 2048 - 1024 ~ 2.1 M tokens.

B.1 Single Power Iteration vs. Full SVD

We evaluate the effectiveness of Dion’s single-step power iteration for computing a rank-r ap-
proximation. In this experiment, we compare Dion to an alternative that computes the singular
value decomposition (SVD) at every step and truncates to the top-r singular values—an ideal but
computationally expensive alternative.

2For example, see https://main-horse.github.io/posts/parallelizing-muon/
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Figure 5: Testing algorithmic components. We evaluate two key design choices in Dion: the error feedback
mechanism and the use of a single step of power iteration. Error feedback proves crucial at lower ranks. A single
power iteration performs on par with SVD, offering a more efficient alternative without sacrificing performance.

The results, shown in Figure 5a, reveal negligible differences in convergence behavior between the
two approaches. This suggests that using power iteration—initialized from the previous iteration’s
right orthonormal basis [Vogels et al., 2019]—can give a sufficiently accurate approximation at a
fraction of the computational cost.

B.2 Importance of Error Feedback

To evaluate the necessity of the error feedback mechanism, we compare Dion against a simplified
variant that omits error feedback. In this baseline, the rank-r approximation is applied directly to the
momentum buffer:

Mt — /’LMtfl + Gt7 for ne (07 1)7

whereas Dion first compresses an auxiliary buffer B; and then updates the momentum using error
feedback:

M; «+ B, — (1 — p)PR] .

As shown in Figure 5b, the version without error feedback suffers from steep performance degradation
as the rank decreases from r = d/2 to r = d/4, while Dion maintains stable performance. This
highlights the importance of incorporating error feedback to preserve optimization quality when
using low-rank approximation.

C Critical Batch Size

We follow the critical batch size evaluation protocol of Zhang et al. [2025] with one key modification:
instead of applying an exponential moving average, we use a constant learning rate for each optimizer
and relax the target loss threshold to ensure a fair comparison across optimizers. All runs here use
120M parameter models trained on the FineWeb dataset until reaching a validation loss of 3.4.

For AdamW, we perform a hyperparameter sweep over learning rates {0.001, 0.003,0.01}, weight
decay values {0,0.01}, and B2 € {0.95,0.99} for each batch size. We use a trapezoidal learning rate
schedule with 10% warmup and 10% cooldown, and fix 8; = 0.9. For Muon and Dion, we fix the
momentum parameter ;4 = 0.95 and sweep learning rates over {0.003,0.01,0.03}.

We evaluate Dion’s critical batch size across a range of rank fractions r/d. Figure 6 shows the results.
As expected, Dion’s performance degrades as the rank r decreases. Nevertheless, Dion remains
competitive even at low ranks—for example, Dion with » = d/8 is generally on par with AdamW.

Interestingly, Dion seems to exhibit a larger critical batch size than Muon. The gap between full-rank
Dion and Muon starts at 2'! and becomes especially evident at 2'3. At batch size 2'4, even Dion
with r = d/2 begins to outperforms Muon’s full-rank orthonormalization. We hypothesize that this
discrepancy arises from Muon’s use of Newton-Schulz iteration to approximately orthonormalize the
weight update, which may yield less accurate results than Dion’s orthonormalization procedure.
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Figure 6: Dion vs. Muon and AdamW across batch sizes 25-2'* tokens. Dion at low rank is competitive with
AdamW, while full rank Dion outperforms Muon across larger batch sizes. For all rank fractions r/d evaluated
here, Dion’s critical batch size appears to be no less than that of Muon and greater than that of AdamW.

D Update Rules for Non-Matrix Parameters

We provide further details here on the use of Adam and Lion for scalar parameter updates, along with
a more thorough explanation of the normalization and scaling factors given in Table 1. The objective
here is to maintain consistent learning rate transfer across model sizes for both matrix and scalar
parameter updates—any model size, two optimizers, one learning rate.

D.1 Normalization and Scaling for Learning Rate Transfer

For effective learning rate transfer, Yang et al. [2023] advocate that both initial parameters and their
updates should maintain a ©(1) natural norm. This norm is defined as the RMS norm for dense
vectors (e.g., activations), the £» norm for sparse vectors (e.g., one-hot encodings), and the respective
operator norm for matrices. For reference, the RMS norm of a vector v € R4 is defined as

’U%“{‘U%“""""Uﬁ

vl = ! [vle = \/
N
RMS Nz 2 p

The approach of maintaining a ©(1) natural norm with Dion relies on two components: parameter
update normalization and learning rate scaling. Normalization is achieved by the optimizer update
itself. Dion (and Muon) compute orthonormal matrix updates, Adam produces an approximately
constant scalar RMS norm, and Lion produces a true constant scalar RMS norm. Starting from a
single base learning rate, we then apply scaling factors depending on parameter types and dimensions.
The same base learning rate should then transfer across model sizes.

We analyze the normalization and scaling factors required for the various parameter types in Table 1
in order to produce a unit natural norm.

