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Abstract

Large language models (LLMs) have revolutionized natural language processing, yet their
propensity for ”hallucination”—generating plausible but factually incorrect or fabricated con-
tent—remains a critical challenge. This report provides a comprehensive taxonomy of LLM
hallucinations, beginning with a formal definition and a theoretical framework that posits its
inherent inevitability in computable LLMs, irrespective of architecture or training. It explores
core distinctions, differentiating between intrinsic (contradicting input context) and extrinsic
(inconsistent with training data or reality), as well as factuality (absolute correctness) and faith-
fulness (adherence to input). The report then details specific manifestations, including factual
errors, contextual and logical inconsistencies, temporal disorientation, ethical violations, and
task-specific hallucinations across domains like code generation and multimodal applications.
It analyzes the underlying causes, categorizing them into data-related issues, model-related
factors, and prompt-related influences. Furthermore, the report examines cognitive and human
factors influencing hallucination perception, surveys evaluation benchmarks and metrics for
detection, and outlines architectural and systemic mitigation strategies. Finally, it introduces
web-based resources for monitoring LLM releases and performance. This report underscores
the complex, multifaceted nature of LLM hallucinations and emphasizes that, given their the-
oretical inevitability, future efforts must focus on robust detection, mitigation, and continuous
human oversight for responsible and reliable deployment in critical applications.
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1 Introduction

Large language models (LLMs) represent a significant advancement in natural language pro-
cessing (NLP), fundamentally altering how information is acquired and processed**?"l. These
models have enabled a paradigm shift, facilitating diverse applications ranging from sophisti-
cated content creation to advanced decision support systems!?**"l. Their capacity to generate
human-like text has led to remarkable progress in various tasks, including complex question-
answering systems, abstractive summarization, and interactive conversational agents®. The
widespread adoption of LLMs underscores their transformative potential across numerous in-
dustries and research domains.

Despite their impressive capabilities, a critical and widely acknowledged limitation of LLMs
is their propensity for ”hallucination” [*%°7*%*7] This phenomenon describes the generation of
content that, while often plausible and coherent, is factually incorrect, inconsistent, or entirely
fabricated "7, Unlike the medical definition of hallucination, which refers to sensory expe-
riences in the absence of external stimuli, in the context of LLMs, it signifies the creation of
nonfactual information to respond to a user’s query, frequently without any explicit indication
of its fabricated naturel®. Such generated content is characterized as incorrect, nonsensical,
and lacking justifiable basis, making its detection challenging for users. The prevalence of hal-
lucinations raises significant concerns regarding the reliability and trustworthiness of LLMs,
particularly as their integration into real-world information retrieval (IR) systems and critical
decision-making processes continues to expand ).

This report provides a comprehensive taxonomy of hallucinations in Large Language Models
(LLMs), delving into the critical challenge of their propensity for generating plausible but
factually incorrect or fabricated content. It begins by formally defining hallucination, including
a framework that posits its inherent inevitability in computable LLMs, irrespective of their
architecture or training. The core distinctions of hallucination are explored, differentiating
between intrinsic (contradicting input context) and extrinsic (inconsistent with training data
or reality), as well as factuality (absolute correctness) and faithfulness (adherence to input)®*,

The report then details specific manifestations of hallucinations, such as factual errors, con-
textual and logical inconsistencies, temporal disorientation, ethical violations, and task-specific
hallucinations in domains like code generation and multimodal applications”). A thorough
analysis of the underlying causes is presented, categorizing them into data-related issues (e.g.,
quality, biases), model-related factors (e.g., auto-regressive nature, decoding strategies, lack of
reasoning), and prompt-related influences (e.g., adversarial attacks) %",
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The report further examines the cognitive and human factors influencing hallucination per-
ception, including user trust, interpretability, and various cognitive biases, alongside their im-
plications for design and mitigation strategies!'’”). It provides a comprehensive overview of
evaluation benchmarks and metrics for hallucination detection, surveying principal datasets
and quantitative metrics, as well as their current limitations. Additionally, a detailed explo-
ration of hallucination mitigation strategies is included, covering both architectural approaches
(e.g., Toolformer-style augmentation, factual grounding through retrieval mechanisms) and sys-
temic approaches (e.g., guardrails, symbolic integration)®*%*’l. Finally, the report introduces
crucial web-based resources for monitoring LLM releases and performance, offering insights
into tools and leaderboards that track hallucination rates and model reliability in real-world
scenarios. This report underscores the complex, multifaceted nature of LLM hallucinations
and emphasizes that, given their theoretical inevitability, future efforts must focus on robust
detection, mitigation, and continuous human oversight for responsible and reliable deployment
in critical applications.

2 Defining hallucination in LLMs

This section formally defines LLM hallucination and presents a theoretical
framework arguing for its inherent inevitability.

2.1 General conceptual definition

In the domain of LLMs, hallucination is broadly understood as the generation of ”plausible yet
nonfactual content” ¥, This implies that an LLM produces "false or fabricated information”
or outputs that are ”inaccurate, irrelevant, or simply does not make factual sense” ">, A
key distinction from the medical definition of hallucination (sensory experiences without cor-
responding external stimuli) is that in LLMs, it refers to the creation of nonfactual content in
response to a user’s question, often without the model clarifying the fabricated nature of its
answer**l. This characteristic underscores the challenge of relying on LLM outputs without

external verification.

2.2 Formal definition and inevitability

The paper ”Hallucination is Inevitable: An Innate Limitation of Large Language Models”
offers a formal framework for understanding hallucination, defining it within a ”formal world”

of computable functions to rigorously analyze its inherent inevitability in LLMs!.

2.2.1 Formal definition

Hallucination is formally defined as an inconsistency between a computable LLM, denoted as
h, and a computable ground truth function, f.

e Formal world of f (ground truth function): this is conceptualized as a set Gy =
{(s, f(s))|s € S}, where f(s) represents the sole correct output for any given input string
s from the set of all finite-length strings S



e Training samples T': these are defined as a collection of input-output pairs
{(s0,%0), ($1,91), ---|y; = f(s:)} derived from the formal world of f. This set T serves as

a generalized corpus representing the expected outputs of f for corresponding inputs['?".

e Hallucination condition: an LLM A is considered to be ”hallucinating” with respect
to a ground truth function f if, across all training stages ¢ (meaning, after being trained
on any finite number of samples), there ezists at least one input string s for which the
LLM’s output h[i](s) does not match the correct output f(s)['°’l. This condition is
formally expressed as Vi € N, 3s € S such that h[i](s) # f(s).

2.2.2 Implications for inevitability

The paper posits that hallucination is an inevitable characteristic of LLMs, irrespective of
their architectural design, learning algorithms, prompting techniques, or the specific training
data employed, provided they are considered ”computable LLMs” operating within the defined
formal world!'""’. The central argument supporting this claim is rooted in diagonalization,
a proof technique used in computability theory to demonstrate that certain infinite sets are
inherently larger than others, implying limitations on what can be computed.

This theoretical framework leads to several critical theorems:

e Theorem 1: computably enumerable LLMs will hallucinate: this theorem states
that for any computably enumerable set of LLMs (a category that includes all currently
proposed polynomial-time bounded LLMs), there exists a computable ground truth func-
tion f such that all states of all LLMs within that set will exhibit hallucination!'"’). This
is demonstrated by constructing a ground truth function f that is specifically designed
to contradict the output of every LLM state along a diagonal enumeration of all LLM
states and their outputs.

e Theorem 2: LLMs will hallucinate on infinitely many questions: building upon
the first theorem, this extends the argument to assert that for any computably enumerable
set of LLMs, there exists a computable ground truth function f such that all states of
all LLMs in that set will hallucinate on an infinite number of inputs!'’’!. This is shown
by constructing an f that consistently differs from the output of each LLM state for an
unending sequence of inputs.

e Theorem 3: any computable LLM will hallucinate: this theorem generalizes the
preceding findings. It asserts that for any individual computable LLM, there exists a com-
putable ground truth function f such that every state of that LLM will hallucinate with
respect to f. Furthermore, for any computable LLM, there exists another computable
ground truth function f’ for which every state of that LLM will hallucinate on infinitely
many inputs!'"’. This theorem holds particular significance because real-world LLMs
are considered a subset of total computable LLMs, directly extending the theoretical
inevitability to practical applications.

e Corollary 1: inability to self-eliminate hallucination: a direct consequence of
Theorem 3 is that all computable LLMs inherently lack the capacity to prevent them-
selves from hallucinating!"""). This implies that mitigation strategies relying solely on the
LLM’s internal mechanisms, such as prompt-based chain-of-thought reasoning, cannot
fully eliminate hallucination.



Practical implications of inevitability: the formal definition and the theorems supporting
the inevitability of hallucination carry profound practical implications for the development and
deployment of LLMs:

e General problem solvers: LLMs, when trained solely on input-output pairs and em-
ployed as general problem solvers, are inherently prone to hallucination, particularly for
problems that are computationally hard or lie beyond their learned capabilities!" .

e Scrutiny of mathematical and logic reasoning: outputs from LLMs concerning
mathematical problems and logic reasoning should always be subjected to rigorous scrutiny,
as these domains often involve computationally challenging tasks that increase the likeli-
hood of hallucination """,

e Safety-critical decisions: without the integration of external aids such as guardrails,
knowledge bases, or direct human control, LLMs cannot be autonomously used in safety-
critical decision-making processes. Human oversight remains paramount for decisions
demanding rational and humane judgment ",

e Research and regulations: the inherent inevitability of hallucination underscores the
urgent need for rigorous study and the establishment of appropriate regulations concern-
ing the safety boundaries of LLLMs. This is crucial to ensure their sustainable development
and prevent their deployment in contexts that exceed their inherent capabilities!'""!.

This observation highlights a fundamental aspect of hallucination: it is not merely a "bug” or
an "error” that can be entirely eradicated through improved training or architectural design.
Instead, it is an innate limitation rooted in the very nature of computability. If hallucina-
tion is formally proven to be inevitable for any computable LLM, it fundamentally redefines
the objective from complete elimination to robust reduction and effective management. This
understanding necessitates a paradigm shift in how LLMs are conceptualized, evaluated, and de-
ployed. Rather than striving for perfect factual accuracy, the focus must pivot towards designing
systems that incorporate robust detection mechanisms, containment strategies, and, crucially,
human-in-the-loop validation, especially for applications where accuracy is paramount. This
foundational understanding reinforces the indispensable role of external aids, such as Retrieval-
Augmented Generation (RAG) systems, and direct human intervention, as LLMs cannot fully
self-correct this inherent limitation (see summary in Table 1).



