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Abstract

Historically, neuroscience has progressed by fragmenting into specialized domains,
each focusing on isolated modalities, tasks, or brain regions. While fruitful, this
approach hinders the development of a unified model of cognition. Here, we
introduce TRIBE, the first deep neural network trained to predict brain responses
to stimuli across multiple modalities, cortical areas and individuals. By combining
the pretrained representations of text, audio and video foundational models and
handling their time-evolving nature with a transformer, our model can precisely
model the spatial and temporal fMRI responses to videos, achieving the first place
in the Algonauts 2025 brain encoding competition with a significant margin over
competitors. Ablations show that while unimodal models can reliably predict their
corresponding cortical networks (e.g. visual or auditory networks), they are system-
atically outperformed by our multimodal model in high-level associative cortices.
Currently applied to perception and comprehension, our approach paves the way to-
wards building an integrative model of representations in the human brain. Our code
is available at https://github.com/facebookresearch/algonauts-2025.

1 Introduction

Motivation. Progress in neuroscience has historically derived from an increasing specialization
into cognitive tasks and brain areas. In the domain of vision, for instance, research focused on
specialized cortical areas and their associated tasks, such as motion perception in V5 [1], face
recognition in the fusiform gyrus [2], or the visual processing of written language in the visual word
form area [3]. While this divide-and-conquer approach has undeniably yielded deep insights into
the brain’s mechanisms of cognition, it has led to a fragmented scientific landscape: How neuronal
assemblies together construct and globally broadcast a unified representation of the perceived world
remains limited to coarse conceptual models [4].

The fast progress in AI in the domains of language [5, 6], image [7], audio [8, 9] and video [10, 11]
may help resolve this fragmentation challenge. Indeed, the representations learnt by these AI models
have been shown to – at least partially – align with those of the brain [12, 13, 14, 15]. Motivated by
this unexpected alignment, several teams have built encoding models to predict brain responses to
natural stimuli from the activations of neural networks in response to images [12], speech [16] and
text [13, 14, 17]. However, these encoding models are currently limited in three critical ways.
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Figure 1: TRIBE predicts brain responses to videos across diverse regions. For eight brain parcels
color-coded in the brain images, we report the BOLD response of the first participant to the first
5 minutes of a held-out movie in solid lines and our model’s predictions in dashed lines, with the
Pearson correlation of the two curves reported on the left.

First, linearity: existing encoding approaches typically rely on a ridge regression to map the AI
model representations onto those of the brain. This assumes that these two sets of representations are
linearly equivalent – a likely incorrect assumption [12, 14, 18].

Second, subject-specificity: due to large variability in brain responses from one subject to another,
existing encoding approaches typically train a separate model for each subject, which prevents them
from leveraging the similarities between brains (although [19]).

Third, unimodality: most existing encoding approaches predict brain responses from unimodal
stimuli, which makes them incapable of capturing how the brain integrates information from multiple
modalities [20]. This is particularly limiting as it has been shown that cross-modal interactions occur
not only in specific multisensory areas [21, 22], but also in primary sensory areas [23, 24].

Contribution In this work, we introduce TRIBE, a novel deep learning pipeline to predict the
fMRI brain responses of participants watching videos from the corresponding images, audio and
transcript. This approach addresses the three limitations outlined above: our model learns how to
capture the dynamical integration of modalities in an end-to-end manner across the whole brain, and
from multiple subjects.

Our model achieves state-of-the-art results, reaching the first place out of 263 teams in the Algonauts
2025 competition on multimodal brain encoding. We demonstrate with ablation analyses the impor-
tance of the multimodal, multisubject and nonlinear nature of TRIBE. Finally, we observe that the
benefit of multimodality is highest in associative cortices.

