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Quantum neural networks form Gaussian 
processes
 

Diego García-Martín    1, Martín Larocca    2,3 & M. Cerezo    1 

Classical artificial neural networks initialized from independent and 
identically distributed priors converge to Gaussian processes in the limit of a 
large number of neurons per hidden layer. This correspondence plays an 
important role in the current understanding of the capabilities of neural 
networks. Here we prove an analogous result for quantum neural networks. 
We show that the outputs of certain models based on Haar-random unitary or 
orthogonal quantum neural networks converge to Gaussian processes in the 
limit of large Hilbert space dimension d. The derivation of this result is more 
nuanced than in the classical case due to the role played by the input states, 
the measurement observable and because the entries of unitary matrices are 
not independent. We show that the efficiency of predicting measurements at 
the output of a quantum neural network using Gaussian process regression 
depends on the number of measured qubits. Furthermore, our theorems 
imply that the concentration of measure phenomenon in Haar-random 
quantum neural networks is worse than previously thought, because 
expectation values and gradients concentrate as 𝒪𝒪 (1/ed√d).

Neural networks (NNs) have revolutionized machine learning (ML) and 
artificial intelligence. Their tremendous success across many fields of 
research in a wide variety of applications1–3 is certainly astonishing. 
Although much of this success has come from heuristics, the past few 
decades have witnessed a notable increase in our theoretical under-
standing of their inner workings. One of the most interesting results 
regarding NNs is that fully connected models with a single hidden  
layer converge to Gaussian processes (GPs) in the limit of a large num-
ber of hidden neurons when the parameters are initialized from inde-
pendent and identically distributed (i.i.d.) priors4. More recently, it has  
been shown that i.i.d.-initialized, fully connected, multi-layer NNs  
also converge to GPs in the infinite-width limit5. Furthermore, other 
architectures, such as convolutional NNs6, transformers7 and recur-
rent NNs8, are also GPs under certain assumptions. More than just a 
mathematical curiosity, the correspondence between NNs and GPs 
has opened up the possibility of performing exact Bayesian inference 
for regression and learning tasks using wide NNs4,9. Training wide NNs 
with GPs requires inverting the covariance matrix of the training set, a 
process that can be computationally expensive. Recent studies have 
explored the use of quantum linear algebraic techniques to efficiently 

perform these matrix inversions, potentially offering polynomial 
speed-ups over standard classical methods10,11.

Indeed, the advent of quantum computers has stimulated enor-
mous interest in merging quantum computing with ML, leading to the 
thriving field of quantum machine learning (QML)12–16. Rapid progress 
has been made in this field, largely fuelled by the hope that QML may 
provide a quantum advantage in the near term for some practically 
relevant problems. Although the prospects for such a practical quan-
tum advantage remain unclear17, there are several promising analytical 
results18–21. Still, much remains to be learned about QML models.

In this work, we contribute to the QML body of knowledge by 
proving that under certain conditions the outputs of deep quantum 
neural networks (QNNs)—parametrized quantum circuits acting on 
input states drawn from a training set—converge to GPs in the limit 
of large Hilbert space dimension (Fig. 1). Our results are derived for 
QNNs that are Haar random over the unitary and orthogonal groups. 
Unlike the classical case, where the proof of the emergence of GPs stems 
from the central limit theorem, the situation becomes more intricate 
in the quantum setting as the entries of the QNN are not independent. 
Namely, the rows and columns of a unitary matrix are constrained to  
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f(xm+1) (for some new data instance xm+1), given the previous obser-
vations f(x1), …, f(xm). Explicitly, one constructs the joint distribu-
tion P(f(x1), …, f(xm), f(xm+1)) from the averages and the covariance 
func tion κ to obtain the sought-after ‘predictive distribution’ 
P(f(xm+1) ∣ f(x1), …, f(xm)) through marginalization. The power of the  
GP relies on this distribution usually containing less uncertainty than 
P(f(xm+1)) = 𝒩𝒩(𝒩𝒩𝒩f(xm+1)], κ(xm+1, xm+1)) (Methods).

Haar-random deep QNNs form GPs
In the following we consider a setting where one is given repeated  
access to a dataset 𝒟𝒟 containing quantum states {ρi}i on a d-dimensional 
Hilbert space that satisfy Tr𝒩ρ2

i ] ∈ Ω(1/poly(log(d)))  for all i. We will 
make no assumptions regarding the origin of these states, as they can 
correspond to classical data encoded in quantum states32,33 or quantum 
data obtained from some quantum mechanical process34,35. Then, the 
states are sent through a deep QNN, denoted U. Although in general  
U can be parametrized by some set of trainable parameters θ, we leave 
this dependence implicit for ease of notation. At the output of the 
circuit, one measures the expectation value of a traceless Hermitian 
operator taken from a set 𝒪𝒪 = {Oj}j  such that Tr[OjOj′] = dδj,j′ and  
O2
j = �, for all j and j′ (for example, Pauli strings). We denote the  

QNN outputs as

Cj (ρi) = Tr [UρiU†Oj] . (1)

Then, we collect these quantities over some set of states from 𝒟𝒟  
and some set of measurements from 𝒪𝒪 in a vector

𝒞𝒞 = (Cj (ρi) ,… ,Cj′ (ρi′ ) ,…) . (2)

As we will show below, in the large-d limit, 𝒞𝒞 converges to a GP when 
the QNN unitaries U are sampled according to the Haar mea sure on 
𝕌𝕌(d ) and 𝕆𝕆(d ), the degree-d unitary and orthogonal groups, respec-
tively (Fig. 1). Recall that 𝕌𝕌(d) = {U ∈ ℂd×d,UU† = U†U = �}  and that 
𝕆𝕆(d) = {U ∈ ℝd×d,UUT = UTU = �}. We will henceforth use the nota-
tion 𝒩𝒩𝕌𝕌𝕌d)  and 𝒩𝒩𝕆𝕆𝕌d)  to, respectively, denote Haar averages over 𝕌𝕌(d) 
and 𝕆𝕆(d). Moreover, we assume that when the circuit is sampled  
from 𝕆𝕆(d), the states in 𝒟𝒟 and the measurement operators in 𝒪𝒪 are  
real valued.

Moment computation in the large-d limit
As we discuss in Methods, we cannot rely on simple arguments based 
on the central limit theorem to show that 𝒞𝒞  forms a GP. Hence, our 
proof strategy is based on computing all the moments of the vector 𝒞𝒞 
and showing that they asymptotically match those of a multivariate 
Gaussian distribution. To conclude the proof we show that these 
moments unequivocally determine the distribution, for which we can 
use Carleman’s condition36,37. We refer the reader to the Supplementary 
Information for the detailed proofs of the results in this manuscript.

First, we present the following lemma.