Table 1: Theorems and corollaries on LLM hallucination

Theorem/corollary

Statement

Implication for
real-world LLMs

Theorem 1:
computably
enumerable LLMs
will hallucinate

Theorem 2: LLMs
will hallucinate on
infinitely many
questions

Theorem 3: any
computable LLM
will hallucinate

Corollary 1:
inability to
self-eliminate
hallucination

For any computably
enumerable set of
LLMs, there exists a
computable ground
truth function f such
that all states of all
LLMs in that set will
hallucinate.

For any computably
enumerable set of
LLMs, there exists a
computable ground
truth function f such
that all states of all
LLMs in that set will
hallucinate on

infinitely many inputs.

For any individual
computable LLM,
there exists a
computable ground
truth function f such
that every state of
that LLM will
hallucinate.
Furthermore, for any
computable LLM,
there exists another f’
such that every state
will hallucinate on

infinitely many inputs.

All computable LLMs
cannot prevent
themselves from
hallucinating.

All currently proposed
polynomial-time
bounded LLMs are
inherently prone to
hallucination; it
cannot be completely
eliminated.

[100]

Hallucinations are not
isolated incidents but
a persistent challenge
across a vast range of
inputs for any LLM.

[100]

This generalizes
inevitability to any
specific LLM,
confirming that
current and future
LLMs will always
exhibit some form of
hallucination.

[100]

LLMs cannot solely
rely on internal
mechanisms (e.g.,
self-correction,
chain-of-thought
prompting) to
eliminate
hallucination; external
safeguards are
essential.

[100]
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3 Core taxonomies of LLM hallucinations

This section outlines the primary categorizations of LLM hallucinations,
distinguishing between intrinsic vs. extrinsic and factuality vs. faithfulness.

The scientific literature presents several key categorizations for LLM hallucinations, reflect-
ing different perspectives on their nature and origin. Two widely accepted and fundamental
distinctions are between intrinsic vs. extrinsic hallucinations and factuality vs. faithfulness
hallucinations (see summary in Table 2).

3.1 Intrinsic vs. extrinsic hallucinations

This dichotomy is a widely accepted and foundational distinction within the taxonomy of LLM
hallucinations. P77%9%7 Tt differentiates errors based on their relationship to the provided input
context and the model’s internal knowledge.

e Intrinsic hallucination: intrinsic hallucinations refer to generated text that directly
contradicts the provided input or context"""). These errors arise from logical inconsisten-
cies within the generated output itself, without necessarily requiring reference to external
knowledge!l. This type of hallucination reflects the model’s inability to maintain consis-
tency during the inference process or limitations stemming from its internal knowledge
and parametric memory!”. It can also encompass instances where the model misinterprets
or omits crucial details from a given document, leading to an inaccurate representation
of the source information. "]

For example, if an article provided for summarization states that the FDA approved the
first Ebola vaccine in 2019, an intrinsic hallucination would manifest as a summary claim-
ing that the FDA rejected it. Another illustrative instance is a model summarizing an
article that states a person was born in 1980, and then, later in the same summary, incor-
rectly claiming they were born in 1975, thereby demonstrating an internally inconsistent
response.

e Extrinsic hallucination: extrinsic hallucinations, conversely, refer to generated text
that is not consistent with the training data and ”can neither be supported nor refuted by
the input context” %7, This category involves the introduction of entities, facts, or events
that do not exist in reality. Such hallucinations frequently occur when models generate
novel content or attempt to bridge perceived knowledge gaps!™". This phenomenon
highlights the model’s limitations in fully absorbing knowledge from its training data and
its inability to accurately recognize the boundaries of its own knowledge. It can also result
from issues related to integrating external information or from the model misinterpreting
or failing to correctly incorporate the given context or prompt ™7,

An example of an extrinsic hallucination is the claim that ” The Parisian Tiger was hunted
to extinction in 1885,” a fabricated entity and event. Similarly, if a summarization article
states that the FDA approved the first Ebola vaccine in 2019, an extrinsic hallucination
might be a summary claiming that China started testing a COVID-19 vaccine, introducing
information unrelated to the provided context.



3.2  Factuality vs. faithfulness hallucinations

This represents another prevalent categorization of LLM hallucinations, focusing on the truth-
[50]

fulness of the generated content and its adherence to the input!".

e Factuality hallucination: factuality hallucination occurs when an LLM generates " fac-
tually incorrect content”.[*""] This type of hallucination directly contradicts ”real-world
knowledge” or "established verification sources”. It pertains to the "absolute correctness
of the content generated” when compared against verifiable information. These errors
often arise due to the model’s limited contextual understanding and the inherent noise
or inaccuracies present in its training data, leading to responses that are not grounded in
reality 1370

Examples include the model claiming ”Charles Lindbergh was the first to walk on the
moon” , stating that ”The Great Wall of China is visible from space”, or generating the
statement, ”The speed of light in a vacuum is 100,000 km/s,” when the correct value
is approximately 299,792 km/s. Another instance is the assertion that " Thomas Edison
invented the internet”.

e Faithfulness hallucination: faithfulness errors occur when the model’s output ”di-
verges from the input prompt or provided context” [(49%1  The response generated by
the model may be internally consistent and appear plausible, but it fails to align with the
user’s expectations or the specific information explicitly provided in the input. This type
of hallucination is closely related to, and often overlaps with, intrinsic hallucination, as
both deal with inconsistencies relative to the given sourcel%:%:01],

For example, in the context of summarization, if an article states that the FDA approved
the first Ebola vaccine in 2019, a faithfulness hallucination would include a summary
claiming that the FDA rejected it, directly contradicting the provided source information.

The presence of multiple, slightly different, yet often overlapping taxonomies (e.g., intrin-
sic/extrinsic versus factuality /faithfulness) across various scientific articles?7s70:7:12:50:0496:61]
indicates that the field is still actively defining and refining the categorization of LLM hallucina-
tions. While intrinsic and faithfulness hallucinations largely describe deviations from provided
context or internal consistency, extrinsic and factuality hallucinations relate to inconsistencies
with external knowledge or real-world truth. This nuance is critical because different types
of hallucinations often stem from distinct underlying mechanisms and, consequently, require
specific detection and mitigation strategies. For instance, Retrieval-Augmented Generation
(RAG) is frequently cited as an effective method to combat factual or extrinsic hallucinations
by grounding the model in external, verifiable knowledge!". In contrast, intrinsic hallucinations
might necessitate more sophisticated internal consistency checks or improvements in the model’s
reasoning capabilities. This observation underscores that the absence of a "unified framework
due to inconsistent definitions and categorizations” is a significant challenge in benchmarking
hallucinations!:™"). This implies that comparative research on hallucination rates and the devel-
opment of universally applicable mitigation strategies are hindered by the lack of standardized
terminology and evaluation metrics. Future research efforts should prioritize the development
of a more harmonized and widely accepted taxonomy to enable more effective and comparable
evaluations across different models and tasks, ultimately accelerating progress in addressing
this critical issue.
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4 Specific categories and manifestations of
hallucinations

This section details various specific types of hallucinations, including factual
errors, contextual inconsistencies, and task-specific manifestations.

Beyond the core intrinsic/extrinsic and factuality/faithfulness distinctions, LLM hallucinations
manifest in numerous specific forms, often with distinct characteristics and implications (see
summary in Table 2).

4.1 Factual errors and fabrications

This is a prevalent and particularly dangerous type of LLM hallucination, characterized by
the generation of incorrect, misleading, or entirely fabricated factual content, frequently pre-
sented with a high degree of confidence. Such errors can appear as inaccuracies in historical
information, scientific facts, or biographical details!".

4.1.1 Incorrect facts

These are claims that directly oppose established and verified information!"%". An example is
Google Bard’s hallucination claiming the James Webb Space Telescope took the first images of
an exoplanet, despite NASA’s records indicating that earlier images existed. Other instances
include the assertion that "The Great Wall of China is visible from space” or the statement

that ”Thomas Edison invented the internet”.

4.1.2 Fabricated entities/information

This involves the invention of historical figures, events, or specific details that do not exist in re-
ality. This can extend to creating entirely fictitious narratives, such as a claim about "unicorns
in Atlantis” being documented in 10,000 BC. In legal contexts, this type of hallucination can
be particularly severe, involving the fabrication of information, including fake quotes and cita-
tions of non-existent court cases, leading to significant professional and legal consequences!™!.
Similarly, in medical contexts, models may fabricate clinical details, invent research citations,

or create made-up disease details, posing substantial risks to patient care!”'s',

4.1.3 Adversarial attacks

A specific subset of factual errors arises from adversarial attacks, where deliberately or inadver-
tently fabricated details embedded within user prompts lead the model to produce or elaborate
on false information. This phenomenon can result in a ”"garbage in, garbage out” problem,
where erroneous inputs propagate misleading outputs, and also presents a threat of malicious
misuse, where bad actors could exploit LLMs to spread falsehoods!”!910%]

4.2 Contextual inconsistencies

Contextual inconsistencies occur when the model’s output includes information not present
in the provided context or directly contradicts it. This type of hallucination is often referred
to as ”context divergence” or ”contextual misalignment” | indicating the model’s difficulty in
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correctly attending to relevant context and instead relying on its internal generative tendencies.
An example is when the model is given the context: ”The Nile originates in Central Africa,”
but responds with: ”The Nile originates in the mountain ranges of Central Africa,” adding
incorrect details not found in the original input!**%%7.

4.3 Instruction inconsistencies/deviation

Instruction inconsistencies refer to instances where the LLM ignores or fails to follow specific
instructions provided by the user. The generated response, in these cases, does not adhere to
the user’s explicit directives. For example, if instructed to translate a question into Spanish,
the model might instead provide the answer in English [,

4.4 Logical inconsistencies

Logical inconsistencies manifest when the model’s output contains internal logical errors or
contradictions, even if the initial part of the response is correct. This can appear as self-
contradictory statements within the same output or across different interaction instances. This
type of hallucination is related to ”erroneous inference hallucination” and accounts for a notable
portion, specifically 19%, of identified hallucination cases***7*%%! An example is an LLM
performing an arithmetic operation incorrectly within a step-by-step mathematical solution,
or stating a fact in one sentence and then providing a conflicting statement later in the same
response

4.5 Temporal disorientation

Temporal disorientation describes a type of hallucination involving issues with time-sensitive
information, leading to the generation of outdated, anachronistic, or temporally incorrect facts.
LLMs are particularly noted for struggling with ”intricate temporal features” and out-of-
distribution knowledge related to time. This category accounts for 12% of identified hallucina-
tion cases. """l An illustrative example is an LLM incorrectly asserting that ”Haruki Murakami
won the Nobel Prize in Literature in 2016,” when in fact, he has not won the Nobel Prize.

4.6 Ethical violations

Ethical violations refer to hallucinations that result in harmful, defamatory, or legally incorrect
content. These instances can have severe real-world consequences, impacting individuals’ rep-
utations, causing financial losses, or leading to legal repercussions. Ethical violations represent
6% of hallucination cases in some analyses. ['7'0%!]

