
ar
X

iv
:2

50
5.

24
78

4v
1

 [
cs

.A
I]

 3
0

M
ay

 2
02

5

AXIOM: Learning to Play Games in Minutes with
Expanding Object-Centric Models

Conor Heins1∗ Toon Van de Maele1∗ Alexander Tschantz1,2∗
Hampus Linander1 Dimitrije Markovic3 Tommaso Salvatori1 Corrado Pezzato1

Ozan Catal1 Ran Wei1 Magnus Koudahl1 Marco Perin1 Karl Friston1,4

Tim Verbelen1 Christopher L Buckley1,2
1 VERSES AI

2 University of Sussex, Department of Informatics
3 Technische Universität Dresden, Faculty of Psychology

4 University College London, Queen Square Institute of Neurology
{conor.heins,toon.vandemaele,alec.tschantz}@verses.ai

Abstract

Current deep reinforcement learning (DRL) approaches achieve state-of-the-art
performance in various domains, but struggle with data efficiency compared to
human learning, which leverages core priors about objects and their interactions.
Active inference offers a principled framework for integrating sensory information
with prior knowledge to learn a world model and quantify the uncertainty of its own
beliefs and predictions. However, active inference models are usually crafted for a
single task with bespoke knowledge, so they lack the domain flexibility typical of
DRL approaches. To bridge this gap, we propose a novel architecture that integrates
a minimal yet expressive set of core priors about object-centric dynamics and inter-
actions to accelerate learning in low-data regimes. The resulting approach, which
we call AXIOM, combines the usual data efficiency and interpretability of Bayesian
approaches with the across-task generalization usually associated with DRL. AX-
IOM represents scenes as compositions of objects, whose dynamics are modeled
as piecewise linear trajectories that capture sparse object-object interactions. The
structure of the generative model is expanded online by growing and learning mix-
ture models from single events and periodically refined through Bayesian model
reduction to induce generalization. AXIOM masters various games within only
10,000 interaction steps, with both a small number of parameters compared to DRL,
and without the computational expense of gradient-based optimization.

1 Introduction
Reinforcement learning (RL) has achieved remarkable success as a flexible framework for mastering
complex tasks. However, current methods have several drawbacks: they require large amounts of
training data, depend on large replay buffers, and focus on maximizing cumulative reward without
structured exploration [1]. This contrasts with human learning, which relies on core priors to quickly
generalize to novel tasks [2–4]. Core priors represent fundamental organizational principles - or
hyperpriors - that shape perception and learning, providing the scaffolding upon which more complex
knowledge structures are built. For example, such priors allow humans to intuitively understand that
objects follow smooth trajectories unless external forces intervene, and shape our causal reasoning,
helping us to grasp action-consequence relationships [5–8]. Describing visual scenes as factorized
into objects has shown promise in sample efficiency, generalization, and robustness on various tasks
[9–14]. These challenges are naturally addressed by Bayesian agent architectures, such as active
inference [15], that provide a principled framework for incorporating prior knowledge into models,

Preprint. Under review.

https://arxiv.org/abs/2505.24784v1

sMM

🏆

🎮

tMM

Identity
Model iMM rMM

Object-Object
Interactions

Figure 1: Inference and prediction flow using AXIOM: The sMM extracts object-centric repre-
sentations from pixel inputs. For each object latent and its closest interacting counterpart, a discrete
identity token is inferred using the iMM and passed to the rMM, along with the distance and the
action, to predict the next reward and the tMM switch. The object latents are then updated using the
tMM and the predicted switch to generate the next state for all objects. (a) Projection of the object
latents into image space. (b) Projection of the kth latent whose dynamics are being predicted and (c)
of its interaction partner. (d) Projection of the rMM in image space; each of the visualized clusters
corresponds to a particular linear dynamical system from the tMM. (e) Projection of the predicted
latents. The past latents at time t are shown in gray.

supporting continual adaptation without catastrophic forgetting. It has been argued that this approach
aligns closely with human cognitive processes [16, 17], where beliefs are updated incrementally as
new evidence emerges. Yet, despite these theoretical advantages, applications of active inference
have typically been confined to small-scale tasks with carefully designed priors, failing to achieve the
versatility that makes deep RL so powerful across diverse domains.

To bridge this gap, we propose a novel active inference architecture that integrates a minimal yet
expressive set of core priors about objects and their interactions [9–12, 18]. Specifically, we present
AXIOM (Active eXpanding Inference with Object-centric Models), which employs a object-centric
state space model with three key components: (1) a Gaussian mixture model that parses visual input
into object-centric representations and automatically expands to accommodate new objects; (2) a
transition mixture model that discovers motion prototypes (e.g., falling, sliding, bouncing) [19] and
(3) a sparse relational mixture model over multi-object latent features, learning causally relevant
interactions as jointly driven by object states, actions, rewards, and dynamical modes. AXIOM’s
learning algorithm offers three kinds of efficiency: first, it learns sequentially one frame at a time
with variational Bayesian updating [20]. This eliminates the need for replay buffers or gradient
computations, and enables online adaptation to changes in the data distribution. Second, its mixture
architecture facilitates fast structure learning by both adding new mixture components when existing
ones cannot explain new data, and merging redundant ones to reduce model complexity [21–24].
Finally, by maintaining posteriors over parameters, AXIOM can augment policy selection with
information-seeking objectives and thus uncertainty-aware exploration [15].

To empirically validate our model, we introduce the Gameworld 10k benchmark, a new set of
environments designed to evaluate how efficiently an agent can play different pixel-based games
in 10k interactions. Many existing RL benchmarks, such as the Arcade Learning Environment
(ALE) [25] or MuJoCo [26] domains, emphasize long-horizon credit assignment, complex physics,
or visual complexity. These factors often obscure core challenges in fast learning and generalization,
especially under structured dynamics. To this end, each of the games in Gameworld 10k follows a
similar, object-focused pattern: multiple objects populating a visual scene, a player object that can
be controlled to score points, and objects following continuous trajectories with sparse interaction
mechanics. We formulate a set of 10 games with deliberately simplified visual elements (single color
sprites of different shapes and sizes) to focus the current work on the representational mechanisms
used for modeling dynamics and control, rather than learning an overly-expressive model for object
segmentation. The Gameworld environments also enable precise control of game features and

2

Aviate Bounce Cross Drive Explode Fruits Gold Hunt Impact Jump

Figure 2: Gameworld10k: Visual impression of the 10 games in the Gameworld 10k suite. Se-
quences of ten frames are overlayed with increasing opacity to showcase the game dynamics.

dynamics, which allows testing how systems adapt to sparse interventions to the causal or visual
structure of the game, e.g., the shape and color of game objects. On this benchmark, our agent
outperforms popular reinforcement learning models in the low-data regime (10,000 interaction
steps) without relying on any kind of gradient-based optimization. To conclude, although we have
not deployed AXIOM at the scale of complicated control tasks typical of the RL literature, our
results represent a meaningful step toward building agents capable of building compact, interpretable
world models and exploiting them for rapid decision-making across different domains. Our main
contributions are the following:

• We introduce AXIOM, a novel object-centric active inference agent that is learned online, inter-
pretable, sample efficient, adaptable and computationally cheap.1

• To demonstrate the efficacy of AXIOM, we introduce a new, modifiable benchmark suite targeting
sample-efficient learning in environments with objects and sparse interactions.

• We show that our gradient-free method can outperform state-of-the-art deep learning methods both
in terms of sample efficiency and absolute performance, with our online learning scheme showing
robustness to environmental perturbations.

2 Methods
AXIOM is formulated in the context of a partially observable Markov decision process (POMDP).
At each time step t, the hidden state ht evolves according to ht ∼ P

(
ht | ht–1, at−1

)
, where at is

the action taken at time t. The agent does not observe ht directly but instead receives an observation
yt ∼ P

(
yt | ht

)
, and a reward rt ∼ P

(
rt | ht, at

)
. AXIOM learns an object-centric state space

model by maximizing the Bayesian model evidence—equivalently, minimizing (expected) free
energy—through active interaction with the environment [15]. The model factorizes perception and
dynamics into separate generative blocks: (i) In perception, a slot Mixture Model (sMM) explains
pixels with competition between object-centric latent variables Ot = {O(1)

t , . . . ,O(K)
t }, associating

each pixel to one of K slots using the assignment variable zt,smm; (ii) dynamics are modeled per-
object using their object-centric latent descriptions as inputs to a recurrent switching state space
model (similar to an rSLDS [19]). We define the full latent sequence as Z0:T = {Ot, zt,smm}Tt=0.
Each slot latent O(k)

t consists of both continuous x(k)
t and discrete latent variables. The continuous

latents represent properties of an object, such as its position, color and shape. The discrete latents
themselves are split into two subtypes: z(k)t and s

(k)
t . We use z

(k)
t to denote latent descriptors that

capture categorical attributes of the slot (e.g., object type), and s
(k)
t to denote a pair of switch states

determining the slot’s instantaneous trajectory.2 Model parameters Θ̃ are split into module-specific
subsets (e.g., ΘsMM,ΘtMM). The joint distribution over input sequences y0:T , latent state sequences
Z0:T and parameters Θ̃ can be expressed as a hidden Markov model:

p(y0:T ,Z0:T , Θ̃) = p(y0,Z0)p(Θ̃)

T∏
t=1

p(xt–1, | zt,ΘiMM)︸ ︷︷ ︸
Identity mixture model

p(xt–1, zt, st, at–1, rt | ΘrMM)︸ ︷︷ ︸
Recurrent mixture model

K∏
k=1

p(yt|x(k)
t , zt,smm,ΘsMM)︸ ︷︷ ︸

Slot mixture model

p(x
(k)
t | x(k)

t−1, s
(k)
t ,ΘtMM)︸ ︷︷ ︸

Transition mixture model

, (1)

1The code for training AXIOM is available at https://github.com/VersesTech/axiom
2We use the superscript index k as in q(k) to select only the subset of q ≡ q(1:K) relevant to the kth slot.

3

https://github.com/VersesTech/axiom

where p(Θ̃) = p(ΘsMM)p(ΘiMM)p(ΘrMM)p(ΘtMM). The sMM p(yt|xt, zt,smm,ΘsMM) is a likeli-
hood model that explains pixel data using mixtures of slot-specific latent states (see schematic in
Figure 1). The identity mixture model (iMM) p(xt–1|zt,ΘiMM) is a likelihood model that assigns
each object-centric latent to one of a set of discrete object types. The transition mixture model (tMM)
p(x

(k)
t |x

(k)
t–1, s

(k)
t ,ΘtMM) describes each object’s latent dynamics as a piecewise linear function of

its own state. Finally, the recurrent mixture model (rMM) p(xt–1, zt, st, at–1, rt | ΘrMM) models the
dependencies between multi-object latent states (like the switch states of the transition mixture), other
global game states like reward r, action a, and the continuous and discrete features of each object.
This module is what allows AXIOM to model sparse interactions between objects (e.g., collisions),
while still treating each slot’s dynamics as conditionally-independent given the switch states s(k)t .
Slot Mixture Model (sMM). AXIOM processes sequences of RGB images one frame at a time. Each
image is composed of H ×W pixels and is reshaped into N =HW tokens {yn

t }Nn=1. Each token
yn
t is a vector containing the nth pixel’s color in RGB and its image coordinates (normalized to[
−1,+1

]
). AXIOM models these tokens at a given time as explained by a mixture of the continuous

slot latents; we term this likelihood construction the Slot Mixture Model (sMM, see far left side of
Figure 1). The K components of this mixture model are Gaussian distributions whose parameters
are directly given by the continuous features of each slot latent x(1:K)

t . Associated to this Gaussian
mixture is a binary assignment variable znt,k,smm ∈ {0, 1} indicating whether pixel n at time t is
driven by slot k, with the constraint that

∑
k z

n
t,k,smm = 1. The sMM’s likelihood model for a single

pixel and timepoint yn
t can be expressed as follows (dropping the t subscript for notational clarity):

p(yn | x(k), σ(k)
c , znk,smm) =

K∏
k=1

N (Ax(k),diag(
[
Bx(k), σ(k)

c

]⊤
))z

n
k,smm . (2)

The mean of each Gaussian component is given a fixed linear projection A of each object latent,
which selects only its position and color features: Ax(k) =

[
p(k), c(k)

]
. The covariance of each

component is a diagonal matrix whose diagonal is a projection of the 2-D shape of the object latent
Bx(k) = e(k) (its spatial extent in the X and Y directions), stacked on top of a fixed variance
for each color dimension σ(k)

c , which are given independent Gamma priors. The latent variables
p(k), c(k), e(k) are subsets of slot k’s full continuous features x(k)

t , and the projection matrices A,
B are fixed, unlearned parameters. Each token’s slot indicator znsmm is drawn from a Categorical
distribution znsmm | πsmm ∼ Cat(πsmm) with mixing weights πsmm. We place a truncated stick-
breaking (finite GEM) prior on these weights, which is equivalent to a K-dimensional Dirichlet
with concentration vector (1, . . . , 1, α0,smm), where the first K − 1 pseudcounts are 1 and the final
pseudocount α0,smm reflects the propensity to add new slots. All subsequent mixture models in
AXIOM are equipped with the same sort of truncated stick-breaking priors on the mixing weights
[27].

Identity Mixture Model (iMM). AXIOM uses an identity mixture model (iMM) to infer a discrete
identity code z

(k)
type for each object based on its continuous features. These identity codes are used to

condition the inference of the recurrent mixture model used for dynamics prediction. Conditioning
the dynamics on identity-codes in this way, rather than learning a separate dynamics model for each
slot, allows AXIOM to use the same dynamics model across slots. This also enables the model to
learn the same dynamics in a type-specific, rather than instance-specific, manner [28], and to remap
identities when e.g., the environment is perturbed and colors change. Concretely, the iMM models
the 5-D colors and shapes {c(k), e(k)}Kk=1 across slots as a mixture of up to V Gaussian components
(object types). The slot-level assignment variable z

(k)
t,type indicates which identity is assigned to the

kthslot. The generative model for the iMM is (omitting the t− 1 subscript from latent variables):

p(
[
c(k), e(k)

]⊤|z(k)type,µ1:V,type,Σ1:V,type) =

V∏
j=1

N (µj,type,Σj,type)
z
(k)
j,type (3)

p(µj,type,Σ
−1
j,type) = NIW(mj,type, κj,type,Uj,type, nj,type) (4)

The same type of Categorical likelihood for the type assignments z
(k)
type | πtype ∼ Cat(πtype) and

truncated stick-breaking prior Dir
(
1, . . . , 1, α0,type

)
over the mixture weights is used to allow an

4

arbitrary (up to a maximum of V) number of types to be used to explain the continuous slot features.
We equip the prior over the component likelihood parameters with conjugate Normal Inverse Wishart
(NIW) priors.

