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Reversible entanglement beyond quantum operations
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We introduce a reversible theory of exact entanglement manipulation by establishing a necessary and sufficient
condition for state transfer under trace-preserving transformations that completely preserve the positivity of
partial transpose (PPT). Under these free transformations, we show that logarithmic negativity emerges as
the pivotal entanglement measure for determining entangled states’ transformations, analogous to the role of
entropy in the second law of thermodynamics. Previous results proved that entanglement is irreversible under
quantum operations that completely preserve PPT and under all nonentangling transformations. In this work,
we find that going beyond the complete positivity constraint imposed by standard quantum mechanics enables
a reversible theory of exact entanglement manipulation, which may suggest a potential incompatibility between
the reversibility of entanglement and the fundamental principles of quantum mechanics.
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I. INTRODUCTION

Reversibility is a fundamental concept in many areas of
physics, including thermodynamics and quantum mechanics.
The second law of thermodynamics governs the direction
of heat transfer and the efficiency of energy conversion.
With the existence of heat reservoirs, the second law allows
for a reversible exchange of work and heat, as exempli-
fied in the Carnot cycle [1]. Based on axiomatic approaches
and idealized conditions, it was shown that entropy is the
unique function that determines all transformations between
comparable equilibrium states [2,3].

Within the realm of quantum information science, re-
versibility is crucial because it allows for the efficient
manipulation of quantum resources. If a process is reversible,
it implies that no quantum resources are irretrievably lost
during transformations. Through the development of quan-
tum information processing, quantum entanglement has been
recognized as an essential resource for various applications,
including quantum communication [4], quantum computation
[5,6], quantum sensing [7], and cryptography [8]. Under-
standing the reversibility of entanglement is thus pivotal
for quantum information and fuels the debate surrounding
the axiomatization of entanglement theory. This discourse is
largely driven by the parallels drawn with thermodynamics,
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which fosters the potential proposition of a single entangle-
ment measure, analogously to entropy, that could potentially
govern all entanglement transformations. Such progress in
understanding entanglement reversibility would not only mir-
ror thermodynamic properties, but also contribute to the
axiomatization of entanglement theory.

Reversibility of entanglement pertains to the process of
asymptotic entanglement manipulation. For pure quantum
states, this process is reversible, meaning that entanglement
can be manipulated and then restored to its original state
[9] through local operations and classical communication
(LOCC). However, this asymptotic entanglement reversibil-
ity does not apply to mixed states [10-14], meaning that
once entanglement is manipulated, it cannot be restored to
its initial state under LOCC. The irreversibility of quantum
entanglement under LOCC presents a stark contrast to the
principles of thermodynamics [15], where certain processes
are inherently reversible. This irreversibility also underscores
the impossibility of developing a single measure [16] capable
of governing all entanglement transformations under LOCC,
suggesting that a deeper understanding of entanglement
manipulation is essential for possible reversibility.

That reversible entanglement theory could exist remains
a fundamental problem in quantum information theory [17].
In the pursuit of a reversible entanglement theory, broader
classes of operations beyond LOCC can be considered to
potentially reduce the gap between entanglement cost and dis-
tillable entanglement. However, this approach has yet to yield
success as Wang and Duan [18] proved that entanglement
was irreversible under quantum operations that completely
maintain the positivity of partial transpose (PPT), a mean-
ingful set of quantum operations that includes all LOCC
operations. This result [18] also implies the irreversibility in
the resource theory of entanglement with nonpositive par-
tial transpose (NPT). Furthermore, Lami and Regula [19]
showed that entanglement theory was irreversible under all
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FIG. 1. Exactly reversible interconvertion between quantum
states pap and o4 . Consider n copies of p$y and m copies of ofil'g",,
the forward direction indicates the exact conversion from pj; to o5
with rate Rg(p?; — Uj’i”‘,) = m/n, while the backward direction
shows the exact conversion from o3y, to pgy with rate Ro(o Sy —
Py = n/m. Two states can be exactly interconverted reversibly if

®n ®m ®m ®Rny __
RQ(pAB — UA’B’)RQ(UA’B’ — pAB) =1.

nonentangling (NE) transformations, which were positive
maps that did not produce entanglement. Recent remarkable
works by Hayashi and Yamasaki [20] and Lami [21] showed
the proofs of the generalized quantum Stein’s lemma [22,23],
which led to the reversibility of all quantum resource theories
under asymptotically resource nongenerating operations [24].
This prompts the question of whether the identified operations
were the only ones capable of ensuring resource reversibility,
or if alternative sets of operations could also achieve a single-
letter resource measure.