4.6.1 Defamation/misinformation

Examples include ChatGPT falsely claiming a university professor made sexually suggestive
comments and attempted to touch a student, citing a non-existent article!"”'®). Another case
involved ChatGPT falsely accusing a mayor of bribery and imprisonment, when he was actually
a whistleblower.
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4.6.2 Financial misinformation

An Al chatbot providing incorrect refund information to a customer, resulting in financial
loss for both the customer and the airline, exemplifies how hallucinations can lead to tangible
economic harm!'"?.

4.6.3 Legal inaccuracies

LLMs can produce content that deviates from actual legal facts, well-established legal principles,
or precedents. This includes generating "bogus judicial decisions, bogus quotes, and bogus
internal citations”. Such errors can lead to "representational harm,” where the contributions

of one member of the legal community are systematically erased or misattributed "',

4.7 Amalgamated hallucinations

Amalgamated hallucinations occur when the model incorrectly combines multiple facts or condi-
tions presented within a single prompt. This happens when the LLM fails to properly integrate
several distinct conditions, resulting in a blended output that erroneously merges disparate
pieces of information [710%,

4.8 Nonsensical responses

Nonsensical responses are instances where LLMs generate output that is completely irrelevant
to the input prompt. This type highlights the model’s limitations in understanding context or
maintaining a logical thread in a conversation, posing significant challenges in user interaction
scenarios where clarity and relevance are paramount.[*” An example is a conversation about
the NBA Commissioner where the LLM initially mentions " Adam Silver” but then randomly
switches to ”Stern” in the same response.

4.9 Task-specific hallucinations

Hallucinations can manifest uniquely depending on the specific generative task the LLM is
performing.

4.9.1 Dialogue history-based hallucination

This occurs when an LLM mixes up names or relations of entities from the conversation history,
or creates new incorrect inferences based on previous errors, leading to a ”snowball effect” of
distorted context. This arises because LLMs rely on pattern recognition and statistics, often
lacking common sense or factual grounding in dialogue!'?%.

4.9.2 Abstractive summarization hallucination

Systems designed for abstractive summarization can introduce errors or semantic transfor-
mations between the original and generated data, distorting or fabricating details, inferring
unsupported causal relationships, or retrieving unrelated background knowledge. This is at-
tributed to their reliance on pattern recognition rather than true comprehension of the source
texct [100344;64]
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4.9.3 Generative question answering hallucination

In this context, the LLM makes an erroneous inference from its source information, leading to
an incorrect answer, even when relevant source material is provided. The model may ignore

evidence and make unjustified inferences based on its own prior knowledge!'"%"?),

4.9.4 Code generation hallucination

When generating source code, LLMs can produce incorrect, nonsensical, or unjustifiable code
that is difficult to identify and fix, especially under specific execution paths. This under-
mines the trustworthiness of generated code and can introduce significant risks and errors into
codebases. Existing surveys classify these into input-conflicting, context-conflicting, and fact-
conflicting types!”’+.

4.9.5 Multimodal large language models hallucination

In multimodal large language models (MLLMs), hallucinations primarily focus on the ”discrep-
ancy between generated text response and provided visual content,” a phenomenon known as
cross-modal inconsistency *%”*]. Object hallucination in MLLMs is empirically categorized into
three types:

e Category: identifies nonexistent or incorrect object categories in a given image!**"%.

e Attribute: emphasizes incorrect descriptions of objects’ attributes (e.g., color, shape,
material) P59%,

e Relation: assesses incorrect relationships between objects!?%7%,

4.10 Complexities and critical implications of diverse hallucination
types

The extensive list of specific hallucination types (factual, contextual, logical, temporal, eth-
ical, amalgamated, nonsensical) and their distinct manifestations across various applications
(dialogue, summarization, QA, code generation, multimodal) underscores that hallucination
is not a singular, uniform error. Each type often arises from different underlying mech-
anisms [ 50454 T011995072595] - For example, temporal errors might stem from outdated data,
logical inconsistencies from reasoning flaws, and ethical violations from training biases. The
detailed examples, particularly from the medical”"#'? and legal®"'”! domains, vividly illustrate
that these are not merely academic curiosities but critical safety, reliability, and ethical issues
with significant real-world repercussions, such as misleading clinicians, misinforming patients,
legal sanctions, reputational damage, and financial loss. This granular understanding implies
that a ”one-size-fits-all” solution for hallucination is unlikely to be effective. Instead, research
and development must adopt a highly granular and context-aware approach, tailoring detec-
tion, prevention, and mitigation strategies to the specific type of hallucination prevalent in a
given application domain. This also highlights the urgent need for domain-specific benchmarks
and evaluation frameworks to accurately assess and address these diverse forms of factual and
contextual divergence.
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Table 2: Comprehensive taxonomy of LLM hallucinations

Type Definition/description Example Sources
Intrinsic Contradicts provided in- Summary states birth year as 1980
put or context; internal then 1975. [7:70]
inconsistencies.
Extrinsic Not consistent with train- “The Parisian Tiger was hunted to
ing data; introduces non- extinction in 1885.” [79:7)
existent entities.
Factuality Contradicts  real-world “Charles Lindbergh was first to
knowledge or verification walk on the moon.” [42:50;13]
sources.
Faithfulness  Diverges from input Summary claims FDA rejected
prompt or context. vaccine when article stated ap- [64;96:61]
proval.
Factual Er- Incorrect, misleading, or Bard claiming JWST took first
rors fabricated content. exoplanet images. [14]
Contextual Contradicts or adds to Input: “Nile in Central Africa.”
provided context. Output: “Nile in Central African [42:4;27]
mountains.”
Instruction Fails to follow user in- Translates question to Spanish but 7
structions. answers in English. [101]
Logical Internal logical errors or Incorrect arithmetic in step-by-
contradictions. step solution. [42:47;34;95]
Temporal Time-sensitive errors and “Murakami won Nobel Prize in
anachronisms. 2016.” [47:51]
Ethical Harmful, defamatory or False accusation of professor with
legally incorrect content. mnon-existent citation. [47:40:31]
Amalgamated Incorrectly combines (Blending disparate information)
multiple facts. [27:105]
Nonsensical Irrelevant responses lack- Switches from “Adam Silver” to
ing logic. “Stern” in NBA discussion. [42]
Code genera- Incorrect or nonsensical Illogical code unfaithful to require-
tion source code. ments. [57:2]
Multimodal Text-visual content dis- Identifying non-existent object in
[38;98]

crepancies.

image.

5 Underlying causes of hallucinations

This section explores the complex factors contributing to hallucinations,
stemming from training data, model architecture, and user prompts.
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The diverse manifestations of LLM hallucinations stem from a complex interplay of factors
originating from the training data, the model’s architecture and learning processes, and the
nature of user prompts (see summary in Table 3) .

5.1 Data-related factors

The quality and characteristics of the data used to train LLMs are fundamental determinants
of hallucination frequency and type.

5.1.1 Quality and volume of training dataset

The inherent quality and sheer volume of the dataset upon which an LLM is trained are
crucial variables directly influencing the frequency and specific types of hallucinations produced.
Flawed, incomplete, or noisy training data—containing errors, inconsistencies, or irrelevant

information—significantly contributes to the generation of factually incorrect responses!***,

5.1.2 Inadequate representation and biases

If the data used to train LLMs lacks sufficient quality or diversity, the model may struggle to
accurately understand the complexities and nuances of human language. Training on incorrect
or biased data can lead to ”imitative falsehoods,” where the model replicates misinformation
present in its training corpus!**??.

5.1.3 Outdated training data and knowledge boundary

LLMs are prone to disseminating misinformation, particularly concerning frequently updated
topics, primarily due to the static nature of their training datal'l. The absence of up-to-date
facts leads to inherent limitations in specialized domains. A critical issue is the model’s inability
to recognize its own knowledge boundaries, which often results in it confidently generating
content beyond its learned scope[*!l.

5.1.4 Source-reference divergence

In certain datasets, such as those specifically curated for summarization tasks, summaries might
contain additional, unsupported claims that diverge from the original source references, directly
contributing to hallucination!'’.

5.2 Model-related factors

The internal design, training processes, and inference mechanisms of LLMs contribute signifi-
cantly to their propensity for hallucination.

5.2.1 Auto-regressive nature

A fundamental cause of hallucinations arises from the very design principle of certain LLMs:
their auto-regressive nature. These models are programmed to produce output based on token
prediction, meaning they predict the most probable next token(s) given the preceding sequence.
Factual accuracy is not the direct, explicit goal of this process; rather, accuracy is inferred from
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a high probability of adequate token prediction based on the training data. Since training
datasets are necessarily flawed or incomplete, the probabilistic nature of this generation can

lead to hallucinations "%,

5.2.2 Architecture flaws and internal design

The internal design of LLMs inherently predisposes them to generating hallucinations. For in-
stance, unidirectional representation in certain architectures can limit contextual understand-
ing, leading to the generation of one-sided or biased narratives!*.

5.2.3 Training processes

e Exposure bias: a discrepancy between the conditions encountered during training and
those during inference can cause cascading errors during text generation. ™

e Capability misalignment: when LLMs are aligned with capabilities that extend be-
yond what their training data adequately supports, they may produce errors, particularly
fabricated facts in specialized domains where their knowledge is insufficient .

e Belief misalignment: the generated outputs may diverge from the LLM’s internal
"beliefs” or learned representations, leading to inaccuracies. This can sometimes be a
result of the model " pandering” to user opinions rather than adhering to factual truth[*’].

e Over-optimization for specific objectives: over-optimization during the training
phase for certain performance metrics can inadvertently increase hallucination rates in

other areasl

55] .

5.2.4 Decoding strategies

e Stochastic nature/inherent sampling randomness: LLMs employ sampling strate-
gies during text generation that introduce an element of randomness into the output.
A high "temperature” setting, for example, can enhance creativity but also significantly
elevate the risk of hallucination by favoring the selection of low-probability or unexpected
tokens**.

e Imperfect decoding representation: issues such as over-reliance on partially gen-
erated content and the ”softmax bottleneck” can lead to faithfulness errors, where the
output deviates from the intended meaning or context!'”

5.2.5 Overconfidence and calibration

LLMs frequently exhibit overconfidence, generating outputs with high certainty even when the
underlying information is incorrect. Poor calibration, where confidence scores do not accurately
reflect prediction accuracy, can mislead users, particularly clinicians in medical contexts, into

trusting inaccurate outputs, posing significant risks”".