Transition Mixture Model (tMM). The dynamics of each slot are modelled as a mixture of linear
functions of the slot’s own previous state. To stress the homology between this model and the
other modules of AXIOM, we refer to this module as the transition mixture model or tMM, but this
formulation is more commonly also known as a switching linear dynamical system or SLDS [29].
The tMM’s switch variable s

(k)
t,tmm selects a set of linear parameters Dl, bl to describe the kth slot’s

trajectory from t to t+ 1. Each linear system captures a distinct rigid motion pattern for a particular
object (e.g., “ball in free flight”, “paddle moving left”).

p(x
(k)
t | x(k)

t–1, s
(k)
t,tmm,D1:L, b1:L) =

L∏
l=1

N (Dlx
(k)
t + bl, 2I)

s
(k)
t,l,tmm (5)

where we fix the covariance of all L components to be 2I , and all mixture likelihoods D1:L, b1:L to
have uniform priors. The mixing weights πtmm for s(k)t,tmm as before are given a truncated stick-breaking
prior Dir

(
1, . . . , 1, α0,tmm) enabling the number of linear modes L to be dynamically adjusted to the

data by growing the model with propensity α0,tmm. Importantly, the L transition components of the
tMM are not slot-dependent, but are shared and thus learned across all K slot latents. The tMM can
thus explain and predict the motion of different objects using a shared, expanding set of dynamical
motifs. As we will see in the next section, interactions between objects are modelled by conditioning
s
(k)
t,tmm on the states of other objects.

Recurrent Mixture Model (rMM). AXIOM employs a recurrent mixture model (rMM) to infer the
switch states of the transition model directly from current slot-level features. This dependence of
switch states on continuous features is the same construct used in the recurrent switching linear
dynamical system or rSLDS [19]. However, like the rSLDS, which uses a discriminative mapping to
infer the switch state from the continuous state, rMM recovers this dependence generatively using
a mixture model over mixed continuous–discrete slot states [30]. Concretely, the rMM models the
distribution of continuous and discrete variables as a mixture model driven by another per-slot latent
assignment variable s

(k)
rmm. The rMM’s defines a mixture likelihood over continuous and discrete

slot-specific information: (f (k)t–1 , d
(k)
t–1). The continuous slot features f (k)t–1 are a function of of both the

kth slot’s own continuous state state x(k)
t–1 as well as the states of other slots x(1:K)

t–1 , such as the distance
to the closest object. The discrete features include categorical slot features like the identity of the
closest object, the switch state associated with the transition mixture model, and the action and reward
at the current timestep: d(k)t–1 = (z

(k)
t–1, s

(k)
t–1,tmm, at–1, rt). The rMM assignment variable associated to

a given slot is a binary vector s(k)t,rmm whose mth entry s(k)t,m,rmm ∈ {0, 1} indicates whether component
m explains the current tuple of mixed continuous-discrete data. Each component likelihood selected
by s

(k)
t,rmm factorizes into a product of continuous (Gaussian) and discrete (Categorical) likelihoods.

f
(k)

t–1 =
(
Cx

(k)

t–1, g(x
(1:K)

t–1)
)
, d

(k)

t–1 =
(
z
(k)

t–1, s
(k)
t,tmm, at–1, rt

)
(6)

p(f
(k)

t–1 , d
(k)

t–1 | s
(k)
t,rmm) =

M∏
m=1

N (
f
(k)

t–1 ;µm,rmm,Σm,rmm
)∏

i

Cat
(
dt–1, i;αm,i

)st,m,rmm

(7)

where the matrix C is a projection matrix that selects a subset of slot k’s continuous features are
used, and g(x(1:K)

t–1) summarizes functions that compute slot-to-slot interaction features, such as the
X and Y -displacement to the nearest object, the identity code associated with the nearest object
(and other features detailed in Appendix A). As with all the other modules of AXIOM, we equip
the mixing weights for s(k)t,rmm with a truncated stick-breaking prior whose final M th pseudocount
parameter tunes the propensity to add new rMM components. We explored an ablation of the rMM
(fixed_distance) where the X and Y -displacement vector is not returned by g(x(1:K)

t−1); rather, the
distance that triggers detection of the nearest interacting object is a fixed hyperparameter of the g
function. This hyperparameter can to be tuned to attain higher reward on most environments than the

5

standard model where the rMM learns the distance online. However, it comes at the cost of having to
tune this hyperparamter in an environment-specific fashion (see Figure 3 and Table 1 for the effect of
the fixed_distance ablation on performance).

Variational inference. AXIOM uses variational inference to perform state inference and parameter
learning. Briefly, this requires updating an approximate posterior distribution q(Z0:T , Θ̃) over latent
variables and parameters to minimize the variational free energy F , an upper bound on negative
log evidence F ≥ − log p(y0:T). In doing so, the variational posterior approximates the true
posterior p(Z0:T , Θ̃ | y0:T) from exact but intractable Bayesian inference . We enforce independence
assumptions in the variational posterior over several factors: across states and parameters, across the
K slot latents, and over time T . This is known as the mean-field approximation:

q(Z0:T , Θ̃) = q(Θ̃)

T∏
t=0

 N∏
n=1

q(znt,sMM)

 K∏
k=1

q(O(k)
t)

 (8)

q(O(k)
t) = q(x

(k)
t)q(z

(k)
t)q(s

(k)
t), q(Θ̃) = q(ΘsMM)q(ΘiMM)q(ΘtMM)q(ΘrMM) (9)

Note that the mixture variable of the sMM zt,smm is factored out of the other object-centric latents in
both the generative model and the posterior because unlike the other discrete latents z(k)t , it is not
independent across K slots.

We update the posterior over latent states q(Z0:T) (i.e., the variational E-step) using a simple form of
forward-only filtering and update parameters using coordinate ascent variational inference, using the
sufficient statistics of the latents updated during filtering and the data to update the parameters using
simple natural parameter updates. These variational E-M updates are run once per timestep, thus
implementing a fast, streaming form of coordinate-ascent variational inference [31, 32]. The simple,
gradient-free form of these updates inherits from the exponential-family form of all the mixture
models used in AXIOM.

2.1 Growing and pruning the model

Fast structure learning. In the spirit of fast structure learning [23], AXIOM dynamically expands
all four mixture modules (sMM, iMM, tMM, rMM) using an online growing heuristic: process each
new datapoint sequentially, decide whether it is best explained by an existing component or whether
a new component should be created, and then update the selected component’s parameters. We fix a
maximum number of components Cmax for each mixture model and let Ct−1 ≤ Cmax be the number
currently in use. For each component c we store its variational parameters Θc, where for a particular
model this might be a set of Normal Inverse Wishart parameters, e.g. Θc,iMM = {mc, κc,Uc, nc}.
Upon observing a new input yt, we compute for each component c = 1, . . . , Ct−1 the variational
posterior–predictive log–density ℓt,c = Eq(Θc)

[
log p(yt | Θc)

]
. The truncated stick–breaking

prior π ∼ Dir(1, . . . , 1, α) then defines a “new–component” threshold τt = log p0(yt) + logα
where p0 is the prior predictive density under an empty component.We select the component with
highest score, c∗ = argmaxc≤Ct−1

ℓt,c and hard-assign yt to c∗ if ℓt,c∗ ≥ τt; otherwise—provided
Ct−1 < Cmax—we instantiate a new component and assign yt to it. Finally, given the hard assignment
zt, we update the chosen component’s parameters via a variational M-step (coordinate ascent).The
last weight in the Dirichlet absorbs any remaining mass, so

∑Cmax

c=1 πc = 1.) This algorithm is a
deterministic, maximum a posteriori version of the CRP assignment rule (see Equation (8) of [27]).
The expansion threshold τt plays the role of the Dirichlet Process concentration α. When α is
small the model prefers explaining data with existing slots; larger α makes growth more likely. The
procedure is identical for the sMM, iMM, tMM and rMM—only the form of p(· | Θc) and the
model-specific caps on components Cmax and expansion thresholds τt differ.

Bayesian Model Reduction (BMR). Every ∆TBMR=500 frames we sample up to npair=2000 used
rMM components, score their mutual expected log-likelihoods with respect to data generated from
the model through ancestral sampling, and greedily test merge candidates. A merge is accepted if
it decreases the expected free energy of the multinomial distributions over reward and next tMM
switch, conditioned on the sampled data for the remaining variables; otherwise it is rolled back. BMR
enables AXIOM to generalize dynamics from single events, for example learning that negative reward
is obtained when a ball hits the bottom of the screen, by merging multiple single event clusters (see
Section 3, Figure 4a).

6

Table 1: Cumulative reward over 10k steps for Gameworld 10k environments. Cumulative
reward is reported as mean ± std over 10 model seeds. Italic means AXIOM is better than BBF and
Dreamer, bold is overall best.

Game AXIOM BBF DreamerV3 AXIOM (fixed dist.) AXIOM (no BMR) AXIOM (no IG)

Aviate −90 ± 19 −90 ± 05 −114 ± 20 −76 ± 13 −87 ± 12 −71 ± 16
Bounce 27 ± 13 −1 ± 15 14 ± 16 34 ± 12 8 ± 03 ↓ 8 ± 19
Cross −68 ± 36 −48 ± 07 −27 ± 08 −18 ± 21 ↑ −34 ± 25 −7 ± 03
Drive −49 ± 04 −37 ± 06 −45 ± 06 −22 ± 04 ↑ −67 ± 03 ↓ −32 ± 02 ↑
Explode 180 ± 30 101 ± 13 35 ± 59 234 ± 16 ↑ 165 ± 14 190 ± 16
Fruits 182 ± 21 86 ± 15 60 ± 07 209 ± 19 141 ± 19 ↓ 200 ± 20
Gold 190 ± 18 −26 ± 12 −21 ± 10 189 ± 16 45 ± 15 ↓ 207 ± 17
Hunt 206 ± 20 4 ± 12 6 ± 09 231 ± 28 48 ± 13 ↓ 216 ± 11
Impact 189 ± 45 122 ± 20 168 ± 83 192 ± 09 197 ± 21 181 ± 72
Jump −55 ± 09 −96 ± 17 −55 ± 17 −38 ± 25 −45 ± 05 ↑ −43 ± 26

2.2 Planning

AXIOM uses active inference for planning [33]; it rolls out future trajectories conditioned on different
policies (sequences of actions) and then does inference about policies using the expected free energy,
where the chosen policy π∗ is that which minimizes the expected free energy:

π∗ = argmin
π

H∑
τ=0

−
(
Eq(Oτ |π)[log p(rτ |Oτ , π)︸ ︷︷ ︸

Utility

−DKL(q(αrmm|Oτ , π) ∥ q(αrmm))︸ ︷︷ ︸
Information gain (IG)

]
)

(10)

The expected per-timestep utility Eq(Oτ |π)[log p(rτ |Oτ , π)] is evaluated using the learned model and
slot latents at the time of planning, and accumulated over timesteps into the planning horizon. The
expected information gain (second term on RHS of Equation (10)) is computed using the posterior
Dirichlet counts of the rMM and scores how much information about rMM switch states would be
gained by taking the policy under consideration. More details on planning are given in Appendix A.11.

3 Results
To evaluate AXIOM, we compare its performance on Gameworld against two state-of-the-art baselines
on sample-efficient, pixel-based deep reinforcement learning: BBF and DreamerV3.

Benchmark. The Gameworld environments are designed to be solvable by human learners within
minutes, ensuring that learning does not hinge on brittle exploration or complex credit assignment.
The suite includes 10 diverse games generated with the aid of a large language model, drawing

0 10000

-0.020

0.000

Av
er

ag
e

Re
wa

rd
 (1

K) Aviate

0 10000
-0.020

0.000

Bounce

0 10000

-0.020

0.000

Cross

0 10000

-0.006

0.000
Drive

0 10000

0.000

0.030
Explode

0 10000
Step

0.000

0.020

Av
er

ag
e

Re
wa

rd
 (1

K) Fruits

0 10000
Step

0.000

0.025

Gold

0 10000
Step

0.000

0.025

Hunt

0 10000
Step

0.000

0.050
Impact

0 10000
Step

-0.015

0.000
Jump

AXIOM AXIOM (fixed distance) Dreamer V3 BBF

Figure 3: Online learning performance. Moving average (1k steps) reward per step during training
for AXIOM, BBF and DreamerV3 on Gameworld 10k environments. Mean and standard deviation
over 10 parameter seeds per model and environment.

7

inspiration from ALE and classic video games, while maintaining a lightweight and structured design.
The Gameworld environments are available at https://github.com/VersesTech/gameworld. Figure 2
illustrates the variety and visual simplicity of the included games. To evaluate robustness, Gameworld
10k supports controlled interventions such as changes in object color or shape, testing an agent’s
ability to generalize across superficial domain shifts.

Baselines. BBF [34] builds on SR-SPR [35] and represents one of the most sample-efficient model-
free approaches. We adapt its preprocessing for the Gameworld 10k suite by replacing frame-
skip with max-pooling over two consecutive frames; all other published hyperparameters remain
unchanged. Second, DreamerV3 [36] is a world-model-based agent with strong performance on
games and control tasks with only pixel inputs; we use the published settings but set the train
ratio to 1024 at batch size 16 (effective training ratio of 64:1). We chose these baselines because
they represent state of the art in sample-efficient learning from raw pixels. Note that for BBF and
DreamerV3, we rescale the frames to 84×84 and 96×96 pixels respectively (following the published
implementations), whereas AXIOM operates on full 210×160 frames of Gameworld.

Reward. Figure 3 shows the 1000-step moving average of per-step reward from steps 0 to 10000 on
the Gameworld 10k suite (mean ± 1 standard deviation over 10 seeds). Table 1 shows the cumulative
reward attained at the end of the 10k interaction steps for AXIOM, BBF and DreamerV3. AXIOM
attains higher, or on par, average cumulative reward than BBF and DreamerV3 in every Gameworld
environment. Notably, AXIOM not only achieves higher peak scores on several games, but also
converges much faster, often reaching most of its final reward within the first 5k steps, whereas BBF
and DreamerV3 need nearly the full 10k. For those games where BBF and Dreamer seemed to show
no-better-than-random performance at 10k, we confirmed that their performance does eventually
improve, ruling out that the games themselves are intrinsically too difficult for these architectures
(see Appendix E.1). Taken together, this demonstrates that AXIOM’s object-centric world model,
in tandem with its fast, online structure learning and inference algorithms, can reduce the number
of interactions required to achieve high performance in pixel-based control. Fixing the interaction
distance yields higher cumulative reward as the agent doesn’t need to spend actions learning it, but
doing so requires tuning the interaction distance for each game. This illustrates how having extra
knowledge about the domain at hand can be incorporated into a Bayesian model like AXIOM to
further improve sample efficiency. Including the information gain term from Equation (10) allows
the agent to obtain reward faster in some games (e.g., Bounce), but actually results in a slower
increase of the average reward for others (e.g., Gold), as encourages visitation of information-rich
but negatively-rewarding states. BMR is crucial for games that need spatial generalization (like
Gold and Hunt), but actually hurts performance on Cross, as merging clusters early on discounts the
information gain term and discourages exploration. See Appendix E.2 for a more detailed discussion.

Computational costs. Table 2 compares model sizes and per-step training timing (model update and
planning) measured on a single A100 GPU. While AXIOM incurs planning overhead due to the use
of many model-based rollouts, its model update is substantially more efficient than BBF, yielding
favorable trade-offs in wall-clock time per sample. The expanding object-centric model of AXIOM
converges to a sufficient complexity given the environment, in contrast to the fixed (and much larger)
model sizes of BBF and DreamerV3.

Interpretability. Unlike conventional deep RL methods, AXIOM has a structured, object-centric
model whose latent variables and parameters can be directly interpreted in human-readable terms (e.g.,
shape, color, position). AXIOM’s transition mixture model also decomposes complex trajectories into
simpler linear sub-sequences. Figure 4a shows imagined trajectories and reward-conditioned clusters

Table 2: Training time per environment step on Gameworld 10k. Parameter count for AXIOM
varies as the model finds a sufficient complexity for each environment. Planning time for AXIOM
shows the range for 64 to 512 planning rollouts.