In this paper, we introduce a reversible theory of exact
entanglement manipulation (as presented in Fig. 1), showing a
possible counterpart of entanglement manipulation to the sec-
ond law of thermodynamics. This reversible theory operates
under transformations that completely preserve the positivity
of partial transpose, which are called PPT quasioperations
(PPTq operations) throughout the paper. Our key result is that
logarithmic negativity fully determines entangled transforma-
tions under PPTq operations, i.e.,

p b o = Ex(p) > En(o), ()
which means logarithmic negativity plays an analogous role of
entropy in the second laws of thermodynamics. Based on this
necessary and sufficient condition of state transformation (cf.
Theorem 1), we prove that the logarithmic negativity deter-
mines exact distillable entanglement and exact entanglement
cost. We further show the reversibility of exact entangle-
ment manipulation under PPTq operations (cf. Theorem 3),
showing that

Ey(pap)

En(owp)’
where Rpprq(0ap — oap) is the asymptotic ratio for ex-
act state transformation under PPTq operations. We further
establish an inequality chain of the entanglement manipula-
tion rates for PPTq operations (cf. Theorem 4), presenting a
distinction between this reversible theory of entanglement be-
yond quantum operations and standard entanglement theory.

@

Rpprq(0aB = Oap) =

PPTq PTP-PPT

CPTP-PPT NE

SEP

LOCC

Class of Operations Abbreviation

Local Operations and Classical Communication LOCC
Separable Channels SEP
Completely PPT-preserving Channels CPTP-PPT
Non-entangling Operations NE
Positive and Trace-preserving and PPT-preserving Maps  PTP-PPT
Hermitian-preserving and Trace-preserving PPT Maps PPTq

FIG. 2. Schematic hierarchy of operations. The pictured inclu-
sions among LOCC, SEP, CPTP-PPT, NE, PTP-PPT, and PPTq. The
main focus of this paper is entanglement manipulation under PPTq
operations.

While our research establishes a reversible theory of ex-
act entanglement manipulation, it is crucial to note that
the allowed transformations in this theory are beyond the
boundaries of quantum mechanics. Indeed, generating no en-
tanglement during some state transformations necessitates a
reduction of physical law as evidenced in Sec. III. The above
reversibility of exact entanglement manipulation under PPT
quasioperations may suggest that the coexistence of entangle-
ment reversibility and quantum mechanics might be mutually
incompatible.

II. REVERSIBILITY OF EXACT ENTANGLEMENT
MANIPULATION

In this section, our focus is centered in exploring the possi-
bility of reversible entanglement manipulation. To thoroughly
characterize the fundamental limits of entanglement transfor-
mation, we briefly venture beyond the confines of the quantum
realm in the context of this section, focusing on entanglement
transformations beyond quantum operations. Following the
idea of axiomatic approaches, we consider transformations
that demand the weakest possible requirements for entangle-
ment manipulation, relaxing the manipulating objects from
quantum states to quasistates [cf. Eq. (B2)].

We specifically introduce the PPT quasioperations (PPTq
operations), which are Hermitian-preserving and trace-
preserving maps that completely preserve the positivity of
partial transpose. The set of PPTq operations is shorthanded
as PPTq. The underlying intuition is that PPT states can
only have bound entanglement [25], which are useless in
entanglement distillation. Furthermore, as depicted in Fig. 2,
PPTq operations encompass all operations in LOCC, SEP,
and CPTP-PPT, whereas some nonentangling and PTP-PPT
operations do not fall within the scope of PPTq.

Definition 1. An HPTP bipartite map Nyz_, o is called a
PPT quasioperation (PPTq operation) if Tp oNyp_ap © Tp is
completely positive.
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In the above definition, Ty denotes the partial transpose
operation, as defined in Eq. (B1). All detailed notations are
provided in Appendix B. Next, we are going to first establish
the necessary and sufficient condition for perfect transfor-
mations between quasistates. It turns out surprising that the
logarithmic negativity [26,27] is the key to fully characterize
the transformations under PPTq operations. We also note that
the following theorem directly applies to the more restricted
case for transformations between quantum states.

Theorem 1. For two bipartite states or quasi-states p and
o, there exists Nyp_.ap € PPTq such that A'(p) = o if and
only if

En(p) 2 Ey(0), 3

where Ey(p) = log, || o™ ||; is the logarithmic negativity.

Proof (=). Construct a linear map M = Ty oN o Tp.
Since Nap_ap € PPTq, we know that M is completely
positive and trace-preserving. By construction, it holds that
M(p™) = o™ Since any CPTP operation does not increase
the trace norm, we immediately have that ||p™|; > |lo™ ||,
and hence Ey(p) > Eyn(o) by the monotonicity of the log,
function.

(<) The key idea to show this direction is to con-
struct a CPTP map M such that M(p™) = o™ based on
the assumption that ||p™|; > ||c"#]|;, which could guar-
antee that N =TgoMoTp is a HPTP and PPT map
that can successfully transform p to o. Consider the spec-
tral decomposition p’ = Zi rili)(jl = Ry — R_ with R =
D irso il (jland R = =%, r;lj){jl. Here we denote
the projections for positive and negative parts as

Py= Y Il Po= ) Il Pe+Po=1 (4

Jirj=0 Jirj<0

Without loss of generality, we assume that Ey (o) > 0. Let us
then denote o = >, Saln)(n| and choose some k € N such
that s; > 0. We further could write 6% = S — S_ + s¢|k) (k|

with
Do sm)nl, S_ ==Y simnl. ()

n:s, 20, n#k n:s, <0

§+:

We construct the following CPTP map:

_ Tr(Piw)y | Tr(Pw)
M(w) = TrR. Sy TeR. S+ f()lk){kl, (6)
with f(w)=Tro—Tr(Pyw)Tr S, /Tr Ry —