5.2.6 Generalization to unseen cases

LLMs may struggle to generalize effectively beyond their training data, especially when con-
fronted with rare diseases, novel treatments, or atypical clinical presentations. In such sce-
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narios, models might extrapolate from unrelated patterns, producing erroneous or irrelevant

outputs [55;42;22;32]

5.2.7 Lack of reasoning and nuanced language understanding

LLMs primarily rely on statistical correlations learned from vast amounts of text rather than
true causal or logical reasoning. This can lead to outputs that sound plausible but lack logical
coherence. Furthermore, they struggle with interpreting the subtleties of human language,
including irony, sarcasm, and cultural references, which can result in outdated or irrelevant
information when nuance is key. A lack of logical reasoning capabilities is specifically identified
as a significant contributor to fact-conflicting hallucinations[*%*!l.

5.2.8 Knowledge overshadowing

This occurs when certain aspects of a prompt disproportionately dominate the model’s atten-
tion, leading to an overgeneralization of dominant conditions or patterns. This phenomenon is
partly attributable to imbalances within the training data '’

5.2.9 Insufficient knowledge representation

Hallucinations can also arise from deficiencies in the model’s internal knowledge representation,
particularly within the lower layers of its neural network. These deficiencies result in what
are termed ”knowledge enrichment hallucinations,” where the model generates unsupported
information due to gaps in its subject-specific knowledge*"!.

5.2.10 Failure in information extraction

Inaccurate extraction of relevant attributes or details by the model’s higher-layer attention
mechanisms can lead to 7answer extraction hallucinations.” This underscores the critical im-

portance of precise information retrieval and application in generating correct outputs!'”.

5.3 Prompt-related factors

The way users interact with LLMs through prompts can also induce or exacerbate hallucina-
tions.

5.3.1 Adversarial attacks

Deliberate or inadvertent fabrications embedded in user prompts can trigger hallucinations, as

LLMs may elaborate on the false information. This creates a ”garbage in, garbage out” prob-

lem, where erroneous inputs produce misleading outputs, and also poses a threat of malicious
: [99]

misuse .

5.3.2 Overly confirmatory tendency

Some LLMs exhibit an overly confirmatory tendency, sometimes prioritizing a persuasive or
confident style over factual accuracy. This characteristic can exacerbate the impact of prompt-
based fabrications, making the hallucinated content appear more credible!®!.
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5.3.3 Prompting methods

The specific methods and clarity of prompting can significantly influence hallucination rates.
Clearer, more restrictive prompts and providing relevant in-context learning examples (e.g.,
few-shot learning) can help reduce hallucinations by guiding the model more precisely .

5.4 An emergent property requiring systemic solutions

The comprehensive list of causes, spanning data quality, model architecture, training processes,
and inference mechanisms, reveals that hallucination is not a simple bug but an an emergent
property of the current LLM design paradigm. The auto-regressive nature’%** fundamentally
prioritizes generating plausible token sequences based on statistical patterns rather than en-
suring factual accuracy or logical coherence. This statistical reliance, combined with ”black
box reasoning” and inherent ”overconfidence” Pl creates a scenario where models confidently
produce incorrect information. The struggle with ”logical reasoning” [*>*!] and ” generalization
to unseen cases” ""%2%%] points to a deeper limitation beyond mere memorization; LLMs cur-
rently lack true comprehension and causal understanding. Furthermore, the vulnerability to
"adversarial attacks” and the ”garbage in, garbage out” problem [’ highlight the fragility of
these systems to external inputs. Effectively addressing hallucination, therefore, requires a
multi-pronged research agenda that goes beyond superficial fixes like data cleaning or simple
fine-tuning. It necessitates fundamental advancements in model architectures to incorporate
stronger symbolic reasoning capabilities, better uncertainty quantification, and more robust
grounding mechanisms, such as advanced retrieval-augmented generation (RAG) techniques.
The theoretical inevitability of hallucination!” further reinforces that some level of halluci-
nation might always persist, making external safeguards, robust evaluation, and continuous
human oversight crucial for the safe and reliable deployment of LLMs in critical applications.
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Table 3: Root Causes of LLM Hallucinations

Category Specific Factor Explanation Sources
Data Training Data Flawed, incomplete, or noisy data leads to
Quality incorrect responses. [42:32)
Data Biases Lack of diversity causes imitative falsehoods.
[42;22]
Outdated Data Static data causes misinformation on dy-
namic topics. [17:81]
Source Divergence Summaries containing unsupported claims.
[10]
Model Auto-Regressive Token prediction prioritizes probability over
Nature accuracy. [50:38]
Architecture Flaws  Design predisposes models to hallucinate.
(38]
Exposure Bias Training-inference discrepancy causes errors.
[78]
Capability Mis- Fabrication in specialized domains.
alignment [59]
Belief Misalignment Outputs diverge from internal representa-
tions. [43]
Over-optimization Focus on metrics increases hallucinations.
[55]
Sampling Random-  High temperature introduces inaccuracies.
ness [38]
Decoding Issues Over-reliance on partial generation.
[15]
Overconfidence High certainty for incorrect outputs.
[20]
Generalization Fail-  Errors on rare/novel cases.
ure [55;42;22;32]
Reasoning Limits Statistical over causal reasoning.
[42;41]
Knowledge Over- Prompt aspects dominate attention.
shadowing [106]
Knowledge Gaps Deficient internal representations.
[30]
Extraction Failure Inaccurate attention mechanisms.
[105]
Prompt Adversarial Attacks Fabricated prompt details.

Confirmatory Bias

Poor Prompting

Persuasive style over facts.

Unclear structure increases errors.

[99]

[69]

[38]
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6 Cognitive and human factors in hallucination
perception

This section explores how human trust, cognitive biases, and interaction design
influence the perception and impact of LLM hallucinations, emphasizing the need
for user-centered mitigation strategies and human-in-the-loop oversight.

In addition to technical causes, the real-world impact of hallucinations is strongly shaped by
how humans interpret, trust, and respond to language model outputs. Research in human-
computer interaction (HCI), psychology, and decision science indicates that users are not passive
consumers of information—they bring cognitive biases, heuristics, and trust dynamics into their
interactions with LLMs. These factors influence whether hallucinations are detected, ignored,
or acted upon.

6.1 User trust and interpretability

LLMs often produce fluent, well-structured, and grammatically correct responses, which are
commonly interpreted by users as signals of credibility—even when the content is factually in-
correct. This “fluency heuristic” has been observed to increase perceived accuracy of statements
simply due to linguistic polish!®'.

Moreover, large-scale studies have shown that users tend to assign high trust to Al outputs,
particularly when models present information confidently or with detailed elaboration!”!. For
instance, Bubeck et al.l'l found that users often rated GPT-4’s incorrect answers as more
convincing than correct ones from human experts in blind evaluations.

6.2 Hallucinations often go unnoticed

Because hallucinations are often contextually plausible and stylistically convincing, users—especially
non-experts—may struggle to identify falsehoods without access to external verification tools.
This risk is particularly high in areas like health, law, or finance, where subtle distortions can

h : [51;19]
ave serious consequences .

Empirical studies by Luger & Sellen[®’l reveal that users often accept Al-generated outputs
at face value and fail to notice hallucinations—particularly when responses appear fluent and
confident—unless they are explicitly instructed to fact-check, indicating a widespread tendency

to overtrust Al systems as reliable or authoritative sources.

6.3 Cognitive biases amplifying hallucination risks

Several well-established cognitive biases contribute to the tendency to overlook or accept hal-
lucinated content.

6.3.1 Automation bias

This refers to the human tendency to over-rely on automated systems, assuming their outputs
are accurate—even when they are not. In the context of LLMs, users may accept incorrect or
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hallucinated information simply because it comes from an Al, especially in situations involving
time pressure, cognitive overload, or lack of expertise. This bias can lead users to overlook
obvious errors or fail to cross-check information they would otherwise question!”!.

6.3.2 Confirmation bias

This bias describes the tendency to favor information that confirms one’s pre-existing beliefs or
expectations, while dismissing or overlooking contradictory evidence. When interacting with
LLMs, users may be more likely to accept hallucinated content if it aligns with what they
already believe or want to be true, making them less likely to scrutinize its accuracy©771.

6.3.3 Illusion of explanatory depth

This cognitive bias occurs when individuals believe they understand complex topics more deeply
than they actually do. As a result, they may overestimate their ability to evaluate the accuracy
of Al-generated content. When an LLM produces a plausible-sounding explanation or summary,
users may assume it is correct without fully understanding or verifying the underlying concepts,
increasing the risk of accepting hallucinated information %%,

6.3.4 Persistence of biases despite warnings

Research shows that cognitive biases such as automation bias, confirmation bias, and the illusion
of explanatory depth can persist even when users are explicitly informed that Al systems may
produce errors”’l. In experimental settings, users who were told that a decision-support system
was fallible still tended to trust its outputs over their own judgment. This suggests that merely
warning users about possible inaccuracies is often insufficient to prevent overreliance. In the
context of LLMs, this means that even transparent disclaimers or uncertainty indicators may
not fully mitigate the undue influence of confident but hallucinated outputs, especially when
users lack the domain expertise or motivation to verify them independently.

6.4 Design implications and mitigation strategies

These findings suggest that hallucination mitigation is not solely a model-centric challenge,
but also a user interface and interaction design problem. To improve user resilience against
hallucinations, several strategies have been proposed.

6.4.1 Calibrated uncertainty displays

Providing users with visual or textual indicators of a model’s confidence—such as probability
scores, uncertainty ranges, or qualitative labels (e.g., “highly confident,” “low certainty”)—can
help them better judge the reliability of AI outputs”. These displays are especially valuable in
tasks like question answering or medical advice, where the perceived confidence of a model often
influences user trust. When confidence is misaligned with correctness (e.g., high confidence
in a hallucinated answer), users may be misled unless the interface communicates epistemic
uncertainty clearly. Calibrated uncertainty helps users decide when additional verification is
necessary and supports a more cautious interpretation of potentially hallucinated content.
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6.4.2 Source-grounding indicators

Clearly linking parts of the model’s output to supporting evidence from external sources—such
as documents retrieved through a RAG system—can reduce blind acceptance of hallucinated
facts!'"?. Visual markers, citations, or tooltips that explain which parts of a response are
grounded in specific documents enhance transparency and user understanding. By making the
boundary between supported and unsupported content explicit, source-grounding indicators
help users identify which claims are verifiable and which may be speculative or invented, thus
mitigating the impact of hallucinations in high-stakes applications.

6.4.3 Justification prompts

Designing systems that encourage users to ask reflective questions like “Why is this the an-
swer?” or “How do you know that?” promotes more critical evaluation of LLM responses””.
These prompts can be implemented through interface design (e.g., buttons or suggested queries)
or integrated into conversational flows. Encouraging justification-seeking behavior not only in-
creases user awareness of potential inaccuracies but also reinforces an epistemic mindset in
which outputs are evaluated based on evidence and reasoning rather than surface plausibility.
This can be especially helpful in educational or decision-support contexts where understanding
the rationale behind a response is as important as the response itself.