* Weight matrix: A typical d,y X dj, weight matrix maps dense activation vectors R4 to dense
vectors R%u _ If the input vector has RMS norm 1, we desire that the output vector also have RMS
norm at most 1—that is, the weight update should have a unit RMS — RMS operator norm. An
orthonormal matrix has unit spectral norm (/2 — {5 operator norm). Applying a scale factor of

v/ dout/din achieves the desired RMS operator norm, as shown by Bernstein [2025].
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* Bias vector: A bias vector can be treated as a do, X 1 matrix that maps a constant [1] to the vector
itself. It suffices to normalize the parameter update to unit RMS norm.

* Embedding: An embedding layer maps a one-hot vector to a dense vector. The embedding matrix
can be viewed as a set of independent d,, X 1 vectors, each of which can be treated identically as a
bias vector, and we normalize the embedding parameter update to unit RMS norm.

* Unembedding: We view the unembedding matrix as a set of independent 1 x dj, vectors, each of
which maps an input activation vector to a scalar logit. The expected change in the output logit
is proportional to the ¢ norm of the unembedding vector (see Section D.2). Given a parameter
update with unit RMS norm, we then scale by 1/+/dj,.

* Normalization: Multiplicative and additive factors may be used in normalization layers, such as
LayerNorm [Ba et al., 2016] and RMSNorm [Zhang and Sennrich, 2019]. As each factor is an
independent learned constant, we may view them as 1 x 1 weight matrices and 1 x 1 bias vectors.
The spectral, RMS, and /5 norms are identical in this trivial case, and all scaling factors are 1.

D.2 Scaling Factor for Unembedding Parameters

Suppose we have an unembedding vector v and an activation vector h, both with dimension d. The
output is the scalar logit s = v - h = v1hy + vohy + - - - + vghg. If we assume that weight updates
Av are independently distributed and centered around zero, which is very likely true for sign-based
optimizers such as Lion, we then have

E[(As)?] = E[(Av - h)?]
E[(Avoho + Avihy + -+ A'Udhd)2]
> E(An)YERI+ > E[Av]E[Av]E[h]E[h]
i€[1..d] i,j€[1..d)
i#£]
=d- | Av|Rus|BllRms + 0

Given an input activation vector with ||h|lgrms = 1,

E[|As|lrus] = Vd - [|AV|[rus.

For an expected unit change in output, we can normalize the parameter update to ||Av|rms = 1 and
scale by 1/+/d. This is equivalent to normalizing to || Av||s = 1.

The RMS scaling factor of 1/ \/d differs from the 1 /d given by Yang et al. [2023]. The smaller
scaling factor of 1/d produces a worst-case ||As||rms = O(1), which holds even when E[Av] # 0.

Scaling by 1/+/d produces ||As||gms = ©(1) in expectation.

In Figure 7, we empirically test three different scale factors for the unembedding layer—1/ Vd, 1 /d,
and 1—along with a manually tuned Adam learning rate. For the three candidate scale factors, we
use Lion as the optimizer because of its constant RMS norm. For layers besides the unembedding
layer, we use the same scaling factors given in Table 1. For Adam, we use the same learning rate for
all non-matrix parameters, following the conventional practice of using a single Adam learning rate.

Using Lion with a 1//d unembedding scale factor consistently results in the lowest validation loss.
It outperforms the manually tuned Adam learning rate without needing any additional hyperparameter
search. The alternative scale factors all result in poorer performance relative to Adam. Furthermore,
using the unscaled base learning rate (scale factor 1) for the unembedding layer led to training
instability. We observed much higher gradient norms and large loss spikes at the beginning of training,
suggesting that the learning rate was far too high.

Additional hyperparameter details: All experiments here use 120M parameter models trained on
the FineWeb dataset. The batch size is 1024 and the sequence length is 1024. The total training
steps is 3000, and a linear learning rate decay to zero is applied over the last 20% of steps. The
base learning rate for Dion, Lion, and Muon is set to 0.01. The best Adam learning rate was found
to be 0.002. For Dion and Muon, we use . = 0.95. Adam uses (81, 82) = (0.9,0.95) and Lion
uses (f1, B2) = (0.95,0.98). All runs use a weight decay of 0.01 for matrix parameters and O for
non-matrix parameters.
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Figure 7: Comparison of unembedding layer optimizer and learning rate scale factors. When using Lion as the
scalar optimizer, we experiment with various unembedding layer learning rates, determined by scaling the base
learning rate by 1/+/d, 1/d, and 1 (unscaled). The Adam baseline uses a fixed learning rate for all non-matrix
parameters. Using Lion witha 1/ +v/d unembedding scale factor consistently gives the best results, which holds
across varying Dion rank fractions 1, 1/4, and 1/16, and further generalizes to Muon.

D.3 Scalar Optimizers: Adam and Lion

Adam [Kingma and Ba, 2014] and AdamW [Loshchilov and Hutter, 2019] are highly popular element-
wise optimizer algorithms. In previous works on Muon, Jordan et al. [2024a] and Liu et al. [2025a]
respectively applied Adam and AdamW for scalar parameter updates. Experimental results show that
Adam can perform well when used in conjunction with Dion, but its drawback is that the optimal
Adam learning rate does not innately match that of Dion or Muon. Obtaining good performance with
Adam may require manually tuning a separate learning rate.