Tr(P-w)TrS_/TrR_. This construction guarantees the
condition of TP as the trace of the right-hand side (R.H.S.) of
Eq. (6) is equal to Tr w. To see that this map is also CP, we
only need to show that f(w) > 0. Note that the prerequisite
En(p) > En(o) implies that gf& < 1and ;rrls?: < 1, thus we
have that

flw) 2 Tro —Tr(Prow) — Tr(P_w) = 0. @)

Notably, M in Eq. (6) is a measure-and-prepare channel [28].
We then apply this channel M to p” and obtain

M(p™)y = MRy —R_) =S, — S_ + silk) (k| = o7
(8)
[ |

This result implies that logarithmic negativity emerges as
the pivotal entanglement measure for determining the trans-
formations between entangled states, which is analogous to
the role of entropy in the second law of thermodynamics.

Reversibility of exact entanglement manipulation
under PPTq operations

Entanglement distillation and entanglement dilution are
two vital operational tasks in entanglement manipulation. En-
tanglement distillation [29-37] involves the transformation of
a large number of identically and independently distributed
(i.i.d.) copies of a certain state into as many ebits as possible.
Conversely, entanglement dilution [38-43] is concerned with
the reverse process, turning ebits into as many copies of the
original state. These procedures are typically carried out by
means of LOCC.

Here, we are going to solve the rates for both exact distil-
lable entanglement and exact entanglement cost under PPTq
operations, which are shown to be equal to the logarithmic
negativity of the state.

Theorem 2. For any bipartite state or quasi-state pap, it
holds that

Epprq(PaB) = E¢ppry(pas) = En(pap), ©)
where Eg’fﬁ,‘rq and ng‘lﬁf,‘Tq are the exact distillable ental}gle-
ment and exact entanglement cost under PPTq operations,
formally defined in Appendix C.

Proof. The proof of this theorem is divided into two parts.
We are going to first show Ey(pap) < Eg’f%CP‘Tq(pAB) and then
show E¢5pr, (0a8) < En(pag)-

Let us consider an n copy of the state psp and try to trans-
form it to as many ebits as possible. By Theorem 1, we know
that there exists one A € PPTq and maximally entangled state
4., with d = [2"Ev(eas) | such that

A(pfy) = Php (10)

since  En(pSy) = nEn(pag) = log, [2"5vP) | = log, d =
EN(CD;{,B,). Thus, by the definition of exact entanglement
distillation, we have

E((),ll)),PPTq () = logy | 2" (emn) |, (11)

which leads to

. .1 "
Epborq(paB)g = Jim ZE(E,%,PPTq (oi5) (12)
1
> lim — log, [ 2"Ev ()| (13)
n—oon
= En(pas)- (14)

For the reverse task of entanglement dilution, let us con-
sider n copy of the state psp and try to transform as few
ebits as possible to prepare p5y. By Theorem 1, we know
that there exists one A € PPTq and maximally entangled state

@4, with d = [2"Ev(+)] such that
A(@4) = po, (15)

since  En(pgy) = nEn(pap) < logy [2"##)] = log, d =
EN(CDf{, g )- Therefore, by the definition of exact entanglement
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cost, we have
Ej pprq(pi5) < logy[27500w)], (16)

which leads to

1 n
E&ery(oan) = lim - Egepony (05)  (17)
1
< lim ~ 10g2 ranN(pAB)‘| (18)
n—oo n
= En(paB)- (19)

Note that exact transformations between p and ®? guaran-
tees the inequality

E5Sorg(0) < ESSorq(p). (20)
Thus, combining Egs. (20), (12), and (17), we arrive at

Eexacl

t
D,PPTq (pap) = EZSr

c.pprrq(PaB) = En(paB). 21

|

The above result already implies a collapse of two im-
portant entanglement measures. As the logarithmic negativity
quantifies both exact entanglement cost and exact distillable
entanglement, we want to note that it also explains why log-
arithmic negativity has been fruitfully used in the theory of
quantum entanglement. For example, previous works showed
that the logarithmic negativity is an upper bound to distillable
entanglement [26] and possesses an operational interpretation
as the exact entanglement cost under CPTP-PPT operations
for certain classes of quantum states [39,44].

Furthermore, using results on exact entanglement cost and
exact distillable entanglement, we are now able to compute the
reversibility of asymptotic exact entanglement manipulation
under PPTq operations, where the definition of this quantity
is given in Appendix C. Note that the reversibility here does
not consider the positivity of manipulations, i.e., the practical
difficulty of implementing the state manipulations, which is
further discussed in Sec. III.

Theorem 3. For any two bipartite states pap and oap, the
asymptotic exact entanglement transformation rate is given by

En(paB)

_— 22
Eyn(oap) @2)

Rpprq(0ap —> oap) =

which implies the reversibility of asymptotic exact entangle-
ment manipulation under PPTq operations, i.e.,

Rpprq(0a — 0ap) X Rpprq(0ay — pap) = 1. (23)

Proof. The key idea of this proof is to use the maximally
entangled state for intermediate exchange between states,
that is,  Rpprq(pap — @ié) = E5$orq(pas) = En(pap)

and RPPTq((Dfm — opp) = Eéfﬁﬁ%q(UA'B')_l = En(oap) .

