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Deep research agents, powered by Large Language Models (LLMs), are rapidly advancing; yet, their
performance often plateaus when generating complex, long-form research reports using generic test-time
scaling algorithms. Drawing inspiration from the iterative nature of human research, which involves
cycles of searching, reasoning, and revision, we propose the Test-Time Diffusion Deep Researcher
(TTD-DR). This novel framework conceptualizes research report generation as a diffusion process.
TTD-DR initiates this process with a preliminary draft, an updatable skeleton that serves as an evolving
foundation to guide the research direction. The draft is then iteratively refined through a "denoising"
process, which is dynamically informed by a retrieval mechanism that incorporates external information
at each step. The core process is further enhanced by a self-evolutionary algorithm applied to each
component of the agentic workflow, ensuring the generation of high-quality context for the diffusion
process. This draft-centric design makes the report writing process more timely and coherent while
reducing information loss during the iterative search process. We demonstrate that our TTD-DR achieves
state-of-the-art results on a wide array of benchmarks that require intensive search and multi-hop
reasoning, significantly outperforming existing deep research agents.

1. Introduction

Enabled by the recent advanced LLMs, building Deep Research (DR) agents has rapidly gained traction
within both research and industry communities. These agents demonstrate remarkable capabilities,
including the generation of novel ideas (Hu et al., 2024; Si et al., 2024), effective information
gathering through search tools (Jin et al., 2025; Li et al., 2025a), and the execution of analyses or
experiments prior to drafting research reports or papers (Yamada et al., 2025; Zheng et al., 2024).

Figure 1 | Our method is inspired by the nat-
ural human writing process, which includes
planning, drafting, and multiple revisions to
the draft.

Existing DR agents primarily leverage test-time scal-
ing approaches such as Chain-of-Thought (CoT) (Wei
et al., 2022), best-of-n sampling(Ichihara et al.,
2025), Monte Carlo Tree Search (Świechowski et al.,
2022), debate mechanisms (Liang et al., 2023), and
self-refinement loops (Madaan et al., 2023). De-
spite the impressive progress, most popular public
DR agents (Alzubi et al., 2025; Researcher, 2025;
Roucher et al., 2025) compile these test-time algo-
rithms and various tools without a deliberate design
driven by human cognitive behavior in writing, and
commonly lack a principled draft, search, and feed-
back mechanism that empowers human researchers.
This indicates a fundamental limitation in current
DR agent work and highlights the need for a more
cohesive, purpose-built framework for DR agents that
imitates or surpasses human research capabilities.
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Deep Researcher with Test-Time Diffusion

Figure 2 | Illustration of our Test-Time Diffusion Deep Researcher (TTD-DR) framework, designed
to mimic the iterative nature of human research through a draft. A user query initiates both a
preliminary draft and a research plan. This evolving draft, along with the research plan, dynamically
informs the generation of search questions and subsequent information retrieval to be timely and
coherent, while reducing information loss. The retrieved information is then leveraged to denoise
and refine the initial draft in a continuous feedback loop. The entire workflow is further optimized
by a self-evolutionary algorithm to enhance the quality of the research plan, generated questions,
answers, and the final report, demonstrating the synergistic power of diffusion and self-evolution in
achieving superior research outcomes.

Previous cognitive studies indicate that when human write about complex topics, they do not
follow a linear progression, writing from the first word to the last. As Fig. 1 (Chitwood, 2022)
illustrates, people typically first establish a high-level plan, then draft the research report based on
the plan, and subsequently engage in multiple revision cycles (Flower and Hayes, 1981). Crucially,
during the revision phase, writers often seek out literature or search tools to gather supplementary
information that refines and strengthens their arguments (Catalano, 2013).

We observe a striking resemblance between this human writing pattern and the sampling process
in a diffusion model augmented by retrieval (Zhang et al., 2023). In this analogy, a trained diffusion
model initially generates a noisy draft, and the denoising module, aided by retrieval tools, revises this
draft into higher-quality (or higher-resolution) outputs. Inspired by this diffusion sampling paradigm
(Shen et al., 2025; Yang et al., 2022), we propose Test-Time Diffusion (TTD) for deep research
agents. Our framework meticulously models the entire research report generation as an iterative
diffusion process, mirroring human cognitive patterns. As vanilla diffusion sampling can be ineffective
for generating high quality outputs for complex research tasks, we specifically design our TTD Deep
Researcher consisting of two mechanisms as illustrated by Fig. 2 and detailed below.

(a) Denoising with Retrieval (Zhang et al., 2023): An initial research report, drafted primarily
from the LLM’s internal knowledge, undergoes iterative refinement. The denoised draft, along
with the research plan (Stage 1), guide the downstream research direction. Each denoising step is
augmented by targeted retrieval of external information (Stage 2), significantly enhancing accuracy
and comprehensiveness. (b) Self-Evolution (Lee et al., 2025; Novikov et al., 2025): Beyond the report-
level diffusion through a draft, each individual component within the agentic workflow (e.g., plan,
question, answer and report generation) undergoes its own optimization process. This encourages
the exploration of diverse knowledge, mitigates the information loss for each unit agent throughout
the long agentic trajectories, and thus provides more conducive context for report diffusion. The
intricate interplay and synergistic combination of these two algorithms are crucial for achieving high
quality research outcomes.