Related work While there has been recent research on deep learning for multimodal brain decod-
ing [25, 26], there currently exists no equivalent for brain encoding. Some recent works suggest to
train recurrent models to predict brain responses from frozen visual or linguistic features [27, 19],
or fine-tune existing pretrained models using the brain encoding objective. While these relax the
linearity assumption, they are restricted to a single sensory modality.
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Conversely, a few recent studies have built encoding models on top of vision-language transformers,
demonstrating gains compared to unimodal transformers [28, 29, 30, 31, 32]. However, these works
rely solely on linear mappings to model brain responses from the activations of the multimodal
transformers. We believe this can be suboptimal for two reasons. First, multimodal transformers
are still relatively new: at rare exceptions [33, 34, 35], they often only integrate static images
and text (audio and video being significantly more compute-intensive), and tend to lag behind the
performance of unimodal transformers. Second, and more fundamentally, the way these models
integrate information across modalities may be very different from how the human brain does such
multimodal integration. An ideal encoding pipeline should thus learn how to best combine different
modalities.
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Figure 2: Visual summary of our method.

2 Methods

2.1 Overview

Task Our objective is to predict the brain activity of participants watching videos. This is framed as
a regression task where the targets are the blood-oxygen-level-dependent (BOLD) signals detected at
every repetition time (TR=1.49s) of a 3T fMRI recording device, separated into 1,000 non-overlapping
parcels fig. 1.

For this, we take as input the video clip being viewed by the participant, as well as the corresponding
audio file and transcript. From these, we extract high-dimensional embeddings from the intermediate
layers of start-of-the art generative AI models along three modalities of interest: text, audio and video,
which we feed to our deep encoding model, as illustrated in fig. 2.

Evaluation To assess performance, we evaluate for each parcel the Pearson Correlation ρ between
predicted and ground truth fMRI responses across all TRs of the evaluation set. We then average
these values over all parcels. We also refer to this metric as the “encoding score” of the model.

We hold out 10% of the recording sessions for the validation set, ensuring that the same videos are
held out for each participant to prevent any form of data leakage.

2.2 Dataset

Data collection We train our encoding model on the Courtois NeuroMod dataset [36]. This
dataset consists of six human participants who watched the same naturalistic videos, namely the
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first six seasons of the popular TV series Friends as well as four movies: The Bourne Supremacy,
Hidden Figures, The Wolf of Wall Street and Life (a BBC Nature documentary). This amounts to an
unprecedently large recording volume of over 80 hours of fMRI per subject. In the present work, we
focus on a subset of four subjects curated for the Algonauts 2025 competition [37].

Preprocessing We use the preprocessing pipeline provided by the Algonauts2025 competition.
The whole-brain BOLD fMRI responses are preprocessed using fMRIprep [38] and projected to the
Montreal Neurological Institute (MNI152NLin2009cAsym) standard space [39]. Functional images
are then parcellated by averaging voxel-wise BOLD signals within each of the 1,000 parcels of the
Schaefer atlas [40], yielding a single fMRI time series for each of the parcels. Finally, activations were
z-scored per parcel across each session (corresponding to approximately 15 minutes of recording).

2.3 Model

Timed text embeddings We extract "timed" text embeddings from the timestamped transcripts
of the videos. For each word w to embed, we prepend the preceding k = 1, 024 words in the
transcript, which we feed through Llama-3.2-3B [6]. For each intermediate layer l, we extract the
token(s) overlapping with the word w and average them to obtain a contextualized word embedding
of dimension Dtext = 2048.

We then construct an evenly spaced grid at a frequency f = 2Hz, and for each time-bin τ , we sum
the embeddings of words which overlap with the bin. This allows to temporally align the text features
with the audio and video features.

Audio embeddings To obtain audio embeddings, we extract audio files from the videos, split them
into 60-second chunks, then feed these through Wav2Vec-Bert-2.0 [9]. We then resample the hidden
representations of the latter from 50 Hz to f = 2Hz. For each intermediate layer l, this yields time
series of embeddings of dimension Daudio = 1, 024.

Note that the resulting embeddings carry bidirectional information about both the past and future of
the stimulus window, whereas text and video embeddings only contain information about the past.