Consequently, we recommend the use of Lion [Chen et al., 2023] instead, along with the per-parameter
scale factors given in Table 1. Lion computes its update using the sign function (+1 or —1), thus
guaranteeing that the parameter update has a constant RMS norm of one. As shown in Figure 7, the
Dion+Lion combination can outperform Dion+Adam while sharing a single base learning rate for
both optimizers. We find it likely that Muon is also more compatible with Lion than Adam.

D.4 Against Standard Practice

These normalization and scaling guidelines suggest that the common practice of using a single
Adam learning rate for all parameters is highly suboptimal. Looking at merely the embedding and
unembedding layers of a typical LLM, their ideal RMS update magnitudes differ by a factor of
v dimodel- This factor can exceed 100 for a large model! The learning rate must then be made smaller
in order to tolerate this mismatch, leading to slower convergence. We speculate that the practice of
weight-tying the embedding and unembedding layers is likely also detrimental, although it could help
compensate for the difference in ideal learning rates.

Indeed, we observe that the NanoGPT speedrun by Jordan et al. [2024a] uses untied weights and a
much higher learning rate for embedding parameters than unembedding, with learning rates manually
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tuned for each model size. The learning rate ratio does not exactly match /dpoger, but falls roughly
within an order of magnitude. As a further caveat, the NanoGPT speedrun uses Adam to optimize
these parameters, which does not guarantee a constant RMS norm.

dmodet Embedding LR Unembedding LR LR Ratio  v/dmodel

768 0.6 0.22 2.7 27.7
1024 0.3 1/320 96 32

Table 3: NanoGPT speedrun hyperparameters for the small and medium GPT-2 model configurations.

E Distributed Dion Variants

There exists four variants of 3D parallel Dion algorithm (Algorithm 3), produced by transposing
the matrix in power iteration and by swapping the FS and TP parallelism dimensions. The two
variants with transposed power iteration are given in Algorithm 3 and Algorithm 4. The remaining
two variants can be created simply by replacing FS with TP and vice versa.

As for the best variant to use for any given parameter matrix, we offer the following advice:

* Generally, the TP axis is only applied over a fast intra-node communication network (e.g. NVLink),
while the FS axis may use a slower scale-out network (e.g. Infiniband or Ethernet). The sharding
dimension used for DISTRIBUTED-ORTHOGONALIZE iS more communication-heavy, which we
suggest placing on the TP axis. This is the case for both Algorithm 3 and Algorithm 4.

* For any given parameter matrix, the TP sharding dimension typically cannot be freely chosen. It is
determined by a layer’s position relative to the activation function, in order to permit the activation
to be applied element-wise without additional communication. In language models, attention
QKYV and MLP up-projection matrices are sharded column-wise, while attention output and MLP
down-projection matrices are sharded row-wise. In contrast to TP, the FS sharding dimension can
be arbitrarily chosen, as parameters are always unsharded before any computation is performed.
We recommend ensuring that the TP and FS sharding dimensions are different.

* In PyTorch, a nn.Linear layer with ColwiseParallel tensor parallelism has its weight ma-
trix sharded with Shard (0), and a RowwiseParallel layer has its weight matrix sharded with
Shard(1). On the other hand, PyTorch’s FSDP2 fully_shard API by default always uses
Shard (0), but allows specifying a custom shard_placement_£fn to return arbitrary per-parameter
shardings. Therefore, when combining tensor parallelism with FSDP2, one should use a custom
placement function that returns Shard (1) for parameters with column-wise tensor parallelism and
Shard (0) for parameters with row-wise tensor parallelism.

* The “standard” Dion (Algorithm 3) uses the case of a m x n matrix with TP-sharded m and FS-
sharded n. The “transposed” Dion (Algorithm 4) uses FS-sharded m and TP-sharded n. Therefore,
use Algorithm 3 for ColwiseParallel parameters, and use Algorithm 4 for RowwiseParallel
parameters.

F Equivalence of Distributed and Centralized Dion

Theorem F.1. Let X; be the m X n iterate produced by centralized Dion (Algorithm 1), and let

)A(t(” ) be the per-device shards in 3D-parallel Dion (Algorithm 3) whose weights are FS sharded
over index © and TP sharded over index j. Then, for all t,

X = [)A(t(” )] i (i.e. concatenating the F'S and TP shards recovers the full matrix).
Moreover, the local momentum shards Mt(i’j) average to the centralized M, and the low-rank

factors produced by the distributed power iteration and column-normalization steps are exactly the
corresponding slices of the centralized Py, Q.
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Algorithm 4 Transposed Dion

Require: Learning rate n, momentum decay p, rank r
1: fort =1to T do o
2: Compute local gradient GE” )