Prior work primarily centers on scientific paper writing agents (Chen et al., 2025; Gottweis et al.,
2025; Lu et al., 2024; Tang et al., 2025; Yamada et al., 2025), with a specific emphasis on generating
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(a) Huggingface Open DR (b) GPT Researcher

(c) Open Deep Research (d) Test-Time Diffusion DR (ours)

Figure 3 | A comparison of our method with other open-source deep researchers. (a) Huggingface
Open DR (Roucher et al., 2025) utilizes a lightweight planner to determine subsequent actions,
such as calling search or browse tools, and repeats these actions until an answer is found. (b) GPT
Researcher (Researcher, 2025) also employs a lightweight planner to generate and execute multiple
search queries in parallel before a generator synthesizes the retrieved documents into a report. (c)
Open Deep Research (Research, 2025) uses a planner to outline the final report’s structure and then
conducts iterative research for each section individually before combining them. (d) Our TTD-DR
introduces a draft denoising mechanism. Unlike Open Deep Research, TTD-DR avoids separated
searches for each section to maintain global context and uses a RAG-based answer generator to
process retrieved documents before saving them for the final report generation.

academic publications. More recently, the scope has broadened to general research agents (Li et al.,
2025b; Zheng et al., 2025) designed for broader information-seeking and reasoning use cases. In
contrast to these existing efforts, our work introduce a deep research agent engineered for significantly
broader applications. Specifically, we develop a research companion capable of generating helpful
and comprehensive reports for complex research questions across diverse industry domains, including
finance, biomedical, recreation, and technology (Han et al., 2024), similar to deep research products
offered by OpenAI (2025), Perplexity (2025) and Grok (2025). Our framework targets search and
reasoning-intensive user queries that current state-of-the-art LLMs cannot fully address using their
internal knowledge or with conventional search tools. We summarize our key contributions below:
• We propose a Test-Time Diffusion Deep Researcher (TTD-DR), a novel test-time diffusion
framework that enables the iterative drafting and revision of research reports, leading to more
timely and coherent information integration while reducing information loss throughout the
research process.

• We stress test our TTD-DR using only search tools that are easily accessible to most agentic
systems, eliminating the need to integrate additional proprietary tools (e.g., multimodal, web
browsing).

• We establish a rigorous evaluation methodology for deep research agents, employing compre-
hensive metrics and expert evaluators. Our experiments demonstrate that TTD-DR substantially
outperforms various leading research agents for tasks either require writing a long and compre-
hensive research report or need multi-hop search and reasoning to identify concise answers.

• We conduct a comprehensive ablation study and in-depth analysis to elucidate the individual
contributions of TTD-DR’s components and demonstrate its effectiveness in surpassing leading
DR agents.
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2. Test-Time Diffusion Deep Researcher (TTD-DR)

Our approach, the Test-Time Diffusion Deep Researcher (TTD-DR), is inspired by the iterative nature
of human research, which involves cycles of planning, drafting, searching for information, and revision.
We conceptualize the generation of a complex research report as a diffusion process where an initial,
noisy draft is progressively refined into a high-quality final output. This is achieved through two core
mechanisms operating in synergy: (1) Report-Level Refinement via Denoising with Retrieval, where
the entire report draft evolves, and (2) Component-wise Optimization via Self-Evolution, which
enhances the quality of each step in the research workflow.

The TTD-DR framework is designed to address the limitations of existing DR agents. As illustrated
in Figure 3, many public agents like Huggingface Open DR (Roucher et al., 2025), GPT (Researcher,
2025) Researcher , and Open Deep Research (Alzubi et al., 2025) employ a linear or parallelized
process of planning, searching, and generation. This can lead to a loss of global context and miss
critical dependencies during the research process. Our draft-centric, iterative approach maintains
coherence and provides a dynamic guide for the research direction, mitigating information loss.
Proprietary DRs from OpenAI (2025), Perplexity (2025) and Grok (2025) remain largely black box.

2.1. Backbone Deep Research Agent

Fig. 4 illustrates our backbone deep research agent consisting of 3 major stages with several key
components for an agentic framework: unit LLM agent, workflows and agent states. We explain them
in details below.

Figure 4 | Our backbone DR agent operates in three stages, as illustrated above. Stage 1 generates a
detailed research plan that outlines the final report’s structure and guides the information search.
Stage 2 iteratively generates search questions (2a) and then uses a RAG-like system to synthesize
precise answers from retrieved documents (2b), rather than saving raw data. Finally, Stage 3
synthesizes all gathered information to produce the final report. Each stage can be individually
optimized using a self-evolutionary algorithm detailed in Sec. 2.2.

Stage 1: Research Plan Generation is a dedicated unit LLM agent which generates a structured
research plan upon receiving a user query. This plan outlines a list of key areas needed for the final
report, serving as an initial scaffold to guide the subsequent information-gathering process. Once a
research plan is generated, it will be saved in agent stages and then transferred to its sub-agent.

Stage 2: Iterative Search and Synthesis is a loop workflow nested in its parent sequential workflow.
It contains of two sub-agents: Search Question Generation (Stage 2a) formulates a search query
based on the research plan, the user query, and the context from previous search iterations (i.e.,
past questions and answers). Answer Searching (Stage 2b) searches the available sources (such
as Google search) to find relevant documents and returns a summarized answer. This loop (Stage
2a → Stage 2b) continues until the research plan is adequately covered or a maximum number of
iterations is reached.

Stage 3: Final Report Generation is a unit LLM agent in its parent sequential workflow (Stage
2 → Stage 3), which generates a comprehensive and coherent final report by synthesizing all the
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structured information gathered – the plan from Stage 1 and the series of question-answer pairs from
Stage 2.