Video embeddings For video embeddings, we again construct an evenly spaced grid at a frequency
f = 2Hz, and for each bin of time, we feed 64 frames spanning the preceding 4 seconds to Video-
JEPA 2 gigantic [11]. For each intermediate layer l, we compress the tensor of activations by
averaging over all patch tokens, yielding a time series of embeddings of size Dvideo = 1, 280.

Note that this spatial averaging step was necessary to keep the size of the tensor manageable. However,
it comes at the cost of discarding positional information, which we expect to deteriorate encoding
performance in low-level visual areas which exhibit a retinotopic mapping [41].

Combining the modalities For each of the three modalities m, the feature extraction described
above leads to a time series of embeddings at f = 2Hz, with embeddings of shape [Lm, Dm], where
Lm and Dm are the number of layers and dimensionality of the transformer of modality m.

To compress these embeddings while retaining both low-level and high-level information, for each
modality, we split the layers into L groups, then average the tensor per group along the layer
dimension, compressing to a shape [L,Dm].

We then concatenate the layers and feed the resulting vector through a linear layer with a shared
output dimension D = 1024 followed by layer normalization. Finally, we concatenate the three
modalities, leading to a time series of multimodal embeddings of shape 3× 1024. This will be the
input to our transformer encoder.

Transformer encoder We extract windows of duration T = N × TR from these embedding time
series, add learnable positional embeddings and a learnable subject embedding, then feed the result
through a Transformer encoder with 8 layers and 8 attention heads. This enables information to be
exchanged between timesteps.

At the output of the transformer, we use an adaptive average pooling layer to compress the sequence
from length fT to N , yielding one embedding per TR. Following [42], we then use a subject-
conditional linear layer to project the latter to the 1,000-dimensional target space.
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2.4 Training details

Modality dropout One desirable property of a multimodal encoding model is its ability to provide
meaningful predictions in the absence of one or several modalities, for example for a silent movie or
a podcast. To encourage this behaviour, while at the same time avoiding excessive reliance on one
modality, we introduce modality dropout: during training, we randomly mask off each modality by
zeroing out the corresponding input tensor with a probability p, ensuring that at least one modality is
left unmasked.

Optimization We train our model for up to 15 epochs with the AdamW optimizer [43] using a
batch size of 16. The learning rate is warmed up linearly to 10−4 over the first 10% of steps, then
decayed following a cosine learning rate schedule. We use early stopping based on the validation
Pearson score computed on a held-out set. To improve generalization, we use stochastic weight
averaging [44], which involves averaging model weights obtained at the end of each epoch, once the
validation metrics are near their plateau.

Ensembling To further improve generalization, we ensemble the predictions of M = 1000 models,
whose initialization and shuffling seeds are all different. To strengthen ensemble diversity, for each
model, we sample a set of hyperparameters uniformly in the grid specified in appendix A. For each
parcel separately, we compute the encoding score of all models on the validation set, then compute a
softmax distribution over models with temperature 0.3, which will determine the weight assigned to
each model for this given parcel.

Implementation details We extract stimuli features from pretrained language, audio and video
models available on the HuggingFace platform [45] and cache them as Numpy memmap arrays [46]
for fast loading during the training of our encoding model. Feature extraction is completed in 24
hours on 128 V100 GPUs with 32GB of VRAM, and model training lasts 24 hours on a single such
GPU. We use the transformer implementation from the x-transformers package1. We list the
licenses of the assets used in this work in appendix B.

Rank Team Mean score Subject 1 Subject 2 Subject 3 Subject 5
1 Ours 0.2146 0.2381 0.2105 0.2377 0.1720
2 NCG 0.2096 0.2353 0.2046 0.2268 0.1718
3 SDA 0.2094 0.2233 0.2072 0.2271 0.1798
4 MedARC 0.2085 0.2295 0.2003 0.2300 0.1743
5 CVIU-UARK 0.2055 0.2306 0.2010 0.2240 0.1662

Table 1: Our model achieves first place in the Algonauts 2025 public leaderboard. We report the
results of the top five out of 263 teams.