Lemma 1. Let Cj(ρi) be the expectation value of a Haar-random QNN as 
in equation (1). Then for any ρi ∈ 𝒟𝒟 and Oj ∈ 𝒪𝒪,

𝒩𝒩𝕌𝕌𝕌d) [Cj (ρi)] = 𝒩𝒩𝕆𝕆𝕌d) [Cj (ρi)] = 0. (3)

Moreover, for any pair of states ρi,ρi′ ∈ 𝒟𝒟  and operators Oj,Oj′ ∈ 𝒪𝒪, 
we have

Cov𝕌𝕌𝕌d) [Cj (ρi)Cj′ (ρi′ )] = Cov𝕆𝕆𝕌d) [Cj (ρi)Cj′ (ρi′ )] = 0,

if j ≠ j′ and

Σ
𝕌𝕌
i,i′ =

d
d2 − 1

(Tr 𝒩ρiρi′ ] −
1
d
) , (4)

be mutually orthonormal. Hence, our proof strategy boils down to 
showing that each moment of the output distribution of a QNN con-
verges to that of a multivariate Gaussian. Importantly, we also show 
that the Bayesian distribution of a QNN acting on qubits is efficient 
(inefficient) for predicting local (global) measurements. We then  
use our results to provide a precise characterization of the concentra-
tion of measure phenomenon in deep random quantum circuits22–27. 
Our theorems indicate that the expectation values, as well as the  
gradients, of Haar-random processes concentrate faster than  
previously reported28. Finally, we discuss how our results can be lever-
aged to study QNNs that are not fully Haar random but instead form 
t-designs, which constitutes a much more practical assumption29–31.

GPs and classical ML
We begin by introducing GPs.

Definition 1. A collection of random variables {X1, X2, …} is a GP if and 
only if, for every finite set of indices {1, 2, …, m}, the vector (X1, X2, …, Xm) 
follows a multivariate Gaussian distribution, which we denote as 
𝒩𝒩(μ,Σ). Said otherwise, every linear combination of {X1, X2, …, Xm}  
follows a univariate Gaussian distribution.

In particular, 𝒩𝒩(μ,Σ)  is determined by its m-dimensional  
mean vector μ = (𝒩𝒩𝒩X1],… , 𝒩𝒩𝒩Xm]), where 𝒩𝒩 denotes the expectation 
value, and by its m × m-dimensional covariance matrix with entries 
(Σ)αβ = Cov[Xα, Xβ].

GPs are extremely important in ML because they can be used as a 
form of kernel method to solve learning tasks4,9. For instance, consider 
a regression problem where the data domain is 𝒳𝒳 = ℝ and the label 
domain is 𝒴𝒴 = ℝ . Instead of finding a single function f ∶ 𝒳𝒳 𝒳 𝒴𝒴   
that solves the regression task, a GP assigns probabilities to a set of 
pos sible f(x), such that the probabilities are higher for the ‘more  
likely’ functions. Following a Bayesian inference approach, one then 
selects the functions that best agree with some set of empirical 
observations9,16.

Under this framework, the output over the distribution of func-
tions f(x), for x ∈ 𝒳𝒳, is a random variable. Then, given a set of training 
samples x1, …, xm and some covariance function κ(x, x′), Definition 1 
implies that if one has a GP, the outputs f(x1), …, f(xm) are random vari-
ables sampled from some multivariate Gaussian distribution 𝒩𝒩(μ,Σ). 
From here, the GP is used to make predictions about the output  

NN P(y1, y2) =  (0, Σ)

P (C(ρ1), C(ρ2)) =  (0, Σ)

QNN

Gaussian process
U O

C(ρ1)

C(ρ2)

ρ1

ρ2

x1

x2

y1

N
h  → ∞

d → ∞

y2

Fig. 1 | Schematic of our main results. It is well known that certain classical NNs 
with Nh neurons per hidden layer become GPs when Nh → ∞. That is, given inputs x1 
and x2, and corresponding outputs y1 and y2, then the joint probability P(y1, y2) is a 
multivariate Gaussian 𝒩𝒩𝕌0,Σ). In this work, we show that a similar result holds 
under certain conditions for deep QNNs in the limit of large Hilbert space 
dimension, d → ∞. Now, given quantum states ρ1 and ρ2, C𝕌ρ) = Tr[UρU†O] is such 
that P𝕌C𝕌ρ1),C𝕌ρ2)) = 𝒩𝒩𝕌0,Σ).
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Σ𝕆𝕆i,i′ =
2(d + 1)

(d + 2)(d − 1) (Tr𝒩ρiρi′ ] (1 −
1

d + 1
) − 1

d + 1
) , (5)

if j = j′ . Here, we have defined ΣG
i,i′ = CovG𝒩Cj(ρi)Cj(ρi′ )] , where 

G = 𝕌𝕌(d), 𝕆𝕆(d).
Lemma 1 shows that the expectation value of the QNN outputs is 

always zero. More notably, it indicates that the covariance between  
the outputs is null if we measure different observables (even if we  
use the same input state and the same circuit). This implies that  
the distributions Cj(ρi) and Cj′(ρi′) are uncorrelated if j ≠ j′. That is, knowl-
edge of the measurement outcomes for one observable and  
different input states does not provide any information about the 
outcomes of other measurements, at these or any other input states. 
Therefore, we will focus in the following on when 𝒞𝒞 contains expec-
tation values for different states but the same operator. In this case, 
Lemma 1 shows that the covariances will be positive, zero or nega tive 
depending on whether Tr[ρiρi′] is larger, equal to or smaller than 1/d, 
respectively.

We now state a useful result.

Lemma 2. Let 𝒞𝒞  be a vector of expectation values of a Haar-random  
QNN as in equation (2), where one measures the same operator Oj  
over a set of states from 𝒟𝒟. Furthermore, let ρi1 ,… ,ρik ∈ 𝒟𝒟  be a multi-
set of states taken from those in 𝒞𝒞. In the large-d limit, if k is odd, then 
𝒩𝒩𝕌𝕌𝕌d) [Cj(ρi1 )⋯Cj(ρik )] = 𝒩𝒩𝕆𝕆𝕌d) [Cj(ρi1 )⋯Cj(ρik )] = 0. Moreover, if k is  

even and Tr𝒩ρiρi′ ] ∈ Ω(1/poly(log(d)))  for all i and i′, we have

𝒩𝒩𝕌𝕌𝕌d) [Cj (ρi1 )⋯Cj (ρik )] =
1

dk/2
∑
σ∈Tk

∏
{t,t′}∈σ

Tr𝒩ρtρt′ ]

=
𝒩𝒩𝕆𝕆𝕌d) [Cj(ρi1 )⋯Cj(ρik )]

2k/2
,

(6)

where the summation runs over all the possible disjoint pairing of  
indices in the set {1, 2, …, k}, Tk, and the product is over the different 
pairs in each pairing.

Using Lemma 2 as our main tool, we will be able to prove that  
deep QNNs form GPs for different types of datasets. Table 1 summarizes 
our main results.

Positively correlated GPs
We begin by studying the case when the states in the dataset satisfy 
Tr[ρiρi′] ∈ Ω(1/poly(log(d))) for all ρi,ρi′ ∈ 𝒟𝒟. According to Lemma 1, 
this implies that the variables are positively correlated. In the large-d 
limit, we can derive the following theorem.

Theorem 1. Under the same conditions for which Lemma 2 holds,  
the vector 𝒞𝒞  forms a GP with mean vector μ = 0 and covariance  

matrix given by Σ𝕌𝕌
i,i′ =

Σ
𝕆𝕆
i,i′

2
= Tr[ρiρi′ ]

d
.