2.2. Component-wise Self-Evolution

The backbone DR agent introduced above determines the overall research directions (Stage 1),
and supplies the context and information (Stage 2) for the final report writing (Stage 3). We
enhance the performance of each stage’s agents in order to find and preserve the high quality context.
To accomplish this goal, we leverage a self-evolutionary algorithm to improve each stage’s agents.
Figure 5 illustrates our proposed algorithm inspired by recent self-evolution work (Lee et al., 2025;
Novikov et al., 2025). Here we use the search answer generation as an example, but this algorithm
can be applied to all stage agents such as plan generation, search question and even the final report
generation to improve their output quality. This algorithm is implemented in a parallel workflow with
the following sequential and loop workflows.

Figure 5 | Illustration of the component-wise Self-Evolution applied to Search Answer (Stage 2b in
Figure 4). The process starts with multiple variants of initial answers. Each variant then undergoes
a self-evolving episode where it first interacts with the environment to obtain a fitness score and
feedback. It is then revised based on the feedback. This process repeats until the maximum number
of iterations is reached. Finally, multiple revised variants from all episodes are merged to produce the
final answer.

1. Initial States. The leftmost blocks produce multiple diverse variants of an output (e.g., several
possible answers to a search query) conditioned on the output of previous stages. Each block
is implemented with a unit LLM Agent, allowing for the sampling of multiple answers using
varied parameters (e.g., temperature, top_k) to explore a larger search space. This ideally leads
to discovery of potentially more valuable information.

2. Environmental Feedback. Each answer variant is assessed by an LLM-as-a-judge, utilizing
auto-raters for metrics such as Helpfulness and Comprehensiveness. These raters not only
provide fitness scores but also generate textual critiques that help improve the answer.

3. Revision Step. With the scores and feedback from the previous step, each variant undergoes a
revision step to adapt toward better fitness scores. The “Environmental Feedback” and “Revision”
steps repeat until a stopping criterion is met, forming a loop workflow.

4. Cross-over. Finally, multiple revised variants are merged into a single, high-quality output.
This merging process consolidates the best information from all evolutionary paths, producing
superior context for the main report generation process. The merging prompt can be found in
Appendix A.5.
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While self-evolution improves the quality of each component’s output, this information is not
incorporated into the final report until the search process is complete. This delay motivates our
second mechanism, Denoising with Retrieval, which integrates the agent’s findings in a more timely
and coherent manner to guide the research direction effectively.

2.3. Report-level Denoising with Retrieval

Inspired by the sampling process in diffusion models, where a noisy image is iteratively refined,
we prompt an LLM to generate an initial draft report based on the user’s query. This draft serves
as a “noisy” starting point, as illustrated in Figure 2. However, as noted in prior work, having a
model denoise its own output without external context can lead to slow convergence and sub-optimal
results (Shen et al., 2025; Yoon et al., 2025; Zhang et al., 2023). This is particularly true for complex
research queries where external information from search tools is essential for improving the draft.
This observation motivates us to design a retrieval-augmented denoising process connected directly
to our backbone DR workflow introduced in Sec. 2.1.

Specifically, as shown in Algorithm 1, we feed the current draft report into Stage 2a of the
backbone DR workflow to inform the generation of the next search query (Line 2). After obtaining
a synthesized answer in Stage 2b (Line 4), the new information is used to revise the report draft,
either by adding new details or by verifying existing information (Line 6). This process—feeding the
denoised report back to generate the next search query—is repeated in a continuous loop. The draft
is progressively "denoised" until the search process concludes, at which point a final agent writes the
final report based on all historical search answers and revisions (Stage 3).

Algorithm 1 Denoising with Retrieval
Input: 𝑞, M, P, R0, Q, A ⊲ query, all agents, plan, initial noisy draft, history of search questions and answers
1: for 𝑡 ∈ {1, . . . , 𝑁 } do ⊲ 𝑁: max number of revision steps
2: 𝑄𝑡 = MQ (𝑞, P, R𝑡−1, Q, A) ⊲ generate the next question to address gaps in R𝑡

3: 𝑄𝑡 → Q
4: 𝐴𝑡 = MA (𝑄𝑡 ) ⊲ retrieve external information to provide concrete delta for denoising
5: 𝐴𝑡 → A
6: R𝑡 = MR (𝑞, R𝑡−1, Q, A) ⊲ remove “noise” (imprecision, incompleteness) from the previous draft
7: if exit_loop then
8: break ⊲ if exit_loop is called, stop revision
9: end if
10: end for

In summary, this continuous feedback loop, where the evolving draft guides the search and the
search refines the draft, ensures the report remains coherent and the research stays on track. The
final, "denoised" report is generated after the search process concludes, based on the full history of
revisions and retrieved answers. The synergy between the component-wise self-evolution and the
report-level diffusion process is critical, allowing TTD-DR to achieve state-of-the-art results.

3. Experimental Setup

To rigorously evaluate our Test-Time Diffusion Deep Researcher (TTD-DR), we established a compre-
hensive experimental framework. This section details the evaluation metrics, the datasets used for
benchmarking, and the specifics of our implementation.

3.1. Evaluation Metrics

Our DR agent is inherently a complicated multi-agent system. Each stage of this system generates
long responses that the final agent combine coherently to produce a comprehensive report for users.
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Evaluating long-form LLM responses and complex agentic trajectories presents significant challenges
due to the vast number of facts to verify, intricate long-term logical dependencies, and the inherent
subjectivity of both LLM and human judges (Han et al., 2024; Li et al., 2024; Si et al., 2024). To
ensure quality and efficiency of our evaluators, we collect high-quality human judgment annotations,
calibrate LLM-as-a-judge calibrated with human preferences, and use the calibrated LLM-as-a-judge
as the final evaluator. We provide more details of evaluation metrics below.