6.4.4 Factuality-aware interface prototypes

Recent research has produced interface prototypes—such as Med-PaLM 2['l—that integrate
design features aimed at improving interpretability and factual reliability. For instance, Med-
PalLM 2 provides clinical references and confidence levels in its medical responses, demonstrating
how multimodal transparency cues—combining visual, textual, and interactive elements—can
enhance user awareness of potential hallucinations, promote responsible usage, and support
informed decision-making, particularly in high-stakes domains like healthcare and public safety.

6.5 Human-in-the-loop evaluation and oversight

Ultimately, hallucination detection and management must be seen as a joint cognitive task
between the LLM and its user. Evaluation frameworks should therefore include human fac-
tors—such as susceptibility to bias, trust calibration, and verification behavior—as part of
their assessment.

This aligns with broader calls in Al safety and responsible Al literature for systems that are

not just high-performing in benchmarks, but usable, trustworthy, and robust under real-world

oy 25:2
conditions #7241,

7 Evaluation benchmarks and metrics for hallucination
detection

This section surveys the principal benchmarks and evaluation metrics developed
to detect and quantify hallucinations in LLMs, highlighting current

methodologies, their limitations, and the need for unified, taxonomy-aware
assessment frameworks.
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The effective detection and quantification of hallucinations in LLMs is a prerequisite for both
empirical research and practical deployment. While considerable progress has been made in
identifying hallucination types and underlying causes, the evaluation of hallucination remains
a challenging and evolving area. This section presents a brief survey of the most prominent
benchmarks and metrics used to assess hallucination in LLM outputs, alongside a discussion of
their limitations and future directions.

7.1 Benchmark datasets

Several benchmarks have been developed to systematically evaluate hallucinations across di-
verse tasks and domains. These datasets vary in scope, annotation methodology, and underlying
definition of hallucination. ["%706:7:57]

7.1.1 Truthful QA

Is a benchmark composed of adversarially constructed questions that intentionally target com-
mon misconceptions, false beliefs, or ambiguities in general knowledge. Unlike traditional
benchmarks that evaluate correctness in terms of expected facts, Truthful QA emphasizes a
model’s robustness against confidently generating plausible-sounding but factually incorrect
statements. It is task-agnostic and domain-general, designed to test whether language models
can distinguish between fact and fiction in open-domain question answering. The benchmark
includes both multiple-choice and free-form response settings and is annotated with human-

53]

verified judgments to assess truthfulness, informativeness, and consistency.

7.1.2 HalluLens

Is a comprehensive benchmark that systematically maps hallucination instances to an explicit
taxonomy encompassing multiple dimensions: factual, ethical, logical, temporal, and task-
specific hallucinations. Unlike task-bound benchmarks, HalluLens is designed to evaluate hal-
lucinations across a wide range of contexts and generation types, including summarization,
question answering, dialogue, and instruction following. Each instance is annotated with de-
tailed metadata specifying the hallucination category, severity, and grounding status. This
makes it particularly suitable for fine-grained, taxonomy-aware evaluation and enables rigor-
ous cross-model comparison aligned with theoretical frameworks. HalluLens serves as both
a diagnostic and comparative tool, helping researchers and developers identify model-specific
hallucination patterns. !’

7.1.3 FActScore

FActScore is a benchmark specifically designed to evaluate the factual consistency of outputs in
summarization tasks. Rather than relying on surface-level similarity metrics such as ROUGE
or BLEU, FActScore employs entailment-based classifiers that have been fine-tuned to deter-
mine whether a generated sentence can be logically inferred from the corresponding reference
source document. This allows it to detect subtle hallucinations, such as fabricated relation-
ships or omitted qualifiers, which might not be flagged by traditional overlap-based metrics.
By providing span-level and sentence-level assessments, FActScore supports a more granular
and semantically precise evaluation of summary fidelity. [*°]
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7.1.4 Q2 and QuestEval

These metrics adopt an indirect yet powerful approach to evaluating factual consistency through
question generation and answering. Q2 (Quality Questioning) generates a set of questions
based on the system output and then uses the source document to answer them. If the answers
from the source align with those implied by the generated summary, the output is considered
faithful.’”) QuestEval, similarly, computes consistency by comparing answers to questions
generated from both the candidate and reference texts. These methods do not rely on static
reference texts but instead treat the source content as a dynamic knowledge base, allowing
for flexible and contextual evaluation of hallucination. Their strength lies in capturing factual
divergences that traditional string-matching metrics often overlook. [*"]

7.1.5 Domain-specific benchmarks

Benchmarks developed to evaluate hallucinations in specialized and high-risk applications such
as medicine, software engineering, and multimodal reasoning. [7*10%75:945]

e MedHallu this is a comprehensive benchmark specifically designed for detecting medical
hallucinations in LLMs. It comprises 10,000 high-quality question-answer pairs derived
from PubMedQA, with hallucinated answers systematically generated through a con-
trolled pipeline.[™

e MedHallBench another recent and comprehensive benchmark framework for evaluating
and mitigating hallucinations in Medical LLMs. It integrates expert-validated medical
case scenarios with established medical databases. "]

e Med-HALT this benchmark proposes a two-tiered approach to evaluate the presence
and impact of hallucinations in biomedical-generated LLM outputs. It includes Reasoning
Hallucination Tests (RHTs) like False Confidence Test (FCT), None of the Above (Nota)
Test, and Fake Questions Test (FQT), as well as Memory Hallucination Tests (MHTs)
such as Abstract-to-Link and PMID-to-Title tests.[™]

e CodeHaluEval targets the evaluation of hallucinations in code-generating language
models (CodeLLMs). It includes programming tasks and ground truth outputs annotated
for syntactic validity, semantic correctness, and adherence to functional requirements.
The benchmark categorizes hallucinations into input-conflicting, context-conflicting, and
fact-conflicting errors. It plays a crucial role in identifying code that may appear plausible
but fails to execute correctly or violates specifications—risks that can lead to software
bugs, security vulnerabilities, or production failures.

e HALLUCINOGEN benchmark is a novel and comprehensive Visual Question An-
swering (VQA) benchmark specifically designed to evaluate and identify ”object hallu-
cination” in Large Vision-Language Models (LVLMs). Unlike previous benchmarks that
often rely on simple queries, HALLUCINOGEN introduces a diverse set of ”object hal-
lucination attacks” through complex contextual reasoning prompts. These prompts are
crafted to challenge LVLMs by asking about visual objects that may or may not be present
in an image, forcing the models to accurately identify, locate, or perform visual reasoning
around specific objects, thereby exposing instances where they fabricate or misclassify
objects. "]

These domain-specific benchmarks are indispensable for the safe evaluation of LLM performance
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in contexts where hallucinations may lead to misdiagnosis, faulty software behavior, or visual
misinterpretations, thus bridging the gap between generic metrics and task-critical assessment.

7.2 Quantitative metrics

Metrics used to evaluate hallucination are typically classified according to the type of alignment
they measure—faithfulness to input, factuality with respect to external knowledge, or semantic
consistency.

7.2.1 Faithfulness metrics

These metrics assess whether the generated output remains consistent with the provided input
or prompt:

¢ ROUGE, BLEU, and BERTScore: these metrics are primarily surface-level or embedding-
based similarity metrics. They evaluate the generated text by comparing it to a source or
reference text, assessing shared words, phrases, or underlying semantic representations.

— ROUGE (Recall-Oriented Understudy for Gisting Evaluation): this metric
is widely used in summarization to measure the overlap of n-grams (sequences of
words) between the generated text and a reference. For example, ROUGE-1 assesses
unigram overlap, ROUGE-2 measures bigram overlap, and ROUGE-L identifies the
longest common subsequence. Its "recall-oriented” nature emphasizes how much of
the reference’s information is captured in the generated output!”.

— BLEU (Bilingual Evaluation Understudy): originally developed for machine
translation, BLEU quantifies the precision of n-grams in the generated text compared
to a reference, penalizing for brevity. It focuses on the extent to which the generated
text’s content is also present in the reference!™!.

— BERTScore: a more advanced metric, BERTScore employs contextual embeddings
from large language models (such as BERT) to measure the semantic similarity
between words and sentences in the generated text and the reference. This capability
allows it to identify paraphrases or synonyms even when exact word matches are
absent ["1].

— Limitations: while useful for initial assessments, these metrics are often insufficient
for detecting nuanced semantic errors or fabrications. High scores on ROUGE,
BLEU, or BERTScore do not guarantee factual accuracy, as a text can exhibit high
lexical or semantic similarity while still containing subtle inconsistencies or outright
hallucinations. They do not inherently assess the truthfulness of a statement, only
its textual similarity ["%7%104,

e FactCC: stands for " Fact-Checking with Contextualized Commonsense,” is a specialized
metric developed specifically for detecting hallucinations, particularly within summa-
rization tasks. Unlike simpler similarity metrics, FactCC employs a trained classifier.
This classifier learns to identify factual inconsistencies by being trained on datasets of
summaries paired with their source texts, where human annotators have meticulously
labeled instances of factual inconsistencies. This methodology allows the classifier to rec-
ognize patterns that indicate unfaithfulness. Its primary advantage lies in its improved
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precision in hallucination detection; because it’s explicitly trained to identify inconsisten-
cies, FactCC is more effective at catching factual errors than metrics that rely solely on
surface-level comparisons, aiming to determine if a generated statement truly contradicts
the original source material **.

e SummaC: is a metric that assesses factual consistency by leveraging the principles of
Natural Language Inference (NLI). NLI is a core task in natural language processing
where a model determines the logical relationship between two sentences: whether one
sentence (the "hypothesis”) is entailed by, contradicts, or is neutral with respect to an-
other sentence (the ”"premise”). In SummaC’s application, segments of the source text
serve as the premise, while sentences from the Al-generated output (such as a summary)
act as the hypothesis. An NLI model then evaluates if each statement in the generated
output is entailed by the source text, signifying factual consistency. Conversely, state-
ments that contradict the source or are not supported by it may indicate a hallucination
or an unverified claim. SummaC’s strength lies in its ability to model factual consistency
through these entailment relationships, which closely align with how humans judge factual
accuracy, offering a more robust assessment of faithfulness compared to methods based
on simpler lexical or embedding similarity "),

7.2.2 Factuality metrics

These metrics measure the alignment of generated content with real-world facts or structured
knowledge sources, moving beyond mere consistency with input prompts to verify external
veracity.

e Knowledge Intensive Language Tasks (KILT): is a benchmark designed to evaluate
the factual accuracy and knowledge-groundedness of language models. It specifically as-
sesses the ability of generated content to align with factual information found in structured
knowledge sources. The core methodology involves linking entities and claims present in
the generated text to corresponding entries and facts within established knowledge bases,
such as Wikipedia. This approach allows for a direct verification of whether the model’s
output reflects verifiable real-world knowledge rather than merely being coherent or con-
sistent with an initial prompt. KILT’s tasks often require models to generate text that can
be directly verified against these external knowledge sources, making it a robust measure
of a model’s factual grounding[™.