Theorem 1 indicates that the covariances for the orthogonal 
group are twice as large as those arising from the unitary group. 
Figure 2 presents results obtained by numerically simulating a  
unitary Haar-random QNN for a system of n = 18 qubits. The cir-
cuits were sampled using known results for the distribution of the  
entries of random unitary matrices36. In the left panels of Fig. 2, we 
show the corresponding two-dimensional GP obtained for two ini-
tial states that satisfy Tr[ρiρi′] ∈ Ω(1). We can see that the variables  
are positively correlated in accordance with the prediction in  
Theorem 1.

That the outputs of deep QNNs form GPs reveals a deep con-
nection between QNNs and quantum kernel methods. Although it 
has already been pointed out that QNN-based QML constitutes a 
form of kernel-based learning38, our results solidify this connection  
for Haar-random circuits. Notably, we can recognize that the kernel 
arising in the GP covariance matrix is proportional to the fidelity  
kernel, that is, to the Hilbert–Schmidt inner product between the  
data states38–40. Moreover, because the predictive distribution of a  
GP can be expressed as a function of the covariance matrix (Methods)  
and, thus, of the kernel entries, our results further cement that  
quantum models such as those in equation (1) are functions in the 
reproducing kernel Hilbert space38.

Uncorrelated GPs
We now consider the case when Tr[ρiρi′] = 1/d for all ρi ≠ ρi′ ∈ 𝒟𝒟 . We 
found the following result.

Theorem 2. Let 𝒞𝒞 be a vector of expectation values of an operator in 𝒪𝒪 
over a set of states from 𝒟𝒟, as in equation (2). If Tr[ρiρi′] = 1/d for all 
 i ≠ i′, then in the large-d limit, 𝒞𝒞  forms a GP with mean vector μ = 0  
and diagonal covariance matrix

∑
𝕌𝕌
i,i′ =

∑𝕆𝕆
i,i′

2 =
⎧⎪
⎨⎪
⎩

Tr [ρ2
i ]

d
, if i = i′,

0, if i ≠ i′.
(7)

In the right panel of Fig. 2, we plot the GP corresponding to  
two initial states such that Tr[ρiρi′] = 1/d. In this case, the variables seem 
to be uncorrelated, as predicted by Theorem 2. Importantly, in Sup-
plementary Section C.3, we show that when Tr[ρiρi′] ∈ o(1/poly(log(d))) 
for all ρi ≠ ρi′, 𝒞𝒞 will form an uncorrelated GP if one takes the covari-
ance matrix to be approximately diagonal in the large-d limit. Then, in  
Methods we show that the results of Theorems 1 and 2 are valid  
for generalized datasets, where the conditions on the overlaps  
need be met only on average.

Negatively correlated GPs
Here we study orthogonal states, that is when Tr[ρiρi′] = 0 for all 
ρi ≠ ρi′ ∈ 𝒟𝒟. We prove the following theorem.

Theorem 3. Let 𝒞𝒞 be a vector of expectation values of an operator in 𝒪𝒪 
over a set of states from 𝒟𝒟, as in equation (2). If Tr[ρiρi′] = 0 for all i ≠ i′, 
then in the large-d limit, 𝒞𝒞 forms a GP with mean vector μ = 0 and covari-
ance matrix

∑
𝕌𝕌𝕌d)
i,i′ =

∑𝕆𝕆𝕌d)
i,i′

2 =
⎧⎪
⎨⎪
⎩

Tr [ρ2
i ]

d
, if i = i′,

− 1
d2 , if i ≠ i′.

(8)

Note that the magnitude of the covariances is Θ(1/d2) whereas  
that of the variances is Θ(1/d poly(log(d))). That is, in the large-d limit, 
the covariances are much smaller than the variances.

Table 1 | Summary of our main results

Dataset GP Correlation Statement

Tr𝒩ρiρi′ ] ∈ Ω ( 1
poly(log(d))

) Yes Positive Theorem 1

Tr𝒩ρiρi′ ] =
1
d

Yes Null Theorem 2

Tr𝒩ρiρi′ ] = 0 Yes Negative Theorem 3

In the first column, we present conditions for the states in the dataset∀ρi ≠ ρj ∈ D under 
which the outputs of the deep QNN form GPs. In the remaining columns, we report the 
correlation in the GP variables and the associated theorem where the main result is stated. In 
all cases, we assume that we measure the same operator Oj for all ρi,ρi′ ∈ 𝒟𝒟. In Theorem 4, 
we extend some of these results to the cases when the conditions are met only on average 
when sampling states over 𝒟𝒟.
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Deep QNN outcomes and their linear combination
In this section and the following ones we will study the implications of 
Theorems 1, 2 and 3. Unless stated otherwise, the corollaries we present 
can be applied to all considered datasets (Table 1).

First, we study the univariate probability distribution P(Cj(ρi)).

Corollary 1. Let Cj(ρi) be the expectation value of a Haar-random  
QNN as in equation (1). Then, for any ρi ∈ 𝒟𝒟 and Oj ∈ 𝒪𝒪, we have

P (Cj (ρi)) = 𝒩𝒩 (0,σ2) , (9)

where σ2 = 1/d or 2/d when U is Haar random over 𝕌𝕌(d)  and 𝕆𝕆(d),  
respectively.

Corollary 1 shows that when a single state from 𝒟𝒟 is sent through 
the QNN and a single operator from 𝒪𝒪 is measured, the outcomes 
follow a Gaussian distribution with a variance that vanishes inversely 
proportional to the Hilbert space dimension. This means that  
for large problem sizes, we can expect the results to be extremely 
con centrated around their mean (see below for more details). 
Figure 3 compares the predictions from Corollary 1 to numerical 
simulations. The simulations match our theoretical results very 
closely, for both the unitary and the orthogonal groups. Moreover, 
the standard deviation for orthogonal Haar-random QNNs is  
larger than that for unitary ones. In Fig. 3 we also plot the quotient  

𝒩𝒩𝒩Cj(ρi)
k]/𝒩𝒩𝒩Cj(ρi)

2]
k/2

 obtained from our numerics, and we verify  

that it follows the value k!
2k/2𝕌k/2)!

 for a Gaussian distribution.

At this point, it is worth making an important remark. Accord ing 
to Definition 1, if 𝒞𝒞  forms a GP, then any linear combination of its  
entries will follow a univariate Gaussian distribution. In particular,  
if {Cj(ρ1),Cj(ρ2),… ,Cj(ρm)} ⊆ 𝒞𝒞 , then P(Cj( ρ̃))  with ρ̃ = ∑m

i=1 ciρi   

will be equal to 𝒩𝒩(0, σ̃2) for some σ̃. Note that the real-valued coeffi-
cients {ci}

m
i=1  need not be a probability distribution, meaning that ρ̃  

is not necessarily a quantum state. This then raises an important  
question: What happens if ρ̃ ∝ �? A direct calculation shows  
that Cj( ρ̃) = ∑m

i=1 Cj(ciρi) ∝ Tr𝒩U�U†Oj] = Tr𝒩Oj] = 0. How can we then  

unify these two perspectives? On the one hand, Cj( ρ̃)  should be  
normally distributed, but, on the other hand, we know that it is always 
constant. To solve this issue, note that the only dataset we considered 
for which the identity can be constructed is the one where Tr[ρiρi′] = 0 
for all i ≠ i′ (this follows because if 𝒟𝒟 contains a complete basis, then 
for any ρ̃ ∈ 𝒟𝒟⟂, one has that if Tr𝒩ρ̃ρi] = 0 for all ρi ∈ 𝒟𝒟, then ρ̃ = 0; 
here, 𝒟𝒟⟂ denotes the kernel of the projector onto the subspace spanned 
by the vectors in 𝒟𝒟). In that case, we can leverage Theorem 3 along  

with the identity σ̃2 = VarG [∑
d
i=1 Cj(ρi)] = ∑i,i′ CovG𝒩Cj(ρi),Cj(ρi′ )] to  

explicitly prove that VarG [∑
d
i=1 Cj(ρi)] = 0 (for G = 𝕌𝕌(d), 𝕆𝕆(d)). Hence, 
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Fig. 2 | Two-dimensional GPs. We plot the joint probability density function, as 
well as its scaled marginals, for the measurement outcomes at the output of a 
unitary Haar-random QNN acting on n = 18 qubits. The measured observable is 
Oj = Z1, where Z1 denotes the Pauli z operator on the first qubit. Moreover, the 

input states are for the left column, ρ1 = |0〉 〈0|⊗n and ρ2 = |GHZ〉 〈GHZ| with 
|GHZ⟩ = 1