• Helpfulness and Comprehensiveness are the two most commonly used metrics for evaluating
long-form LLM responses, particularly for research outputs (Coelho et al., 2025; Lim et al.,
2025; Schmidgall et al., 2025). We therefore adopt these two metrics and construct a new
side-by-side quality comparison framework based on them. Helpfulness is defined by four
criteria: 1) satisfying user intent, 2) ease of understanding (fluency and coherence), 3) accuracy,
and 4) appropriate language. Comprehensiveness is defined as the absence of missing key
information. Web search is permitted to better understand the query if needed. Guidelines
for determining the Helpfulness and Comprehensiveness levels of a report can be found in
Appendix A.1.

• Side-by-side quality comparison (also known as pairwise evaluation), a widely adopted
method for assessing long-form LLM responses (Han et al., 2024; Li et al., 2024; Liu et al.,
2024; Si et al., 2024). Raters were asked to express their preference between two reports (A
and B) considering both Helpfulness and Comprehensiveness, using the following scale: 1)
Much Better If A is both more helpful and more comprehensive than B; 2) Better If A is more
helpful than B and equally comprehensive as B, or if A is more comprehensive than B and
equally helpful as B; 3) Slightly Better If A is more helpful but less comprehensive than B;
Otherwise, select 4) About The Same If none of the above conditions are met. The same logic
applies when B is better than A. Our custom-built human annotation interface can be found in
Appendix A.2. Each pair is scored twice to compute agreement among human raters. We then
deploy an LLM-as-a-judge with the same human instructions to align with human ratings. We
discuss more calibration details in the next subsection.

• Correctness is used for our multi-hop short-form QA tasks (Phan et al., 2025). For such tasks,
we can simply prompt LLMs to compare the long-form answers produced by our agents with
the given ground-truths. We follow the standard evaluation prompt1 to first extract a single
answer from LLMs’ responses and then compare the extracted answers with ground-truths.

3.2. LLM-as-a-judge Calibration

Given the absence of ground truth for long-form responses in the LongForm Research and
DeepConsult benchmarks, a common practice for scalable evaluation is to leverage LLM-as-a-judge
(Coelho et al., 2025; Han et al., 2024; Lim et al., 2025; Schmidgall et al., 2025; Si et al., 2024).
However, most prior work in DR agents has not specifically calibrated LLM-as-a-judge’s quality with
human raters, raising questions regarding the reliability of auto-evaluators.

In contrast, we align our LLM-as-a-judge with human ratings by comparing 200 reports from our
DR agents with those from OpenAI Deep Research. We then utilize an evaluator prompt similar to
the one used in our human evaluation for side-by-side comparisons and then calculate the alignment
scores between the auto-raters and human raters. Table 3 in Appendix A.3 provides details and results
regarding our selection of Gemini-1.5-pro as our LLM-as-a-judge.

For the Correctness auto-rater used to assess the HLE and GAIA dataset, we do not calibrate
it with human ratings. This is because an official evaluation prompt exists for these tasks, and we
1https://scale.com/leaderboard/humanitys_last_exam_text_only
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(a) LongForm Research (b) HLE-search

Figure 6 | Query domain distribution of the evaluation sets: LongForm Research (left) and
HLE-search (right), both demonstrating diverse domain coverage.

maintain consistency with the research community by adhering to the original prompt. Furthermore,
all answers in these two benchmarks have a straightforward ground-truth answer, simplifying the
judgment of LLM response correctness. Therefore, we use Gemini-1.5-pro as the evaluator model
without further human calibration for these specific tasks.

3.3. Data

Our chosen benchmarks focus on two broad tasks. 1) Complex queries that require research agents
to produce a long-form comprehensive report (LongForm Research and DeepConsult) 2) multi-hop
queries that require extensive search and reasoning to answer (HLE and GAIA). Both categories fit into
our objective of building a general-purpose, real-world research companion, similar to OpenAI Deep
Research (OpenAI, 2025) and Perplexity Deep Research (Perplexity, 2025). Notably, both
tasks may require up to 20 search steps (hops) to fully address user queries, as show in Figure 7a and
12a in the appendix. Other datasets are outside the scope of this work if they do not require extensive
search (e.g., only need a few search steps), such as long-form RAG-QA (Han et al., 2024; Stelmakh
et al., 2022) and short-form multi-hop QA (Trivedi et al., 2022; Yang et al., 2018). This also applies
to datasets not targeting general-purpose research report generation, such as AI-Researcher (Tang
et al., 2025). Additionally, we focus on search tool usage, deferring the incorporating of other tools
such as browsing and coding to future work.

LongForm Research. To benchmark our DR agent system against other baselines, we first curate a set
of licensed real-world queries that demand search and complex reasoning. This dataset best represents
our target use cases where users require deep research to create helpful and comprehensive reports.
This evaluation set comprises 205 queries covering multiple industry domains, as demonstrated in
Figure. 6.

DeepConsult (Lim et al., 2025) is a collection of business and consulting-related prompts designed for
deep research. The query set spans a wide range of topics, including marketing, finance, technology
trend and business planning.

Humanity’s Last Exam (HLE) (Phan et al., 2025) is a benchmark of 2,500 extremely challenging
questions across dozens of subject areas, intended as the final closed-ended benchmark for broad
academic capabilities. We focus on the text-only subset, reserving the multi-modality for future
research. We name this dataset HLE-full.

8



Deep Researcher with Test-Time Diffusion

Table 1 | In this table, we show our TTD-DR’s performances against different baseline systems for
LongForm Research, DeepConsult, HLE and GAIA datasets. Win rate (%) are computed
based on OpenAI Deep Research. Correctness is computed as matching between system predicted
and reference answers. For Grok DeeperSearch on HLE-full, there is no public number provided,
and we are not able to scrape the full 2K queries due to research budget and Grok DeeperSearch’s
daily scrape limits.