3 QY « AuLGatrER (Q1")) bunshard Q along TP dimension
4 Bt(i7j) <~ Mt(i’{) + é£i7j) > accumulate new gradient
5 Pt(j), Rgi) — DISTRIBUTED—PDWERITERi—T(Bt(i’j); Qii_)l)

6: Mt(i’j) — Bﬁi,j) —(1—p) Rgi) (Pt(j))T > error feedback
7 ,Ei) — DISTRIBUTED—CDLUMNNDRMALIZE(REi))

8 Xt(i7j) <~ Xt(ijl) —-n m/n Qii)(Pt(j))T > scaled orthonormal update
9: Qti’j) A SHARDTP(QEU) >reshard () along TP dimension
10: end for

1: function DISTRI BUTED—POWERITER_l-T(B(i’j), Q(i))

2 PO e (BED)TQW

3 PY «— Epp > s (P(i)) >FS sharded matrix multiply and DP sync
4: PY) + DISTRIBUTED-ORTHOGONALIZE (P(j))

5. RO L Bl pO)

6 RO+ Epp > p (R(i)) > TP sharded matrix multiply and DP sync
7
8

: return PU) R()
: end function

Proof. We proceed by induction on ¢. We use the hat notation to denote the states of the distributed
algorithm. At ¢ = 0, all states are identically initialized and trivially match. Suppose that at step ¢ — 1
we have (09) _ 3Gd) ) L o) _ A

Vi, J, Xt—’jl = Xt—’jl ) Mt—’{ = Epp [Mt—’{ ]7 Qt—’jl = t—J1 :
We show that the same holds at step .

1. Forming the buffer. Each device computes Bgi’j ) = Mt(i’{) + G§” ). Since the true gradient
and momentum shards sum/average to the centralized G, and M,_1, it follows that concatenating

and averaging these B’s recovers the centralized B; sharded in the same (i, 4) pattern.

2. Distributed power iteration + orthonormalization. Before the TP-sharded power iteration, the
algorithm all-gathers each FS shard of ();_; across TP:

Q,El_)l < ALLGATHERTp( AEI_Jl)) )

which by the induction hypothesis equals the centralized le,)l

Then each device forms P() = B(4) Q{"), and carries out the FS-sum and DP-mean to reconstruct
the full B; ;1 in FS shard j. A call to DISTRIBUTED-ORTHOGONALIZE is precisely the distributed
orthogonalization algorithm (Algorithm 2) and so by Lemma G.1, it produces exactly the centralized
P, sharded over j.

Likewise, the subsequent R = (B@))T P9 followed by TP-sum and DP-mean reconstructs each
slice of the centralized R;, and the distributed column-normalize yields exactly the centralized Q); on
each (i, 7).
3. Parameter and momentum updates. Finally, each shard updates

Xt(m) _ Xt(ﬁ) — Pt(J) ( Ez))T’ Mt(m) _ Bet(m) — (1-p) Pt(J) (REZ))T'
Concatenating the X -shards recovers

Xy = X1 —nPQ/,
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) over DP recovers

M; = B; — (1 — ) P,R/,

exactly as in the centralized Algorithm 1.

and averaging the Mt(i’j

Thus all induction hypotheses hold at step ¢, and the 3D-parallel iterates remain identical to the
centralized ones for every ¢. O

G Equivalence of Distributed and Centralized Orthogonalization

In this section, we provide the details of the distributed implementation of randomized Cholesky QR
(Algorithm 2). We begin by reviewing the standard randomized Cholesky QR algorithm (Algorithm 5),
following the presentation of Epperly [2024]. A similar method was first introduced by Fan et al.
[2021]. The default oversampling factor of 1.25 follows the recommendation in Melnichenko et al.
[2025], which produced stable results in the experiments with Dion.

Algorithm 5 Randomized-Cholesky-QR(P)

Require: Oversampling factor k& > r (default value [1.257]).

1: S« RF>™ ~ N(0,1/VE) > generate random sketching matrix
2: G+ SP >begin 1st iteration using randomized QR
3: _, R + QR(G) >only R component needed
4 B+ PR;*

5: H— B'B >begin 2nd iteration using Cholesky QR
6: Ry < Cholesky(H) > only upper triangular component needed
7. P+ BR;"

8: return P

The advantage of Algorithm 2 over the above centralized version is that orthogonalization is performed
locally on each shard, requiring only synchronization of small k£ X r and r X r matrices during
all-reduce operations. As long as k,7 < m,n, the communication overhead introduced by this
procedure is small relative to the size of the model parameters.

Based on the centralized algorithm procedure, we provide a proof of equivalence.

Lemma G.1. Let P € R™*" be sharded row-wise across s devices as PU) € R™i%" with j
{1,2,...,s8}. Suppose each device holds a corresponding shard S U) of a shared sketch matrix
S € RF¥™ with § = [SM) ... SO If the Y1p all-reduce computes exact sums, then the final

output { P ( )} of the distributed orthogonalization (Algorithm 2) matches the output of the centralized
randomized Cholesky QR (Algorithm 5).