√2
𝕌|0⟩⊗n + |1⟩⊗n), and for the right column, ρ1 and ρ3 = |Ψ〉 〈Ψ| with  

|Ψ ⟩ = 1
√d
|0⟩⊗n +√1− 1

d
|1⟩⊗n. In both cases we took 104 samples.
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we find a zero-variance Gaussian distribution, that is, a delta distribu-
tion for the outcomes of the QNN (as expected).

Predictive power of the GP for qubit systems
Consider that we are given a (potentially continuous) set 𝒟𝒟 of  
n-qubit states and the following task, divided into two phases. In a first 
data-acquisition phase, one is allowed to send some states from 𝒟𝒟 
through some fixed unknown unitary V acting on n′ ≤ n qubits, perform 
measurements and record the outcomes. Crucially, the unitary V  
need not be Haar random but could be, in principle, any unitary (even 
the identity). Then, during a second prediction phase, access to V  
is no longer granted, but one has to predict the value of Tr[VρiV

†O]  
for any ρi ∈ 𝒟𝒟 , where O is some fixed Pauli string acting on the  
n′ qubits.

Although one could opt for some tomographic approach to learn 
V and solve the previous task, our work enables us to use the predic-
tive power of the GP. In particular, one starts with the prior that V 
could be any unitary in 𝕌𝕌(2n′ ). Thus, the probability distribution of 
Tr[VρiV

†O] is a univariate Gaussian as per our main theorems (assum-
ing 𝒟𝒟 satis fies the appropriate conditions). In the first stage, one 
measures the expectation value Tr[VρiV

†O] for some training set 
𝒟𝒟 𝒟 𝒟𝒟. Then, during the second stage, one computes the overlaps 
between the states in 𝒟𝒟 (to build the covariance matrix) as well as 
with any new state from 𝒟𝒟 on which we wish to apply the predictive 
power of the GP. These measurements can then be used to update  
the prior and make predictions (see Methods for the details of this 
procedure).

As evidenced from Lemma 1, the entries of the covariance  
matrix are suppressed as 2n′, that is, exponentially in n′. Hence, and as 
explained in Methods, this implies that if V acts on all n qubits (or on 
Θ(n) qubits), then an exponential number of measurements will be 
needed if we are to use Bayesian inference to learn any information 
about new outcomes given previous ones. However, the situation 
becomes much more favourable if the QNN acts on n′ ∈ 𝒪𝒪(log(n))  
qubits, as here only a polynomial number of measurements are  
needed to use the predictive power of the GP (provided that the over-
laps between the n′-qubit quantum states are not super-polynomially 

vanishing in n). In fact, we show in Fig. 4 simulations on up to  
n = 200 qubits where a GP is used as a regression tool to interpolate  
or extrapolate and accurately predict measurement results at the 
output of a quantum dynamical process (see Methods for details).

Concentration of measure
In this section, we show that Corollary 1 provides a more precise  
characterization of the concentration of measure and the barren- 
plateau phenomena for Haar-random circuits than that found in  
the literature22–28. First, it implies that deep orthogonal QNNs  
will exhibit barren plateaux, a result not previously known. Second,  
we recall that in standard analyses of barren plateaux, one looks only 
at the first two moments of the distribution of cost values Cj(ρi) (or, 
simi larly, of gradient values ∂θCj(ρi)). Then one uses Chebyshev’s 
in equality, which states that for any c > 0, the probability P(|X| ≥ c) ≤  
Var[X]/c2, to prove that P(∣Cj(ρi)∣ ≥ c) and P(∣∂θCj(ρi)∣ ≥ c) are in  
𝒪𝒪(1/d)  (refs. 23,27). However, having a full characterization of  
P(Cj(ρi)) allows us to compute tail probabilities and obtain a much 
tighter bound. For instance, as U is Haar random over 𝕌𝕌(d), the follow-
ing corollary holds.

Corollary 2. Let Cj(ρi) be the expectation value of a Haar random  
QNN as in equation (1). Assuming that there exists a parametrized  
gate in U of the form e−iθH for some Pauli operator H, then

P(|Cj(ρi)| ≥ c), P(|∂θCj(ρi)| ≥ c) ∈ 𝒪𝒪 ( 1
c edc2 √d

) .

Corollary 2 indicates that the QNN outputs and their gradients 
actually concentrate with a probability that vanishes exponentially 
with d. In an n-qubit system where d = 2n, then P(∣Cj(ρi)∣ ≥ c) and 
P(∣∂θCj(ρi)∣ ≥ c) are doubly exponentially vanishing with n. The tightness 
of our bound arises because Chebyshev’s inequality is loose for highly 
narrow Gaussian distributions. Moreover, our bound is also tighter 
than that provided by Levi’s lemma28, as it includes an extra 𝒪𝒪(1/√d) 
factor. Corollary 2 also implies that the narrow gorge region of the 
landscape27, that is, the fraction of non-concentrated Cj(ρi) values, also 
decreases exponentially with d.

Furthermore, we show in Methods how our results can be used to 
study the concentration of functions of QNN outcomes, for example, 
standard loss functions used in the literature, like the mean-squared 
error.

Implications for t-designs
We now note that our results allow us to characterize the output  
distribution for QNNs that form t-designs, that is, for QNNs whose 
unitary distributions have the same properties up to the first t moments 
as sampling random unitaries from 𝕌𝕌(d)  with respect to the Haar  
measure. With this in mind, one can readily see that the following  
corollary holds.

Corollary 3. Let U be drawn from a t-design. Then, under the same  
conditions for which Theorems 1, 2 and 3 hold, the vector 𝒞𝒞  matches  
the first t moments of a GP.

Corollary 3 extends our results beyond the strict condition of  
the QNN being Haar random to being a t-design, which is a more  
realistic assumption29–31. In particular, we can study the concen-
tration phenomenon in t-designs. Using an extension of Chebyshev’s 
inequality to higher-order moments leads to P(|Cj(ρi)| ≥ c),  

P(|∂θCj(ρi)| ≥ c) ∈ 𝒪𝒪
⎛
⎜
⎜
⎝

(2⌊ t
2 ⌋)!

2
⌊
t
2 ⌋(dc2)

⌊
t
2 ⌋(⌊

t
2
⌋)!