LongForm Research DeepConsult HLE-Search HLE-Full GAIA

Win Rate Win Rate Correctness Correctness Correctness

OpenAI Deep Research - - 29.1 26.6 67.4
Perplexity Deep Research 21.8 32.0 14.5 21.1 54.5
Grok DeeperSearch 16.1 16.0 19.3 - 47.9
GPT-Researcher 18.3 9.4 2.0 4.1 37.7
Open Deep Search 2.6 2.2 3.0 0.4 20.9

TTD-DR (ours) 69.1 74.5 33.9 34.3 69.1

HLE-search. A significant number of queries in the HLE dataset do not require extensive searching to
resolve. To better benchmark our target use cases of search with reasoning, we identify queries from
HLE that demand the most search capabilities. Specifically, we prompt the Gemini-1.5-pro model
to categorize all queries into either [a] pure reasoning and [b] requiring search. The prompt used
can be found in the Appendix A.4. Finally, we randomly sample 200 queries from categories [b]. As
shown in Table 2, the LLM’s own performances on this curated subset is considerably lower compared
with the full set. Its question domain distribution can also be found in Figure 6. Therefore, we believe
HLE-search serves as a more suitable benchmark for our research focus.

GAIA (Mialon et al., 2023) is another public benchmark that evaluates AI on real-world questions,
encompassing questions across three levels of difficulty. Successful completion of these tasks requires
abilities such as reasoning, multi-modal fluency, web browsing, and tool-use proficiency. We use the
evaluation set to compare with other baselines.

3.4. Implementation Details

Agentic Framework. To implement our TTD-DR, we require a modular and easily extensible
agent system capable of leveraging leading LLMs, such as Gemini-2.5-pro, to seamlessly orchestrate
workflows, call tools, and execute tasks. Google Agent Development Kit (ADK)2 is a recently released
agent development platform that satisfies all these requirements. All components described in Sec. 2
can be easily implemented with ADK. We thus chose to build our deep researcher based on ADK.

We fix maximum denoising with retrieval steps to 20. Other hyper-parameters for Self-
Evolution algorithm can be found in Appendix A.6. We use grounding with Google search3
to implement the RAG system in Stage 2b.

3.5. Compared Systems

We compare our RA systems with the leading RA agents in the market: OpenAI Deep Research
(OpenAI, 2025), Perplexity Deep Research (Perplexity, 2025), Grok DeepSearch (Grok,
2025), Open Deep Search (Alzubi et al., 2025) and GPT-Researcher (Researcher, 2025).
For DR agents not supported by an API, we manually scraped and saved their raw outputs.
2https://google.github.io/adk-docs/
3https://cloud.google.com/vertex-ai/generative-ai/docs/grounding/overview
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(a) Pareto frontier for revision steps. (b) Pareto frontier for different DR designs.

Figure 7 | Pareto frontier between DR agent performances and latency for LongForm Research.
Left: the dots from left to right represent adding more search/revision steps up to 20, which shows
with similar latency, we achieve better or on-par compared with other DR agents. Right: the dots
from left to right represent 1) Gemini-2.5-pro w/ search tool, 2) Backbone DR Agent,
3) +Self-evolution and 4) +Diffusion with Retrieval, which shows our final algorithm
is most efficient in terms of test-time scaling (steepest slope).

For ablation study, we compare with baseline LLMs Gemini-2.5-pro and Gemini-2.5-flash, along
with their variants that include a simple search tool (simple RAG). For our DR Agent, we compare
the following. 1) Backbone DR Agent is our backbone DR Agent without any test-time scaling
algorithms. 2) +Self-evolution and 3) +Denoising with retrieval are two DR agent
variants enhanced by our proposed test-time scaling algorithms. Our DR agents use Gemini-2.5-pro
as the base model. All other baselines agents use their default LLMs (e.g. o3 for OpenAI DR).

4. Results and Analysis

4.1. Main Results

Table 1 presents the performance comparisons between our TTD-DR and other DR systems. Our
TTD-DR consistently achieves superior results across all benchmarks. Specifically, when compared
to OpenAI Deep Research, our method achieves 69.1% and 74.5% win rate in side-by-side
comparisons for the two long-form research report generation tasks. Additionally, it outperforms
OpenAI Deep Research by 4.8%, 7.7% and 1.7% on the three extensive research datasets with
short-form ground-truth answers. Figure 8 further illustrates the Helpfulness and Comprehensiveness
auto-rater scores for the two long-form research tasks, where our TTD-DR also surpasses OpenAI
Deep Research, particularly for the LongForm Research dataset.

Table 2 shows the ablation study for our DR agents. It’s evident that even the most advanced LLMs
with strong reasoning capabilities, such as Gemini-2.5-flash and Gemini-2.5-pro, perform
poorly without any search tools. For instance, on the curated HLE-Search dataset, Gemini-
2.5-pro, despite showing relatively good results on the full HLE set (20.9%), achieves only 8.6%
accuracy. The performance of both base LLMs significantly improves when augmented with search
tools, though their results remain considerably lower than OpenAI Deep Research.

Now, examining the three agentic DR agents, the basic DR agent shows significant improvement
over LLMs with search tool but still underperforms OpenAI Deep Research. With the addition
of the proposed Self-evolution algorithm, we observe that for LongForm Research and
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(a) LongForm Research (b) DeepConsult

Figure 8 | Single-sided evaluation metrics comparisons between OpenAI Deep Research and our
TTD-DR for LongForm Research (left) and DeepConsult (right) benchmarks. TTD-DR’s
reports tends to be more helpful and comprehensive than other DR agents.