Proof of Lemma G.1. In Algorithm 5, we form G' = SP € R**" and then compute its QR factoriza-
tion to obtain R; € R"*". We then compute B = PRl_l, followed by

H=B"B=(RY) P'PR".
A Cholesky decomposition of H yields Ry, and finally
Q = BR;' = PR{'R;".

In Algorithm 2, each shard j holds exactly the corresponding block PU) and the matching submatrix
S0). The local computations result in GU) = §U) PU) and the all-reduce sum > (G)) exactly

reconstructs
Zs(j)p(j) - SP.
J

Thus the global G as input to QR decomposition is identical in both algorithms, so the computed R;
is the same. Likewise,

BYW =PUR" = > (BY)'BY = (R ")"PTPR;'=B"B,
J

22



so the sum in the second phase reproduces H, yielding the same Cholesky factor Rs. Finally, each
shard updates

pPU) B(j)R2—1 - P(j)Rl_lel,
and stacking the PU) gives exactly P = PR; 'R, " as desired. 0O

H Details on Computational Complexity

We provide a more detailed analysis of the number of FLOPs needed by Dion versus Muon for
optimizing a single m x n parameter matrix. For simplicity, we omit all element-wise operations
(e.g. updating momentum with gradient), as they do not affect the asymptotic runtime.

The following FLOP counts are assumed:

* Matrix multiplication: Multiplying m X n and n X p matrices requires 2mnp FLOPs.

* QR decomposition: For a m x n matrix with m > n, the Householder QR algorithm requires
2mn? — (2/3)n3 FLOPs [Higham, 2022].

* Cholesky decomposition: For a n x n square matrix, Cholesky decomposition requires n3/3
FLOPs [Higham, 2022].

* Solve triangular: Solving a linear system involving a n X n triangular matrix and a vector, using
forward- or back-substitution, requires n? FLOPs. Therefore, computing AR~ for a m x n matrix
A and n X n triangular matrix R requires m matrix-vector solves, for a total of mn? FLOPs.

H.1 Dion

We break down the per-device FLOPs required by Dion in Algorithm 3. As shorthand, FS and TP
denote the respective number of devices along each dimension, and m X n is the size of the entire
unsharded matrix. Equivalently, m; = m/TP and n; = n/FS.

Step Operation Shape FLOPs
Power iteration BN QU) m; x n;andn; x r | 2mnr/(FS - TP)
(BGIN)TPU | ny xmjandm; xr | 2mnr/(FS - TP)
Orthogonalization SG) pL) 1.257 x mjand m; x r | 2.5mr?/TP
QR(G) 1.25r x r (11/6)r3
PORT m; x randr xr mr? /TP
(BW)TBW) r x mjand m; X 7 2mr? /TP
Cholesky(H) TXT r3/3
BUIR;? mj x randr xr mr? /TP
Error feedback | PU)(R®)T mj x rand T X n; 2mnr/(FS - TP)
Weight update PO(QUNT mj x rand r X n; 2mnr/(FS - TP)

This gives a total per-device FLOP count of
8Imnr n 13mr? n 1373
FS-TP  2-TP 6

We find it particularly advantageous that the most computationally intensive operations with O(mnr)
runtime benefit from sharding across both FS and TP axes. A secondary O(mr?) component is
sharded across TP but replicated across FS. Only the O(r®) component must be replicated across both
FS and TP axes. Therefore, rank reduction not only lowers communication but also offers substantial
computation speedup. A linear decrease in r leads to a cubic decrease in redundant work performed.

It is worth recalling the Dion variants discussed in Appendix E. If the FS and TP axes are swapped, the
O(mr?) operations are sharded across FS instead of TP. Although this swapping results in a greater
communication cost over the typically slower FS sharding axis, the tradeoff may be computationally
favorable in a scenario where FS >> TP, such as in Appendix A.
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H.2 Muon

Each Newton-Schulz iteration requires three matrix multiplications. For a m X n matrix with m > n,
a single iteration takes 2mn? + 2n3 + 2mn? FLOPs [Jordan et al., 2024b]. Using the default five
iterations requires a total of 20mn? + 10n® FLOPs.?

Remarkably, Dion’s FLOP count remains smaller than Muon’s—even in the “worst-case” scenario
with neither sparsity nor sharding. Letting » = n and FS = TP = 1, we have

8mnr Bmr? 137 29 , 13 , 9 3
= — —n° ~ 14. 2.1 .
Fs-tp 2.tp © 6 2 T " bmn” + 2.17n

Hence, it follows that

14.5mn? +2.173 < 20mn? +10n® .
—_—
maximum Dion FLOPs Muon FLOPs

Muon is surprisingly compute-intensive, especially considering its strong empirical performance in
the NanoGPT speedrun. Consider that the singular value decomposition (SVD) can be computed
with 14mn? + 8n? FLOPs [Higham, 2022]. To orthogonalize a matrix A € R™*™ with SVD, we
decompose A = UXV " and then multiply UV T, which requires

14mn? + 8n2 4+ 2mn? = 16mn? + 8n3 < 20mn? + 10n>.