⎞
⎟
⎟
⎠

 (see Supplementary Section M  

for a proof). Note that for t = 2, we recover the known concentra tion 
result for barren plateaux, but for t ≥ 4, we obtain new polynomial-in- 
d-tighter bounds.
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Discussion and outlook
We have shown in this manuscript that under certain conditions, the 
output distribution of deep Haar-random QNNs converges to a GP in 
the limit of large Hilbert space dimension. Although this result had 
been conjectured in ref. 15, a formal proof was still lacking. We remark 
that although our result mirrors its classical counterpart, namely 
that certain classical NNs form GPs, there exist nuances that differ-
entiate our findings from the classical case. For instance, we need to  
make assumptions on the states processed by the QNN as well as on  
the measurement operator. Moreover, some of these assumptions  
are unavoidable, as Haar-random QNNs will not necessarily always 
converge to a GP. That is, not all QNNs and all measurements will lead to 
a GP. As an example, if Oj is a projector onto a computational basis state, 
then one recovers a Porter–Thomas distribution41. Ultimately, these 
subtleties arise because the entries of unitary matrices are not inde-
pendent. In contrast, classical NNs are not subject to this constraint.

Note that our theorems have further implications beyond  
those discussed here. First and foremost, that GPs can be efficiently 
used for regression in certain cases paves the way for new and excit-
ing research avenues at the intersection of quantum information  
and Bayesian learning. Moreover, we envision that our methods and 
results will be useful in more general settings where Haar-random 
unitaries or t-designs are considered, such as quantum scramblers  
and black holes26,42,43, many-body physics44, quantum decouplers 
and quantum error correction45. Finally, we leave for future work  
the study of whether GPs arise in other architectures, such as match-
gate circuits46,47.
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Methods
Sketch of the proof of our main results
Because our main results are mostly based on Lemmas 1 and 2, we will here 
outline the main steps used to prove these lemmas. In particular, to prove 
them, we need to calculate, in the large-d limit, quantities of the form

𝒩𝒩G [Tr [U⊗k
Λ(U†)⊗kO⊗k]] , (10)

for arbitrary k and for G = 𝕌𝕌(d), 𝕆𝕆(d). Here, the operator Λ is defined as 
Λ = ρi1 ⊗⋯⊗ ρik, where the states ρi belong to 𝒟𝒟 and where O is an opera-
tor in 𝒪𝒪. The first moment μ (k = 1) and the second moments ΣG

i,i′ (k = 2) 
can be directly computed using standard formulae for integration over 
the unitary and orthogonal groups (Supplementary Sections C and D). 
This readily recovers the results in Lemma 1. However, for larger k, a direct 
computation quickly becomes intractable, and we need to resort to 
asymptotic Weingarten calculations. More concretely, let us exemplify 
our calculations for the unitary group and for when the states in the 
dataset are such that Tr[ρiρi′] ∈ Ω(1/poly(log(d))) for all ρi,ρi′ ∈ 𝒟𝒟. As 
shown in Supplementary Section C.1, we can prove the following lemma.

Lemma 3. Let X be an operator in ℬ(ℋ⊗k) , the set of bounded  
linear operators acting on the k-fold tensor product of a d-dimensional 
Hilbert space ℋ . Let Sk be the symmetric group on k items, and let Pd  
be the subsystem permuting representation of Sk in ℋ⊗k . Then, for  
large Hilbert space dimension (d → ∞), the twirl of X over 𝕌𝕌(d) is

𝒩𝒩𝕌𝕌𝕌d) [U⊗kX(U†)⊗k] = 1
dk

∑
σ∈Sk

Tr𝒩XPd(σ)]Pd (σ−1)

+ 1
dk

∑
σ,π∈Sk

cσ,πTr𝒩XPd(σ)]Pd(π),

where the constants cσ,π are in 𝒪𝒪(1/d).
Recall that the subsystem permuting representation of a permu-

tation σ ∈ Sk is

Pd(σ) =
d−1
∑

i1 ,…,ik=0
||iσ−1𝕌1),… , iσ−1𝕌k)⟩ ⟨i1,… , ik| . (11)

Lemma 3 implies that equation (10) is equivalent to

𝒩𝒩𝕌𝕌𝕌d) [Tr [U⊗k
Λ(U†)⊗kO⊗k]]

= 1
dk
∑σ∈Sk Tr 𝒩ΛPd(σ)]Tr [Pd(σ−1)O⊗k]

+ 1
dk
∑σ,π∈Sk cσ,π Tr 𝒩ΛPd(σ)]Tr [Pd(π)O⊗k] .

(12)

Note that, by definition, because O is traceless and such that O2 = �, 
then Tr[Pd(σ)O⊗k] = 0 for odd k (and for all σ). This result implies that 
all the odd moments are exactly zero, and also that the non-zero con-
tributions in equation (12) for the even moments come from permuta-
tions consisting of cycles of even length. Note that as a direct 
consequence, the first moment 𝒩𝒩𝕌𝕌𝕌d) [Tr𝒩UρiU†O]] is zero for any ρi ∈ 𝒟𝒟, 
and, thus, we have μ = 0. To compute higher moments, we show that 
Tr[Pd(σ)O⊗k] = dr if k is even and σ is a product of r disjoint cycles of even 
length. The maximum of Tr[Pd(σ)O⊗k] is, therefore, achieved when r is 
maximal, that is, when σ is a product of k/2 disjoint transpositions 
(cycles of length two), leading to Tr[Pd(σ)O⊗k] = dk/2. Then, we look at 
the factors Tr[ΛPd(σ)] and include them in the analysis. We have that 
for all π and σ in Sk,

1
dk

||(cσ,π Tr 𝒩ΛPd (σ)]Tr [Pd(π)O⊗k]

+cσ−1 ,π Tr [ΛPd (σ−1)])Tr [Pd(π)O⊗k]|| ∈ 𝒪𝒪 ( 1
d𝕌k+2)/2

) .
(13)

Moreover, because Tr[ρiρi′] ∈ Ω(1/poly(log(d))) for all pair of states 
ρi,ρi′ ∈ 𝒟𝒟, it holds that if σ is a product of k/2 disjoint transpositions, 
then

1
dk

Tr𝒩ΛPd(σ)]Tr𝒩Pd(σ−1)O⊗k] ∈ Ω̃ ( 1
dk/2 ) , (14)

where the Ω̃ notation omits poly(log(d))−1 factors, whereas

1
dk

||Tr 𝒩ΛPd(σ)]Tr [Pd (σ−1)O⊗k]

Tr [ΛPd (σ−1)]Tr [Pd(σ)O⊗k]|| ∈ 𝒪𝒪 ( 1
d𝕌k+2)/2

) ,
(15)

for any other σ. Note that if σ consist only of transpositions, then it is 
its own inverse, that is, σ = σ−1.

It immediately follows that for fixed k and d → ∞, the second sum 
in equation (12) is suppressed at least inversely proportional to the 
dimension of the Hilbert space with respect to the first one (that is, 
exponentially in the number of qubits for QNNs made out of qubits). 
Note that as long as k scales with d as 𝒪𝒪(log logd) , our asymptotic  
analysis and, hence, the convergence to a GP are still valid. This can  
be seen because there are k! − k!

2k/2𝕌k/2)!
 permutations that are not the 

product of disjoint transpositions. Hence, we find

k! − k!
2k/2𝕌k/2)!
k!