Therefore, we could obtain the transformation ratio as

Rpprq(pap — oap) (24)
> Reprq(pas — ©3) X Reprq (3, — oam) (25)

= En(pas) x Ey(oap) ™" (26)

This inequality is actually an equality. To see this, assume
Rpprq(pas — o) > En(pas) X Ey(oap)~". Then

Rpprq(0aB —> oap) X Reprq(oap — pap)  (27)

En(pap) En(oap)

Eyx(oap)™"  En(pap)~!

> 1, (28)

which contradicts with the physical definition of Rpprq since
transforming p back to itself shall not generate extra re-
sources. Such contradiction implies

Reprq(pas — oap) = En(pap) x En(oap) ™", (29)

and hence the rest of statements follow. |

As we establish the tight connection for exact measures
Ef%prq(p) and Epipr,(0) in Theorem 2, we finally arrive
at the inequality chain of the entanglement manipulation
rates for PPTq operations. We also take in consideration the
tempered negativity Ey [19] in the chain, as shown in the
following theorem.

Theorem 4. For any bipartite state p, it holds that

Ej(p) < Ecprrg(p) < EES5(0) (30)
= En(p) = Eppprg(0) = Epprrg(p). (31

Sketch of Proof. Note that Ecpprq(0) < Eg’fﬁfqu(p) and
Eg’ff,cﬁTq(p) < Ep perq(p) follow by Egs. (C6) and (C3), re-
spectively. Since Theorem 2 bridges the gap between these
two exact measures, it is sufficient to prove the two end-
points in the inequality chain. A full proof can be found in
Appendix D.

Remark 1. In the standard quantum resource theory, the
achievable rate of entanglement dilution typically surpasses
that of entanglement distillation. However, the introduction
of PPTq operations reverses this kind of operational inequal-
ity. The uncanny phenomenon is attributed to the unique
property of quasioperations, which can be decomposed into
positive and negative operation components. Such property
allows PPTq operations to “borrow” additional entanglement
resources from seemingly out of nowhere. Specifically, these
components can generate states with extra distillable entan-
glement. Once the desired transformations are accomplished,
this borrowed resource can then be effectively “returned” by
combining the positive and negative components to form the
target state. This unique feature allows for the achievable rate
of entanglement distillation to surpass that of entanglement
dilution, presenting a surprisingly reversal of the usual opera-
tional inequality in standard resource theory.

Notably, even though the proof demonstrates E¢ pprq(0) <
Ep pr1q(p), the absence of asymptotic continuity in the log-
arithmic negativity Ey suggests that Ecpprq(p) does not
necessarily equal Ey(p), which is the same with other existing
entanglement theories under quantum operations.
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III. PHYSICAL IMPLEMENTABILITY OF
TRANSFORMATIONS UNDER PPTq OPERATIONS

While keeping the efficacy and power in exact reversible
entanglement, the set of PPTq operations contains nonphys-
ical operations (e.g., maps that are PPT but not CP). To
deepen our understanding of the complexities associated with
the manipulation of quantum entanglement, this section is
dedicated to an analytical exploration of the physical imple-
mentability of such processes within the given setting. We
introduce a quantity that characterizes the degree to which
the laws of physics must be depreciated to enable entan-
glement non-generating transformations. By ‘“entanglement
nongenerating,” we mean that any physical operation used
to realize such transformation cannot generate entanglement
resource, i.e., needs to preserve the set of separable states.
Building on this context, we present two inspiring examples
that reveals how logarithm negativity could affect the physical
implementability of exact state transformations under PPTq
operations.

In the realm of quantum operations, a general HPTP op-
eration ' may not be directly realizable within a quantum
system. To circumvent this limitation, one prevalent strategy
is to employ a quasiprobability decomposition in the same
spirit of [45—48]. This technique entails decomposing N into
a linear combination of two physical operations N, N>, ex-
pressed as N' = cN| — (¢ — 1)V, with ¢ > 1 representing a
suitably chosen coefficient. The merit of this decomposition
lies in its ability to implement N statistically, as the ex-
pectation value under the operation N can be decomposed
as Tr[N(p) - O] = ¢ Tr[Ni(p) - O] — (¢ — 1) Tr[Na(p) - O].
By physically sampling the operations A/, and N> with prob-
abilities ¢/(2c — 1) and (¢ — 1)/(2c — 1), respectively, one
can estimate Tr[A(p) - O] through classical postprocessing,
and the complexity of overall sampling times is O[(2¢ — 1)?].
That is, A/ would become more expensive to simulate when
2c¢ — 1 increases.

When N is entanglement nongenerating, both Ny, A are
required to preserve the set of separable states. Here, to fo-
cus on the minimal hardness of physically implementing A/,
we relax such requirement to be completely PPT-preserving.
Then one can accordingly define the physical implementabil-
ity of transformations between two states as following.