Table 2 | In this Table, we show the ablation study of our DR Agent’s performances across all benchmark
datasets. All Win rate (%) are computed against OpenAI Deep Research. Correctness (%) uses LLM-
as-a-judge with the standard evaluation prompt.

LongForm Research DeepConsult HLE-Search HLE-Full GAIA

Win Rate Win Rate Correctness Correctness Correctness

OpenAI Deep Research - - 29.1 26.6 67.4

LLM w/o agentic workflow
Gemini-2.5-flash 21.0 16.7 2.8 11.6 31.5
Gemini-2.5-flash w/ search tool 27.8 17.6 14.6 14.6 57.6
Gemini-2.5-pro 31.0 17.6 8.6 20.9 57.0
Gemini-2.5-pro w/ search tool 35.0 19.6 20.0 21.6 61.8

Test-Time Diffusion Deep Researcher (ours)
Backbone DR Agent 39.4 24.5 26.8 28.6 61.8
+ Self-evolution 60.9 59.8 30.6 29.4 63.0
+ Diffusion with Retrieval 69.1 74.5 33.9 34.3 69.1

DeepConsult, our system outperforms OpenAI Deep Research with 60.9% and 59.8% win
rates, respectively. The Correctness scores on the two HLE datasets also show an improvement of
1.5% and 2.8% against OpenAI DR, respectively, although we still underperform on GAIA by 4.4%.
Finally, incorporating Diffusion with Retrieval leads to substantial gains over OpenAI
Deep Research across all benchmarks.

Furthermore, we plot the Pareto frontier of our systems to study the trade-off between latency
and performances. In Figure 7b, the x-axis represents the 𝑙𝑜𝑔10 of seconds. The left y-axis shows
our TTD-DR’s win rate over OpenAI DR on LongForm Research. The data points, from left to
right, represent Gemini-2.5-pro w/ search tool, DR-Agent-Base, +Self-Evolution
and +Diffusion with Retrieval with increasing latency. The convex shape, particularly the
upward trending slope of the last two points, indicates that our two proposed algorithms provide
more performance gains per unit increase in latency. This demonstrates that both denoising with
retrieval and self-evolution are efficient algorithms for test-time scaling.

4.2. Analysis

This section provides a deeper understanding of how our two proposed methods contribute to the
improvements in DR agents.

Improvement of self-evolution over backbone DR. Figure 9 shows the cumulative complexity
comparisons for search queries and answers on DeepConsult. Complexity is measured by key
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(a) Query complexity comparison. (b) Answer complexity comparison.

Figure 9 | Stage 2 generated search question (left) and answer (right) complexity by number of key
points extracted by LLM using Prompt A.7 and A.8 in the appendix. Self-evolution encourages both
search question and answer diversity, which enhance the richness of information available, and thus
explains the final quality improvements.

points extracted by an LLM (Gemini-2.5-pro). We observe that self-evolution significantly increases
the complexity of the search process, which enriches the information gathered and, consequently,
lead to better final report quality.

Our final diffusion algorithm allows for the revision and saving of intermediate reports, enabling
us to assess the step-by-step report quality, as illustrated by Figure 7a. As we increase computing
resources by adding more search and revision steps, we achieve increasingly significant gains against
OpenAI Deep Research. Results for HLE-Search can be found in Appendix A.11. We next aim
to understand the contributions of the denoising with retrieval algorithm to these improvements,
building upon the self-evolution algorithm.

Improvement of denoising with retrieval over self-evolution. Figure 10a displays the cumulative
search query novelty comparisons on DeepConsult. Novelty is measured by the percentage of
cumulative new points generated (extracted by Gemini-2.5-pro using Prompt A.9). We can observe
that denoising with retrieval increases query novelty by more than 12 percentage points throughout
the search and revision process by feeding the revised report to guide the exploration of new queries.
In Figure 10b, we present the report attribution in answers (computed using Gemini-2.5-pro with
Prompt A.10) during early search and revision steps. Notably, at Step 9, denoising w/ retrieval already
incorporates 51.2% of the final report information, and outperforms self-evolution (with 20 search
steps) by 4.2% in win ratio (last point in Figure 10c). These results indicate that denoising with
retrieval effectively leverage information in early stages, leading to timely preservation of knowledge
when agents are learning most efficiently, as shown in Figure 7a.

5. Related Work

We review related work that motivates our deep research agents.

Test-time compute scaling. Baek et al. (2024); Lu et al. (2024); Zheng et al. (2024) are earlier efforts
to build research assistant/scientist agents with search tools and iterative refinement algorithms
during test time. More recently, Gottweis et al. (2025) proposes an AI Co-scientist agent for biomed-
ical research integrating test-time algorithms such as debates mechanism to generate novel ideas,
tournaments to compare and rank research hypothesis and self-critique to refine research proposals.
Schmidgall et al. (2025) builds an end-to-end scientific paper writing agent with self-reflection at
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(a) Cumulative search query
novelty.

(b) Report information
attribution.

(c) Performance gap: denoising
v.s. self-evolution w/ 20 steps.

Figure 10 | Comparisons between denoising with retrieval and self-evolution algorithms. (a): per-
centage of cumulative novel points (Prompt A.9) in Stage 2 generated search queries, which shows
denoising with retrieval algorithm guides the generation of more unexplored search queries. (b):
cumulative information attribution of the final report in Stage 2 search answers (Prompt A.10), which
demonstrates that our final method incorporates information timely in early search stages. (c) shows
the performance gap between early steps of denoising v.s. self-evolution with full 20 search steps.
With only 9 steps, denoising w/ retrieval already incorporates 51.2% of the final report information,
and outperforms self-evolution with 20 steps by 4.2% per win ratio.

each stage of their agent workflow. Notably, they enable a co-pilot mode where a human can step
in and provide feedback, which is shown to improve overall paper quality. Yamada et al. (2025)
designs a machine learning research agent by incorporating a tree-search inference algorithm that
is able to write a full research paper accepted by ICLR workshop. Tang et al. (2025) proposes a
multi-agent system that is able to review literature, generate new ideas, invent new algorithms,
conduct experiments and draft a publication-ready paper. Similarly, DeerFlow (2025) leverages a
multi-agent system with planner, coordinator, researcher and reporter to produce comprehensive
responses to general user queries.