Muon requires more FLOPs than SVD! Its speed can only be attributed to its exclusive use of matrix
multiplication and addition—which are highly parallelizable and optimized for by modern accelerator
hardware—and not due to intrinsic algorithmic efficiency.

I Details on Communication Requirements

In 3D-parallel Dion (Algorithm 3), we perform I/O operations along three separate parallelization
dimensions. For simplicity, we consider optimization of a single m X n parameter matrix. We
analyze only the optimizer-update communication; forward-pass and backward-pass collectives that
are common to all optimizer algorithms are not included. An element-wise optimizer algorithm such
as Adam thus incurs zero additional communication due to sharding. We discuss the amount of data
transferred along each parallelization dimension in isolation, treating all other dimensions as unused.
A summary of results here is given in Table 2.

« DP: Dion requires two all-reduce operations for P € R"*" and Q € R"*", for a total of (m 4 n)r
elements. This replaces the standard DP gradient synchronization required before applying Adam
and Muon, which takes place on the gradient matrix G € R™*™ of mn elements.

« FS: For power iteration, Dion computes a matrix multiplication B Q%) sharded over the FS
dimension, which requires an all-reduce of the partial results of size m x r. Additionally, column
normalization for Q¥ requires summing the partial column norms ¢() € R”. Thus, the total
FS communication volume is (m + 1)r. For comparison, Adam is applied element-wise and
does not require any communication due to sharding. Muon requires the full R”*™ matrix for
Newton-Schulz, and requires an all-gather of mn elements [Liu et al., 2025a].

« TP: Dion shards the power iteration matrix Q/) € R™*"i to reduce optimizer state memory usage,
which requires an all-gather of size n x r at the start of the algorithm. The matrix multiplication
B pU) is sharded over the TP dimension, which requires an all-reduce of size n x r. Distributed
orthonormalization with randomized Cholesky QR requires two sharded matrix multiplications,
resulting in two all-reduces with sizes k£ x r and 7 x r. Using a random sketch oversampling factor
k = 1.25r gives a total communication volume of 2nr + 2.25r2 elements. As in the case of FS,
Adam does not require any communication, and Muon requires an all-gather of size mn.

For efficient GPU utilization, it is desirable that communication operations overlap with computation.
Except for the TP all-gather of (), all communication takes place in the critical path of Algorithm 3.

3Further speedups may be achievable by exploiting symmetric matrix properties, as discussed in [Newhouse
et al., 2024]. Under carefully optimized kernel implementations, this could reduce the total cost to approximately
15mn? + 5n3.
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Communication cannot begin until the previous computation finishes, and the next computation
cannot begin until the communication itself finishes. However, we note that the critical path only
holds for a single parameter matrix, and different matrices can be optimized independently from
each other. This allows for an efficient software implementation to overlap communication by
simultaneously optimizing different layers of the model.

J Hyperparameter Tuning

Our default model configurations are given in Table 4. Unless otherwise specified, our experiments
use the 120M parameter model size. All models use the GPT?2 tokenizer with a vocabulary size of
50304. We use rotary position embeddings [Su et al., 2023], non-parametric RMSNorm, and omit
biases from linear layers. The activation function for MLP layers is squared ReLU [So et al., 2022].

We train all models on the FineWeb [Penedo et al., 2024] or FineWeb-Edu [Lozhkov et al., 2024]
datasets. Unless otherwise specified, we train on an approximately Chinchilla-optimal number of
tokens [Hoffmann et al., 2022] (tokens =~ 20x model parameters) for each model size. We use
NVIDIA H100 or AMD MI300X GPUs for all experiments.

Model  dmodel / Layers / Heads  Batch Size  Total Steps  Total Tokens

120M 768/12/6 1.0M 3K 31B

350 M 1024 /24 /32 21 M 4K 84B
1.3B 2048 /24132 42M 6 K 252 B
3B 3072/24 /32 84M 30K 63 B

Table 4: Default configurations for each model size.

J.1 Results in Section 5.1

We use the model configurations detailed in Table 4. The target validation losses are chosen to match
the loss achieved by AdamW after training on approximately 80% of the Chinchilla-optimal number
of tokens. The losses selected are 3.52 for the 120M parameter model, 3.23 for 354M, 2.85 for 1.3B,
and 2.7 for 3B.

The AdamW learning rates are selected based on the scaling analysis of Bi et al. [2024]. Specifically,
we estimate the optimal value by aligning training FLOPs with the trends reported in their scaling
results [Bi et al., 2024, Figure 3]. The resulting learning rates are 0.002 for 120M, 0.0016 for 354M,
0.0012 for 1.3B, and 0.001 for 3B models. We use a 10% warmup schedule and set the weight decay
to 0.01 for matrix parameters and O for non-matrix parameters.

For both Muon and Dion, we use a fixed learning rate of 0.01 across all model sizes. This choice is
supported by our hyperparameter transfer results (Figure 4), which show that the optimal learning
rate remains stable across scale.