e Retrieval-Augmented Evaluation (RAE): is a methodology used to assess the fac-
tual grounding of generated claims, particularly within Retrieval-Augmented Generation
(RAG) pipelines. RAE operates by evaluating whether the evidence retrieved by a RAG
system genuinely supports the claims made in the generated output. The process typically
involves two main steps: first, identifying the claims made by the language model, and
second, verifying these claims against the specific knowledge snippets or documents that
the retrieval component of the RAG system provided as grounding evidence. This metric
offers a scalable and efficient way to judge the factual accuracy and support of generated
text, as it directly checks the consistency between the model’s output and its purported
factual basis derived from the retrieval step. RAE is crucial for ensuring that RAG models

do not hallucinate information, even when provided with relevant context ['%5425%]
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7.2.3 Human evaluation

Despite the proliferation of automated metrics, human evaluation remains the most reliable
and widely accepted method for hallucination detection. Annotators typically assess outputs
based on criteria such as:

e Correctness: this criterion assesses whether the generated content aligns with verifiable
real-world facts. An output is considered correct if it can be independently validated
against trusted knowledge sources. Inaccuracies, fabrications, or distortions of known
information constitute a lack of correctness!***%.

e Faithfulness: measures the extent to which the model’s output remains consistent with
the input prompt or source material. An output is unfaithful if it introduces information
not present in the input, omits critical elements, or misrepresents the source. Faithfulness
is especially important in summarization, translation, and question-answering tasks!©*'%,

e Coherence: refers to the logical consistency and internal structure of the output. A
coherent response maintains a stable topic, avoids contradictions within itself, and follows
a clear and understandable flow of reasoning. Incoherent outputs may contain abrupt
topic shifts, self-contradictions, or illogical argumentation /%%,

e Harmfulness or bias: this dimension captures whether the output contains content
that could be ethically problematic, offensive, or unsafe. This includes outputs that
propagate harmful stereotypes, generate defamatory claims, or offer misleading informa-
tion in domains like medicine, law, or finance. Special attention is needed in safety-
critical applications where biased or harmful content could have serious real-world conse-
quences [5;107;93;5(5]‘

However, human evaluation is costly, time-consuming, and often subject to inter-rater variabil-
ity, underscoring the need for more robust and interpretable automatic metrics.

7.3 Limitations and open challenges

Despite advancements in automated evaluation, current benchmarks and metrics for hallucina-
tion detection in Al-generated content face several persistent limitations that impede compre-
hensive and comparable assessments.

7.3.1 Lack of standardization

A significant challenge is the absence of a universally accepted definition of hallucination. Var-
ious benchmarks and research studies adopt differing conceptualizations, leading to inconsis-
tencies in how hallucinations are annotated and measured. This definitional variability makes
it exceedingly difficult to conduct fair and meaningful comparisons of hallucination rates and
detection capabilities across different models, datasets, or evaluation frameworks. The absence
of a shared understanding and operationalization of ”hallucination” hinders the development
of generalizable solutions and a cumulative scientific discourse.

7.3.2 Task dependence

The effectiveness of current metrics is often highly dependent on the specific natural language
processing task being evaluated. Metrics that might demonstrate reasonable performance in
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detecting hallucinations within summarization tasks, for instance, frequently fail to generalize
or perform adequately in other domains such as question answering (QA), dialogue generation,
or code generation. This limitation arises because the nature and manifestation of hallucina-
tions can vary significantly across tasks. What constitutes a hallucination in a factual summary
(e.g., inventing a detail) might differ from an unfaithful response in a dialogue system (e.g.,
contradicting prior turns) or an incorrect function in code generation. This task-specific per-
formance necessitates the development of specialized metrics for each application, increasing
complexity and fragmentation in the evaluation landscape.

7.3.3 Insensitivity to subtle hallucinations

Many existing metrics, particularly those relying on surface-level textual similarity or basic
factual checks, are inherently unable to detect more nuanced and insidious forms of hallucina-
tion. These can include low-level factual shifts (slight alterations to numerical values or dates),
subtle inferential errors (drawing an incorrect conclusion from otherwise correct premises), or
context-dependent misalignments where a statement might be technically plausible but factu-
ally incorrect given the specific context of the input. Such subtle hallucinations are challenging
to identify automatically, as they often require deep semantic understanding, complex logical
reasoning, or access to vast external knowledge bases, making them particularly deceptive and
hard to mitigate

7.3.4 Limited grounding and explainability

A critical drawback of most automatic hallucination detection scores is their lack of inter-
pretability and diagnostic value. These metrics typically provide a numerical score indicating
the presence or absence of hallucination but offer little to no insight into why a particular
output is deemed hallucinated. This limited grounding means that developers receive minimal
actionable feedback on the specific type of error, the source of the factual deviation, or the
exact portion of the generated text responsible for the hallucination. Without this granular
insight, debugging models, understanding their failure modes, and implementing targeted im-
provements for hallucination reduction become significantly more challenging and less efficient.
The lack of explainability impedes effective model development and refinement.

7.4 Toward unified evaluation frameworks

Future progress depends on the development of comprehensive, taxonomy-aware, and domain-
adapted evaluation frameworks that:

e Incorporate multi-level evaluation, combining surface-level similarity with logic- and
knowledge-aware assessment;

e Leverage retrieval-based and symbolic tools to enhance grounding;
e Standardize annotation protocols and metrics across tasks;
e Integrate model uncertainty and confidence calibration into evaluation.

Ultimately, the path to robust hallucination mitigation must be rooted in rigorous, context-
sensitive measurement. Without accurate and scalable evaluation tools, efforts to reduce hal-
lucination risk in real-world applications will remain incomplete and difficult to validate.
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8 Hallucination mitigation strategies

This section surveys both architectural and systemic approaches to mitigating
hallucinations in LLMs, including tool augmentation, retrieval grounding,
fine-tuning, symbolic guardrails, and user-facing strategies such as uncertainty
displays and fallback mechanisms.

Given the theoretical inevitability of hallucinations in LLMs[®l, researchers and developers

have proposed a range of mitigation strategies. These can be broadly categorized into two
groups: architectural strategies, which modify how the model itself is trained or behaves dur-
ing inference, and systemic strategies, which shape how the model is embedded, controlled,
or interpreted within a broader application context. Both are necessary for creating robust,
trustworthy systems that minimize the frequency and harm of hallucinations.

8.1 Architectural mitigation strategies

Architectural strategies operate at the model level and seek to reduce hallucination risk by
directly improving the model’s grounding, reasoning, or factual alignment capabilities. These
interventions are typically implemented through changes in training data, model design, or
auxiliary components used at inference time.

8.1.1 Toolformer-style augmentation

Recent advances in tool-augmented LLMs propose allowing the model to call external APIs,
calculators, code interpreters, or structured knowledge tools during inference. Toolformer !,
for example, fine-tunes an LLM to decide when and how to use external tools to answer ques-
tions more reliably. Instead of relying purely on parametric memory, the model delegates sub-
tasks—such as date calculations, currency conversions, or fact retrieval—to external systems

better equipped to handle them.

This approach offloads fact-intensive or computation-heavy tasks to specialized modules, signifi-
cantly reducing hallucination risk in those areas. The model learns to invoke tools autonomously
during generation, producing more grounded and verifiable responses while maintaining fluency.

8.1.2 Factual grounding through retrieval mechanisms

(RAG) is one of the most widely adopted hallucination mitigation frameworks. In RAG sys-
tems["%% the model is paired with a retrieval component that fetches relevant documents
or knowledge snippets from a curated corpus (e.g., Wikipedia, academic papers, or enterprise
databases) in response to a user query. These retrieved documents are then passed as additional
input context to the LLM, grounding the generated response in verifiable sources.

RAG reduces the likelihood of hallucination by:
e Constraining generation to content retrieved from external knowledge bases.
e Allowing the model to quote, summarize, or paraphrase from known references.

e Providing users with transparency and traceability via document citations.
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Prominent RAG implementations include Google’s Bard, Meta’s BlenderBot 3, and enterprise
systems like Microsoft’s Copilot and Amazon Bedrock. Despite its advantages, RAG is not
foolproof: the model may still hallucinate if it fails to properly interpret or align with the
retrieved material "),

8.1.3 Fine-tuning with synthetic or adversarially filtered data

Another mitigation strategy involves fine-tuning LLMs on curated or synthetic datasets de-
signed to reduce hallucination tendencies. Two prominent approaches include:

e Synthetic factuality tuning: Models are trained or fine-tuned on large corpora of
verified, well-grounded question-answer pairs. These may be created through human
annotation or automatically generated and filtered using factual consistency metrics?".

e Adversarial filtering: Using hallucination detection models or adversarial prompts to
identify and filter out outputs that exhibit hallucination. These filtered outputs can be

used to refine the LLM or train classifier modules that flag likely hallucinated content ",

Although effective in reducing hallucinations on benchmark tasks, these methods face limita-
tions in scalability, domain generalizability, and susceptibility to dataset bias.

8.2 Systemic mitigation strategies

Systemic strategies are applied at the deployment or user interface level and focus on shaping
how LLM outputs are interpreted, controlled, or constrained in real-world contexts. These
strategies often complement architectural solutions by providing guardrails and transparency
mechanisms to reduce the risk and impact of undetected hallucinations.

8.2.1 Guardrails and symbolic integration

Guardrails are rule-based or symbolic control mechanisms that constrain the behavior of LLMs
during inference. These include:

e Logic validators: these components evaluate whether an LLM’s output is internally
consistent or conforms to formal rules in a given domain—such as mathematics, pro-
gramming, or natural language logic. For example, in arithmetic tasks, a logic validator
can compare the model’s answer against a rule-based calculator. In legal or contractual
reasoning, outputs can be assessed for compliance with regulatory clauses or logical struc-
tures. By acting as a correctness gatekeeper, logic validators help identify outputs that
may be fluent but logically invalid[*].

e Factual filters: factual filtering involves post-processing model outputs to detect contra-
dictions or inconsistencies with a trusted external source, such as a structured database
or knowledge graph (e.g., Wikidata, UMLS, or proprietary enterprise data). These sys-
tems can match generated claims against canonical facts and either flag inaccuracies or
attempt automatic correction. For instance, if a model claims that “Paris is the capital
of Germany,” a factual filter could detect the mismatch and suggest a correction based on
structured geopolitical datal”’). Such filters are particularly valuable in domains where
factual consistency is non-negotiable, like medicine, finance, and policy generation.
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¢ Rule-based fallbacks: in scenarios where uncertainty is high or outputs are flagged
as potentially hallucinated—either by a validator, confidence threshold, or user feed-
back—the system can execute predefined fallback policies. These include refusing to
answer (e.g., “I'm not confident enough to provide a reliable response”), rerouting the
request to a human-in-the-loop, or prompting the user for clarification. Rule-based fall-
backs act as safety valves, especially in high-stakes contexts, by enforcing cautious behav-
ior when confidence or factuality cannot be guaranteed. They are also used in frameworks
such as Reinforcement Learning with Human Feedback (RLHF), where such flags inform
future model training!*).