Amongst test-time algorithms, self-evolving (Lee et al., 2025; Novikov et al., 2025; Qiu et al.,
2025) emerges recently as a popular framework to design various agentic systems including DR.
Our self-evolution algorithm shares common spirit with this method, particularly in its capability
to conduct multiple self-critique and self-refinements. However, TTD-DR differs from self-evolving
in that 1) our framework is fundamentally driven by human cognitive behavior, and we draw the
commonality between retrieval augmented diffusion process and human writing process to develop
our test-time diffusion DR; 2) Self-evolution improves individual agents to provide high quality
contextual information to assist the main denoising algorithm. Both human cognitive behavior and
the interplay of self-evolution and denoising with retrieval are not explicitly modeled in prior work.

Agent Tuning. A few recent works explored improving deep research agent via training. Earlier work
focuses on building an agentic RAG system that is able to conduct deep search and reasoning. Guan
et al. (2024) proposes a multitask learning objective with both component-wise SFT data and model
feedback to jointly train each module in its agentic RAG system. Jin et al. (2025) converts search
actions and LLM final responses into a single sequence input, and train the RAG system end-to-end
with final response reward. More recently, Li et al. (2025b), Zheng et al. (2025), Shi et al. (2025),
and Kimi-Researcher (2025) leverage reinforcement learning to training a research assistant agent
that is able to leverage search and browsing tools to collect information and write reports. In our
work, we focus on test-time compute, and leave agent tuning for future work.

LLM diffusion models. Traditional LLM training paradigm leverages autoregressive objective to
train models and sample outputs. LLM Diffusion models attempt to improve the scalability of state-
of-the-art LLMs by breaking the assumption of sampling from first to the last tokens. LLM diffusion
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models are trained to first generate a complete "noisy" draft, and they iteratively denoise multiple
tokens into a full high quality draft (Gemini, 2025; Nie et al., 2025; Yang et al., 2022). Due to highly
parallelizable generation processing, this line of work has the potential to achieve higher efficiency
while preserving quality. Our work is inspired by LLM Diffusion models by introducing the denoising
mechanism during test-time report writing, but differ from them in that we do not train our agents;
instead we assume LLM agents are well crafted to perform denoising tasks.

6. Conclusions

The Deep Researcher with Test-Time Diffusion (TTD-DR) agent is a novel framework for generating
research reports, inspired by the iterative nature of human research. This agent addresses the
limitations of existing DR agents by conceptualizing report generation as a diffusion process. TTD-DR
initiates with a preliminary draft, an updatable skeleton that guides the research direction. This draft
is then refined iteratively through a “denoising”, dynamically informed by a retrieval mechanism
that incorporates external information at each step. The core process is further enhanced by a self-
evolutionary algorithm applied to each component of the agentic workflow, ensuring the generation
of high-quality context for the diffusion process.

The TTD-DR framework achieves state-of-the-art results across various benchmarks requiring
intensive search and multi-hop reasoning, significantly outperforming existing DR agents. It demon-
strates superior performance in generating comprehensive long-form research reports and identifying
concise answers for multi-hop search and reasoning tasks. The framework’s draft-centric design
guides the report writing process to be more timely and coherent while reducing information loss
during the iterative search process.

Limitations

While TTD-DR shows significant advancements, the current work primarily focuses on search tool
usage and does not incorporate other tools such as browse and coding. Future work could explore
integrating these additional tools to further enhance the DR agents’ performance and broaden their
application. Additionally, agent tuning for improving deep research agents is left for future work, as
the current focus is on test-time scaling.
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Figure 11 | Helpfulness, Comprehensiveness, and side-by-side rating between Report A and B. Report
are simplified for clarify purpose.

A. Appendix

A.1. Evaluation Guidelines

Helpfulness categories can be found below.

• Very Helpful: all statements are helpful based on the guideline above.
• Helpful: Most statements are helpful except for 1-2 statements with minor issues according to
the guideline above.

• Mostly Helpful: 1-2 statements seriously fail the guideline above, or 3-5 statements have minor
issues.

• Somewhat Helpful: > 2 statements with serious issues, or > 5 statements with minor issues.
• Not at all Helpful: None statements are helpful.

Comprehensiveness categories can be found below.

• Very Comprehensive: it is hard to identify any points that could be added to the report to make
it more comprehensive.

• Comprehensive: it is hard to identify any major points that could be added to the report to
make it more comprehensive. It would be nicer to add some minor points, but not necessary.

• Mostly Comprehensive: There 1-2 major points that should be added to the report.
• Somewhat Comprehensive: There are more than 2 major points that should be added.
• Not at all Comprehensive: There are more than 5 major points that should be added.

A.2. Human Annotation Interface

Figure 11 shows our human annotation interface.
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Table 3 | In this Table, we show the alignments between our auto-rater and human raters. Human
accuracy is computed comparing two raters’ scores by treating one as ground-truth and taking average.