Model Parameters (M) Model update (ms/step) Planning (ms/step)

BBF 6.47 135 ± 36 N/A
DreamerV3 420 221 ± 37 823 ± 93
AXIOM 0.3 - 1.6 18 ± 3 252 - 534

8

https://github.com/VersesTech/gameworld

Image Data Imagined Trajectory Reward Clusters

(a)

0 5000 10000
Step

0

2500

Co

m
po

ne
nt

s BMR
No BMR

(b)

0 5000 10000
Step

0.00

2.00

M
ed

ia
n

(1
k)

E[info gain]
E[utility]

(c)

0 5000 10000
Step

-0.04

0.00

Av
er

ag
e

Re
wa

rd
 (1

K)

None
Shape
Color
Color (remap)

(d)

Figure 4: Tracking AXIOM’s Behavior. (a) Example frame from Impact at time t (left); imagined
trajectory in latent space conditioned on the observation at time t and 32 timesteps into the future,
conditioned on an action sequence with high predicted reward (middle); and rMM clusters shown in 2-
D space and colored by expected reward (green positive reward, red negative reward aka punishment)
(right). (b) Expanding rMM components are pruned over training using Bayesian Model Reduction
(BMR) in Explode. (c) Information gain decreases while expected utility increases during training,
showing an exploration-exploitation trade-off in Explode. (d) Performance following perturbation at
5k steps shows robustness to changes in game mechanics in Explode.

of the rMM for the Impact game. The imagined trajectories in latent space (middle panel of Figure 4a)
are directly readable in terms of the colors and positions of the corresponding object. Because
the recurrent mixture model (rMM) conditions switch states on various game- and object-relevant
features, we can condition these switch variables on different game features and visualize them to
show the rMM’s learned associations (e.g., between reward and space). The right-most panel of
Figure 4a show the rMM clusters associated with reward (green) and punishment (red) plotted in
space. The distribution of these clusters explains AXIOM’s beliefs about where in space it expects
to encounter rewards, e.g., expecting a punishment when the player misses the ball (red cluster at
bottom of the right panel of Figure 4a).

Figure 4b shows the sharp decline in active rMM components during training. By actively merging
clusters to minimize the expected free energy associated with the reduced model, Bayesian model
reduction (BMR) improves computational efficiency while maintaining or improving performance
(see Table 1). The resulting merged components enable interpolation beyond the training data,
enhancing generalization. This automatic simplification reveals the minimal set of dynamics necessary
for optimal performance, making AXIOM’s decision process transparent and robust. Figure 4c
demonstrates that, as training progresses, per-step information gain decreases while expected utility
rises, reflecting a shift from exploration to exploitation as the world model becomes reliable.

Perturbation Robustness. Finally, we test AXIOM under systematic perturbations of game mechanics.
Here, we perform a perturbation to the color or shape of each object at step 5000. Figure 4d shows that
AXIOM is resilient to shape perturbations, as it still correctly infers the object type with the iMM. In
response to a color perturbation, AXIOM adds new identity types and needs to re-learn their dynamics,
resulting in a slight drop in performance and subsequent recovery. Due to the interpretable structure
of AXIOM’s world model, we can prime it with knowledge about possible color perturbations, and
then only use the shape information in the iMM inference step, before remapping the perturbed slots
based on shape and rescue performance. For more details, see Appendix E.3.

4 Conclusion
In this work, we introduced AXIOM, a novel and fully Bayesian object-centric agent that learns how
to play simple games from raw pixels with improved sample efficiency compared to both model-
based and model-free deep RL baselines. Importantly, it does so without relying on neural networks,
gradient-based optimization, or replay buffers. By employing mixture models that automatically
expand to accommodate environmental complexity, our method demonstrates strong performance
within a strict 10, 000-step interaction budget on the Gameworld 10k benchmark. Furthermore,
AXIOM builds interpretable world models with an order of magnitude fewer parameters than standard
models while maintaining competitive performance. To this end, our results suggest that Bayesian
methods with structured priors about objects and their interactions have the potential to bridge the
gap between the expressiveness of deep RL techniques and the data-efficiency of Bayesian methods
with explicit models, suggesting a valuable direction for research.

9

Limitations and future work. Our work is limited by the fact that the core priors are themselves
engineered rather than discovered autonomously. Future work will focus on developing methods to
automatically infer such core priors from data, which should allow our approach to be applied to
more complex domains like Atari or Minecraft [36], where the underlying generative processes are
less transparent but still governed by similar causal principles. We believe this direction represents
a crucial step toward building adaptive agents that can rapidly construct structural models of novel
environments without explicit engineering of domain-specific knowledge.

Acknowledgements . We would like to thank Jeff Beck, Alex Kiefer, Lancelot Da Costa, and
members of the VERSES Machine Learning Foundations and Embodied Intelligence Labs for useful
discussions related to the AXIOM architecture.

References

[1] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274, 2017.

[2] E. S. Spelke and K. D. Kinzler, “Core knowledge,” Developmental science, vol. 10, no. 1,
pp. 89–96, 2007.

[3] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman, “Building machines that learn
and think like people,” Behavioral and Brain Sciences, vol. 40, p. e253, 2017.

[4] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum, “Human-level concept learning through
probabilistic program induction,” Science, vol. 350, no. 6266, pp. 1332–1338, 2015.

[5] E. Téglás, E. Vul, V. Girotto, M. Gonzalez, J. B. Tenenbaum, and L. L. Bonatti, “Pure reasoning
in 12-month-old infants as probabilistic inference,” science, vol. 332, no. 6033, pp. 1054–1059,
2011.

[6] E. S. Spelke, R. Kestenbaum, D. J. Simons, and D. Wein, “Spatiotemporal continuity, smooth-
ness of motion and object identity in infancy,” British journal of developmental psychology,
vol. 13, no. 2, pp. 113–142, 1995.

[7] E. S. Spelke, “Principles of object perception,” Cognitive science, vol. 14, no. 1, pp. 29–56,
1990.

[8] A. M. Leslie and S. Keeble, “Do six-month-old infants perceive causality?,” Cognition, vol. 25,
no. 3, pp. 265–288, 1987.

[9] T. Wiedemer, J. Brady, A. Panfilov, A. Juhos, M. Bethge, and W. Brendel, “Provable composi-
tional generalization for object-centric learning,” arXiv preprint arXiv:2310.05327, 2023.

[10] F. Kapl, A. M. K. Mamaghan, M. Horn, C. Marr, S. Bauer, and A. Dittadi, “Object-centric
representations generalize better compositionally with less compute,” in ICLR 2025 Workshop
on World Models: Understanding, Modelling and Scaling, 2025.

[11] W. Agnew and P. Domingos, “Unsupervised object-level deep reinforcement learning,” in
NeurIPS workshop on deep RL, 2018.

[12] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel, “Neural relational inference for
interacting systems,” in International conference on machine learning, pp. 2688–2697, Pmlr,
2018.

[13] A. Lei, B. Schölkopf, and I. Posner, “Spartan: A sparse transformer learning local causation,”
arXiv preprint arXiv:2411.06890, 2024.

[14] W. Zhang, A. Jelley, T. McInroe, and A. Storkey, “Objects matter: object-centric world
models improve reinforcement learning in visually complex environments,” arXiv preprint
arXiv:2501.16443, 2025.

[15] T. Parr, G. Pezzulo, and K. J. Friston, Active inference: the free energy principle in mind, brain,
and behavior. MIT Press, 2022.

10

[16] K. Friston, “The free-energy principle: a unified brain theory?,” Nature reviews neuroscience,
vol. 11, no. 2, pp. 127–138, 2010.

[17] D. C. Knill and A. Pouget, “The bayesian brain: the role of uncertainty in neural coding and
computation,” TRENDS in Neurosciences, vol. 27, no. 12, pp. 712–719, 2004.

[18] F. Locatello, D. Weissenborn, and O. Unsupervised, “Object-centric learning with slot attention,”
in Advances in Neural Information Processing Systems, vol. 33, pp. 1821–1834, 2020.

[19] S. W. Linderman, A. C. Miller, R. P. Adams, D. M. Blei, L. Paninski, and M. J. Johnson,
“Recurrent switching linear dynamical systems,” arXiv preprint arXiv:1610.08466, 2016.

[20] C. Heins, H. Wu, D. Markovic, A. Tschantz, J. Beck, and C. Buckley, “Gradient-free variational
learning with conditional mixture networks,” arXiv preprint arXiv:2408.16429, 2024.

[21] K. J. Friston, V. Litvak, A. Oswal, A. Razi, K. E. Stephan, B. C. Van Wijk, G. Ziegler,
and P. Zeidman, “Bayesian model reduction and empirical bayes for group (dcm) studies,”
Neuroimage, vol. 128, pp. 413–431, 2016.

[22] K. Friston, T. Parr, and P. Zeidman, “Bayesian model reduction,” arXiv preprint
arXiv:1805.07092, 2018.

[23] K. Friston, C. Heins, T. Verbelen, L. Da Costa, T. Salvatori, D. Markovic, A. Tschantz,
M. Koudahl, C. Buckley, and T. Parr, “From pixels to planning: scale-free active inference,”
arXiv preprint arXiv:2407.20292, 2024.

[24] K. J. Friston, L. Da Costa, A. Tschantz, A. Kiefer, T. Salvatori, V. Neacsu, M. Koudahl, C. Heins,
N. Sajid, D. Markovic, et al., “Supervised structure learning,” Biological Psychology, vol. 193,
p. 108891, 2024.

[25] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning environment:
An evaluation platform for general agents,” Journal of Artificial Intelligence Research, vol. 47,
pp. 253–279, jun 2013.

[26] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based control,” in
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
IEEE, 2012.

[27] H. Ishwaran and L. F. James, “Gibbs sampling methods for stick-breaking priors,” Journal of
the American statistical Association, vol. 96, no. 453, pp. 161–173, 2001.

[28] J. Beck and M. J. Ramstead, “Dynamic markov blanket detection for macroscopic physics
discovery,” arXiv preprint arXiv:2502.21217, 2025.

[29] Z. Ghahramani and G. E. Hinton, “Switching state-space models,” University of Toronto
Technical Report CRG-TR-96-3, Department of Computer Science, 1996.

[30] C. Bishop and J. Lasserre, “Generative or discriminative? getting the best of both worlds,”
Bayesian statistics, vol. 8, no. 3, pp. 3–24, 2007.

[31] M. J. Wainwright, M. I. Jordan, et al., “Graphical models, exponential families, and variational
inference,” Foundations and Trends® in Machine Learning, vol. 1, no. 1–2, pp. 1–305, 2008.

[32] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational inference,” the
Journal of machine Learning research, vol. 14, no. 1, pp. 1303–1347, 2013.

[33] K. Friston, T. FitzGerald, F. Rigoli, P. Schwartenbeck, and G. Pezzulo, “Active inference: a
process theory,” Neural computation, vol. 29, no. 1, pp. 1–49, 2017.

[34] M. Schwarzer, J. S. O. Ceron, A. Courville, M. G. Bellemare, R. Agarwal, and P. S. Castro, “Big-
ger, better, faster: Human-level atari with human-level efficiency,” in International Conference
on Machine Learning, pp. 30365–30380, PMLR, 2023.

11

[35] P. D’Oro, M. Schwarzer, E. Nikishin, P.-L. Bacon, M. G. Bellemare, and A. Courville, “Sample-
efficient reinforcement learning by breaking the replay ratio barrier,” in Deep Reinforcement
Learning Workshop NeurIPS 2022, 2022.

[36] D. Hafner, J. Pasukonis, J. Ba, and T. Lillicrap, “Mastering diverse control tasks through world
models,” Nature, pp. 1–7, 2025.

[37] T. P. Minka, “Expectation propagation for approximate bayesian inference,” arXiv preprint
arXiv:1301.2294, 2013.

[38] M. Okada and T. Taniguchi, “Variational inference mpc for bayesian model-based reinforcement
learning,” in Conference on Robot Learning, 2019.

[39] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,
“Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.

[40] W. Ye, S. Liu, T. Kurutach, P. Abbeel, and Y. Gao, “Mastering atari games with limited data,”
Advances in neural information processing systems, vol. 34, pp. 25476–25488, 2021.

[41] S. Wang, S. Liu, W. Ye, J. You, and Y. Gao, “Efficientzero v2: Mastering discrete and continuous
control with limited data,” arXiv preprint arXiv:2403.00564, 2024.

[42] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control: Learning behaviors by latent
imagination,” arXiv preprint arXiv:1912.01603, 2019.

[43] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with discrete world models,”
arXiv preprint arXiv:2010.02193, 2020.

[44] K. Greff, R. L. Kaufman, R. Kabra, N. Watters, C. Burgess, D. Zoran, L. Matthey, M. Botvinick,
and A. Lerchner, “Multi-object representation learning with iterative variational inference,” in
International conference on machine learning, pp. 2424–2433, PMLR, 2019.

[45] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Doso-
vitskiy, and T. Kipf, “Object-centric learning with slot attention,” Advances in neural information
processing systems, vol. 33, pp. 11525–11538, 2020.

[46] R. Singh and C. L. Buckley, “Attention as implicit structural inference,” Advances in Neural
Information Processing Systems, vol. 36, pp. 24929–24946, 2023.

[47] D. Kirilenko, V. Vorobyov, A. K. Kovalev, and A. I. Panov, “Object-centric learning with slot
mixture module,” arXiv preprint arXiv:2311.04640, 2023.

[48] J. Jiang, F. Deng, G. Singh, M. Lee, and S. Ahn, “Slot state space models,” arXiv preprint
arXiv:2406.12272, 2024.

[49] S. Ferraro, P. Mazzaglia, T. Verbelen, and B. Dhoedt, “Focus: Object-centric world models for
robotic manipulation,” Frontiers in Neurorobotics, vol. 19, p. 1585386, 2025.

[50] J. Collu, R. Majellaro, A. Plaat, and T. M. Moerland, “Slot structured world models,” arXiv
preprint arXiv:2402.03326, 2024.

[51] C. Rasmussen, “The infinite gaussian mixture model,” Advances in neural information process-
ing systems, vol. 12, 1999.

[52] T. Champion, M. Grześ, and H. Bowman, “Structure learning with temporal gaussian mixture
for model-based reinforcement learning,” arXiv preprint arXiv:2411.11511, 2024.

[53] Z. Ghahramani and G. E. Hinton, “Variational learning for switching state-space models,”
Neural computation, vol. 12, no. 4, pp. 831–864, 2000.

[54] V. Geadah, J. W. Pillow, et al., “Parsing neural dynamics with infinite recurrent switching linear
dynamical systems,” in The Twelfth International Conference on Learning Representations,
2024.

[55] S. Linderman, M. J. Johnson, and R. P. Adams, “Dependent multinomial models made easy:
Stick-breaking with the pólya-gamma augmentation,” Advances in neural information process-
ing systems, vol. 28, 2015.

12

A Full Model Details

AXIOM’s world model is a hidden Markov model with an object-centric latent state space. The
model itself has two main components: 1) an object-centric, slot-attention-like [18] likelihood model;
and 2) a recurrent switching state space model [19]. The recurrent switching state space model is
applied to each object or slot identified by the likelihood model, and models the dynamics of each
object with piecewise-linear trajectories. Unlike most other latent state-space models, including
other object-centric ones, AXIOM is further distinguished by its adaptable complexity – it grows and
prunes its model online through iterative expansion routines (see Algorithm 1) and reduction (see
Algorithm 2) to match the structure of the world it’s interacting with. This includes automatically
inferring the number of objects in the scene as well as the number of dynamical modes needed to
describe the motion of all objects. This is inspired by the recent fast structure learning approach [23]
developed to automatically learn a hierarchical generative model of a dataset from scratch.