Definition 2. From p to o, the physical implementability
of entanglement nongenerating state transformations under
PPTq operations is defined as

v(p — o) =log, min{2c — 1 |N(p) = o,
N =cNi = (c = DN,
N € PPTq,
N2 € CPTP-PPT}. (32)

v(p — o) is a practical indicator for assessing the physical
feasibility of entanglement reversibility between these two
states. In instances where v is zero, p can be transformed
to o via physical PPTq operations. Conversely, when v is
greater than zero, the reversibility between p and o must
be constructed using nonphysical operations. The degree of
difficulty to achieve such reversibility would get larger as
v increases. In the case where v approaches infinity, the

reversibility would not exist unless additional entanglement
resource is introduced to the system.

The physical implementability can be computed via the
following semidefinite programming (SDP) [49-51] that
evaluates to 2"°~9);

min  2c—1, (33a)
TN 30
s.t. Trapl(p” @ DIN] =0, (33b)
TroJn, =cl, Traodn, =(c— 1, (33¢)
TN TP =0V, (33d)
IN=In —INi, In,=0Vj, ¢=0. (33e)

We also consider the SDP that evaluates the physical
implementability of e-error entanglement manipulation un-
der PPTq operations, and the details are deferred to in
Appendix E. To show the nonphysical nature of transforma-
tions under PPTq operations, we select the initial state p = pp
as an isotropic state [52,53] of a two-qutrit system

pr =1 —F)I —®%)/8+F®?, (34)

where @3 = 1/3 le j=o 1) (jj! is the normalized maximally
entangled state. On the other hand, we choose the target state
o as an antisymmetric state [54]

o = 3(I — SWAP3), (35)

where SWAP; = le j=o lE7) (il is the nine-dimensional SWAP
gate. As illustrated in Fig. 3(a), before the asymptotic exact
transformation rate Rpprq(0r — o) reaches the maximum, it
is evident that the physical implementability from an initial
state pr to a target state o is nonzero. The experiment results
suggest that transformations between some states necessitate
a relaxation on laws of physics to maintain reversibility, even
as the logarithmic negativity of input state is greater than that
of output state.

Relation with LOCC transformations of pure states

According to Theorem 1, the existence of exact state
transformations under PPTq operations between two bipartite
states p, o is fully determined by the inequality of their
logarithmic negativity. Notably, when these states are pure,
this domination also applies to exact state transformations
under LOCC operations [55], with the feasibility of such
transformation is governed by a relation called “majorization.”
This notable parallel prompts us to investigate the relation-
ship between logarithmic negativity and majorization within
the context of pure states. In this section, using the physical
implementability, we show that majorization can imply the
inequality of logarithmic negativity, while the converse may
not hold in general.

Suppose ¢, ¥ are pure quantum states. In the context of
quantum state majorization, we say that a state H is majorized
by another state K (denoted as H < K) if and only if H can
be decomposed into a convex combination of U; KU ; for a set
of unitary matrices U;. Then [55] states that a transformation
from state ¢ to state y via LOCC is feasible if and only if
¢a < Y4. Combining Theorem 1, one can have the known
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PPTq

0.8 1.0 12 1.4 1.6 1.8 2.0 22
Rppr, (pr—0)

(a) Transformations from pr to o, for F' € (0.1, 1].

1.0
LOCC
0.8
— HPTP-PPT
= ‘
T 0.6 |
3
Q.04
EY
0.2 '
no majorization relation Yo=Y
0.0 <

1.2 1.3 1.4
Rppr, (0o = 1))

(b) Transformations from ¢, to 1, for o« € (0.1, 1].

FIG. 3. The figures demonstrating the nonphysical nature of exact state transformations under PPTq operations between two-qutrit states.
(a) depicts the attempted transformation from an isotropic state pr to an antisymmetric state o, with the blue dashed line emphasizing the
transformation’s infeasibility. (b) The transformation between two bipartite pure states, with the input state being parameterized by a coefficient
o. The red dot in this figure marks the juncture at which the transformation shifts from a nonphysical to a physical regime.

result

Pa < Yu = En(9) = En(¥). (36)

However, the converse does not generally hold, as there are
instances where states can only be transformed using non-
physical completely PPT-preserving operations. This can be
illustrated by considering the two-qutrit pure states

1 1
o) 0 =100) + —[11) + @[22), 37
I#a) 0 $100) + 15111 + e[22) (37
1 2
V5 V5

for a real coefficient «. As depicted in Fig. 3(b), when the
possible transformation turns to be physical by increasing the
conversion ratio to around 1.37, the LOCC transformation
from ¢, = |0y ) (@] to ¥ = |¥) (Y| becomes attainable. Such
an abrupt shift suggests that without additional constraints, the
logarithmic negativity cannot directly influence the majoriza-
tion relation between pure states. It also emphasizes that extra
conversion cost is necessary to maintain reversibility of exact
state transformations.