Evaluator Models Correlation Accuracy

Gemini-1.5-pro-002 0.22 60.8
Gemini-2.0-flash-001 0.07 51.1
Gemini-2.5-pro-preview-03-25 0.12 47.8

Human - 69.0

A.3. Human and LLM-as-a-judge Alignment

A.4. HLE Query Categorization

We use the following prompt to categorize HLE queries into 1) reasoning only and 2) reason-
ing+search.

HLE Query Categorization Prompt
You are an expert categorizing a query from a user. Your task is to assign the query to one of the following 2 categories:
* "Reasoning": The query can be answered with pure logical reasoning without any external world knowledge.
* "Search": The query can NOT be answered with pure logical reasoning, but requires additional information that can be obtained
through searching the web.

The query is in the <query></query> tags and the answer to the query is in <reference></reference>.
We also provide rational in <rational></rational> that explains the answer.

First, follow the instructions in the <instructions></instructions> tags below to assess the Correctness of the answer.

<rubrics>
Please output using the scale below:
* 1: Reasoning: The query can be answered with pure logical reasoning without any external world knowledge.
* 2: Search: The query can NOT be answered with pure logical reasoning, but requires additional information that can be
obtained through searching the web.
</rubrics>

Here is the query:
<query>
{query}
</query>

Here is the answer:
<reference>
{answer}
</reference>

Here is the rational that leads to the reference answer:
<rational>
{rational}
</rational>

Review the rubrics in the <rubrics></rubrics> tags above to rate the answer.
First, think step by step, put your thinking in <thinking></thinking> tags. Your thinking must be shorter than 200 words. Then,
provide your category inside <rating></rating> tags. Remember your output must be either 1 or 2 in <rating></rating> tags.

A.5. Answer Merging.

We use the following prompt to merge multiple answer into one for the parallel denoising algorithm.
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Answer Merging Prompt
Your task is to research a topic and try to fulfill the user query in the <user> tags.

<instructions>
You are given a list of candidate answers in <answer_list> tags below. Combine them into a single answer so that,
+ it best fulfills the initial user query in the <user> tags.
+ If there are conflicting information, try to reconcile them in a logically sound way.
</instructions>

Here is the user query.
<user>
{query}
</user>

Here is the list of candidate answers you need to merge.
<answer_list>
{answer_list}
</answer_list>

Only output a combined answer from the answers in <answer_list>. Do NOT use other information.

A.6. Hyper-parameters

We list a few key hyper-parameters for our self-evolution algorithm shown in Fig. 5. To recap, this
algorithm generates multiple initial states, each undergoes self-evolving steps before being merged
into a final one. So it introduces two sets of hyper-parameters: 𝑛 number of initial states and 𝑠 number
of evolving steps.

Hyper-parameters Description LongForm Research DeepConsult HLE GAIA

𝑛𝑝 No. of initial plan states 1 1 1 1
𝑛𝑞 No. of initial search query states 5 5 5 5
𝑛𝑎 No. of initial answer states 3 3 3 3
𝑛𝑟 No. of initial report states 1 1 5 5
𝑠𝑝 No. of plan self-evolving steps 1 1 1 1
𝑠𝑞 No. of search query self-evolving steps 0 0 0 0
𝑠𝑎 No. of answer self-evolving steps 0 0 0 0
𝑠𝑟 No. of report self-evolving steps 1 1 0 0

Table 4 | We show hyper-parameter description and best settings in this table.

A.7. Question Complexity

Unique Question Key Points Extraction
You are provided with a question in <question> tag. Analyze the complexity of the question.

<question>
{question}
</question>

Breakdown the question into unique key points, and then calculate the number of key points in the question.

First, put your thinking in <thinking></thinking> tags, and then put the number in <number></number> tags.
Return an integer.
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A.8. Answer Complexity

Unique Answer Key Points Extraction
You are provided with an answer in <answer> tag. Analyze the complexity of the answer.

<answer>
{answer}
</answer>

Breakdown the answer into unique key points, and then calculate the number of key points in the answer.

First, put your thinking in <thinking></thinking> tags, and then put the number in <number></number> tags.
Return an integer.

A.9. Query Novelty

Search Question Novelty
You are provided with a list of used questions in <question_list> tags and a new question in <new_question> tags.
You need to judge how novel the new question is given the used questions.

<question_list>
{question_list}
</question_list>

<new_question>
{new_question}
</new_question>

Breakdown the new question into unique key points, and then calculate the number of key points that are NOT se-
mantically covered in any of the used questions.

First, put your thinking in <thinking></thinking> tags, and then put the number in <number></number> tags.
Return an integer.

A.10. Report Coverage

Report Coverage
Given a context in <context> tags, you need to judge how much content in this context is included in the response in <response>
tags.

<context>
{context}
</context>

<response>
{response}
</response>

Breakdown the context into sentences, and then calculate the ratio of sentences that are semantically covered in response.

First, put your thinking in <thinking></thinking> tags, and then put the ratio in <ratio></ratio> tags. Round the ratio to 2
decimal places.

A.11. Additional Analysis Results
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(a) Pareto frontier for different DR designs.

Figure 12 | Pareto frontier between DR agent performances and latency for HLE-Search. The dots
from left to right represent adding more search/revision steps up to 20, which shows with similar
latency, we achieve on-par or better results compared with competing DR agents. Note that HLE
dataset only requires identify short-form answer, which does not align perfectly well with our primary
tasks of writing real-world long-form reports.

Figure 13 | Pareto frontier between DR agent performances and latency for HLE-search. The dots
from left to right represent 1) Gemini-2.5-pro w/ search tool, 2) Backbone DR Agent,
3) +Self-evolution and 4) +Diffusion with Retrieval, which shows our final algorithm
is most efficient in terms of test-time scaling (steepest slope).
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