Preface on notation Capital bold symbols denote collections of matrix- or vector-valued random
variables and lowercase bold symbols denote multivariate variables.

A.1 Generative model

The model factorizes perception and dynamics into separate generative blocks: (i) In perception,
a slot Mixture Model (sMM) models pixels yt as competitively explained by continuous latent
variables factorized across slots or objects: xt = {x(1)

t , . . . ,x
(K)
t }. Each pixel is assigned to one

of (up to) K slots using the assignment variable zt,smm; (ii) dynamics are modeled per-object using
their object-centric latent descriptions as inputs to a recurrent switching state space model (similar
to an rSLDS [19]). We define the full latent sequence as Z0:T = {Ot, zt,smm}Tt=0. Each slot latent
O(k)

t consists of both continuous x(k)
t and discrete latent variables. The continuous latents represent

continuous properties of an object, such as its position, color and shape. The discrete latents are
themselves split into two subtypes: z(k)t and s

(k)
t . We use z

(k)
t to denote four latent descriptors that

capture categorical attributes of the slot (e.g., object type), and s
(k)
t to denote a pair of switch states

determining the slot’s instantaneous trajectory.3 Model parameters Θ̃ are split into module-specific
subsets (e.g., ΘsMM,ΘtMM). The joint distribution over input sequences y0:T , latent state sequences
Z0:T and parameters Θ̃ can be expressed as a hidden Markov model:

p(y0:T ,Z0:T , Θ̃) = p(y0,Z0)p(Θ̃)

T∏
t=1

p(xt–1, | zt,ΘiMM)︸ ︷︷ ︸
Identity mixture model

p(xt–1, zt, st, at–1, rt | ΘrMM)︸ ︷︷ ︸
Recurrent mixture model

K∏
k=1

p(yt|x(k)
t , zt,smm,ΘsMM)︸ ︷︷ ︸

Slot mixture model

p(x
(k)
t | x(k)

t−1, s
(k)
t ,ΘtMM)︸ ︷︷ ︸

Transition mixture model

, (11)

We intentionally exclude the slot mixture assignment variable zt,smm from the other object-centric
discrete latents {z(k)t }Kk=1 because the sMM assignment variable is importantly not factorized over
slots, since it is a categorical distribution over K-dimensional one-hot vectors, zt,smm ∈ {0, 1}K .

Latent object states. At a given time–step t ∈ 0, . . . , T each object k ∈ 1, . . . ,K is described by
sets of both continuous and discrete variables (we reserve k for ‘slot index’ everywhere):

Ot = {x(k)
t , z

(k)
t , s

(k)
t }Kk=1,

The continuous state x
(k)
t summarize latent features or descriptors associated with the kth object,

including its 2-D position p
(k)
t = {p(k)t,x , p

(k)
t,y }, a corresponding 2-D velocity v

(k)
t = {v(k)t,x , v

(k)
t,y },

its color c(k)t = {c(k)t,r , c
(k)
t,g , c

(k)
t,b } its 2-D shape encoded as its extent along the X and Y directions

3We use the superscript index k as in q(k) to select only the subset of q ≡ q(1:K) relevant to the kth slot.

13

e
(k)
t = {e(k)t,x , e

(k)
t,y }, and an ‘unused counter’ u(k)t , which tracks how long the kth object has gone

undetected:
x
(k)
t =

[
p
(k)
t , c

(k)
t ,v

(k)
t , u

(k)
t , e

(k)
t

]⊤ ∈ R10.

In addition to the continuous latents, each object is also characterized by two sets of discrete variables:
z
(k)
t and s

(k)
t . The first set z(k)t captures categorical information about the object that is relevant to

predicting its instantaneous dynamics. This includes a latent object ‘type’ z(k)t,type (used to identify
dynamics across object instances based on their shared continuous properties, e.g., objects that have
the same shape and color are expected to behave similarly); the object type index of the nearest
other object that slot k is interacting with (or if it isn’t interacting with anything) z(k)t,interacting, its

presence/absence in the current frame z
(k)
t,presence, and whether the object is moving or not z(k)t,moving.

We define each of these discrete variables in ‘one-hot’ vector format, so as vectors whose entries
z
(k)
t,m,name are either 0 or 1, with the constraint that

∑
m z

(k)
t,m,name = 1. We can thus write the full

discrete z
(k)
t latent as follows:

z
(k)
t =

[
z
(k)
t,type, z

(k)
t,interacting, z

(k)
t,presence, z

(k)
t,moving

]
∈ {0, 1}Ctype+Cinteracting+Cpresence+Cmoving

with


Ctype = V ≤ Vmax

Cinteracting = V + 1

Cpresence = 2

Cmoving = 2

where V is the number of object types inferred by the identity mixture model or iMM, subject to a
maximum value of Vmax (see Appendix A.6). Note that Cinteracting has maximum index V + 1 because
it includes an extra index for the state of ‘not interacting with any other object.’

The second set of discrete variables s(k)t form a pair of concurrent switch states that jointly select one
of an expanding set of linear dynamical systems to predict the object’s future motion:

s
(k)
t =

[
s
(k)
t,tmm, s

(k)
t,rmm

]
∈ {0, 1}Stmm+Srmm

with

{
Stmm ≤ L
Srmm ≤M

The first variable s
(k)
t,tmm is the switching variable of the transition mixture model or tMM, whereas

the second switch variable s
(k)
t,rmm is the assignment variable of another mixture model – the recurrent

mixture model or rMM – which furnishes a likelihood over stmm as well as other continuous and
discrete features of each object.

In the sections that follow we will detail each of the components in the full AXIOM world model
and give their descriptions in terms of generative models. These descriptions will show how the
latent variables Z0:T = {Ot, zt,smm}Tt=0 and component-specific parameters (e.g, ΘrMM relate to
observations and other latent variables.

A.2 Slot Mixture Model (sMM)

AXIOM processes sequences of RGB images one frame at a time. Each image is composed ofH×W
pixels and is reshaped into N=HW tokens {yn

t }Nn=1. Each token yn
t is a vector containing the nth

pixel’s color in RGB and its image coordinates (normalized to
[
−1,+1

]
). AXIOM models these

tokens at a given time as explained by a mixture of the continuous slot latents; we term this likelihood
construction the Slot Mixture Model (sMM, see far left side of Figure 1). The K components of this

14

mixture model are Gaussian distributions whose parameters are directly given by the continuous
features of each slot latent x(1:K)

t . Associated to this Gaussian mixture is a binary assignment variable
znt,k,smm ∈ {0, 1} indicating whether pixel n at time t is driven by slot k, with the constraint that∑

k z
n
t,k,smm = 1. The sMM’s likelihood model for a single pixel and timepoint yn

t can be expressed
as follows (dropping the t subscript for notational clarity):

p(yn | x(1:K), σ(1:K)
c , znsmm) =

K∏
k=1

N (Ax(k),diag(
[
Bx(k), σ(k)

c

]⊤
))z

n
k,smm (12)

A =
[
I5 05×5

]
, B =

[
02×8 I2

]
(13)

p(znsmm | πsmm) = Cat(πsmm), p(πsmm) = Dir
(
1, . . . , 1︸ ︷︷ ︸
K−1 times

, α0,smm) (14)

p(σ(k)
c) =

∏
j∈R, G, B

Γ(γ0,j , 1) (15)

The mean of each Gaussian component is given a fixed linear projectionA of each object latent, which
selects only its position and color features: Ax(k) =

[
p(k), c(k)

]
. The covariance of each component

is a diagonal matrix whose diagonal is a projection of the 2-D shape of the object latent Bx(k) = e(k)

(its spatial extent in the X and Y directions), stacked on top of a fixed variance for each color
dimension σ(k)

c , which are given independent Gamma priors. The latent variables p(k), c(k), e(k)

are subsets of slot k’s full continuous features x(k)
t , and the projection matrices A, B remain fixed

and unlearnable. Each token’s slot indicator znsmm is drawn from a Categorical distribution with
mixing weights πsmm. We place a truncated stick-breaking (finite GEM) prior on these weights,
which is equivalent to a K-dimensional Dirichlet with concentration vector (1, . . . , 1, α0,smm), where
the first K − 1 pseudocounts are 1 and the final pseudocount α0,smm reflects the propensity to add
new slots. All subsequent mixture models in AXIOM are equipped with the same sort of truncated
stick-breaking priors on the mixing weights [27]. We can collect parameters of the sMM together
into ΘsMM = {πsmm, σ

(1:K)
c , A,B}. The priors over these parameters can be written as a product of

the truncated stick-breaking prior and the Gamma priors for each color variance, and the priors over
A and B can be thought of as Dirac delta functions, rendering them unlearnable.

A.3 Moving and presence latent variables

Within the discrete variables that describe each slot z(k)t , s
(k)
t , there are two one-hot-encoded Bernoulli

variables: z(k)t,moving ∈ {0, 1}2 and z
(k)
t,present ∈ {0, 1}2. These represent whether the object associated

to the kth slot is moving and present on the screen, respectively. These variables have a particular
relationship to the generative model, particularly the dynamics model, which allows inference over
them to act as a ‘pre-processing step’ or filter for slot latents, before passing their continuous features
further down the inference chain for use by the identity model, recurrent mixture model, and transition
model. The way this gating is functionally defined is detailed in the subsection Gated dynamics
learning below.

The latent state sequences z(k)0:T,presence and z
(k)
0:T,moving variables are modelled as evolving according to

discrete, object-factorized markov chains which concurrently emit observations via a proxy presence
variable o(k)t (see below for details on how this is computed). This conditional hidden Markov model
can be written as follows for the two variables:

p(z
(k)
0:T,presence) =

T∏
t=0

p(o
(k)
t | z(k)t,presence)p(z

(k)
t,presence) | z

(k)
t–1,presence, θpresence)

p(z
(k)
0:T,moving) =

T∏
t=1

p(z
(k)
t,moving | z

(k)
t–1,moving, o

(k)
t ,v

(k)
t–1, θmoving) (16)

15

Presence latent zt,presence The presence chain uses a time-homogeneous 2 × 2 transition matrix
parametrised by

θpresence = {ϕNP→P, ϕP→NP}, 0 ≤ ϕNP→P, ϕP→NP ≤ 1.

where the subscripts for the ‘not present‘ and ‘present‘ states of z(k)t,presence are abbreviated as NP and
P, respectively. Writing ϕi→not present=1− ϕi→present, the transition matrix is

Tpresence =

(
ϕNP→NP ϕNP→P

ϕ1→NP ϕP→P

)
=

(
1− ϕNP→P ϕNP→P

ϕP→NP 1− ϕP→NP

)
.

For all experiments we fix ϕ0→1= 0, ϕ1→0= 0.01, encoding the prior that an absent slot cannot
spontaneously re-appear while a present one “dies out” with probability 0.01 each frame.

Proxy observation. We define the assignment-count indicator o(k)t as a variable that indicates whether
any pixels 1, 2, . . . , N were assigned to slot k at time t. This can be expressed as an element-wise
product of all pixel-specific entries of the row of sMM assignment variable corresponding to slot k’s
assignments: z(1:N)

t,k,smm:

o
(k)
t =

N∏
n=1

znt,k,smm

Finally, the relationship between the count-assignments-indicator o(k)t and the presence variable
zt,presence is a Bernoulli likelihood with the following form:

p(ot|zt,presence) = o
zt,P,presence
t (1− ot)zt,A,presence (17)

which means that presence and the assignment count o(k)t are expected to be ‘on’ simultaneously.

The subscripts P and A refer to the indices of z(k)t,presence that correspond to the ‘present’ and ‘absent’
indicators, respectively.

Moving latent zt,moving We define the speed of slot k as follows (leaving out the k superscript to
avoid overloaded superscripts):

ψt =
√
v2t,x + v2t,y (18)

The transition likelihood for the moving latent z(k)t,moving depends on the presence indicator o(k)t and

the slot speed ψt–1; this forces inference of the moving indicator z(k)t,moving to be driven by the inferred
speed and presence of the k-th slot. The form of this dependence is encoded in the 2× 2 transition
matrix Tmoving with parameters θmoving as follows:

θmoving = {λ, β}, 0 ≤ λ ≤ 1, 0 ≤ β ≤ 1, λ+ β ≤ 1. (19)

The parameters λ and β determine the two conditional probabilities ϕi→M(o
(k)
t , ψt–1) and

ϕi→NM(o
(k)
t , ψt–1). We use the subscripts NM,M to indicate the ‘not-moving’ and ‘moving‘ states of

z
(k)
t,moving, respectively. The dependence of the conditional probabilities on the λ, β hyperparameters

can be written as follows:

ϕi→M(o
(k)
t , ψt–1) =

λ i+ β ψt–1, o
(k)
t = 1,

i, o
(k)
t = 0,

ϕi→NM(o
(k)
t , ψt–1) = 1− ϕi→1(o

(k)
t , ψt–1).

The full transition matrix Tmoving can be written:

Tmoving
(
o
(k)
t , ψt–1; θmoving

)
=

(
ϕNM→NM ϕNM→M

ϕM→NM ϕM→M

)
. (20)

16

This sort of parameterization results in the following interpretation: if the slot is inferred to be absent
(i.e., no pixels are assigned to it and o(k)t = 0), z(k)t,moving stays in its previous state. However, if the

slot is inferred to be present (o(k)t = 1), then the previous “moving” probability is shrunk by λ and
nudged upward by βψt–1.

In all experiments we set λ = 0.99, β = 0.01, but they remain exposed hyperparameters.

Gated dynamics learning The presence and moving latents zt,presence, zt,moving exist in order to filter
which slots get fit by the rMM. In order to achieve this selective routing of only active, moving slots,
we introduce an auxiliary gate variable that is connected to the moving- and presence-latents via a
multiplication factor that parameterizes a Bernoulli likelihood over the two values (‘ON‘ and ‘OFF‘)
of the gate variable G(k)t :

p(G(k)t | z(k)t,movingz
(k)
t,present) = Bernoulli

(
pgate

)
(21)

where pgate = z
(k)
t,M,movingz

(k)
t,P,present

This binary gate variable then modulates the input precision of the various likelihoods associated
with the identity model (iMM), transition mixture model (tMM), and recurrent mixture model (rMM)
to effectively ‘mask’ the learning of these models on untracked or absent slots. The end effect is that
slots which are inferred to be moving and present keep full precision, while any other combination
deflates the slot-specific input covariance to 0, removing the influence of their sufficient statistics
from parameter learning.

A.4 Interaction variable

We also associate each object with a discrete latent variable z
(k)
t,interacting which indicates the type of

the closest object interacting with the focal object (i.e., that indexed by k). In practice, we infer
this interaction variable by finding the object whose position variable is closest to the focal slot, i.e.
argminj∈nearest ∥pj−pl∥, within some constrained set of ‘nearest’ objects whose position latents are
within a predefined interaction radius of the focal object (determined by a fixed parameter rmin). This
interaction radius can be tuned on a game specific basis – see the main text results in Section 3 for
how fixing this parameter affects the results. We then perform inference on the identity model using
the continuous features of that nearest-interacting slot:

[
c
(j)
t , e

(j)
t

]⊤
. The inferred identity of the

resulting jth slot is then converted into a one-hot vector representing the type of the ‘interacting’ latent
z
(k)
t,interacting, which can then be fed as input into the recurrent mixture model or rMM as described in

the following section.