V) = —=100) + —=[11), (38)

IV. DISCUSSIONS

Our work demonstrated the reversibility of exact en-
tanglement transformations under PPTq operations. This
reversibility established a parallel between entanglement
manipulation and the second law of thermodynamics, par-
ticularly when operating under idealized conditions. The
logarithmic negativity was the key entanglement measure in
this reversible entanglement theory to determine the exact
transformation between entangled states, serving a role anal-
ogous to entropy in the realm of thermodynamics. The advent
of a reversible theory of exact entanglement manipulation
under PPTq operations paved the way for further exploration
into the smallest subset of quantum operations or maps nestled
within the set of PPTq operations that could guarantee the
reversibility of asymptotic entanglement manipulation. Our
work also opens a possible avenue to study quantum entan-
glement beyond free quantum operations and the physical
implementability for quantum entanglement transformations.

The reversibility of exact entanglement manipulation,
along with the irreversibility brought by the positivity of

nonentangling transformations [19], may suggest a potential
incompatibility between the foundational principles of quan-
tum mechanics and the reversibility of quantum entanglement.
In addition, as a recent work [56] showed that the reversibility
of quantum resources could happen when relaxing to prob-
abilistic transformations, it will also be interesting to study
the interplay between reversibility, success probability, and
positivity of allowed transformations of quantum resources.
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APPENDIX A: TABLE OF SOME RESOURCE THEORIES

In Table I, we summarize the mainstream resource theories,
while our work establishes a reversible framework for exact
entanglement manipulation under PPTq operations.

APPENDIX B: SYMBOLS AND NOTATIONS

1. Notations for bipartite systems

In this work, we use the symbols A and B to denote the
finite-dimensional Hilbert spaces H4 and Hp associated with
Alice and Bob systems, respectively. We denote the dimension
of H4 and Hp as ds and dp. The identity operator on system
A is denoted as 14. A quantum state on system A is a positive-
semi-definite operator p4 with trace one. The trace norm of p
is denoted as ||p|l; = Tr(y/pTp). Let {Ii)};‘:ol be a standard
computational basis, then a standard maximally entangled
state of Schmidt rank d is ¢ = 1/d Z?;O lii)(jj|. A Bell
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TABLE I. Mainstream resource theories. This work presents a reversible theory of exact entanglement manipulation under PPTq opera-

tions, where asymptotic exact entanglement transformation is reversible.

Paradigm Class of operations Free resource Resource Reversible?
Thermodynamics - Heat Work v
Coherence [57] Incoherent Incoherent states Coherent states X
Coherence [58] Maximally incoherent Incoherent states Coherent states Vv
Entanglement [10] LOCC Separable states Entangled states X
NPT entanglement [18] CPTP-PPT PPT states NPT states X
Entanglement [19] Nonentangling Separable states Entangled states X
NPT Entanglement (This Work) PPTq Quasistates w. zero Ey Quasistates w. positive Ey v

state 2 is alternatively called an ebit. The partial transpose
of a bipartite quantum state psp on system B is denoted by
,og‘fg, defined as

dp—1
To(pas) = Y (1a ® i)(i'15)pas(1a ® |i)(i5),  (BI)

i,i'=0

where Tjp is the corresponding partial transpose map. Further,
pap 1s said to be a PPT state, if it admits positive partial
transpose, i.e., pz‘g is positive-semi-definite. Throughout the
paper, we take the logarithm to be base two unless stated
otherwise.

2. Properties of linear maps

Let AV be alinear map. N is Hermitian-preserving (HP) if it
maps any Hermitian operator to another Hermitian operator;
N is trace-preserving (TP) if it preserves the traces of input
operators; N is HPTP if A/ is HP and TP. A is positive if it
maps any positive-semi-definite operator to another positive-
semi-definite operator, and is called completely positive (CP)
if this positivity is preserved on any extended reference
system.

3. Properties of bipartite linear maps

Let A be a bipartite linear map. N is a local operation
and classical communication (LOCC) if it is a composi-
tion of a (finite) sequence of quantum instruments. N is a
separable map if it can be written as the sum of bipartite
product maps, and the class of separable channels is denoted
as SEP. NV is positivity-of-the-partial-transpose-preserving
(PPT-preserving) if it preserves the set of PPT states [59,60],
and is considered completely PPT-preserving (PPT) if this
property holds on any extended reference system. The set
of completely PPT-preserving channels is shorthanded as
CPTP-PPT. Combining the physical conditions, positive and
trace-preserving maps that preserve the set of separable state
are nonentangling (NE) operations; the set of positive, trace-
preserving, and PPT-preserving maps is denoted as PTP-PPT.
We note that free operations beyond LOCC are of importance
to advance our understanding of quantum entanglement (see,
e.g., [24,29,30,61-63]).

4. Quasistates

A quasistate is a mathematical entity that encapsulates the
intricacies of a probabilistic quantum system. Despite the
nonphysicality in quantum mechanics, the class of quasis-

tates is the largest possible set that can be represented by
physical quantum states under a statistical meaning. Formally,
the definition of this class is given as

S= ch,oj:ijS,cjeRs.t.chzl , (B2

J J

where S is the set of quantum states. Note that S is the set of
all Hermitian matrices with trace one.

APPENDIX C: ENTANGLEMENT MANIPULATION

1. Quasistate transformations

Throughout this paper, we allow both state and quasistate
transformations, viewing them as operator transformations
under linear maps. Specifically, we say a bipartite quasistate p
can be transformed into another bipartite quasistate o under €2
operations, if there exists a bipartite linear map N € Q such
that N'(p) = o. This broader framework of quasistate trans-
formation enables us to define distillable entanglement and
entanglement cost also for bipartite quasistates, similar to how
we would for standard quantum states. This approach offers a
fresh perspective on understanding the limits of manipulating
quantum entanglement.

