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1 Introduction

The integration of algorithmic trading with reinforcement learning (RL) algorithms, often termed AI-
powered trading, has the potential to reshape financial markets and poses new regulatory challenges.
While traditional algorithmic trading relies on static, hardcoded rules defined by humans, RL-based
trading algorithms autonomously optimize their strategies through self-learning, trial-and-error
interactions with the market and adapt in real time based on observed outcomes. Such adoption of AI
algorithms in trade execution has recently gained significant momentum and its future progression
seems unavoidable.1

One of the most pressing regulatory concerns related to the adoption of AI is the risk of AI
collusion. As we discuss in the literature review below, AI collusion has been a concern in areas
outside financial markets and it poses particular risks in financial markets. We define AI collusion as
a scenario where autonomous, self-interested RL algorithms independently learn to coordinate their
trading in a way that secures supra-competitive profits, without explicit agreements, communication,
or pre-programmed intent. Such algorithmic collusion could benefit a small group of sophisticated
speculators equipped with advanced technologies, while harming broader market participants by
undermining competition, liquidity, and market efficiency.

What makes AI collusion particularly challenging to regulators is that it falls outside the scope
of existing antitrust enforcement frameworks,2 which focus on detecting explicit communication or
evidence of shared intent (e.g., Harrington, 2018; Massarotto, 2025). This focus reflects the prevailing
view that communication is important for humans to sustain collusion.3 As a result, AI collusion,
despite yielding similar anti-competitive outcomes, remains largely unaddressed under current
law. This legal gap is particularly salient in financial markets, where the boundary between illegal
communication used for manipulation and lawful communication necessary for enhancing market
efficiency and stability is inherently difficult to define and detect. But before evaluating these issues,
we need a better understanding of whether AI collusion in securities trading can arise in the first
place, given the unique nature and structure of the financial market, and if so, then how it is affected
by the parameters of the market.

In this article, we show that AI collusion in securities trading can robustly arise. Our analysis
starts with a model to analyze the possibilities of collusion in equilibrium without considering AI
agents. We then conduct simulation experiments with RL algorithms trading in an environment
similar to the model and explore the patterns of collusion they achieve. We show that there are two
fundamentally distinct algorithmic mechanisms through which collusion is achieved across a range
of market environments: one based on price-trigger strategies, and the other driven by over-pruning
bias in learning. We systematically characterize the conditions under which each mechanism prevails.
Both algorithmic mechanisms underlying AI collusion have counterparts in economic theory and can

1For example, the Securities and Exchange Commission (SEC) recently approved Nasdaq’s RL-based, AI-driven order
type; major digital platforms have begun deploying RL trading bots; and leading hedge funds and trading powerhouses
are increasingly adopting AI for trading.

2While securities trading is primarily governed by securities laws, Section 1 of the Sherman Act applies to collusive
practices that suppress competition in financial markets. Overlap arises when manipulative conduct has anti-competitive
effects, triggering dual enforcement by the Department of Justice (DOJ) and SEC.

3This is rooted in historical case studies and experimental research on human tacit collusion (e.g., Levine, Palfrey and
Plott, 1991; Genesove and Mullin, 2001; Fonseca and Normann, 2012; Charness et al., 2014; Cooper and Kühn, 2014).
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be interpreted through game-theoretic equilibrium concepts. We analyze the resulting AI collusive
equilibrium using extensive simulations and provide heuristic justification for how these algorithmic
mechanisms operate.

Theoretical Benchmarks. We start by developing a model that incorporates key ingredients of
trading in financial markets. We provide theoretical analysis of this model as benchmark, and then
use it as basis for our simulation experiments with RL algorithms. Our model builds on the influential
framework of Kyle (1985), in which an informed speculator trades against noise traders, and a market
maker sets prices to minimize pricing errors based on the information gleaned from the total order
flow. We start from the static framework of Kyle (1985) and extend it in the following ways that are
critical for the exploration of collusion in trading.

First, instead of a single informed speculator operating in a one-period market, we consider
oligopolistic informed speculators who trade repeatedly across periods, with each period involving
a different short-lived asset.4 At the beginning of each period, each informed speculator receives a
private signal about the fundamental value of that period’s short-lived asset, which is realized at
the end of the period. Clearly, the introduction of multiple oligopolistic speculators who interact
repeatedly reflects realistic market settings, such as quantitative hedge funds and proprietary trading
firms engaged in trading that happens at increasingly higher frequencies. These features are essential
for studying how collusion may arise in financial markets.