2k/2𝕌k/2)!

=
1 − 1

2k/2𝕌k/2)!
1

2k/2𝕌k/2)!

≈ 2k/2(k/2)!

≈ 2k/2√π log logd( log logde )
log logd

< √log logd (log logd)log logd

= √log logd (logd)log log logd,

where we used Stirling’s approximation for the factorial and replaced 
k = log log d. As this ratio is quasi-polynomial in log d but all contribu-
tions that arise from permutations that are not the product of disjoint 
transpositions are suppressed as 𝒪𝒪(1/d), the conclusion follows.

Likewise, the contributions in the first sum in equation (12) coming 
from permutations that are not the product of k/2 disjoint transpo-
sitions are also suppressed at least inversely proportional to the  
Hilbert space dimension. Therefore, in the large-d limit, we arrive at

𝒩𝒩𝕌𝕌𝕌d) [Tr [U⊗k
Λ(U†)⊗kO⊗k]] = 1

dk/2
∑
σ∈Tk

∏
{t,t′}∈σ

Tr 𝒩ρtρt′ ] , (16)

where we have defined Tk ⊆ Sk to be the subset of permutations that are 
exactly given by a product of k/2 disjoint transpositions. Note that this 
is precisely the statement in Lemma 2.

From here we can easily see that if every state in Λ is the same, that 
is, if ρiλ = ρ for λ = 1, …, k, then Tr[ρiρi′] = 1 for all t and t′, and we need  
to count how many terms there are in equation (16). Specifically, we 
need to count how many different ways there are to split k elements 
into pairs (with k even). A straightforward calculation shows that

∑
σ∈Tk

∏
{t,t′}∈σ

1 = 1
(k/2)! (

k

2, 2,… , 2
) = k!

2k/2(k/2)! . (17)

Therefore, we arrive at

𝒩𝒩𝕌𝕌𝕌d) [Tr [U⊗k
Λ(U†)⊗kO⊗k]] = 1

dk/2
k!

2k/2(k/2)! . (18)
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Identifying σ2 = 1/d implies that the moments 𝒩𝒩𝕌𝕌𝕌d)𝒩Tr[UρU†O]k]   
exactly match those of a Gaussian distribution 𝒩𝒩(0,σ2).

To prove that these moments unequivocally determine the distri-
bution of 𝒞𝒞, we use Carleman’s condition.

Lemma 4. (Carleman’s condition, Hamburger case37). Let γk be the  
( finite) moments of the distribution of a random variable X that can  
take values on the real line ℝ. These moments determine uniquely the 
distribution of X if

∞
∑
k=1

γ−1/2k2k = ∞. (19)

Explicitly, we have

∞
∑
k=1

( 1
dk

𝕌2k)!
2kk!

)
−1/2k

= √2d
∞
∑
k=1

((2k)⋯ (k + 1))−1/2k

≥
∞
∑
k=1

((2k)k)
−1/2k

=
∞
∑
k=1

1
√2k

= ∞.

(20)

Hence, Carleman’s condition is satisfied according to Lemma 4, and 
P(Cj(ρi)) is distributed following a Gaussian distribution.

A similar argument can be given to show that the moments of 𝒞𝒞 
match those of a GP. Here, we need to compare equation (16) with the 
kth-order moments of a GP, which are provided by Isserlis’s theorem48. 
Specifically, if we want to compute a kth-order moment of a GP, then 
we have that 𝒩𝒩𝒩X1X2⋯Xk] = 0 if k is odd, and

𝒩𝒩 𝒩X1X2⋯Xk] = ∑
σ∈Tk

∏
{t,t′}∈σ

Cov 𝒩Xt,Xt′ ] , (21)

if k is even. Clearly, equation (16) matches equation (21) by identifying 
Cov[Xt, Xt′] = Tr[ρtρt′]/d. We can again prove that these moments 
uniquely determine the distribution of 𝒞𝒞 because if its marginal distri-
butions are determinate from Carleman’s condition (see above), then 
so is the distribution of 𝒞𝒞 (ref. 37). Hence, 𝒞𝒞 forms a GP.

Generalized datasets
Up to this point we have derived our theorems by imposing strict condi-
tions on the overlaps between every pair of states in the dataset. How-
ever, we can extend these results to when the conditions are met only 
on average when sampling states over 𝒟𝒟.

Theorem 4. The results of Theorems 1 and 2 will hold, on average, if  
𝒩𝒩ρi ,ρi′ ∼𝒟𝒟 Tr𝒩ρiρi′ ] ∈ Ω ( 1

poly(log(d))
) and 𝒩𝒩ρi ,ρi′ ∼𝒟𝒟Tr𝒩ρiρi′ ] =

1
d

, respectively.

In Theorem 4 we generalized the results of Theorems 1 and 2  
to hold on average when (1) 𝒩𝒩ρi ,ρi′ ∼𝒟𝒟 Tr𝒩ρiρi′ ] ∈ Ω (1/poly(log(d))) and (2) 

𝒩𝒩ρi ,ρi′ ∼𝒟𝒟 Tr𝒩ρiρi′ ] = 1/d , respectively. Interestingly, these two cases have 
practical relevance. Let us start with case (1). Consider a multiclass 
classification problem, where each state ρi in 𝒟𝒟 belongs to one of Y 
classes, with Y ∈ 𝒪𝒪(1), and where the dataset is composed of an (approxi-
mately) equal number of states from each class. That is, for each ρi  
we can assign a label yi = 1, …, Y. Then, we assume that the classes are 
well separated in the Hilbert feature space, a standard and sufficient 
assumption for the model to be able to solve the learning task32,35. By 
well separated, we mean that

Tr 𝒩ρiρi′ ] ∈ Ω ( 1
poly(log(d)) ) , if yi = yi′ , (22)

Tr 𝒩ρiρi′ ] ∈ 𝒪𝒪 ( 1
2n ) , if yi ≠ yi′ . (23)

In this case, it can be verified that for any pair of states ρi and ρi′  
sampled from 𝒟𝒟, one has 𝒩𝒩ρi ,ρi′ ∼𝒟𝒟𝒩Tr𝒩ρiρi′ ]] ∈ Ω (1/poly(log(d))).

Next, let us evaluate case (2). This situation arises when the states 
in 𝒟𝒟 are Haar-random states. Indeed, we can readily show that

𝒩𝒩ρi ,ρi′ ∼𝒟𝒟 𝒩Tr 𝒩ρiρi′ ]] = 𝒩𝒩ρi ,ρi′ ∼Haar 𝒩Tr 𝒩ρiρi′ ]]

= ∫
𝕌𝕌𝕌d)

dμ (U ) dμ(V )Tr [Uρ0U†Vρ′0V
†]

= ∫
𝕌𝕌𝕌d)

dμ (U )Tr [Uρ0U†ρ′0]

=
Tr 𝒩ρ0]Tr [ρ′0]

d

= 1
d
.

(24)

In the first equality we used that sampling pure Haar-random states 
ρi and ρi′ from the Haar measure is equivalent to taking two reference 
pure states ρ0 and ρ′0 and evolving them with Haar-random unitaries. 
We used in the second equality the left-invariance of the Haar measure,  
and in the third equality, we explicitly performed the integration  
(Supplementary Section C).