A.5 Unused counter

To keep track of how long a slot has remained inactive we introduce a non-negative-integer latent
that is treated as a continuous variable in R: u(k)t or the ‘unused counter’. This allows the model
to predict the respawning of objects after they go off-screen. We couple the unused counter again
to the proxy assignment-count variable o(k)t using an exponentially–decaying Bernoulli likelihood
(identical in spirit to the EP–style presence likelihood):

P
(
o
(k)
t = 1 | u(k)t

)
= 1− exp

{
−ξ e−γu u

(k)
t
}
,

P
(
o
(k)
t = 0 | u(k)t

)
= exp

{
−ξ e−γu u

(k)
t
}
, ξ ∈ (0, 1], γu > 0. (22)

When u(k)t = 0 the slot is present with probability 1− e−ξ ≃ ξ (for typical ξ ≳ 0.8). Each increment
by νu multiplies that probability by exp

(
−ξ γu νu

)
, i.e. it decays roughly one e-fold per unused step

when γu ≃ ν−1
u .

17

A.6 Identity mixture model

AXIOM uses an identity mixture model (iMM) to infer a discrete identity code z
(k)
type for each object

based on its continuous features. These identity codes are used to condition the inference of the
recurrent mixture model used for dynamics prediction. Conditioning the dynamics on identity-codes
in this way, rather than learning a separate dynamics model for each slot, allows AXIOM to use the
same dynamics model across slots. This also enables the model to learn the same dynamics in a type-
specific, rather than instance-specific, manner, and to remap identities when e.g., the environment is
perturbed and colors change. Concretely, the iMM models the 5-D colors and shapes {c(k), e(k)}Kk=1
across slots as a mixture of up to V Gaussian components (object types). The slot-level assignment
variable z

(k)
t,type indicates which identity is assigned to the kthslot. The generative model for the iMM

is (omitting the t− 1 subscript from object latents):

p(
[
c(k), e(k)

]⊤|z(k)type,µ1:V,type,Σ1:V,type) =

V∏
j=1

N (µj,type,
(
G(k)t

)−1

Σj,type)
z
(k)
j,type (23)

p(µj,type,Σ
−1
j,type) = NIW(m0,j,type, κ0,j,type,U0,j,type, n0,j,type) (24)

p(z
(k)
type | πtype) = Cat(πtype), p(πtype) = Dir

(
1, . . . , 1︸ ︷︷ ︸
V−1 times

, α0,type) (25)

The
(
G(k)t

)−1

X notation represents element-wise broadcasting of the reciprocal of G(k)t across all
elements of the matrix or vector X. When applied as a mask to a covariance matrix, for instance, the
effect is that slots that are inferred to be moving and present do not have their covariance affected(
G(k)t

)−1

= 1, whereas those slots that are inferred to be either not present or not moving will

‘inflate’ the covariance of the mixture model, due to
(
G(k)t

)−1

→∞. The same type of Categorical
likelihood for the type assignments and truncated stick-breaking prior over the mixture weights
is used to allow an arbitrary (up to a maximum of V) number of types to be used to explain the
continuous slot features. We equip the prior over the component likelihood parameters with conjugate
Normal Inverse Wishart (NIW) priors.

A.7 Transition Mixture Model

The dynamics of each slot are modelled as a mixture of linear functions of the slot’s own previous
state. To stress the homology between this model and the other modules of AXIOM, we refer to this
module as the transition mixture model or tMM, but this formulation is more commonly also known
as a switching linear dynamical system or SLDS [29]. The tMM’s switch variable s

(k)
t,tmm selects a set

of linear parameters Dl, bl to describe the kth slot’s trajectory from t to t+ 1. Each linear system
captures a distinct rigid motion pattern for a particular object:

p(x
(k)
t | x(k)

t–1, s
(k)
t,tmm,D1:L, b1:L) =

L∏
l=1

N (Dlx
(k)
t + bl,

(
G(k)t

)−1

2I)s
(k)
t,l,tmm (26)

p(s
(k)
t,tmm | πtmm) = Cat(πtmm), p(πtmm) = Dir

(
1, . . . , 1︸ ︷︷ ︸
L−1 times

, α0,tmm) (27)

(28)

where we fix the covariance of all L components to be 2I , and all mixture likelihoods D1:L, b1:L
to have uniform priors. Note that we gate the covariance once again using the reciprocal of G(k)t to
filter the tMM to only model objects that are moving and present. The truncated stick-breaking prior
Dir
(
1, . . . , 1, α0,tmm) over the component mixing weights enables the number of linear modes L to

be dynamically adjusted to the data by growing the model with propensity α0,tmm. Importantly, the L
transition components of the tMM are not slot-dependent, but are shared and thus learned using the

18

data from all K slot latents. The tMM can thus explain and predict the motion of different objects
using a shared, expanding set of (up to L distinct) linear dynamical systems.

A.8 Recurrent Mixture Model

The recurrent mixture model (rMM) is used to infer the switch states of the transition model directly
from current slot-level features. This dependence of switch states on continuous features is the
same construct used in the recurrent switching linear dynamical system or rSLDS [19]. However,
in contrast to the rSLDS, which uses a discriminative mapping to infer the switch state from the
continuous state (usually a softmax or stick-breaking parameterization thereof), the rMM recovers this
dependence generatively using a mixture model over mixed continuous–discrete slot states [30]. In
this way, ‘selecting’ the switch state used for conditioning the tMM actually emerges from inference
over discrete latent variables, which have a particular conditional relationship (in this context, a joint
mixture likelihood relationship) to other latent and observed variables. Concretely, the rMM models
the distribution of continuous and discrete variables as a mixture model driven by another per-slot
latent assignment variable s

(k)
rmm. The rMM defines a mixture likelihood over a tuple of continuous

and discrete slot-specific information. We use the notation f (k)t–1 to collect the continuous features
that the rMM parameterizes a density over: they include a subset of the kth slot’s own continuous
state x

(k)
t–1, as well as a nonlinear transformation g applied to other slots‘ features, that computes the

2-D distance vector pointing from the inferred position of the focal object (i.e., slot k) to the nearest
interacting slot j. We detail how these features are computed below:

Continuous features for the rMM The continuous latent dimensions of x(k)
t–1 used for the rMM include

the following: p
(k)
t–1,v

(k)
t–1, u

(k)
t–1. We represent extracting this subset as a sparse linear projection

applied to the full continuous latents Cx(k)
t–1. In addition, the rMM models the distribution of the

2-D vectors pointing from the focal object’s position (the slot k in consideration) to the position
of the nearest interacting object, i.e. ∆p

(k)
t–1 ≡ p

(j)
t–1 − p

(k)
t–1. The nearest interacting object with

index j is the one whose inferred position is the closest to the focal object’s, while only considering
neighbors within some interaction zone with radius rmin. This is the same interaction distance used
to compute nearest-neighbors when populating the z

(k)
interacting latent, see Appendix A.4 for details.

If no object is within the interaction radius, then we set ∆p
(k)
t–1 to a random sample from a 2-D

uniform distribution with mean
[
1.2, 1.2

]
and lower/upper bounds of

[
1.198, 1.198

]
,
[
1.202, 1.202

]
.

We summarize this computation with a generic nonlinear function applied to the latent states of all
slots g(x(1:K)

t–1), to intimate possible generalizations where different sorts of (possibly learnable)
neighborhood relationships could be inserted here.

Discrete features for the rMM The discrete features include the following: z(k)t−1,type, z
(k)
t−1,interacting,

the assignment-count indicator variable o(k)t–1, the switch state of the transition mixture model s(k)t,tmm,
the action at timestep t−1 and reward at the current timestep rt. We refer to this discrete collection as
d
(k)
t–1. The inclusion of s(k)t,tmm in the discrete inputs to the rMM is a critical ingredient of this recurrent

dynamics formulation – it allows inference on this the switching state of the tMM to be driven by
high-dimensional configurations of continuous and discrete variables relevant for predicting motion.

rMM description The rMM assignment variable associated to a given slot is a binary vector s(k)t,rmm

whose mth entry s(k)t,m,rmm ∈ {0, 1} indicates whether component m explains the current tuple of

mixed continuous-discrete data. Each component likelihood selected by s
(k)
t,rmm factorizes into a

product of continuous (Gaussian) and discrete (Categorical) likelihoods.

f
(k)

t–1 =
(
Cx

(k)

t–1, g(x
(1:K)

t–1)
)
, d

(k)

t–1 =
(
z
(k)
t−1,type, z

(k)
t−1,interacting, o

(k)

t–1, s
(k)
t,tmm, at–1, rt

)
(29)

19

p(f
(k)

t–1 , d
(k)

t–1 | s
(k)
t,rmm) =

M∏
m=1

N (
f
(k)

t–1 ;µm,rmm,
(
G(k)t

)−1

Σm,rmm
)∏

i

Cat
(
dt–1, i;G(k)t am,i

)st,m,rmm

(30)

p(µm,rmm,Σ
−1
m,rmm) = NIW(m0,m,rmm, κ0,m,rmm,U0,m,rmm, n0,m,rmm), p(am,i) = Dir(a0,m,i) (31)

p(s
(k)
t,rmm | πrmm) = Cat(πrmm), p(πrmm) = Dir

(
1, . . . , 1︸ ︷︷ ︸
M−1 times

, α0,rmm) (32)

The parameters of the multivariate normal components are equipped with NIW priors and those of the
discrete Categorical likelihoods with Dirichlet priors. As with all the other modules of AXIOM, we
equip the mixing weights for s(k)t,rmm with a truncated stick-breaking prior whose finalM th pseudocount
parameter tunes the propensity to add new rMM components. Note also the use of the gate variable
G(k)t to filter slots for dynamics learning by inflating the covariance associated with any slot inputs
not inferred moving and present.

Fixed distance variant. We explored a variant of the rMM (fixed_distance) where the displace-
ment vector ∆p

(k)
t–1 is not returned by g(x(1:K)

t−1) and therefore not included as one of the continuous
input features for the rMM. In this case, the entry of z(k)t–1,interacting that corresponds to the nearest
interacting object is still determined by rmin, however. In this case, the choice of rmin matters more
for performance because the rMM cannot learn to nuance its dynamic predictions based on precise
distances. In general, this means that rmin requires more game-specific tuning. See Section 3 for the
results of tuning rmin compared to learning it directly by providing ∆p

(k)
t–1 as input to the rMM.

A.9 Variational inference and learning

To perform inference and learning within our proposed model, we employ a variational Bayesian
approach. The core idea is to approximate the true posterior distribution over latent variables and
parameters with a more tractable factorized distribution, q(Z0:T , Θ̃). This is achieved by optimizing
the variational free-energy functional, F(q), which establishes an upper-bound on the negative
log-marginal likelihood of the observed data y0:T :

F(q) = Eq

[
log q(Z0:T , Θ̃)− log p(y0:T ,Z0:T , Θ̃)

]
, such that F(q) ≥ − log p(y0:T). (33)

Minimizing this functional F(q) with respect to q is equivalent to maximizing the Evidence Lower
Bound (ELBO), thereby driving the approximate posterior q(Z0:T , Θ̃) to more closely resemble the
true posterior p(Z0:T , Θ̃ | y0:T).

We assume a mean-field factorization for the approximate posterior, which decomposes over the
global parameters Θ̃ and the sequence of latent variables Z0:T :

q(Z0:T , Θ̃) = q(Θ̃)

T∏
t=0

q(Zt), (34)

where q(Zt) further factorizes across individual latent variables for frame t:

q(Zt) =

 N∏
n=1

q
(
znt,smm

) K∏
k=1

(
q
(
x
(k)
t

)
q
(
z
(k)
t

)
q
(
s
(k)
t

))
. (35)

The variational distribution over the global parameters Θ̃ is also assumed to factorize according to
the distinct components of our model:

q(Θ̃) = q(ΘsMM) q(ΘiMM) q(ΘtMM) q(ΘrMM). (36)

Note that the pixel-to-slot assignment variables znt,smm are specific to each pixel n but are not
factorized across slots for a given pixel, as they represent a single categorical choice from K slots.
Other latent variables, such as the continuous state x

(1:K)
t and discrete attributes z(1:K)

t , s
(1:K)
t , are

factorized per slot k.

20

The inference and learning procedure for each new frame t involves an iterative alternation between
an E-step, where local latent variable posteriors are updated, and an M-step, where global parameter
posteriors are refined.

E-step In the Expectation-step (E-step), we hold the variational posteriors of the global parameters
q(Θ) fixed. We then update the variational posteriors for each local latent variable factor within
q(Zt), such as q(znt,smm), q(x

(k)
t), q(z(k)t), and q(s(k)t). These updates are derived by optimizing the

ELBO with respect to each factor in turn and often result in closed-form coordinate-ascent updates
due to conjugacy between the likelihood terms and the chosen forms of the variational distributions.

M-step In the Maximization-step (M-step), we update the variational posteriors for the global
parameters q(Θµ) associated with each model component µ ∈ {sMM, iMM, tMM, rMM}. Each
q(Θµ) is assumed to belong to the exponential family, characterized by natural parameters ηµ:

q(Θµ) = h(Θµ) exp
{
η⊤µ T (Θµ) − A(ηµ)

}
, (37)

where T (Θµ) represents the sufficient statistics for Θµ, and A(ηµ) is the log-partition function (or
log-normalizer). The M-step update proceeds in two stages for each component:

1. First, we compute the expected sufficient statistics T̂µ using the current posteriors over the
latent variables q(Zt) obtained from the t-th E-step:

T̂µ = Eq(Zt)

[
T
(
Θµ,Zt

)]
. (38)

These expected statistics are then combined with prior natural parameters ηµ,0 to form the
target natural parameters for the update: η̂µ = T̂µ + ηµ,0.

2. Second, we update the current natural parameters η(t−1)
µ using a natural-gradient step,

which acts as a stochastic update blending the previous parameters with the new target
parameters, controlled by a learning rate schedule ρt:

η(t)µ ← (1− ρt) η(t−1)
µ + ρt η̂µ, where 0 < ρt ≤ 1. (39)

Slot Mixture Model (sMM)

The Slot Mixture Model (sMM) provides a likelihood for the observed pixel data yt by modeling
each pixel as originating from one of K object slots. The variational approximation involves
posteriors over pixel-to-slot assignments znt,smm, slot mixing weights πsmm, slot-specific color

variances σ(k)
c,j , and the continuous latent states of slots x

(k)
t . Specifically, for each pixel n at

time t, the posterior probability that it belongs to slot k is q(znt,k,smm = 1) = rnt,k, ensuring that∑K
k=1 r

n
t,k = 1. The posterior over the slot-mixing probabilities πsmm is a Dirichlet distribution:

q(πsmm) = Dir(πsmm | α1,smm, . . . , αK,smm), parameterized by concentrations αk,smm > 0. For
each slot k and color channel j ∈ {r, g, b}, the posterior over the color variance σ(k)

c,j is a Gamma

distribution: q(σ(k)
c,j) = Gamma(σ

(k)
c,j | γk,j , bk,j), with shape γk,j and rate bk,j . Finally, each slot’s

continuous latent state x
(k)
t ∈ R10 (encompassing position, color, velocity, shape, and the unused

counter) is modeled by a Gaussian distribution: q(x(k)
t) = N (x

(k)
t | µ(k)

t , Σ
(k)
t). The precision

matrix is denoted Λ = Σ−1, and the precision-weighted mean is h(k)t = Λ
(k)
t µ

(k)
t .