OOD Movie Mean score Subject 1 Subject 2 Subject 3 Subject 5
✗ Friends Season 7 0.3195 0.3419 0.3239 0.3346 0.2775

✓ Pulp Fiction 0.2604 0.2765 0.2611 0.2431 0.2610
✓ Princess Mononoke 0.2449 0.2816 0.2507 0.2851 0.1623
✓ Passe-partout 0.2323 0.2763 0.2587 0.2370 0.1573
✓ World of Tomorrow 0.1924 0.2210 0.1606 0.2196 0.1686
✓ Planet Earth 0.1886 0.1483 0.2029 0.2331 0.1699
✓ Charlie Chaplin 0.1686 0.2249 0.1289 0.2080 0.1128

Table 2: Our model generalizes to highly out-of-distribution movies. We provide the detailed
results on the held-out datasets of the Algonauts 2025 competition.

1https://github.com/lucidrains/x-transformers
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3 Results

3.1 Algonauts 2025 competition results

Our model achieves the first place out of 262 teams in the Algonauts 2025 competition on multimodal
brain encoding. As shown in table 1, we outperform competitors by a substantial margin: the gap
between our model and the runner-up is larger than between the runner-up and the fifth.

We display the results across the various held-out datasets in table 2. In the in-distribution setting of
the first phase of the competition (Friends season 7), our model achieves a mean score of 0.3195.
Unsurprisingly, when tested in the out-of-distribution setting of the second phase of the competition,
performance is lower, with an average of 0.2146. Remarkably, our model achieves robust scores
even in the extreme out-of-distribution setting of cartoons (0.1924 for World of Tomorrow) wildlife
documentaries (0.1886 for Planet Earth), and silent black-and-white movies (0.1686 for Charlie
Chaplin).

Pearson Noise
ceiling

Normalized
Pearson

0.0

0.2

0.4

0.6

0.8

1.0

(a) Distribution across parcels (b) Cortical projection of the normalized scores

Figure 3: Our model performs consistently across the whole brain.
(a) We report a histogram of unnormalized and normalized encoding scores (see definition in eq. (1))
of the 1000 parcels, averaged across subjects.
(b) We project the normalized encoding scores of the first subject onto the fsaverage5 cortical
surface.

3.2 Noise ceiling analysis

Following common practice in the brain encoding literature [47], we estimate the noise ceiling to
investigate to what extent encoding errors are due to unexplainable randomness rather than model
suboptimality. We achieve this by computing the inter-trial correlation ρself of the BOLD responses
to the movies Hidden Figures and Life, which were viewed twice by each participant. We then define
the normalized Pearson correlation of our model by dividing it by that of an ideal encoding model,
following [47]:

ρnorm =
ρ

ρmax
, ρmax =

√
2

1 + 1
ρself

(1)

Our model achieves a normalized Pearson correlation of 0.54 ± 0.1 across all parcels (fig. 3a): in
other words, it captures 54% of explainable variance on average. The fairly small inter-quartile range
reflects the fact that our model is rather consistent across brain areas. The highest values are achieved
in the auditory and language processing cortices, where our model is near the noise ceiling (fig. 3b).

3.3 The benefit of multimodality

To what extent do the three modalities combined by TRIBE contribute to encoding performance?
We address this question in fig. 4a, by assessing the encoding performance of TRIBE retrained with
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Figure 4: Multimodal encoders outperform unimodal encoders.
(a) We compare the encoding scores of encoders trained on a subset of modalities in the same
conditions. Error bars denote s.e.m across subjects.
(b) For each parcel of the first subject, we compute the difference in encoding score between the
multimodal encoder and the best out of the three unimodal encoders, then project the results onto the
fsaverage5 cortical surface.

various modalities ablated. When training on a single modality, TRIBE achieves substantially lower
encoding scores. We observe that the text modality achieves the lowest average encoding score with
0.22, followed by audio at 0.24 and video at 0.25. When combining any two modalities together,
the encoding scores rise significantly compared to the unimodal models: the best bimodal model,
obtained by combining text and video, achieves an encoding score of 0.30. Finally, combining the
three modalities together yields an additional boost, bringing the value to 0.31. This hints to the fact
that each modality plays a complementary role.