Learning with the GP
In this section we will review the basic formalism for learning with GPs 
and then discuss conditions under which such learning is efficient.

Let C be a GP. Then, by definition, given a collection of inputs  
{xi}

m
i=1 , C is determined by its m-dimensional mean vector μ, and its 

m × m-dimensional covariance matrix Σ. In the following, we will assume 
that the mean of C is zero and that the entries of its covariance matrix 
are expressed as κ(xi, xi′). That is,

P
⎛
⎜
⎜
⎝

⎛
⎜
⎜
⎝

C(x1)

⋮

C(xm)

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

= 𝒩𝒩
⎛
⎜
⎜
⎝

μ =
⎛
⎜
⎜
⎝

0

⋮

0

⎞
⎟
⎟
⎠

,Σ =
⎛
⎜
⎜
⎝

κ(x1, x1) ⋯ κ(x1, xm)

⋮ ⋮

κ(xm, x1) ⋯ κ(xm, xm)

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

.

This allows us to know that, a priori, the distribution of values for any 
f(xi) will take the form

P (C (xi)) = 𝒩𝒩 (0,σ2i ) , (25)

with σ2i = κ(xi, xi).
Now, let us consider the task of using m observations, which we will 

collect in a vector y, to predict the value at xm+1. First, if the observations 
are noiseless, then y = (y(x1), …, y(xm)) is equal to C = (C(x1), …, C(xm)). 
That is, C = y. Here, we can use that C forms a GP to find9,49

P (C (xm+1) |CCC ) = P (C (xm+1) |C (x1) ,C (x2) ,… ,C (xm))

= 𝒩𝒩 (μ (C (xm+1)) ,σ2 (C (xm+1))) ,
(26)

where μ(C(xm+1)) and σ2(C(xm+1)), respectively, denote the mean and 
variance of the associated Gaussian probability distribution. These 
are given by

μ (C (xm+1)) = mT ⋅Σ−1 ⋅ C (27)

σ2 (C (xm+1)) = σ2m+1 −mT ⋅Σ−1 ⋅m. (28)

The vector m has entries mi = κ(xm+1, xi). Comparing equations (25) and 
(26), we can see that using Bayesian statistics to obtain the predictive 
distribution of P(C(xm+1)∣C) shifts the mean from zero to mT ⋅ Σ−1 ⋅ C. The 
variance is decreased from σ2m+1 by a quantity mT ⋅ Σ−1 ⋅ m. The decrease 
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in variance follows because we are incorporating knowledge about the 
observations and, thus, decreasing the uncertainty.

From the above discussion, we can provide some intuition  
behind the differences between our three main theorems. From 
equation (28), it is clear that we can learn the most when the states in  
the dataset and the new state ρm+1 are similar (Theorem 1). Intuitively, 
this makes sense, as the more similar the training states are, the  
better we can predict the output through the QNN of a new state  
closely resembling the training set. One can readily verify that if one 
wishes to make predictions on a new state ρm+1 for which Tr[ρm+1ρi] = 1/d 
for all states ρi in the training set, then m = 0, meaning that we  
cannot update the prior (Theorem 2). This again makes perfect 
sense, as an overlap of 1/d is precisely the expected overlap between a 
Haar-random state and any other pure state. This result thus implies 
that we cannot use training data to make predictions on a Haar random 
ρm+1. Finally, the case of orthogonal states in Theorem 3 is fundamen-
tally different from the uncorrelated one because two generic states  
are not expected to be orthogonal. Thus, we can still extract infor-
mation as per equation (28).

In a realistic scenario, we would expect that noise will occur during 
our observation procedure. For simplicity, we model this noise as 
Gaussian noise, so that y(xi) = C(xi) + εi, where the noise terms εi  
are assumed to be independently drawn from the same distribution 
P(εi) = 𝒩𝒩(0,σ2N). Now, because we have assumed that the noise is drawn 
independently, we know that the likelihood of obtaining a set of  
observations y given the model values C is given by P(yyy|CCC ) = 𝒩𝒩(CCC,σ2N�). 
In this case, we can find the probability distribution9,49:

P (C (xm+1) |C) = ∫ dCP (xm+1|C)P (C|y)

= ∫ dCP (C (xm+1) |C)P (y|C)P (C) /P (y)

= 𝒩𝒩 (μ̃ (C (xm+1)) , σ̃2 (C (xm+1))) ,

(29)

where now we have

μ̃ (C (xm+1)) = mT ⋅ (Σ + σ2N�)
−1 ⋅ C (30)

σ̃2 (C (xm+1)) = σ2m+1 −mT ⋅ (Σ + σ2N�)
−1 ⋅m. (31)

We used in the first and the second equalities the explicit decompo-
sition of the probability, along with Bayes and marginalization rules. 
We can see that the probability is still governed by a Gaussian distribu-
tion except that the inverse of Σ has been replaced by the inverse  
of Σ + σ2N�.

The previous results can be readily used to study whether learning 
with the GP will be efficient in the presence of finite sampling. First,  
let us assume that the QNN acts on all the qudits of the states in 𝒟𝒟 and 
that we measure the same Oj at the output of the circuit. As such, the 
noise terms εi are taken to be drawn from the same distribution 
P(εi) = 𝒩𝒩(0,σ2N)  with σ2N = 1/N , and N the number of shots used to  
estimate each y(ρi). In this case, we can prove that the GP cannot be  
used to efficiently predict the outputs of the QNN from Bayesian  
statistics, as stated in the following theorem, whose proof can be  
found in Supplementary Section K.

Theorem 5. Consider a GP obtained from a Haar-random QNN. Given 
the set of observations (y(ρ1), …, y(ρm)) obtained from N ∈ 𝒪𝒪(poly(log(d))) 
measurements, then the predictive distribution of the GP is trivial:

P (Cj (ρm+1) |Cj (ρ1) ,… ,Cj (ρm)) = P (Cj (ρm+1)) = 𝒩𝒩 (0,σ2) ,

where σ2 is given by Corollary 1.

Specifically, Theorem 5 shows that by spending only a poly- 
logarithmic-in-d (polynomial in n) number of measurements, one  
cannot use Bayesian statistical theory to learn any information  
about new outcomes given previous ones. The key insight behind 
Theorem 5 is that the covariance-matrix entries are suppressed as  
𝒪𝒪(1/d)  whereas the noise terms produce a statistical variance that  
is inversely proportional to the number of measurements. Hence, 
Σ + σ2N� ≈ σ2N� in the large-d limit.

Next, for simplicity, let us focus on when the system has n qubits, 
so that the Hilbert space dimension is d = 2n (as in the main text). More-
over, we assume that the QNN and the measurement operator Oj  
act on m ≤ n qubits and that expectation values are again measured 
with N ∈ 𝒪𝒪(poly(log(d)))  shots. When m ∈ 𝒪𝒪(log(n)) , Lemma 1 tells us  
that the covariance-matrix entries are suppressed only as Ω(1/poly(n)), 
provided that the overlaps on the reduced states on m qubits are in  
Ω(1/poly(n)). Because σ2N =

1
N

, it suffices to choose N polynomially  
large in n to attain Σ + σ2N� ≈ Σ  in the large-d limit.