J.2 Results in Section 5.2

For this experiment, we sweep across batch sizes {256, 1024, 4096, 16384} while maintaining the
sequence length at 1024 tokens. We measure the number of training steps required to reach a target
validation loss of 3.4 by interpolating the validation loss curve. All models are 120M parameters and
are trained on the FineWeb dataset.

Figure 3 shows the step count ratio relative to AdamW. We provide the (interpolated) numerical step
counts used in the plot as follows:

Batch Size (# tokens) AdamW Muon Dion (1) Dion (1/4)

256 K 14172 18017 16662 17209
512K 4174 3546 2624 4044
4096 K 2248 1318 1062 1631
16384 K 1577 870 663 1118
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Dion and Muon use a learning rate of 0.03 and p = 0.95, with non-matrix parameters optimized
by AdamW using a learning rate of 0.002 and (51, 52) = (0.9,0.95). The AdamW baseline uses
the same AdamW hyperparameters to train the entire model. Weight decay is set to 0.01 across all
optimizers, except for the embedding and unembedding layers which always use weight decay 0.

J.3 Results in Section 5.3

All runs are trained on the FineWeb-Edu dataset using a sequence length of 1024. We employ a
constant learning rate schedule with a 10% linear cooldown for all runs, and a 10% linear warmup
for AdamW and DeMo. For AdamW, we use (81, 82) = (0.9,0.95) and sweep over learning rates
{0.001,0.003,0.01} and weight decay values {0, 0.01}. For Muon and Dion, we fix the momentum
parameter to © = 0.95 and sweep over learning rates {0.003, 0.01, 0.03}. We use Adam as the scalar
optimizer for all Muon and Dion runs, with a learning rate of 0.002 and (1, 82) = (0.9, 0.95). For
DeMo, we sweep over learning rates {0.0003,0.001,0.003} and use the default compression decay
value of 0.999.

For batch size 0.5M, we perform a full sweep across all rank fraction levels and observe that the
optimal learning rate remains consistent across rank fraction values for both Dion and DeMo. For
batch size 4M, we sweep rank fraction level 1 for Dion and 1/32 for DeMo.

We define the update density as the fraction of degrees of freedom retained in each parameter update.

* For Dion, the update density is given by 6 = r/d, where r is the low-rank factor and d is the hidden
dimension of the Transformer model (dy,0qe in Table 4).

* For DeMo, the update density is computed as § = k/s2, where k is the number of retained DCT
coefficients per chunk, and s X s is the size of each chunked matrix block. To control the update
density across experiments, we set the chunk size as s = 2k, which ensures a consistent scaling of
density as k varies.

As a proportion of the whole matrix, the data-parallel communication required for both Dion and
DeMo is approximately 2. Dion synchronizes two low-rank matrices with shapes m x rand n x r.
DeMo exchanges a sparse matrix with k/s? nonzero elements, represented with % indices and k
values. The exact amount of data transferred depends on the shape m x n for Dion and the specific
sparse matrix format for DeMo.

J.4 Results in Section 5.4

We use the configuration specified in Table 4 for the 3B model. We set the global batch size to 4096
and the sequence length to 2048, resulting in a total of approximately 8.4M tokens per batch.

For Dion, we use the Dion+Lion combination, as discussed in Appendix D, which allows a single
learning rate to apply for both matrix and non-matrix parameters. This eliminates the need for
separate tuning and makes Dion even more user-friendly. Lion (81, 32) are set to (0.95,0.98).

For AdamW and Muon, we use Adam with a learning rate of 0.002 to update the non-matrix
parameters, a choice that has shown stable performance across scales.

Guided by the hyperparameter transferability results in Section 5.5, we use a fixed learning rate
of 0.01 for both Muon and Dion, without applying learning rate warmup. This value appears to
generalize well across model sizes.

For AdamW, we select a learning rate of 0.001 based on the scaling analysis of Bi et al. [2024].
Specifically, we estimate the optimal learning by aligning training FLOPs with the trends in their
scaling results [Bi et al., 2024, Figure 3]. We use a 10% warmup period for AdamW and a weight
decay strength of 0.01.

J.5 Results in Section 5.5
Each model size is trained with its respective Chinchilla-optimal number of tokens on the FineWeb-

Edu dataset. All runs use a sequence length of 1024. For both Dion and Muon, we use ¢ = 0.95
across all model sizes and learning rates. We use a constant learning rate schedule with no warmup
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and 10% linear cooldown. We use Adam with learning rate 0.002 and (81, 32) = (0.9,0.95) as the
optimizer for non-matrix parameters.