E-step Updates for sMM During the E-step for the sMM at frame t, the variational distributions
for local latent variables znt,smm (represented by the responsibilities rnt,k) and x

(k)
t (represented by

µ
(k)
t ,Σ

(k)
t) are updated, while the global sMM parameters q(ΘsMM) are held fixed.

1. The pixel responsibilities rnt,k, representing q(znt,k,sMM = 1), are updated using the standard
mixture model update:

rnt,k =
exp
(
Eq[log πk,smm] + Eq[logN (yn

t ; Ax
(k)
t , Σ(k))]

)∑K
j=1 exp

(
Eq[log πj,smm] + Eq[logN (yn

t ; Ax
(j)
t , Σ(j))]

) . (40)

21

The per-slot observation covariance Σ(k) is constructed as Σ(k) =

diag
(
B Eq[x

(k)
t], Eq[σ

(k)
c]
)
, consistent with the generative model where Bx(k) pro-

vides variance related to shape and σ(k)
c provides color channel variances (see Equation (12)

for the sMM likelihood equations).

2. The parameters of the Gaussian posterior q(x(k)
t) are updated by incorporating evidence

from the pixels assigned to slot k. This involves updating its natural parameters (precision
Λ
(k)
t and precision-adjusted mean h(k)t):

Λ
(k)
t = Λ

(k)
t|t–1 +

N∑
n=1

rnt,k A
⊤(Σ(k)

)−1
A,

h
(k)
t = h

(k)
t|t–1 +

N∑
n=1

rnt,k A
⊤(Σ(k)

)−1
yn
t .

(41)

The terms Λ(k)
t|t–1 and h(k)t|t–1 are the natural parameters of the predictive distribution for x(k)

t .

The standard parameters are then Σ
(k)
t =

(
Λ
(k)
t

)−1

and µ(k)
t = Σ

(k)
t h

(k)
t .

M-step Updates for sMM In the M-step, the global parameters of the sMM, which are the Dirichlet
parameters αk,smm for mixing weights and the Gamma parameters (γk,j , bk,j) for color variances,
are updated. This begins by accumulating the expected sufficient statistics from the E-step:

Nt,k =

N∑
n=1

rnt,k,

Sy
1,t,k =

N∑
n=1

rnt,k y
n
t ,

Sy
2,t,k =

N∑
n=1

rnt,k y
n
t (yn

t)
⊤.

(42)

The Dirichlet concentration parameters are updated as (now using the t index to represent the current
vs. last settings of the posterior parameters):

αt,k,smm = (1− ρt)αt–1,k,smm + ρt (α0,k,smm +Nt,k),

γt,k,j = (1− ρt) γt–1,k,j + ρt

(
γ0,j +

Nt,k

2

)
,

bt,k,j = (1− ρt) bt–1,k,j + ρt

1 +
1

2

N∑
n=1

rnt,k(y
n
t,color j − (AEq[x

(k)
t])color j)

2

 .

(43)

Here, α0,k,smm represents the prior concentration for the Dirichlet distribution (e.g., 1 for the first
K−1 components and α0,smm for theK-th, if using a truncated stick-breaking prior). For the Gamma
parameters, γ0,j is the prior shape and 1 is the prior rate (or related prior parameters). The projection
matrices A and B are considered fixed and are not learned.

Presence, Motion, and Unused Counter Dynamics

The model includes latent variables for each slot k that track its presence z
(k)
t,presence, motion z

(k)
t,moving,

and an unused counter u(k)t .

Inference over the presence latent The presence state is informed by an ‘assignment-count-indicator’
o
(k)
t . This indicator is set to 1 if the slot is actively explaining pixels (e.g., if the sum of its

responsibilities
∑

n r
n
t,k exceeds a small threshold ϵactive), and 0 otherwise.

22

Recall the Bernoulli likelihood over o(k)t that links it to the z
(k)
t,presence latent as follows (cf. Equa-

tion (17)):
p(ot|zt,presence) = o

zt,P,presence
t (1− ot)zt,A,presence (44)

There is an implied superscript k on both o(k)t and the presence variable z(k)t,P,presence, which are

left out to avoid visual clutter. This linkage is incorporated into q(z(k)t,presence) using an Expectation
Propagation (EP) style update via a pseudo-likelihood [37]:

ℓ̃
(
z
(k)
t,presence

)
=
[
(o

(k)
t)z

(k)
t,P,presence

(
1− o(k)t

)z(k)
t,A,presence

]ζ
, (45)

where ζ is a damping factor. This update increases posterior evidence for presence if o(k)t = 1, and
for absence if o(k)t = 0. The first-order effect of this pseudo-likelihood when updating the posterior
over z(k)t,presence is

q(z
(k)
t,P,presence) ≈ (1− ζ)q(z(k)t–1,P,presence) + ζ o

(k)
t . (46)

Recall that the A,P subscripts refer to the indices of z(k)t–1,presence that signify the ‘is-absent‘ and
‘is-present’ states, respectively.

Inference over the moving latent Similar EP updates apply for inferring q(z(k)t,M,moving) based on its

specific likelihoods involving velocity and o(k)t . The gate G(k)t = q(z
(k)
t,P,present = 1)·q(z(k)t,M,moving = 1)

is then formed from these inferred probabilities.

Inference over the unused counter The ‘unused counter’ u(k)t tracks how long slot k has been
inactive. Appendix A.5 of the full model details describes a generative likelihood P (o(k)t = 1 |
u
(k)
t) = 1− exp(−ξe−γuu

(k)
t), for which damped EP updates for q(u(k)t) can be derived and would

remain in closed form. However, a specific case, by choosing hyperparameters such that a hard
constraint o(k)t = 1 ⇐⇒ u

(k)
t = 0 is effectively enforced (e.g., by taking γu → ∞ and ξ = 1

in the generative likelihood), leads to a simplified, deterministic update for the posterior mean
µ
(k)
t,u = Eq[u

(k)
t]:

µ
(k)
t,u =

(
1− o(k)t

) (
µ
(k)
t−1,u + νu

)
, νu = 0.05. (47)

In this simplified regime, the counter is reset to 0 if o(k)t = 1; otherwise, it increments by a fixed
amount νu.

Identity Mixture Model (iMM)

The Identity Mixture Model (iMM) assigns one of V possible discrete identities to each active
slot, based on its continuous features. This allows for shared characteristics and dynamics across
instances of the same object type. The variational approximation targets posteriors over these slot-
to-identity assignments z(k)t,type (which is a component of z(k)t), identity mixing weights πtype, and

the parameters (µj,type,Σj,type) for each identity’s feature distribution. The features y(k)
t,imm utilized

by the iMM for slot k are its color c(k)t and shape e
(k)
t , thus y(k)

t,imm = [c
(k)
t , e

(k)
t]⊤. For each slot k

at time t where the activity gate G(k)t ≈ 1, the posterior probability that it belongs to identity v is
q(z

(k)
t,v,imm = 1) = γ

(k)
t,v , satisfying

∑V
v=1 γ

(k)
t,v = 1. For slots where G(k)t ≈ 0, these responsibilities

are effectively null or uniform, contributing negligibly to parameter updates. The posterior over
identity-mixing probabilities π1:V,iMM is a Dirichlet distribution: q(π1:V,type) = Dir(π1:V,type |
α1,type, . . . , αV,type), with αv,type > 0. Each identity v is characterized by a mean µv,type and
covariance Σv,type. The variational posterior over these parameters is a Normal–Inverse-Wishart
(NIW) distribution: q(µv,type,Σv,type) = NIW(µv,type,Σv,type |mv,type, κv,type,Uv,type, nv,type).

23

E-step Updates for iMM In the E-step for the iMM, the local assignment probabilities γ(k)t,v for each

slot k are updated. This update is primarily driven by slots where G(k)t ≈ 1:

γ
(k)
t,v ∝ exp

(
Eq[log πv,type]

)
× exp

(
Eq[logN (y

(k)
t,iMM; µv,type,Σv,type)]

)
. (48)

These responsibilities are normalized such that
∑V

v=1 γ
(k)
t,v = 1 for each active slot.

M-step Updates for iMM During the M-step, the global parameters of the iMM are updated. Suffi-
cient statistics are accumulated, weighted by the gate G(k)t to ensure that only actively moving slots
contribute significantly to the updates:

Nt,v =

K∑
k=1

G(k)t γ
(k)
t,v ,

S1,t,v =

K∑
k=1

G(k)t γ
(k)
t,v Eq[y

(k)
t,imm],

S2,t,v =

K∑
k=1

G(k)t γ
(k)
t,v Eq[y

(k)
t,iMM(y

(k)
t,iMM)⊤].

(49)

The Dirichlet parameters αt,v,type are updated using Nt,v and prior parameters α0,v,type (which, due
to the stick-breaking priors are all 1’s except for the final count α0,V,type):

αt,v,type = (1− ρt)αt−1,v,type + ρt
(
α0,v,type +Nt,v

)
. (50)

The NIW parameters (mt,v,type, κt,v,type, Ut,v,type, nt,v,type) are updated by blending their natural
parameter representations. The target natural parameters η̂NIW

t,v are derived from the current sufficient
statistics {Nt,v, S1,t,v, S2,t,v} and the NIW prior parameters:

(NatParamsNIW
t,v) ← (1− ρt) (NatParamsNIW

t−1,v) + ρt η̂
NIW
t,v . (51)

Recurrent Mixture Model (rMM)

The Recurrent Mixture Model (rMM) provides a generative model for a collection of slot-specific
features, and importantly, it furnishes the distribution over the switch state s

(k)
t,tmm that governs the

Transition Mixture Model (tMM). The rMM itself is a mixture model with M components, and
its own slot-specific assignment variable is s

(k)
t,rmm. The variational factors include the posterior

probability of assignment to rMM component m, q(s(k)t,m,rmm = 1) = ρ
(k)
t,m (which sums to one over

m), a Dirichlet posterior q(πrmm) = Dir(πrmm | α1,rmm, . . . , αM,rmm) for its mixing weights, NIW
posteriors q(µm,Σm) for continuous features f (k)t–1 modeled by each component m, and Dirichlet
posteriors q(ai,m) for the parameters of categorical distributions over various discrete features
d
(k)
i also modeled by component m. These discrete features d(k)i encompass inputs like z

(k)
t–1,type,

z
(k)
t–1,interacting, as well as the tMM switch state s

(k)
t,tmm which the rMM models generatively.

E-step Updates for rMM In the rMM E-step, for each slot k considered active (i.e., G(k)t ≈ 1), the
responsibilities ρ(k)t,m for its M components are updated. These updates depend on the likelihood of
the slot’s input features under each rMM component. The input features include continuous aspects
f
(k)
t–1 (a subset of x(k)

t–1 such as position and velocity, and interaction features like ∆p
(k)
t–1) and a set of

discrete features d(k)t–1,inputs (e.g., type from the previous step z
(k)
t–1,type).

ρ
(k)
t,m ∝ exp

(
Eq[log πm,rmm]

)
× exp

(
Eq[logN (f

(k)
t–1 ;µm,rmm,Σm,rmm)]

)
×

∏
i∈input discrete features

exp
(
Eq[log Cat(d

(k)
t–1,i;ai,m)]

)
. (52)

24

These responsibilities are normalized to sum to one for each active slot k. During rollouts used in
planning, the predicted posterior distribution for the tMM switch state s

(k)
t,tmm is then determined as a

mixture of the output distributions from the rMM components, weighted by ρ(k)t,m:

q
(
s
(k)
t,l,tmm = 1

)
=

M∑
m=1

ρ
(k)
t,m Eq

[
atmm_switch,m,l

]
,

where atmm_switch,m,l is the probability of tMM switch state l under the learned parameters of rMM
component m.

M-step Updates for rMM In the rMM M-step, its global parameters are updated, with contributions
from slots weighted by the gate G(k)t . The expected sufficient statistics are accumulated. For the
mixing weights:

Nt,m =

K∑
k=1

G(k)t ρ
(k)
t,m. (53)

For the continuous feature distributions (NIW parameters):

Sf
1,t,m =

K∑
k=1

G(k)t ρ
(k)
t,m Eq[f

(k)
t–1],

Sf
2,t,m =

K∑
k=1

G(k)t ρ
(k)
t,m Eq[f

(k)
t–1 (f

(k)
t–1)

⊤].

(54)

For each discrete feature di modeled by the rMM (this includes input features d(k)t−1,i and the output

tMM switch state s(k)t,tmm), and its category ℓ:

Nt,m,i,ℓ =

K∑
k=1

G(k)t ρ
(k)
t,m

{
I[d(k)t−1,i = ℓ] if di is an input from t− 1

q(s
(k)
t,tmm = ℓ) if di is s(k)t,tmm

. (55)

The parameters are then updated using these statistics. Dirichlet parameters for
rMM mixing weights αt,m,rmm (from Nt,m), NIW parameters for continuous features
(mt,m,rmm, κt,m,rmm, Ut,m,rmm, nt,m,rmm) (from Nt,m, S

f
1,t,m, S

f
2,t,m), and Dirichlet parameters

at,i,m,ℓ for all discrete features (from Nt,m,i,ℓ) are updated via natural gradient blending:

αt,m,rmm = (1− ρt)αt–1,m,rmm + ρt
(
α0,m,rmm +Nt,m

)
,

(NatParamsNIW
t,m) ← (1− ρt) (NatParamsNIW

t−1,m) + ρt η̂
NIW
t,m ,

at,i,m,ℓ = (1− ρt)at−1,i,m,ℓ + ρt
(
a0,i,m,ℓ +Nt,m,i,ℓ

)
.

(56)

Transition Mixture Model (tMM)

The Transition Mixture Model (tMM) describes the dynamics of slot states x(k)
t using a mixture of L

linear transitions. We approximate posteriors over transition assignments and mixing weights with
variational factors. Transition responsibilities for slot k using transition l are q(s(k)t,l,tmm = 1) = ξ

(k)
t,l ,

satisfying
∑L

l=1 ξ
(k)
t,l = 1. The mixing-weight distribution over the L transitions πtmm is q(πtmm) =

Dir(πtmm | α1,tmm, . . . , αL,tmm).

E-step Updates In the tMM E-step, for each slot k, the responsibilities ξ(k)t,l for each transition l are

updated based on how well that transition explains the observed change from x
(k)
t−1 to x

(k)
t :

ξ
(k)
t,l =

exp
(
E[log πl]

)
N
(
x
(k)
t ; Dl x

(k)
t−1 + bl, G(k)t–1 2I

)∑L
u=1 exp

(
E[log πu]

)
N
(
x
(k)
t ; Du x

(k)
t−1 + bu, G(k)t–1 2I

)
for l = 1, . . . , L. The term G(k)t–1 indicates if the slot was active at t− 1, and 2I is the process noise
covariance, assumed fixed or shared.

25

Algorithm 1 Mixture Model Expansion Algorithm

Input Output Hyperparameters / Settings

Y ∈ RN×d: Matrix whose ith row
(i = 1, . . . , N) is a d-dimensional
token (e.g., pixel).

θ∗
1:Kt+1

: Updated posterior NIW
parameters (Kt+1 components
where Kt+1 ≥ Kt)

τ : expansion threshold

θ∗
1:Kt

=
(m1:Kt , κ1:Kt ,U1:Kt , nKt):
Initial posterior NIW parameters
(Kt components).