Second, we introduce a continuum of atomistic, information-insensitive investors who trade
the asset and collectively generate a downward-sloping demand curve within each trading period
(similar to Kyle and Xiong, 2001; Vayanos and Vila, 2021). These investors, such as retail traders
using technical analysis or institutional investors seeking hold-to-maturity positions for hedging
short-term risks, are typically unresponsive to real-time information about the asset’s fundamental
value. Instead, they trade against the current price and in the direction of the asset’s expected
long-term value. While we do not endogenize the behavior of these information-insensitive investors,
they need not be behaviorally biased. They may find it optimal not to pay attention to short-term
fluctuations or may behave this way for institutional reasons. As discussed above, these traders
resemble different types of investors in real-world markets. This feature, together with the next one,
injects inefficiency into the pricing mechanism of Kyle (1985), which as we show, is a critical element
for a key mechanism for collusion.

Third, trading occurs through the market maker who sets the market price and holds inventory
to clear the market. The market maker observes the total order flow from informed speculators and
noise traders, along with the deterministic order flow schedule of information-insensitive investors
as a function of price. Given this information, the market maker sets the market price optimally to
minimize a weighted average of inventory costs and pricing errors. Hence, unlike in Kyle (1985),
inventory costs play a role in the pricing mechanism, which is a realistic feature of financial markets.
Having the information-insensitive traders alongside this concern for inventory costs is what injects
inefficiency to the price, which will be important for the analysis of collusion.

We analyze the theoretical model and generate some novel results about the possibility of collusion

4Our repeated trading setup is distinct from dynamic trading frameworks with a long-lived asset traded over multiple
rounds within each period (e.g., Kyle, 1985; Holden and Subrahmanyam, 1992; Rostek and Weretka, 2015).
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in financial market trading. We first consider two theoretical benchmarks to characterize the steady-
state behavior of informed speculators: the non-collusive Nash equilibrium benchmark and the perfect
cartel benchmark. The non-collusive Nash equilibrium refers to the one-shot Nash equilibrium of the
stage game, in which no one can profitably deviate. Here, every speculator is trading to maximize
current trading profit, not taking into account the effect on the profit of others. In contrast, the
perfect cartel represents the outcome in which informed speculators act collectively as a monopolist
to maximize joint profits. Relative to the non-collusive Nash equilibrium, informed speculators in the
cartel trade less aggressively on the information about asset, as this enables them to make higher
collective profits. A collusive equilibrium, if it arises, would lie between these two benchmarks. We
define such an equilibrium by two features: (i) informed speculators earn supra-competitive profits
that exceed those obtained in the non-collusive Nash equilibrium by trading less aggressively on
signals; and (ii) each speculator has the option to deviate for unilateral one-period gains, with such
deviations imposing losses on others.

A collusive trading equilibrium can be sustained as a subgame perfect Nash equilibrium in our
framework as a result of price-trigger strategies. When market prices are sufficiently informative,
speculators can imperfectly infer others’ trades from market price movements, enabling tacit coordi-
nation. Specifically, speculators trade less aggressively on their information, knowing that a deviation
to a more aggressive strategy is likely to lead to the price shooting over the trigger, which will lead
the other speculators to punish them by reverting to the aggressive strategy in the non-collusive
Nash equilibrium. This form of collusion was introduced by Green and Porter (1984) and Abreu,
Pearce and Stacchetti (1986). Importantly, the viability of this equilibrium hinges critically on high
price informativeness, which is a central concept in the context of financial markets. We show that
sustaining a collusive Nash equilibrium via price-trigger strategies becomes impossible when noise
trading risk is high or when information-insensitive investors are only weakly present. Intuitively,
high noise trading risk leads to low price informativeness, weakening the effectiveness of prices
as monitoring devices. Moreover, when the information-insensitive investors are not prominent,
speculators must trade conservatively on private signals to preserve information rents, reducing price
informativeness and rendering prices ineffective for detecting deviations, regardless of the level of
noise trading risk. This characterization of when price-trigger collusive equilibria are possible is
novel in the literature on financial-market trading.