K Modifications for Extreme Sparsity

Algorithm 6 Double Dion

Require: Learning rate 7, momentum factors pi1, p2, ranks r1, ro, initial momentums M 1, My €
R™i " jnitial warm-start matrices Q1 € R™*" and Q5 € R™*"
1: fort =1toT do o
2: Compute local gradient G,E” )
Stage 1: Update M, with new gradient G and compute P, R;

3: (@ )tl)l — ALLGATHERTP((Ql)(”)) >unshard ()1 along TP dimension

4: (Bl)gzj) — (M )(1 ) 4 G(Z’J) l>update M, with new gradient

55 (P)Y,(R))" « D1sTrRIBUTED-POWERITERL((B1)!": (Q1)\Y,)

6: (Ml)(z j) — (Bl)(m) — ul(Pl)(j)((R )(Z)) > error feedback

7: (@ 1),5 ") « DISTRIBUTED- CDLUMNNORMALIZE((Rl)( ))

8: (@ 1),51 — SHARDTP((Ql) ) >reshard ()1 along TP dimension
Stage 2: Update M> with P;,R; and compute weight update

9: (Qg)(l)l — ALLGATHERTP((QQ)( j)) >unshard ()2 along TP dimension

10: (Bo)$ (M) 4 (PP (R))T >update M, with PRT

11: (P)Y(Ry)" « DrstrIBUTED-POWERITER1((B5){""; (Q2)!”,)

120 (M) (Bo)"™) — (1= o) (P) P ((R)()T b error feedback

13: (Qg)gi) < DISTRIBUTED- CULUMNNORMALIZE((RQ),Ei))

14: Xt(i’j) — Xt(fjl) 7 (P )(J)((Qz) )T > weight update

15: (Qg)gi’j) — SHARDTp((QQ)g )) >reshard ()2 along TP dimension

16: end for

Certain use cases, such as large-scale geographically distributed training, may benefit from highly
minimized DP communication bandwidth while providing more relaxed constraints on FS and TP
communications. Observing that Dion is outperformed by DeMo [Peng et al., 2024] at particularly
low update densities (1/64 or less), we describe a two-stage variant of Dion (Algorithm 6) that uses a
smaller rank r; for the DP all-reduce and a larger rank 5 only for FS and TP.

The first stage updates a local momentum M with the local gradient G, producing DP-synchronized
low-rank matrices P; and R;. The second stage updates a globally synchronous momentum M, with
PiR] and then computes the parameter update. All second stage variables are fully synchronous
across the DP axis, so the DP all-reduce is unnecessary. Note the different error feedback rules—the
first stage error feedback resembles that of DeMo, and we find (p1, p12) = (0.999,0.95) is effective.

In Figure 8 (left), we evaluate the performance of Algorithm 6 with 71 /d = 1/128 and ro/d = 1/4,
comparing to DeMo with update density 1/128 and standard Dion (Algorithm 3) with update densities
1/128 and 1/4. It is worth noting the extreme sparsity of a 1/128 rank fraction with respect to the
120M parameter model size—given that d,0qe1 = 768, we have r; = 6.

All three algorithms with 1/128 update density require equivalent DP communication, but the two-
stage Dion has the best validation loss. We attribute its improvement to the use of two different error
feedback rules—attempts to use either rule for both stages led to poorer results. While effective, the
drawback of this modified Dion variant is that optimizer compute and memory usage are roughly
doubled. We treat the findings here as preliminary and leave further improvements to future work.

As an additional communication optimization, we propose that the second stage can use one-step
delayed (P;)¢—1 and(Ry)¢—1 from the first stage to update M> (line 10 in Algorithm 6). Making this
change allows both stages to run in parallel, and the DP all-reduce may be overlapped with the forward
and backward pass. We study the impact of this change in Figure 8 (right). As one might expect, the
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delayed update comes at a cost of slower convergence. Even then, it still outperforms standard Dion
at rank fraction 1/128, and it roughly matches DeMo without any delay. In contrast, attempting to
introduce a one-step delay to DeMo’s compression output severely degraded its performance.

\
6.5 —— Double Dion 1/128 + 1/4 6.5 \\ —— Double Dion (no delay)
’ —— DeMo 1/128 : ~ -==- Double Dion (delay)
Dion 1/128 NG —— DeMo (no delay)

6.0 1 Dion 1/4 6.01 R -—- DeMo (delay)
2 5.5 5.5
S
[
S 5.0 5.0
©
h=l
S 45 4.5

N \ 4.0

3.51 3.51

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Step Step

Figure 8: Left: Comparison between Algorithm 6, Dion, and DeMo at 1/128 equivalent data-parallel
communication requirements. Dion with rank fraction 1/4 is also shown for reference. The modified Double
Dion algorithm offers a substantial improvement over standard Dion and outperforms DeMo. Right: Effect of
introducing a one-step delay to P1, R in Algorithm 6 and to the compressed state in DeMo. Double Dion with
a one-step delay matches DeMo without any delay, while DeMo’s performance is substantially worsened by
adding a one-step delay.

Additional details: We train 120M parameter models on the FineWeb dataset, using batch size 1024
and sequence length 1024. The total training steps is 3000, and a linear learning rate decay to zero
is applied over the last 20% of steps. DeMo uses learning rate 0.001. Dion and Double Dion both
use a base learning rate of 0.01, and we apply the scaling factors in Table 1. Non-matrix parameters
are optimized using Lion with (81, 82) = (0.95,0.98), and the one-step delay does not apply. All
optimizers use a weight decay of 0.01 for matrix parameters and 0 for non-matrix parameters.
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