2. Entanglement distillation

The maximally entangled state plays a role as the cur-
rency in quantum information since it has become a key
ingredient in many quantum information processing tasks
(e.g., teleportation [64], superdense coding [65], and quantum
cryptography [8]). It is important to understand how many
maximally entangled states we can obtain from a source of
less entangled states using free operations. Imagine that Alice
and Bob share a large supply of identically prepared states,
and they want to convert these states to high-fidelity Bell
pairs. Let Q represent a set of free operations or allowed
transformations. The one-shot zero-error, or exact distillable
entanglement, under 2 oFerations of quantum state or quasis-
tate pap is defined as Eo,ll))’Q(pAB) = SUppeqflog, d : dJ;‘gé =
Aup_, in(pap)}. The zero error, or exact distillable entangle-
ment, of a bipartite state or quasistate state p4p, under 2
operations is defined as

1 .
ESE! (o) = lim CES o). (€D
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For entanglement distillation with asymptotically vanishing
error, the rate is quantified via distillable entanglement. The
distillable entanglement of a bipartite state or quasistate pp,
under the 2 operations, is defined as

J=ol.

(C2)

As distillable entanglement quantifies the fundamental limit
of entanglement distillation and related task of quantum com-
munication, substantial efforts have been made to obtain its
accurate estimation and fundamental properties [29-37]. As
exact entanglement distillation is more restricted, it holds that

EFS'(p) < Epa(p). (C3)

Ep.a(pag) = sup {r : lim |:inf |A(p5%) — 35

n—oo | AeQ

3. Entanglement dilution

The reverse task of entanglement distillation is called en-
tanglement dilution. At this time, Alice and Bob share a
large supply of Bell pairs and they aim to convert rn Bell
pairs to n high fidelity copies of the desired state p®" using
suitable free operations. Let €2 represent a set of free op-
erations, which, for example, can be LOCC or CPTP-PPT.
The one-shot zero-error, or exact entanglement cost, of a
bipartite state or quasistate p4p under the €2 oper-
ations is defined as Eé’lé.ﬂ(pAB) = infaeqflog,d : pap =
Agp, AB(@%)}. The zero error, or exact entanglement cost,
of psp under the 2 operations is defined as

EEE o) = Jim TEWo(oF). (©4)

J

m
Ra(pap — oap) = sup {; :3ng :Vn > np, AN, € Q- A,,(p/‘?g) = Jfl’;”,}.

Two states can be exactly interconverted reversibly if
Ro(pap — oap) X Ro(oap — pap) = 1.

APPENDIX D: INEQUALITY CHAIN FOR
ENTANGLEMENT MEASURES UNDER PPTq

In this section, we rigorously demonstrate how the inequal-
ity chain in Theorem 4

Ex(p) < Ecperg(p) < ECpry(0)

= En(p) = Eppprg(P) = Ep prrg(p) (D)

is built. We start from the construction of two endpoints
in the chain, i.e., prove Ej(p) < Ecpprq(0ap) (Proposition
D 1) and Ep pprq(pap) < En(pap) (Proposition D 2). For the
temper logarithm negativity part, we first need to extend the
definition of tempered negativity in [19] to fit in the regime of
quasistates.

Definition D 1. Let oap, pap be two quasistates. The
tempered negativity between o4 and psp is defined

Previous works [38—43] showed progress towards understand-
ing the exact entanglement cost of quantum states.

For the case of asymptotically vanishing error of entangle-
ment dilution, the rate is quantified via entanglement cost. The
concise definition of entanglement cost using €2 operations is
given as follows:

Ec.o(pap) = inf {r : lim in{2 oSy — A(((I)fm)@") ”1 = 0},

n—oo Ae
(C5)

When LOCC is free, entanglement cost is given by the reg-
ularization of the entanglement of formation [66], which is
shown to be nonadditive [67]. Further efforts have been made
to improve understanding of the entanglement cost in specific
and general quantum states [18,54,68,69]. As exact entangle-
ment dilution is more restricted, it holds that

Eco(p) < ECG(p). (Co)

4. Exact entanglement transformations

The ratio of state conversion plays an integral role in the
manipulation of quantum resources such as entanglement.
We summarize the mainstream theories for reversible state
conversions in Table I. In this paper, we mainly focus on the
asymptotic exact state conversion. It describes the process of
converting one state into another exactly as the number of
copies approaches infinity under certain free operations. Let 2
represent a set of free operations. The asymptotic conversion
ratio of exact entanglement transformation from a state or
quasistate psp to another state or quasistate 045 is defined as

€N
(
as
N: (o5 | pa) = sup{Tr[Xoup] : |X™ |00 < 1,
X lloo = Tr[X pasl}. (D2)
Further, the tempered negativity of pp is denoted by
Nz(pag) = Ne(pag | pas)- (D3)

Here, we restate three properties of N;, and show that the
original proof in [19] remains true after the extension. Then
we are ready to give the proposition of inequality.