In which areas does multimodality yield the strongest gains? In fig. 4b, we compare for each parcel
the encoding score of the multimodal encoder with that of the best of the three unimodal encoders.
We observe that the multimodal encoder consistently outperforms the unimodal models, especially in
associative areas such as the prefrontal or parieto-occipito-temporal cortices (up to 30% increase in
encoding score). Interestingly, the multimodal model performs less well than the vision-only model
in the primary visual cortex, which is highly specific to visual features.

Together, these results demonstrate that our multimodal encoder effectively captures interactions
between modalities, which improves whole-brain decoding.

3.4 The interplay between modalities

Which brain areas is dominated by unimodal or multimodal representations? To address this question,
we single out modalities by probing our multimodal model with all modalities masked off except one
(using the same procedure as for the dropout described in section 2).

In fig. 5a, we color each parcel of the cortex according to the modality that achieves the highest
encoding score via this procedure. The three modalities each cover broad regions: audio predominates
near the temporal gyrus, video predominates in the occipital cortex and parts of the parietal cortex,
while the text feature, which presumably contains the most semantic information, predominates in
large parts of the parietal and prefrontal lobes.

To study the interplay between modalities, we then overlay the contribution of the three modalities
using an RGB encoding where red, green and blue respectively represent the encoding scores achieved
solely with text, audio and video (fig. 5b). To make hues more visible, we restrict our analyses
to unimodal and bimodal interactions by substracting the smallest contribution among the three
modalities. We observe interesting bimodal associations in some key areas: in particular, text+audio
(yellow) in can be observed in the superior temporal lobe and video+audio (cyan) can be observed in
the ventral and dorsal visual cortices.

7



(a) Highest scoring modalities

TV

A

A+TA+V

V+T Score with
text only

Score with
video only

Score with
audio only

(b) Interplay between modalities

Figure 5: The modalities and their interplay map onto the expected brain areas.
(a) For each parcel of the first subject, we assess the encoding contribution of each modality by
masking the two other modalities, and color-code according to the highest contribution.
(b) We color-code each parcel using an RGB encoding where red, green and blue intensities are
determined by the encoding score of the model with text, audio and video unmasked, respectively.
For readability, we limit ourselves to bimodal interactions by substracting the smallest of the three
contributions. Red, blue and green areas correspond to unimodal areas well encoded by text, audio
and video respectively, while magenta, yellow and cyan correspond to bimodal areas well encoded by
text-video, text-audio and video-audio interactions respectively.

These observations provide new insights on how multisensory integration may occurs in the human
cortex.

3.5 Ablations and scaling laws

In fig. 6a, we demonstrate the importance of using a transformer and a multi-subject training scheme:
the encoding score drops from 0.31 to 0.29 when training separately for each subject, and down to
0.23 when removing the transformer.

In fig. 6b, we show how the encoding score scales with the amount of recordings in the training set.
We observe a strong increasing trend which has not reached a plateau, in line with recent work [48].

In fig. 6c, we show that increasing the context length used for the language model words strongly
enhances encoding performance, without any plateau even at very long context lengths of 1024 words.
This confirms that TRIBE effectively captures high-level semantic features, far beyond the word and
sentence level.

4 Discussion

In this work, we make a step towards an integrative model of the brain during naturalistic perception by
training an encoding model on an unprecedently-large fMRI dataset of participants watching videos.
Crucially, our model is the first encoding pipeline which is simultaneously nonlinear, multisubject and
multimodal: our ablations demonstrate the importance of these three aspects for encoding, especially
in associative cortices. Our model achieves the first place in the Algonauts 2025 brain encoding
competition, and scaling laws suggest that encoding performance increases systematically with the
number of recordings, holding promise for further improvements with larger datasets.