Symbolic integration—where models are combined with deterministic reasoning systems—represents
a promising frontier for hallucination mitigation. Neuro-symbolic systems, for example, blend
statistical generation with formal logic, enabling models to verify or revise outputs before pre-
sentation .

8.3 Toward hybrid and context-aware mitigation systems

As no single technique fully eliminates hallucinations across all tasks and domains, the most
promising direction lies in the development of hybrid mitigation systems—architectures that
combine multiple complementary strategies to reduce both the frequency and the impact of
hallucinated outputs.

An effective hybrid system integrates strengths from various approaches:

e Tool use enables precise, verifiable outputs by delegating computation-heavy or fact-
specific tasks (e.g., date calculation, code execution, currency conversion) to external
APIs or structured functions.

e Retrieval grounding supplements the model’s internal representations with up-to-date
and verifiable information drawn from external sources, reducing reliance on the model’s
imperfect parametric memory.

e Fine-tuning shapes the model’s inductive biases, helping it learn patterns of truthfulness
and factual consistency based on curated datasets or adversarially filtered examples.

e Guardrails—such as rule-based filters, logic validators, or knowledge-based correction
systems—enforce hard constraints and provide a safety net to catch hallucinations that
might bypass other safeguards.

In addition to being hybrid, future mitigation systems should be context-aware, meaning they
adapt their strategies dynamically based on the specifics of the application. For example:

e In high-stakes domains like medicine, law, or finance, the system may be configured to
prioritize factual accuracy over fluency, enforce mandatory citation or retrieval grounding,
and invoke fallback procedures when confidence is low.

e In creative or exploratory domains such as brainstorming or storytelling, the system might
allow more open-ended generation with relaxed factual constraints, while still flagging
potentially unverifiable claims.

e In user-facing applications, personalization mechanisms could adjust how hallucination
warnings, uncertainty indicators, or references are displayed based on user expertise or
preferences.
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In summary, while hallucination is an inherent risk in current-generation LLMs, its harm can
be significantly reduced through a layered approach that combines architectural improvements
with systemic controls tailored to the use case. Hybrid, context-sensitive systems represent a
practical and responsible path toward building language models that are not only powerful,
but also trustworthy, accountable, and safe for deployment in real-world environments.

9 DMonitoring LLM releases and performance:
web-based resources

This section introduces leading web-based resources that researchers can use to
monitor LLM releases and evaluate model performance over time, including
hallucination trends, intelligence benchmarks, user preferences, and system cost.

As LLMs evolve rapidly, staying informed about new releases, performance metrics, and emerg-
ing trends is crucial for researchers, developers, and decision-makers. Rather than relying on
static performance comparisons, the following platforms offer continuously updated, transpar-
ent, and publicly accessible dashboards that track and evaluate LLM capabilities across a range
of tasks, including reasoning, factuality, speed, cost, and hallucination rates.

9.1 Artificial Analysis

*

Artificial Analysis * is a comprehensive, independent benchmarking platform that compares
LLMs and other AT models across several key dimensions. This resource is particularly useful
for tracking models that prioritize reasoning and factual grounding—important proxies for
hallucination control—even if hallucination itself is not directly measured. Its core features
include.

9.1.1 Intelligence index

A composite score based on multiple benchmarks (e.g., MMLU-Pro, GPQA, HLE, LiveCodeBench)
reflecting reasoning, problem-solving, and factual capabilities.

*https://artificialanalysis.ai
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Figure 1: Sample visualization of the Al Index, retrieved on 28 June 2025

9.1.2 Cost and latency

Side-by-side comparisons of price per 1K tokens, response latency, and context window limits
for models across different providers.
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Figure 2: Sample visualization of intelligence versus price, retrieved on 28 June 2025
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Latency: Time To First Answer Token
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Figure 3: Sample visualization of latency, retrieved on 28 June 2025

9.1.3 Model pages
In-depth performance breakdowns for each model version (e.g., GPT-40, Claude 3.5, LLaMA
3.1), including context sensitivity, update history, and comparative strengths.

9.1.4 Multimodal and API benchmarks
Performance data for text-to-image, code, audio, and video generation models.
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Figure 4: Sample visualization of text to image, retrieved on 28 June 2025
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Artificial Analysis Coding Index

Represents the average of coding benchmarks in the Artificial Analysis Intelligence Index (LiveCodeBench & SciCode)
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Figure 5: Sample visualization of code generation, retrieved on 28 June 2025

Word Error Rate

Word error rate: % of words transcribed incorrectly, Lower is better
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Figure 6: Sample visualization of audio generation (text to speech, word error rate), retrieved

on 28 June 2025

9.1.5 Quarterly state-of-AI reports

Strategic summaries and macro-level trends such as architectural shifts, emergent capabilities,

and safety trade-offs.
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Figure 7: Sample visualization of intelligence over time, retrieved on 28 June 2025
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9.2 Vectara Hallucination Leaderboard

Maintained by Vectara, this GitHub-based leaderboard! is one of the few public efforts that
explicitly tracks hallucination rates in LLM outputs. Its key features include:

e Task-specific evaluation: focuses on hallucination in summarization tasks using human-
labeled ground truth references.

e Quantitative metrics: reports both hallucination rate (percentage of hallucinated re-
sponses) and accuracy rate (non-hallucinated responses), usually based on hundreds of
test samples per model.

e Comparative analysis: includes OpenAl models (GPT-3.5, GPT-4), Anthropic’s Claude,
Meta’s LLaMA, and other open-source models.

e Consistent benchmarking methodology: uses the same prompt structure and eval-
uation rubric across all models for fair comparison.

This leaderboard is an essential tool for researchers focusing on the hallucination problem,
particularly in summarization-heavy applications such as legal, academic, or news content gen-
eration.

Grounded Hallucination Rate of Best LLMs
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Figure 8: Sample visualization of grounded hallucinations rate using Hughes hallucination
evaluation model, retrieved on 29 June 2025

9.3 Epoch Al Benchmarking Dashboard

The Epoch AI Benchmarking Dashboard?, a project by the nonprofit research organization
Epoch, serves as a valuable resource for understanding the long-term trends in Al capabilities.
While it doesn’t directly measure hallucination, the dashboard’s focus on benchmarks such
as factual QA and reasoning indirectly reflects a model’s propensity for generating inaccurate

thttps://github.com/vectara/hallucination-leaderboard
https://epoch.ai/data/ai-benchmarking-dashboard
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or fabricated information, making it useful for meta-analyses on the topic. By understanding
the factors that contribute to higher accuracy in these benchmarks, we can infer strategies for
mitigating hallucinations.

The dashboard offers several key features that contribute to this understanding;:

e Cross-time comparisons: it meticulously tracks the improvement of leading models
over time across various tasks, including MMLU, ARC, and BIG-bench. Improvements
in these areas, particularly factual recall and logical consistency, directly correlate with a
reduced likelihood of hallucination.

e Benchmark aggregation: it combines results from reasoning, language understand-
ing, and coding tasks, enabling a comprehensive analysis of broad capability trends.
Enhanced reasoning and language understanding are critical for models to accurately
interpret prompts and generate contextually relevant, non-hallucinatory responses.

e Historical model context: the dashboard incorporates models dating back to 2018,
providing a rich historical perspective on performance scaling and the evolution of Al
systems. This allows for observing how changes in model architecture and training have
impacted accuracy, offering insights into what contributes to more reliable outputs.

e Data transparency: it prioritizes transparency by including information on dataset
origins, training scale, and publicly available model sizes. This transparency is crucial for
researchers to understand the underlying factors that contribute to model performance
and, by extension, to identify potential sources of hallucination.

Beyond these general features, the provided graphs and accompanying text explanations from
Epoch AI highlight several insightful trends pertinent to Al performance and, by extension,
offer direct implications for combating hallucinations:

9.3.1 Accuracy versus training compute

As illustrated in the ” Accuracy versus training compute” graph, a clear correlation exists be-
tween the estimated training compute (in FLOPs) and the GPQA Diamond and MATH Level
5 accuracies. For GPQA Diamond, models with less than 10** FLOPs often struggle to perform
above random chance, sometimes even performing worse due to difficulties in understanding
question formatting. This indicates a higher likelihood of generating nonsensical or hallu-
cinated answers. However, beyond this threshold, performance shows a notable increase of
approximately 12 percentage points for every 10x increase in compute. Similarly, on MATH
Level 5, models with higher compute estimates generally achieve higher scores, with perfor-
mance increasing around 17 percentage points for every 10x increase in pretraining compute,
though this trend appears noisier.

The direct implication for fighting hallucinations is clear: increased training compute leads to
more accurate models, which are inherently less prone to hallucinate. Greater computational
resources allow models to learn more intricate patterns, better understand factual relationships,
and perform more robust reasoning, all of which directly combat the generation of fabricated
information. The graph also underscores the impact of algorithmic progress: more recent models
like DeepSeek-R1, Phi-4, or Mistral Small 3 surpass older models trained with comparable
compute. This suggests that algorithmic advancements, alongside increased compute, are vital
for developing models that are more reliably accurate and thus less prone to hallucinate.
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Figure 9: Sample visualization of accuracy versus training compute, retrieved on 29 June 2025

9.3.2 Open source versus propietary

The "Models with downloadable weights vs proprietary” graph demonstrates a discernible
performance gap between models with downloadable weights (often open-source) and their
top-performing, often proprietary, counterparts. On the GPQA Diamond benchmark, models
with downloadable weights tend to lag behind. For instance, in January 2025, OpenAl’s ol
outperformed the best downloadable model at the time, Phi-4, by a significant 20 percentage
points. A similar disparity was observed on MATH Level 5, where Phi-4 trailed ol by 29
percentage points. Epoch’s analysis further suggests that the best-performing open LLMs
lagged the best closed LLMs by a considerable margin, ranging from 6 months on GPQA
Diamond to 20 months on MMLU.