Other possibilities of collusive equilibria arise outside the concept of a Nash equilibrium. Specifi-
cally, following the concept of experience-based equilibrium (Fershtman and Pakes, 2012), informed
speculators may trade less aggressively on their private signals because of a learning bias that leads
them to undervalue the payoff from aggressive trading. The bias persists because learning is based
solely on realized outcomes along the equilibrium path, while off-path strategies are insufficiently
revisited or updated. As a result, the learning process reinforces outcome evaluations that are
internally consistent with observed on-path data but fails to correct for underexplored off-path
strategies. We show that such equilibria exist for the entire parameter space, not depending on how
prominent noise traders or information-insensitive traders are.

Algorithmic Mechanisms That Lead to AI Collusion. In the main part of the paper, we examine
whether informed speculators, each governed by an independent and self-interested AI algorithm,
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can reach the collusive outcomes described above without explicit agreements, communication, or
pre-programmed intent. To do so, we run simulation experiments using autonomous, model-free
Q-learning algorithms that replace the informed speculators in the theoretical framework. Unlike
their theoretical counterparts, these algorithms rely on RL to determine how to trade on private
signals, rather than on rationality or strategic foresight. Q-learning serves as a foundational basis
for many RL algorithms that have significantly advanced the AI field. It is valued for its simplicity,
transparency, and economic interpretability.

We provide additional details about the algorithms in Section 2. As described there, in each
period, an algorithm selects an action (i.e., quantity traded) based on the state it faces (more on the
state variables below). It stores and updates estimated values for each state-action pair, including both
optimal and suboptimal actions. These values are referred to as estimated Q-values, and together
they form the estimated Q-matrix over the discrete state and action space. At the start of each
period, the algorithm observes the realized state and uses it to update one cell in the Q-matrix
corresponding to the state-action pair from the previous period. The realized state may depend
on both the prior state and action. The update is a weighted average of past experience and new
information, incorporating both the reward just received and the estimated continuation value based
on the newly realized state. At the end of each period, the algorithm selects an action according to a
standard exploration-exploitation rule. Exploitation involves choosing the action with the highest
estimated Q-value for the current state, while exploration involves selecting a random action. The
interplay between exploration and exploitation is a defining feature of RL algorithms and is critical
for effective learning. Typically, the likelihood of exploration gradually declines to zero, while that of
exploitation increases toward one. In our simulation experiments, the Q-learning algorithms use a
state vector that includes (i) the lagged market price, (ii) the lagged fundamental value, and (iii) the
current fundamental value. Because market prices are endogenously determined through interactions
among algorithms, noise traders, information-insensitive investors, and the pricing rule, the system is
highly complex and does not yield easily predictable outcomes.

Our simulation experiments show that AI collusion arises across a wide range of market pa-
rameters and RL hyperparameters. It emerges through two distinct algorithmic mechanisms, each
corresponding to one of the two theoretical collusion mechanisms discussed above and occurring in a
different region of the market parameter space. One mechanism is based on price-trigger strategies,
closely approximating the collusive Nash equilibrium sustained by such strategies. The other results
from a learning bias that leads to the over-pruning of aggressive strategies, aligning with the collusive
experience-based equilibrium. We refer to the former as AI collusion driven by “artificial intelligence,”
and the latter as AI collusion driven by “artificial stupidity.” We elaborate below on the conditions
under which each mechanism arises and explain how it emerges.

Similar to the predictions from the theoretical model described above, our simulation experiments
show that an AI collusive equilibrium sustained by price-trigger strategies emerges robustly in
environments with low noise trading risk and a significant presence of information-insensitive
investors. In such environments, the lagged price, as an endogenous state variable, is highly
informative about whether all algorithms traded conservatively in the previous period, which is a
key requirement in the theory for sustaining price-trigger strategies. Given that the RL algorithms do
not know whom they are playing against or how their payoffs are generated — they simply track
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states, their own actions, and their own realized payoffs — it is natural to ask how they converge to
an outcome that closely resembles the one predicted by the fully rational model.