Lemma D 1. For any quasistate wsp and state pp,

(@) llogsl = Ne(oas | pap),

() lloas — paglli < & = Ni(oaglpas) = (1 —€)Nz(pap),
and

(©) Ne(o%) = Ne(pap)".

Proof. (a) This property follows by the fact that ||os|| =
sup{Tr[Xoap] : X7 [loo < 1).

(b) Note that the Holder’s inequality holds for arbi-
trary complex matrices. Hence, this properties still holds by
Eq. (S46) in [19].

(¢) Since pap is a quantum state, this property holds from
the same reasoning in [19]. ]
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Proposition D 1. For any bipartite state psp, it holds that

Ey(p).

Proof. This proof mainly follows from Lemma D 1 and the
idea of chain inequalities in [19]. For r = E¢ ppq(pag), there

J

Ecpprq(paB) 2 (D4)

Then for all n, Theorem 1 implies EN(<I>2L’”J)

LmJ ”( O, AE)TB ” 1

@ ®)
> Ne(0, 48] 055) = (1

Taking n — oo on both sides gives r = lim,_, o [rn]/n >
E§(pap).

For the entanglement distillation part, the proposition can
be given as follows.

Proposition D 2. For any state or quasistate psp, it holds
that
D7)

Ep pprq(0aB) < En(0aB).

Proof. This proof mainly follows the proof from [26]. For
r = Ep pprq(pan), there exists a sequence of PPT quasiopera-
tions {A,}, such that

2L”’J”l and  lim &, =0.
n—

(D8)

0,i8=Mn(055), n=|0n48—

Then for all n, Theorem 1 implies Ey (p5y
hence

15 ™ 1, = 1@,5)™ I

— ”( ZLrnJ)TE + (Un,AB _ (Dfignj)TB”l
1 @%™) 1 = (o,.a5 — @25™) 11 (D10)
(1 —g2t™, (D11)

> EN(Gn,AB) and

(D9)
Z
Z

where the last inequality follows from the fact | X7|; <
d||X||; for X € Herm(H,). Taking n — oo on both sides, the
additivity of logarithm negativity gives

1
En(pag) > lim —log, (1 — g,)2l"™
n—oo n

Lrn] + log, (I —¢&,)

n—oo n n

(D12)

We are ready to construct the whole chain.
Theorem D 1. For any bipartite state p, it holds that
EEHra(0)

Ey(p) < Ecprrq(p) <

vi(p = o) =log, min{2c — 1 | |[N(p) — ol < &,

The following SDP computes the quantity 2" (=),

N =cN;

exists a sequence of PPT quasioperations {A,}, such that

OnAB = A,,(CDE;"J pik|l, and lim g, =0.

), en=lons - Jim

2 En(o, 43) and hence

(D5)
(c)

— )N (p55) = (1 — £,)N; (pap)"- (D6)

[ ]

=En(p) = ngi;%rq(,o) = Ep pr1q(0)- (D13)

Proof. For all bipartite state p,

Ey(p) < Ecperg(p) (Proposition D 1), (D14)

< EChrrg(P) [Eq. (C6)] (D15)
=Ey(p) = Ef)x;%Tq(p) (Theorem 2) (D16)
< Ep.pprq(p) [Eq. (C3)] (D17)
< En(p). (Proposition D2) (D18)

[ |

APPENDIX E: SDP OF ENTANGLEMENT MANIPULATION
WITH ERROR UNDER PPTq

Definition EI. A (finite) collection of pairs of real
coefficients and physical operations {(c;, N;)}; is said
to be a quasiprobability decomposition of a linear map
NifN = Z j Cj./\/

One may notice that the idea of quasiprobability decom-
position in Sec. III only involves two pairs. Indeed, if N
has a quasiprobability decomposition since A is linear and
properties discussing in this paper is linear, one can assume
that such decomposition is composed by two pairs, i.e., N' =
c1N1 — co NV, for some positive real numbers ¢y, ¢;. Further,
when N is trace-preserving, ¢; +¢; = 1.

Definition E 2 (Entanglement nongenerating). Let N be a
linear map acting on bipartite states. We say that A is
entanglement nongenerating if N preserves the set of separa-
ble states, and there exists a quasiprobability decomposition
{(cj, N})}; of this map such that each component N/, pre-
serves the set of separable states. Moreover, we say that A/
is an entanglement nongenerating transformation under PPTq
operations if N € PPTq.

Definition E 3 (e-error physicalness of the map). For any
two bipartite state p and o, the physical implementability
of entanglement nongenerating state transformations under
PPTq operations with error ¢ is defined as

—(c—1)N, e PPTq, Nj, € CPTP-PPT}.  (El)
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JNT}I}V » 2¢ —1, (E2a)
st. —el < Tragl(p? ® NInv]—0 <& (e-error transformation), (E2b)
Try Jp, =cl, TraJn, = (c— 1I (trace-preserving), (E2¢)
J, AT/‘?'B, J, j\Tfj'B >0V (completely PPT-preserving), (E2d)
IN=InM —INys IN; =0V j,c20 (Hermitian-preserving). (E2e)
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