This performance gap has significant implications for addressing hallucinations. The limited
access to the weights of top-performing models hinders open research into the root causes and
mitigation strategies for hallucinations. Researchers cannot directly probe or modify these
models to understand why they generate more accurate (and thus less hallucinatory) outputs.
However, the release of DeepSeek-R1 in January 2025 marked a notable shift, significantly
narrowing this performance gap. On MATH Level 5, DeepSeek-R1 only lagged behind the
then-best-performing model, 03-mini, by 2 percentage points. This closing gap is crucial as it
suggests that open-source models are catching up in terms of accuracy, which could accelerate
community-driven efforts to understand and reduce hallucinations in publicly available models.
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Figure 10: Sample visualization of models with downloadable weights vs proprietary, retrieved
on 29 June 2025

9.3.3 Geographic disparities and performance

The ”"US models vs non-US” graph highlights a consistent trend where leading US-developed
models exhibit higher accuracies than non-US models on both GPQA Diamond and MATH
Level 5 benchmarks. For example, OpenAl’s ol leads on GPQA Diamond, while 03-mini holds
the top spot on MATH Level 5, both being US models.

This geographical disparity in performance indirectly impacts the global effort to combat hallu-
cinations. Higher-performing models, regardless of their origin, generally exhibit fewer halluci-
nations due to their superior understanding and reasoning capabilities. The current dominance
of US models suggests that much of the cutting-edge research driving accuracy improvements
(and thus hallucination reduction) might be concentrated in US-based organizations. However,
with the release of DeepSeek-R1 in January 2025, the performance gap between US and non-US
models has substantially reduced. DeepSeek-R1, a non-US model, now trails 03-mini by only
2 percentage points on MATH Level 5 and scores just 4 percentage points lower than ol on
GPQA Diamond. This narrowing gap indicates a more distributed advancement in Al capabil-
ities, which is positive for fostering diverse approaches and collaborations in the fight against
hallucinations globally.
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Figure 11: Sample visualization of US models vs non-US, retrieved on 29 June 2025

9.3.4 Performance on expert-level mathematics problems

The "models performance on expert-level mathematics problems” graph, focusing on Frontier-
Math accuracy, provides insights into the capabilities of various AI models in tackling complex
mathematical challenges. While the previous graphs mainly used GPQA Diamond, this one
provides a different perspective on performance. The data points show the FrontierMath accu-
racy for different models from various organizations (OpenAl, Anthropic, xAI, Google, Mistral
AT, Alibaba, Meta AI, DeepSeek) over time, with error bars indicating the range of results. No-
tably, models like o4-mini (medium), o3-mini (high), and ol (high) from OpenAl demonstrate
some of the highest accuracies, particularly in the later part of the timeline (late 2024 to early
2025).

This specific benchmark, while not directly tied to hallucination, is crucial for assessing a
model’s logical reasoning and problem-solving abilities. A high degree of accuracy on expert-
level mathematics problems is a strong indicator of a model’s foundational understanding and
ability to produce precise, non-contradictory outputs. Models that struggle with such tasks are
more likely to generate illogical or fabricated results in less constrained domains. Therefore,
improvements in FrontierMath accuracy can be seen as a proxy for increased robustness against
hallucinations, as it signifies a deeper and more reliable cognitive capacity within the AT model.
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Figure 12: Sample visualization of models performance on expert-level mathematics problems,
retrieved on 29 June 2025

9.4 LM Arena

Created by researchers from UC Berkeley’s SkyLab, LM Arena (formerly LMSYS Chatbot
Arena)® is an open platform where anyone can easily access, explore, and interact with the
world’s leading AI models. The platform’s foundational values, as expressed by its founders
when the first leaderboard was launched in July 2023, are deeply rooted in research: to create
a rigorous, reproducible, community-led framework for real-world model evaluation. This com-
mitment to open, community-driven assessment makes LM Arena a uniquely valuable resource
for understanding AT model behavior, particularly concerning the critical issue of hallucination.
While not explicitly designed as a hallucination detector, its methodology provides crucial qual-
itative insights into how users perceive model accuracy, helpfulness, and trustworthiness, all of
which are intrinsically linked to the presence or absence of factual inaccuracies or fabricated
information.

The core of LM Arena’s operation, designed like a tournament, involves models being compared
anonymously side-by-side, with users voting for the better response. This structure of anony-
mous battles, dynamic prompts (approximately 70% of prompts each month are fresh), and a
rotating user base, was specifically designed to reduce bias and reflect diverse, real-world use
cases. This dynamic testing environment makes it impossible for models to predict or "mem-
orize” specific evaluation scenarios, ensuring that their performance, including their tendency
to hallucinate, is genuinely assessed based on real-time, novel interactions. Its key features are
particularly relevant to the study of hallucinations:

Shttps://lmarena.ai/leaderboard
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9.4.1 Battle-style comparisons and dynamic prompts

Models are compared head-to-head in blind A/B testing formats by real users, who vote on
preferred responses. The anonymity of models and the constant introduction of fresh prompts
mean that models cannot optimize for specific test cases. This structure means users are implic-
itly evaluating which model provides more accurate and reliable information, directly penalizing
models that hallucinate. A user is far more likely to prefer a response that is factual, coherent,
and contextually appropriate over one that contains made-up details or nonsensical statements.
This "real-world usage” approach contrasts sharply with static benchmarks, providing a robust
signal for hallucination.

9.4.2 Diversity of models and transparent testing

The platform includes a wide array of both proprietary (e.g., OpenAl, Anthropic, Google, Meta,
Alibaba) and open-source (e.g., Mistral, LLaMA, Zephyr) models, with over 40% of battles
involving an open model. LM Arena works directly with model providers for testing, comparing,
and improving models both before (via pseudonyms/codenames) and after official release. This
provides a shared infrastructure for reproducible and transparent evaluation. This diverse
representation and testing methodology allows for comparisons across different development
philosophies and architectures, helping to identify whether certain approaches or model types
are inherently more prone to hallucination in various real-world interaction contexts. Only
publicly released models with longer-term support get ranked on the leaderboard, ensuring
that the community can verify results through their own testing.

9.4.3 High-quality qualitative judgments driven by intrinsic motivation

Crucially, voters implicitly assess fluency, factuality, helpfulness, and hallucination tenden-
cies—providing a rich complementary signal to traditional benchmarks. Since there’s no pay-
ment or external incentive, votes come from intrinsic motivation, fostering a community of
diverse subject-matter experts who provide authentic, thoughtful evaluations on their own
prompts. When a user deems a response unhelpful, untrustworthy, or simply incorrect, it often
stems from a factual inaccuracy or a fabricated piece of information—a direct manifestation
of hallucination. These high-quality qualitative judgments, gathered at scale, offer a power-
ful "human-in-the-loop” feedback mechanism for identifying models that consistently produce
non-hallucinatory content. They capture the nuanced user experience and reactions to model
outputs that purely quantitative metrics might miss.

9.4.4 Community-shaped leaderboard and transparency

Over time, these votes in battle mode add up to a public leaderboard that reflects collective,
real-world judgment. This democratically shaped leaderboard makes Al progress more trans-
parent, accessible, and grounded in actual usage. Models consistently ranking higher are, by
extension, those perceived as more reliable and less prone to frustrating users with incorrect or
fabricated information. This dynamic ranking can serve as an early warning system for models
that start exhibiting higher hallucination rates, as user dissatisfaction would quickly reflect in
their standings. Additionally, while prompts and votes from all modes (battle, side-by-side,
direct chat) are collected for transparent research, only anonymous battle votes contribute
to the leaderboards, ensuring fairness. LM Arena also supports open research beyond the
leaderboard, actively developing new artifacts and statistical methods to understand human
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preference with clarity and precision, including decomposing preference into components like
tone, helpfulness, formatting, and emotional resonance. This research directly contributes to
understanding how Al is perceived and trusted, which are key variables in understanding and

mitigating hallucinations.
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Although not focused exclusively on hallucination, LM Arena provides real-world insights into
which models are perceived as most helpful and trustworthy by end users. This user perception
is a strong indicator of a model’s ability to avoid hallucinations, as models that frequently hal-
lucinate are unlikely to be rated as helpful or trustworthy. Therefore, LM Arena complements
more technical hallucination metrics by offering a crucial perspective on the practical impact of
hallucination on user experience and satisfaction. It underscores that reducing hallucinations is
not just about factual correctness, but also about building user trust and providing genuinely
useful Al assistance in real-world scenarios.

10 Conclusions

10.1 The complex nature and inevitable presence of LLM halluci-
nations

Hallucination remains a pervasive and multifaceted challenge for LLMs, characterized by the
generation of content that is plausible but factually incorrect, inconsistent, or entirely fab-
ricated 5°54%47 As thoroughly evidenced throughout this report, these errors manifest in
diverse forms, from core distinctions like intrinsic versus extrinsic hallucinations (contradicting
input context versus inconsistency with training data or reality)["*"™] and factuality ver-
sus faithfulness hallucinations (absolute correctness versus adherence to input)[#°0:0496:01 to

45



specific manifestations such as factual errors, contextual and logical inconsistencies, temporal
disorientation, ethical violations, and task-specific errors in domains like code generation and
multimodal contexts [42:14:6:47519;92;57;2;98;51527;100;38]

These diverse issues stem from a complex interplay of factors, including data quality and
biases!'*%%??_the inherent auto-regressive nature of LLM architectures"’***l limitations in their
training processes (such as exposure bias and capability misalignment)!"°’l, and stochastic
decoding strategies**l. Critically, formal theoretical proofs presented in this report indicate that
hallucination is an innate and inevitable limitation for computable LLMs!'") suggesting that
complete elimination may be impossible regardless of architectural advancements or training
refinements.

10.2 Implications for detection, mitigation, and human interaction

This profound implication necessitates a strategic shift from attempting complete eradication
to developing robust detection mechanisms, implementing effective mitigation strategies, and
ensuring continuous human oversight. The nuanced and task-specific nature of hallucinations
underscores the need for granular approaches to their understanding and management, as a
”one-size-fits-all” solution is unlikely to be effective.

The report has highlighted the critical role of cognitive and human factors in hallucination per-
ception, emphasizing that user interfaces and interaction designs must incorporate strategies
like calibrated uncertainty displays and source-grounding indicators to improve user resilience
and trust!'"%!19%°4 Furthermore, a comprehensive survey of evaluation benchmarks and met-
rics has revealed the ongoing challenges in standardized assessment, underscoring the need
for unified, taxonomy-aware frameworks that can provide granular, diagnostic insights into
hallucination types.

10.3 Future directions for responsible LLM deployment

Finally, the discussion of architectural and systemic mitigation strategies, including Toolformer-
style augmentation®) and RAG, " alongside the introduction to web-based resources for moni-
toring LLM performance, provides practical directions for future development and deployment.
This holistic understanding of hallucination types, their underlying causes, human interac-
tion factors, evaluation methodologies, and mitigation techniques is paramount for developing
more reliable, trustworthy, and safely deployable LLMs, particularly in high-stakes domains
such as medicine and law, where the consequences of false information can be severel”!*70:%1],
Continued research and responsible deployment practices, with a focus on human-in-the-loop
validation and external safeguards, are essential for navigating the inherent limitations of LLMs
and maximizing their transformative potential.
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