E : maximum expansion steps

1: Initialise K ← Kt and NIW parameters θk =
(
mk, κk,Uk, nk

)
for k = 1 : K

2: for g = 1 to E do ▷ outer “expand-or-stop” loop
// E-step

3: for i = 1 to N do
4: ℓik ← Eq(θk)

[
log p(yi | θk)

]
, k = 1:K

5: rik ← exp(ℓik)
/∑K

j=1 exp(ℓij)

6: ℓmax
i ← maxk≤K ℓik, i = 1:N

7: if min
i

ℓmax
i > τ then

8: break ▷ all tokens well explained
9: i∗ ← argmini ℓ

max
i ▷ worst-explained token

10: K ← K + 1 ▷ instantiate new component
11: Hard-assign ri∗,k ← 0 (k < K), ri∗,K ← 1

12: Initialise component K: κK ← 1, νK ← d+ 2, µK ← yi∗ , ΨK ← Ψ0

// M-step (natural–gradient update)
13: for k = 1 to K do

14: η̂k ←
N∑
i=1

rik T (yi)︸ ︷︷ ︸
T̂k

+ ηk,0 ▷ compute target natural parameters

15: η
(t)
k ← (1− ρt) η

(t−1)
k + ρt η̂k ▷ natural-gradient update with rate ρt

16: Unpack η
(t)
k → (mk, κk, Uk, nk) ▷ recover NIW hyperparams

17: return θ∗
1:Kt+1

18:

M-step Updates The tMM does not use an explicit M-step. Instead, parameters are fixed to their
initial values identified during the expansion algorithm. In other words, once we identify a new
dynamics mode in the expansion algorithm, these parameters are added as a new component for the
tMM and remain fixed.

A.10 Bayesian model reduction

Growing new clusters ensures plasticity, but left unchecked it leads to over-parameterisation and
over-fitting. To enable generalization, every ∆TBMR = 500 frames we therefore run Bayesian model
reduction on the rMM, merging pairs of components whenever doing so increases the expected
evidence lower bound (ELBO) of the multinomial distributions over the next reward and SLDS
switch. The ELBO is computed with respect to generated data from the model through ancestral
sampling. Given two candidate components k1, k2 with posterior-sufficient statistics (ηk1 , ηk2), their
merged statistics are ηk1∪k2

= ηk1
+ ηk2

− ηprior
k2

, ensuring that prior mass is not double-counted.

Candidate pairs are proposed by a fast heuristic that (i) samples up to npair = 2000 used clusters,
(ii) computes their mutual expected log-likelihood under the other’s parameters, and (iii) retains the
highest-scoring pairs. Each proposal is accepted iff the merged ELBO (line 7) is not smaller than the
current ELBO (line 2). The procedure is spelled out in Algorithm 2.

26

Algorithm 2 Bayesian model reduction for the recurrent mixture model

Input Output Hyper-parameters

M: Posterior rMM Reduced modelM′ npair, nsamples
pruning interval ∆TBMR

1: D = {(ci,di)}
nsamples
i=0 ∼M ▷ Draw nsamples pairs of continuous and discrete data samples fromM

2: L(0) ← ELBO(M,D) ▷ Compute current ELBO
3: P = {(k1, k2)i}

npairs
i=0 ▷ Draw up to npair candidate pairs by heuristic overlap

4: for s = 1 to |P| do
5: (k1, k2)← Ps

6: Mtry←MERGE(M, k1, k2)
7: Ltry ← ELBO(Mtry,D)
8: if Ltry ≥ L(s−1) then
9: M←Mtry and L(s) ← Ltry ▷ Set current model to the candidate

10: else
11: L(s) ← L(s−1)

12: returnM

A.11 Planning with active inference

In active inference, policies π = a0:H are selected that minimize expected Free Energy [33]:

p(π) = σ(−G(π)),with

G(π) =

H∑
τ=0

−
(
Eq(Oτ |π)[log p(rτ |Oτ , π)︸ ︷︷ ︸

Utility

−DKL(q(αrmm|Oτ , π) ∥ q(αrmm))︸ ︷︷ ︸
Information gain (IG)

]
)
, (57)

with H the planning horizon and σ the softmax function. However, as the number of possible policies
grows exponentially with a larger planning horizon, enumerating all policies at every timestep
becomes infeasible. Therefore, we draw inspiration from model predictive control (MPC) solutions
such as Cross Entropy Method (CEM) and model predictive path integral (MPPI), which can be cast
as approximating an action posterior by moment matching [38].

In particular, we sample P policies of horizon H , and evaluate their expected Free Energy G. Instead
of sampling actions for each future timestep τ uniformly, we maintain a horizon-wise categorical
proposal p(aτ). After every planning step, we keep the top-k samples with minimum G, and
importance weight to get a new probability for each action p(aτ) at future timestep τ :

p(aτ) =
∑
k

exp(−G(a(k)τ))∑
j exp(−G(a

(j)
τ))

(58)

Instead of doing multiple cross-entropy iterations per planning step, we maintain a moving average
of p(aτ). At every instant, the first action of the current best policy is actually executed by the agent.
Our planning loop is hence composed of the following three stages (see Alg. 3).

Sampling policies. For each iteration we draw

P −R︸ ︷︷ ︸
CEM

+ R︸︷︷︸
random

policies

where the first set is sampled i.i.d. from the proposal p(aτ) and the remaining R are “exploratory”
sequences generated by a (smoothed) random walk. In addition, the previous best plan is always
injected in slot 0 and the A constant action sequences occupy slots 1:A to guarantee coverage.

Evaluating a policy. Each policy is rolled forward S times through the world-model to obtain
per-step predictions of reward r̂τ and information gain ÎGτ , averaged over samples. We calculate an

27

Algorithm 3 Planning algorithm

Require: current posterior state q, proposal p(aτ), best plan ã
// Sample P candidate policies

1: Acem←Cat(p(aτ))
⊗(P−R)

2: Arand←RANDOM(R)
3: A← [ã, const0:A−1, Acem, Arand]

// Evaluate
4: for all a(p) ∈ A do
5: (r̂0:H−1, ÎG0:H−1)← Rollout(q,a(p))

6: G(p) ←
∑

τ γ
τ
discount(r̂τ + λIG ÎGτ)

// Refit proposal
7: K← top-K indices of −G(p)

8: for τ = 0 to H − 1 do
9: p̂(aτ)←softmax

(
temperature−1 hist{a(p)

τ }p∈K
)

10: p(aτ)← αsmooth p̂(aτ) + (1− αsmooth) p(aτ)

11: return first action of best plan, updated p(aτ), best plan ã

expected Free Energy G, where in addition, we weigh the information gain term with a scalar λIG to
trade off exploration and exploitation, as well as apply temporal discounting:

G =
1

S

S−1∑
s=0

H−1∑
τ=0

γτdiscount

(
r̂sτ + λIG ÎG

s

τ

)
, γdiscount ∈ [0, 1), λIG = info_gain weight.

Proposal update. Let K be the indices of the top-K = ⌊topk_ratio · P ⌋ policies by (negative)
expected Free Energy. For every horizon step τ we form the empirical action histogram of {ak,τ}k∈K,
convert it to probabilities with a tempered softmax (temperature) and perform an exponential-
moving-average update

p(aτ)
new = αsmooth p(aτ) + (1− αsmooth) p(aτ)

old, αsmooth = alpha.

B Hyperparameters

We list the hyperparameters used for main AXIOM results shown in Figure 3 in Table 3. For the
fixed_distance ablations, we fixed rmin = 1.25 for the games Explode, Bounce, Impact, Hunt,
Gold, Fruits, and fixed rmin = 1.25 for the games Jump, Drive, Cross, and Aviate.

C Computational resources, costs and scaling

AXIOM and baseline models were trained and evaluated on A100 40G GPUs. All models use a
single A100 GPU per environment. AXIOM and BBF train a single environment to 10k steps in
about 30min, whereas DreamerV3 trains in 2.5h. The corresponding per-step breakdown of average
inference and planning times can be seen in Table 2.

C.1 Planning and inference time

For AXIOM, each time step during training can be broken down into planning and model inference.
To quantify the planning time scaling we perform ablations over the number of planning policies (P).
Since model inference correlates with the number of mixture model components, we evaluate the
scaling using the environments Explode (few objects) and Cross (many objects). Figure 5 shows that
the planning time scales linearly with the number of policies rolled out (left panel), and how model
inference time scales with the number of mixture model components (right panel).

D Gameworld 10k Environments

In this section we provide an informal description of the proposed arcade-style environments, inspired
by the Arcade learning environment [25]. To this end, our environments have an observation space

28

Table 3: Hyperparameters of the AXIOM agent trained to play all 10 games of Gameworld as reported
in the main text (see Figure 3).

Inference Hyperparameters

Parameter Value

τSMM (expansion threshold of the sMM) 5.7
τiMM (expansion threshold of the sMM) −1× 102

τrMM (expansion threshold of the rMM) −1× 101

τtMM (expansion threshold of the tMM) −1× 10−5

E (maximum number of expansion steps) 10
∆TBMR (timesteps to BMR) 500
ζ (exponent of the damped zpresence likelihood) 0.01
rmin 0.075

Planning Hyperparameters

Parameter Value

H (planning depth) 32
P (number of rollouts) 512
S (number of samples per rollout) 3
λIG (information gain weight) 0.1
γdiscount (discount factor) 0.99
top-k ratio 0.1
random sample ratio 0.5
temperature 10.0
αsmooth 1.0

Generative Model Parameters

Structure
K (max sMM components) 32
V (max iMM components) 32
L (max tMM components) 500
M (max rMM components) 5000
λ (from θmoving) 0.99
β (from θmoving) 0.01
γu ∞
ξ 1.0
νu 0.05

Dirichlet/Gamma priors
γ0,R,G,B 0.1
α0,smm 1
α0,imm 1× 10−4

α0,tmm 0.1
α0,rmm 0.1

Normal-Inverse–Wishart (1 :V)
m0,1:V,type 0
κ0,1:V,type 1× 10−4

U0,1:V,type
1
4
I5

n0,1:V,type 11

Normal-Inverse–Wishart (1 :M)
m0,1:M,rmm 0
κ0,1:M,rmm 1× 10−4

U0,1:M,rmm 625 I7
n0,1:M,rmm 15

Component–wise Dirichlet priors (1 :M)
a0,1:M,type 1× 10−4

a0,1:M,interacting 1× 10−4

a0,1:M,o 1× 10−4

a0,1:M,tmm 1× 10−4

a0,1:M,action 1× 10−4

a0,1:M,reward 1.0

29

of shape 210× 160× 3, that corresponds to a RGB pixel arrays game screen. Agents interact via
a set of 2 to 5 discrete actions for movement or game-specific interactions. As is standard practice,
positive rewards (+1) are awarded for achieving objectives, while negative rewards (-1) are given for
failures. Here is a brief description of the games:

Aviate. This environment puts the player in control of a bird, challenging them to navigate through a
series of vertical pipes. The bird falls under gravity and can be made to jump by performing a "flap"
action. The player’s objective is to guide the bird through the narrow horizontal gaps between the
pipes without colliding with any part of the pipe structure or the top/bottom edges of the screen. Any
collision with a pipe, or going out of screen at the top or bottom results in a negative reward and ends
the game.

Bounce. This environment simulates a simplified version of the classic game Pong, where the player
controls a paddle to hit a ball against an AI-controlled opponent. The player has three discrete actions:
move their paddle up, move it down, or keep it stationary, influencing the ball’s vertical trajectory
upon contact. The objective is to score points by hitting the ball past the opponent’s paddle (reward
+1), while preventing the opponent from doing the same (reward -1). The game is episodic, resetting
once a point is scored by either side.

Cross. Inspired by the classic Atari game Freeway, this environment tasks the player, represented
as a yellow square, with crossing a multi-lane road without being hit by cars. The player has three
discrete actions: move up, move down, or stay in place, controlling vertical movement across eight
distinct lanes. Cars of varying colors and speeds continuously traverse these lanes horizontally,
wrapping around the screen. The objective is to reach the top of the screen for a positive reward;
however, colliding with any car resets the player to the bottom of the screen and incurs a negative
reward.

Driver. This environment simulates a lane-based driving game where the player controls a car from
a top-down perspective, navigating a multi-lane road. The player can choose from three discrete
actions: stay in the current position, move left, or move right, allowing for lane changes. The goal is
to drive as far as possible, avoiding collisions with opponent cars that appear and move down the
lanes at varying speeds. Colliding with another car results in a negative reward and ends the game.

Explode. In this game inspired by the arcade classic Kaboom!, the player controls a horizontal
bucket at the bottom of the screen, tasked with catching bombs dropped by a moving bomber. The
player can choose from three discrete actions: remain stationary, move left, or move right, allowing
for precise horizontal positioning to intercept falling projectiles. A bomber continuously traverses
the top of the screen, periodically releasing bombs that accelerate as they fall towards the bottom.
Successfully catching a bomb in the bucket yields a positive reward, whereas allowing a bomb to fall
off-screen results in a negative reward.

200 400
P (planning policies)

0.4

0.8

Pl
an

ni
ng

 ti
m

e
(s

)

K
0
2
4
6
8
10

0 1 2 3 5 6 8 9 10
K (sMM components)

0.012

0.018

In
fe

re
nc

e
tim

e
(s

) Cross
Explode

Figure 5: Computational costs. Scaling of planning time as a function of the number of policies
(left), and model inference time as a function of the number of sMM components (right). All times
measured on a single A100 GPU.

30

Fruits. This game casts the player as a character who must collect falling fruits while dodging
dangerous rocks. The player can perform one of three discrete actions: move left, move right, or stay
in place, controlling horizontal movement at the bottom of the screen. Fruits of various colors fall
from the top, granting a positive reward upon being caught in the player’s invisible basket. Conversely,
falling rocks, represented as dark grey rectangles, will end the game and incur a negative reward if
collected.

Gold. In this game, the player controls a character, represented by a yellow square, from a top-down
perspective, moving across a grassy field to collect gold coins and avoid dogs. The player can choose
from five discrete actions: stay put, move up, move right, move down, or move left, enabling agile
navigation across the screen. Gold coins are static collectibles that grant positive rewards upon
contact, while dogs move dynamically across the screen, serving as obstacles that end the game and
incur a negative reward if collided with.

Hunt. This game features a character navigating a multi-lane environment, akin to a grid, from a
top-down perspective. The player has four discrete actions available: move left, move right, move
up, or move down, allowing full two-dimensional movement within the game area. The screen
continuously presents a flow of items and obstacles moving horizontally across these lanes. The
player’s goal is to collect beneficial items to earn positive rewards while deftly maneuvering to avoid
contact with detrimental obstacles, which incur negative rewards, encouraging strategic pathfinding.

Impact. This environment simulates the classic arcade game Breakout, where the player controls a
horizontal paddle at the bottom of the screen to bounce a ball and destroy a wall of bricks. The player
has three discrete actions: move the paddle left, move it right, or keep it stationary. The objective is
to eliminate all the bricks by hitting them with the ball, earning a positive reward for each destroyed
brick. If the ball goes past the paddle, the player incurs a negative reward and the game resets. The
game ends when all bricks are destroyed.

Jump. In this side-scrolling endless runner game, the player controls a character who continuously
runs forward, encountering various obstacles. The player has two discrete actions: perform no action
or initiate a jump allowing the character to avoid different types of obstacles. Colliding with an
obstacle results in a negative reward and immediately resets the game.