Details for the numerical simulations
We provide here the details of the numerical simulations demon-
strating GP regression (Fig. 4). To create the dataset 𝒟𝒟, we consider a  
quantum dynamical process in which an initial state ρ(0) is evolved 
under an XY Hamiltonian with local random transverse fields to produce 
the state ρ(t) at time t. Therefore, the states in 𝒟𝒟 are states at arbitrary 
times, and the learning task consists of making predictions in some 
dynamical process. More precisely, we define the Hamiltonians in  
one and two spatial dimensions as

H1 =
n−1
∑
l=1

XlXl+1 + YlYl+1 +
n
∑
l=1

hlZl, (32)

and

H2 =
√n−1
∑
l=1

√n−1
∑
l′=0

Xl+l′√nXl+l′√n+1 + Yl+l′√nYl+l′√n+1 +
n
∑
l=1

hlZl, (33)

respectively, where the coefficients hl are uniformly drawn from  
[−1, 1] and Xl, Yl and Zl indicate the usual X, Y and Z Pauli matrices  
acting on qubit l. For the one-dimensional lattice, we choose a system 
size of n = 200 qubits, whereas for the two-dimensional square lattice, 
we have n = 5 × 5 = 25 qubits. The initial states are ρ(0) = |0〉 〈0|⊗n and  

ρ(0) = |+〉 〈+|⊗n, respectively, with |+⟩ = 1
√2
(|0⟩ + |1⟩). We then randomly 

pick a Pauli operator Oj with support on at most ⌈log(n)⌉ qubits,  
namely, Oj = Y ⊗ Y on two qubits for the one-dimensional lattice and  
Oj = X ⊗ Z on two qubits for the two-dimensional lattice. The goal is  
to predict the time series Tr[ρ(t)Oj] using GP regression (in parti cular, 
equations (27) and (28), as explained in the ‘Learning with the GP’  
section), given access to m training points of the form {ρ(ti),Cj(ρ(ti))}

m
i=1.

Concentration of functions of QNN outcomes
We evaluated in the main text the distribution of QNN outcomes  
and their linear combinations. However, in many cases, one is also  
interested in evaluating a function of the elements of 𝒞𝒞. For instance, 
in a standard QML setting, the QNN outcomes are used to com pute 
some loss function ℒ(𝒞𝒞), which one wishes to optimize12–16. Although 
we do not aim here to explore all possible relevant functions ℒ,  
we will present two simple examples that illustrate how our results can 
be used to study the distribution of ℒ(𝒞𝒞) as well as its concentration.

First, let us consider ℒ(Cj(ρi)) = Cj(ρi)
2. It is well known that the 

square of a random variable with a Gaussian distribution 𝒩𝒩(0,σ2)   
follows a gamma distribution Γ(1/2, 2σ2). Hence, we know that 
P(ℒ(Cj(ρi))) = Γ (1/2, 2σ2) . Next, let us consider ℒ(Cj(ρi)) = (Cj(ρi) − yi)

2   
for yi ∈ [−1, 1]. This case is relevant for supervised learning as the 
mean-squared error loss function is composed of a linear combination 
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of such terms. Here, yi corresponds to the label associated with  
the state ρi. We can exactly compute all the moments of ℒ(Cj(ρi)) as

𝒩𝒩G [ℒ(Cj (ρi))
k] =

2k
∑
r=0

(
2k

r
)𝒩𝒩G𝒩Cj(ρi)

r](−yi)
2k−r, (34)

for G = 𝕌𝕌(d ), 𝕆𝕆(d ). We can then use Lemma 2 to obtain

𝒩𝒩𝕌𝕌𝕌d) [Cj(ρi)
r] = r!

dr/22r/2(r/2)! =
𝒩𝒩𝕆𝕆𝕌d) [Cj(ρi)

r]
2r/2

,

if r is even, and 𝒩𝒩𝕌𝕌𝕌d)𝒩Cj(ρi)
r] = 𝒩𝒩𝕆𝕆𝕌d)𝒩Cj(ρi)

r] = 0 if r is odd. We obtain

𝒩𝒩𝕌𝕌𝕌d ) [ℒ(Cj (ρi))
k] = 2k

(−d )k
M (−k, 12 , −

dy2
2 ) , (35)

with M Kummer’s confluent hypergeometric function.
Furthermore, we can also study the concentration of ℒ(Cj(ρi))   

and show that P (|ℒ(Cj(ρi)) − 𝒩𝒩𝕌𝕌𝕌d)(ℒ(Cj(ρi)))| ≥ c) , where the average  

𝒩𝒩𝕌𝕌𝕌d)(ℒ(Cj(ρi))) = y2i + 1/d  is in 𝒪𝒪 (1/(|√c + yi| ed|√c+yi |2 √d)).

Infinitely wide NNs as GPs
Finally, we will briefly review the seminal work of ref. 4, which proved 
that artificial NNs with a single infinitely wide hidden layer form GPs. 
Our main motivation for reviewing this result is that, as we will see 
below, the simple technique used in its derivation cannot be directly 
applied to the quantum case.

For simplicity, let us consider a network consisting of a single  
input neuron, Nh hidden neurons and a single output neuron (Fig. 1). 
The input of the network is x ∈ ℝ, and the output is given by

f(x) = b +
Nh

∑
l=1

vlhl(x), (36)

where hl(x) = ϕ(al + ulx) models the action of each neuron in the hidden 
layer. Specifically, ul is the weight between the input neuron and the 
lth hidden neuron, al is the respective bias and ϕ is some (nonlinear) 
activation function such as the hyperbolic tangent or the sigmoid 
function. Similarly, vl is the weight connecting the lth hidden neuron 
to the output neuron, and b is the output bias. From equation (36) we 
can see that the output of the NN is a weighted sum of the outputs of 
the hidden neurons plus some bias.

Next, let us assume that vl and b are taken i.i.d. from a Gaussian 
distribution with zero mean and standard deviations σv/√Nh  and σb, 
respectively. Likewise, one can assume that the hidden neuron weights 
and biases are taken i.i.d. from some Gaussian distributions. Then, in 
the limit Nh → ∞, one can conclude from the central limit theorem  
that, because the NN output is a sum of infinitely many i.i.d. random 
variables, it will converge to a Gaussian distribution with zero mean 
and variance σ2b + σ2v𝒩𝒩𝒩hl(x)

2] . Similarly, it can be shown that when  
there are several inputs x1, …, xm, one gets a multivariate Gaussian 
distribution for f(x1), …, f(xm), that is, a GP4.

Naively, one could try to mimic the technique in ref. 4 to prove 
our main results. In particular, we could start by noting that Cj(ρi) can 
always be expressed as

Cj(ρi) =
d
∑

k,k′ ,r,r′=1
ukk′ρk′ru∗r′ror′k, (37)

where ukk′, u∗r′r , ρk′r  and or′ l  are the matrix entries of U, U†, ρi and Oj, 
respectively. Although equation (37) is a summation over a large  

number of random variables, we cannot apply the central limit theorem 
(or its variants) here because the matrix entries ukk′  and u∗rr′ are not 
independent.

In fact, the correlation between the entries in the same row or 
column of a Haar-random unitary are of order 1/d, whereas those  
in different rows or columns are of order 1/d2 (ref. 36). This small,  
albeit critical, difference means that we cannot simply use the central 
limit theorem to prove that 𝒞𝒞 converges to a GP. Instead, we need to 
rely on the techniques described in the main text.
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