Limitations There are several remaining limitations to our work. First, our approach currently
operates on a coarse parcellation of brain areas – reducing hundreds of thousands of voxels to 1,000
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Figure 6: Ablations and scaling laws of our model.
(a) We compare the results of our model with those achieved without multi-subject training or without
the transformer model.
(b) We report the results obtained by the multimodal encoder as we increase the number of sessions
used in the training set.
(c) We report the results obtained by the text-only encoder as we increase the context length of the
language model used to extract features (Llama-3.2-3B).
In all panels, shaded regions indicate the s.e.m over the four subjects.

cortical parcels. This design choice, introduced by the Algonauts2025 challenge, likely increases the
signal-to-noise ratio by smoothing out the responses spatially, and certainly reduces computational
cost, which is important for the whole-brain prediction setting considered here. However, this
approach limits the spatial resolution of our model, which inherently prevents it from capturing highly
localized phenomena. Adapting our model for voxel-level prediction is an important avenue for future
work. Second, our current approach is limited to fMRI data. Consequently, the precise temporal
dynamics of neuronal activity, and the exact neural assemblies underlying these macroscopic signals,
remain, here, unresolved. Third, while the volume of recording per participant in the study considered
here is particularly large, only four participants were included: extending and improving our results
on a larger pool of participants is an important next step. Finally, the present approach remains limited
to perception and comprehension. Behavior, memory and decisions are other important cognitive
components to integrate into the present model.

Broader impact Building a model able to accurately predict human brain responses to complex
and naturalistic conditions is an important endeavour for neuroscience. Not only does this approach
open the possibility of exploring cognitive abilities (e.g. theory of mind, humour) that are challenging
to isolate with minimalist designs, but they will eventually be necessary to evaluate increasingly
complex models of cognition and intelligence. In addition, our approach forges a path to (1)
integrate the different sub-fields of neuroscience into a single framework and to (2) develop in
silico experimentation [49], where in vivo experiments could be complemented and guided by the
predictions of a brain encoder. While the exploration of this paradigm falls beyond the scope of this
technical report, we believe that epistemology is ordered: interpretation and scientific insights are
most legitimate if they derive from the model that makes the best prediction. In that regard, the first
place achieved by TRIBE in the Algonauts 2025 competition gives scientific credit to our approach.
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Appendices

A Hyperparameters

Hyperparameter Base value Other values used for ensembling
Number of epochs 15

Number of TRs per window 100
Window jitter 10s
Learning Rate 10−4

Batch Size 16
Optimizer AdamW

Scheduler type OneCycleLR (cosine)
Scheduler warmup phase 10%

Stochastic weight average epochs 8
Dropout 0

Weight Decay 0
Hidden Size 3072
Text model Llama-3.2-3B

Audio model Wav2Vec-Bert-2.0
Video model V-JEPA-2-Gigantic-256

Loss MSE Pearson, SmoothL1, HuberLoss
Modality Dropout 0.2 0.0, 0.4

Layer groups [0.5, 0.75, 1] [0,0.5,1], [0.5, 1], [0, 0.2, 0.4, 0.6, 0.8, 1.]
Layer extraction group by intervals extract single layers

Layer aggregation concatenate average
Modality aggregation concatenate average

Use subject embedding ✓ ✗

Table 3: Hyperparameters used in our model

B Licenses

HuggingFace models:

• Video-JEPA 2: Apache (https://github.com/facebookresearch/vjepa2/blob/
main/LICENSE)

• Wav2Vec-Bert-2.0: MIT (https://huggingface.co/datasets/choosealicense/
licenses/blob/main/markdown/mit.md)

• LLama-3.2-3B: llama3.2 (https://huggingface.co/meta-llama/Llama-3.2-1B/
blob/main/LICENSE.txt)

Packages:

• x-transformers: MIT (https://github.com/lucidrains/x-transformers/
blob/main/LICENSE)

• nilearn: BSD (https://github.com/nilearn/nilearn/blob/main/LICENSE)

• pytorch: https://github.com/pytorch/pytorch/blob/main/LICENSE
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Datasets:

• Courtois NeuroMod: CC0 (https://creativecommons.org/publicdomain/zero/1.
0/legalcode)
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