E Additional results and ablations

E.1 Baseline performance on 100K

Extending the wall-clock budget to 100 K interaction steps sharpens the contrast between model-
based and model-free agents. On Hunt, DreamerV3 fails to make measurable progress over the entire
horizon, remaining near its random-play baseline, whereas BBF continues to improve and ultimately
attains a mean episodic return on par with the score our object-centric agent already reaches after only
10 K steps. In Gold both baselines do learn within 100 K steps, but their asymptotic performance still
plateaus below the level our agent achieves in the much shorter 10 K-step regime (see Figure 6).

010K 100K
Step

0.000

0.025

Av
er

ag
e

Re
wa

rd
 (1

K) Gold

010K 100K
Step

0.000

0.040
Hunt

BBF Dreamer V3 AXIOM

Figure 6: 100K performance on Gold & Hunt.

31

0 10000

-0.010

0.000

Av
er

ag
e

Re
wa

rd
 (1

K) Aviate

0 10000
-0.010

0.000

Bounce

0 10000
-0.020

0.000

Cross

0 10000

-0.006

0.000
Drive

0 10000

0.000

0.020

Explode

0 10000
Step

0.000

0.020

Av
er

ag
e

Re
wa

rd
 (1

K) Fruits

0 10000
Step

0.000

0.025

Gold

0 10000
Step

0.000

0.025

Hunt

0 10000
Step

0.000

0.040
Impact

0 10000
Step

-0.010

0.000
Jump

AXIOM AXIOM (no IG) AXIOM (no BMR)

Figure 7: Performance of AXIOM ablations. Average reward over the final 1,000 frames across 10
Gameworld 10K environments for three AXIOM variants: the full AXIOM model, a version without
Bayesian Model Reduction (AXIOM (no BMR)), and a version excluding information gain during
planning (AXIOM (no IG)).

E.2 Ablations

No information gain. When disabling the information gain, we obtain the purple curves in Figure 7.
In general, at first glance there appears to be little impact of the information gain on most games.
However, this is to be expected, as in Figure 4c we showed that e.g. for Explode, the information gain
is only driving performance for the first few hundred steps, after which expected utility takes over. In
terms of cumulative rewards, information gain is actually hurting performance on most games where
interactions between player and object result in a negative reward. This is because these interaction
events will be predicted as information-rich in the beginning, encouraging the agent to experience
these multiple times. This is especially apparent in the Cross game, where the no-IG-ablated agent
immediately decides not to attempt crossing the road at all after the first few collisions. Figure 8
visualizes the created rMM clusters, which illustrates how no information gain kills exploration in
Cross. We hence believe that information gain will play a more important role in hard exploration
tasks, which is an interesting direction for future research.

No Bayesian Model Reduction. The orange curves in Figure 7 show the impact of disabling the
Bayesian Model Reduction (BMR). BMR clearly has a crucial impact on both Gold and Hunt, which
are the games where the player can move freely around the 2D area. In this case, BMR is able to
generalize the dynamics and object interactions spatially by merging clusters together. The exception
to this is once again Cross, where disabling BMR actually yields the best performing agent. This is
again explained by the interplay with information gain. As BMR will merge similar clusters together,
moving up without colliding will be assigned to a single, often visited cluster. This will render this
cluster less informative from an information gain perspective, and the agent will be more attracted to
collide with the different cars first. However, when disabling BMR, reaching each spatial location
will get its own cluster, and the agent will be attracted to visit less frequently observed locations,
like the top of the screen. This can also be seen qualitatively if we plot the resulting rMM clusters
in Figure 8c. This begs the question on when to best schedule BMR during the course of learning.
Clearly, BMR is crucial to generalize observed events to novel situations, but when done too early in
learning, it can be detrimental for learning. Further investigating this interplay remains a topic for
future work.

Planning rollouts and samples. As we sample rollouts at each timestep during the planning phase,
there is a clear tradeoff between the number of policies and rollout samples to collect in terms
of computation time spent (see Figure 5) and the quality of the found plan. We performed a grid
search, varying the number of rollouts [64, 128, 256, 512] and number of samples per rollout [1, 3, 5],
evaluating 3 seeds each. The results, shown in Figure 9 shows there are no significant performance
differences, but more rollouts and drawing more than one sample seem to perform slightly better on

32

(a) AXIOM (b) AXIOM (no IG) (c) AXIOM (no BMR)

Figure 8: Visualizations of the rMM clusters on Cross for information gain and BMR ablations.
Each Gaussian cluster depicts a particular dynamics for a particular object type, colored by the object
color, and the edge color of a nearby “interacting” object. (a) AXIOM has various small clusters
for the player object (yellow) interacting with the colored cars in the various lanes, and elongated
clusters that model the player dynamics of moving up or down. (b) Without information gain, the
player collides with the bottom most cars, and then stops exploring because of the negative expected
utility. (c) Without BMR, all player positions get small clusters assigned, which in this case helps the
player to cross, as visiting these locations is now rendered information gaining.

average. Therefore for our main evaluations we used 512 policies and 3 samples per policy, but the
results in Figure 5 Figure 9 suggest that when compute time is limited, scaling the number of policies
down to 128 or 64 is a viable way to increase efficiency without sacrificing performance.

E.3 Perturbations

Perturbations. One advantage of the Gameworld 10k benchmark is its ability to apply homoge-
neous perturbations across environments, allowing us to quantify how robust different models are to
changes in visual features. In our current experiments, we introduce two types of perturbations: a
color perturbation, which alters the colors of all sprites and the background (see Figure 10b), and a
shape perturbation, which transforms primitives from squares into circles and triangles (see Figure
10c).

To assess model robustness, we apply each perturbation halfway through training (at 5,000 steps) and
plot the average reward for Axiom, Dreamer, and BBF across each game in Figure 11. Under the
shape perturbation, Axiom demonstrates resilience across games. We attribute this to the identity
model (iMM), which successfully maps the new shapes onto existing identities despite their altered
appearance. Under the color perturbation, however, Axiom’s performance often drops - suggesting
the identity model initially treats the perturbed sprites as new objects - but then rapidly recovers as it
reassigns those new identities to the previously learned dynamics.

Our results also show that BBF and Dreamer are robust to shape changes. For the color perturbation,
Dreamer - like Axiom - sometimes experiences a temporary performance decline (for example,
in Explode) but then recovers. BBF, by contrast, appears unaffected by either perturbation. We
hypothesize that this resilience stems from applying the perturbation early in training - before BBF
has converged - so that altering visual features has minimal impact on its learning dynamics.

Remapped slot identity perturbations In this perturbation, shown by the purple line in Figure 11,
we performed a special type of perturbation to showcase the ‘white-box’, interpretable nature of
AXIOM’s world model. For this experiment, we performed a standard ‘color perturbation’ as
described above, but after doing so, we encode knowledge about the unreliability of object color
into AXIOM’s world model. Specifically, because the latent object features learned by AXIOM
are directly interpretable as the colors of the objects in the frame, we can remove the influence of
the latent dimensions corresponding to color from the inference step that extracts object identity
(namely, the inference step of the iMM), and instead only use shape information to perform object

33

0 10000

-0.015

0.000
Av

er
ag

e
Re

wa
rd

 (1
K) Aviate

0 10000
-0.010

0.000

Bounce

0 10000

-0.015

0.000
Cross

0 10000

-0.008

0.000
Drive

0 10000

0.000

0.025
Explode

0 10000
Step

0.000

0.020

Av
er

ag
e

Re
wa

rd
 (1

K) Fruits

0 10000
Step

0.000

0.020

Gold

0 10000
Step

0.000

0.020

Hunt

0 10000
Step

0.000

0.040

Impact

0 10000
Step

-0.008

0.000
Jump

AXIOM (64 x 1) AXIOM (128 x 1) AXIOM (256 x 1) AXIOM (512 x 1)

(a)

0 10000

-0.015

0.000

Av
er

ag
e

Re
wa

rd
 (1

K) Aviate

0 10000
-0.015

0.000

Bounce

0 10000

-0.020

0.000

Cross

0 10000

-0.006

0.000
Drive

0 10000

0.000

0.025

Explode

0 10000
Step

0.000

0.025

Av
er

ag
e

Re
wa

rd
 (1

K) Fruits

0 10000
Step

0.000

0.020

Gold

0 10000
Step

0.000

0.025

Hunt

0 10000
Step

0.000

0.040
Impact

0 10000
Step

-0.008

0.000
Jump

AXIOM (64 x 3) AXIOM (128 x 3) AXIOM (256 x 3) AXIOM (512 x 3)

(b)

0 10000

-0.015

0.000

Av
er

ag
e

Re
wa

rd
 (1

K) Aviate

0 10000
-0.010

0.000

0.010
Bounce

0 10000

-0.015

0.000
Cross

0 10000

-0.008

0.000
Drive

0 10000

0.000

0.030
Explode

0 10000
Step

0.000

0.020

Av
er

ag
e

Re
wa

rd
 (1

K) Fruits

0 10000
Step

0.000

0.025

Gold

0 10000
Step

0.000

0.025

Hunt

0 10000
Step

0.000

0.040
Impact

0 10000
Step

-0.008

0.000
Jump

AXIOM (64 x 5) AXIOM (128 x 5) AXIOM (256 x 5) AXIOM (512 x 5)

(c)

Figure 9: Ablation on the amount of sampled policies. The label indicates the number of policies
× number of samples for that policy (a) 1 Sample (b) 3 Samples (c) 5 Samples

34

(a) No perturbation.

(b) Color perturbation (sprites and background recolored).

(c) Shape perturbation (primitives replaced with circles and triangles).

Figure 10: Perturbations. Sample frames from each of the ten environments under (a) no perturbation,
(b) a color perturbation, and (c) a shape perturbation.

type inference. In practice, what this means is that slots that changed colors don’t rapidly get assigned
new identities, meaning the same identity-conditioned dynamics (clusters of the rMM) can be used
to predict and explain the behavior of the same objects, despite their color having changed. This
explains the absence of an effect of perturbation for some games when using this ‘color remapping’
trick at the time of perturbation, especially the ones where object identity can easily be inferred from
shape, such as Explode. Figure 12 shows the iMM identity slots, with and without the ‘remapping
trick’. Impact on performance for all games is shown in 11d). For games where certain objects have
the same shape (e.g., rewards and obstacles in Hunt, or fruits and rocks in Fruits), this remapping trick
has no effect because shape information alone is not enough to infer object type and thus condition the
dynamics on object types. In such cases, one might use more features to infer the object identity, such
as position or dynamics, but extending our model to incorporate these to further improve robustness
is left as future work.

35

Figure 11: Impact of perturbations on average reward. Smoothed 1k-step average rewards for
Axiom, BBF, and Dreamer across ten games under (a) no perturbation, (b) color perturbation, (c)
shape perturbation, and (d) Axiom’s color perturbation with and without remapping.

36

(a) no perturbation (b) color perturbation (c) color perturbation with remap

Figure 12: iMM identity slots on Explode. (a) On Explode, the iMM constructs a slot for the player,
bomber and bomb respectively. (b) When color is perturbed, novel slots are created for the blue
(player) and the pink bomb, and the yellow enemy is mapped onto the old player slot. (c) However,
with color remapping, the blue player, yellow bomber and pink bomb are correctly remapped to the
old player and bomber slots based on their shape.

F Related works

Object-Centric World Models. The first breakthroughs in deep reinforcement learning, that leveraged
deep Q networks to play Atari games [39], were not model-based, and required training on millions
of images to reach human-level performance. To this end, recent works have leveraged model-based
reinforcement learning, which learns world models and hence generalizes using fewer environment
interactions [40, 41]. A notable example is the Dreamer set of models, which relies on a mix of
recurrent continuous and discrete state spaces to model the dynamics of the environment [36, 42, 43].
This class of world models simulates aspects of human cognition, such as intuitive understanding of
physics and object tracking [5, 7]. To this end, it is possible to add prior knowledge to this class of
architectures, in a way that specific structures of the world are learned faster and better. For example,
modeling interactions at the object level has shown promising performance in improving sample
efficiency, generalization, and robustness across many tasks [9–12].

In recent years, the field of object segmentation has gained momentum thanks to the introduction of
models like IODINE [44] and Slot Attention [45], which leverages the strengths and efficiency of
self-attention to enforce competition between slot latents in explaining pixels in image data. The form
of self-attention used in slot attention is closely-related to the E- and M-steps used to fit Gaussian
mixture models [46, 47], which inspired our, where AXIOM segments object from images using
inference and learning of the Slot Mixture Model. Examples of improvements over this seminal work
include Latent Slot Diffusion, which improves upon the original work using diffusion models and
SlotSSM [48] which uses object-factorization not only as an inductive bias for image segmentation
but also for video prediction. Recent works that have also proposed object-centric, model-based
approaches are FOCUS, that confirms how such approaches help towards generalization in the
low data regime for robot manipulation [49], and OC-STORM and SSWM, that use object-centric
information to predict environment dynamics and rewards [14, 50]. To conclude, SPARTAN proposes
the use of a large transformer architecture that identifies sparse local causal models that accurately
predict future object states [13]. Unlike OC-STORM, which uses pre-extracted object features using
a pre-trained vision foundational model and segmentation masks, AXIOM learns to identify segment
objects online without object-level supervision (albeit so far we have only tested AXIOM on simple
objects like monochromatic polygons). AXIOM also grows and prunes its object-centric state-space
online, but like OC-STORM plans using trajectories generated from its world model.

Bayesian Inference. Inference, learning, and planning in our model are derived from the active
inference framework, that allows us to integrate Bayesian principles with reinforcement learning,
balancing reward maximization with information gain by minimizing expected free energy [15, 16].
To learn the structure of the environment, we drawn inspiration from fast structure learning methods
[24], that first add mixture components to the model [51] and then prunes them using Bayesian model
reduction [21, 22, 24]. Our approach to temporal mixture modeling shares conceptual similarities
with recent work on structure-learning Gaussian mixture models that adaptively determine the number
of components for perception and transition modeling in reinforcement learning contexts [52]. An
important distinction between AXIOM’s model and the original fast structure learning approach [23],
is that AXIOM uses more structured priors (in the form of the object-centric factorization of the
sMM and the piecewise linear tMM), and uses continuous mixture model likelihoods, rather than
purely discrete ones. The transition mixture model we use is a type of truncated infinite switching
linear dynamical system (SLDS)[29, 53, 54]. In particular, we rely on a recent formulation called
the recurrent SLDS [19], that introduces dependence of the switch state on the continuous state, to
address two key limitations of the standard SLDS: state-independent transitions and context-blind
dynamics. Our innovation is in how we handle the recurrent connection of the rSLDS: we do this

37

using a generative, as opposed to discriminative, model for the switching states. This allows for
more flexible conditioning of the switch state on various information sources (both continuous and
discrete), as well as a switch dependence that is quadratic in the continuous features; this overcomes
the intrinsic linear separability assumptions made by using a classic softmax likelihood over the
switch state, as used in the original rSLDS formulation [19, 55].

38

	Introduction
	Methods
	Growing and pruning the model
	Planning

	Results
	Conclusion
	Full Model Details
	Generative model
	Slot Mixture Model (sMM)
	Moving and presence latent variables
	Interaction variable
	Unused counter
	Identity mixture model
	Transition Mixture Model
	Recurrent Mixture Model
	Variational inference and learning
	Bayesian model reduction
	Planning with active inference

	Hyperparameters
	Computational resources, costs and scaling
	Planning and inference time

	Gameworld 10k Environments
	Additional results and ablations
	Baseline performance on 100K
	Ablations
	Perturbations

	Related works