The intuition is as follows. After the exploration-intensive phase, the algorithms assign higher
estimated Q-values to aggressive strategies, where they trade strongly on news about the fundamental,
as these strategies yield much higher payoffs when played against opponents who randomly choose
to trade aggressively. Hence, as the system transitions into the exploitation-intensive phase, the
algorithms consistently select aggressive trading strategies when they trade against each other, and
prices move strongly with fundamentals as a result. This leads the estimated Q-values of aggressive
strategies to gradually decline, as they converge towards their non-collusive Nash equilibrium levels
when the aggressive strategy is commonplace among the algorithms. At the same time, occasional
but ongoing exploration reveals to the algorithms that conservative trading strategies yield higher
estimated Q-values than aggressive ones in states where lagged prices respond only moderately
to lagged fundamentals. As a result, the algorithms gradually converge to adopting conservative
strategies when others do the same, mirroring collusive behavior. A feedback loop reinforces this
outcome: in these states, all algorithms select conservative strategies during exploitation, which
causes similar states to recur, where lagged prices respond only moderately to fundamentals. Finally,
for this pattern to amount to price-trigger collusive behavior, a form of “punishment” following large
price responses to fundamentals is needed. Indeed, we observe that all algorithms shift to aggressive
trading following such a price response. This occurs because the algorithms recognize the pattern that
when prices respond strongly to fundamentals, trading aggressively is still the best option. Overall,
the trading behavior thus exhibits mostly conservative trading with moderate price reactions but
there are occasional reversions to punishment phases characterized by aggressive trading behavior.
This pattern emerges even though the algorithms lack the strategic sophistication of the fully rational
informed speculators in the model. This is why we refer to it as AI collusion through “artificial
intelligence.”

Importantly, the convergence to this pattern relies on the informativeness of prices. In envi-
ronments with high noise trading risk or a limited presence of information-insensitive investors,
both of which result in low price informativeness, the price-trigger mechanism breaks down. This
is because the link between the fundamental value, the action, and the price becomes too noisy
for the RL process to reliably distinguish patterns where conservative behavior leads to moderate
price responses to fundamentals from those where aggressive behavior leads to strong responses.
Interestingly, we find that across a wide range of such settings, AI collusion still emerges, but through
a learning bias that systematically over-prunes aggressive strategies.

The intuition for this particular form of learning bias lies in the asymmetry of estimated Q-
value updates in response to noise trading shocks, a feature inherent to RL due to its reliance on
exploitation. When noise traders happen to trade in the same direction as the algorithm’s trade,
algorithms submitting aggressive trades incur large losses, which become more severe as noise
trading risk increases. The algorithm then sharply lowers the estimated Q-value of that strategy,
treating it as a very poor action. This discourages the algorithm from revisiting the strategy, thereby
locking in the downward bias on its estimated value. Conversely, when noise traders happen to
trade in the opposite direction of the algorithm’s trade, the algorithm earns large profits and may
initially overestimate the Q-value. However, because exploitation leads to frequent reuse of strategies
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with high estimated Q-values, the algorithm continually revisits this action, allowing the estimated
Q-value to be eventually corrected through sufficient further updates. In environments where trading
outcomes are dominated by random noise rather than informed trading, this asymmetry in the
exploitation process becomes especially pronounced and cannot be effectively corrected through
exploration. Aggressive trading strategies, being more exposed to noise trading shocks, are more
likely to be prematurely pruned. This asymmetry causes the algorithm to develop a biased value
system that consistently favors conservative trading strategies. Given the nature of competition
among algorithms, they end up collectively benefiting from this bias, leading to a collusive outcome.
This is why we refer to the behavior as AI collusion through “artificial stupidity.”

The pervasiveness of AI collusion in our simulation experiments has first-order implications for
market outcomes, and so is highly relevant for the purpose of market regulation. We show that
a greater extent of collusion, characterized by higher supra-competitive profits for the algorithms,
leads to lower market liquidity, lower price informativeness, and higher mispricing, regardless of
which algorithmic mechanism the AI collusion is based on. To better understand the drivers of AI
collusion, we conduct extensive simulation experiments by varying different market parameters. In
price-trigger AI collusion, collusion capacity increases when the number of informed speculators falls,
noise trading risk decreases, or the subjective discount factor increases. In contrast, over-pruning
AI collusion shows different patterns: fewer informed speculators have similar effects, but lower
noise trading risk reduces collusion, and the subjective discount factor has little impact. These results
align with the underlying algorithmic mechanisms explained above and are strongly consistent
with what we would expect given their theoretical underpinnings. We also examine the role of RL
hyperparameters, including the weight put on recent experience relative to past information in the
updating process and the rate of exploration decay. Across a broad range of values, collusive behavior
and supra-competitive profits remain robust under both algorithmic mechanisms for AI collusion.

Contributions and Related Literature. This article uncovers the economic foundations and algo-
rithmic mechanisms of AI collusion in securities trading, focusing on its effects on price formation
and market efficiency. These issues are central to current regulatory uncertainty, as AI represents a
fundamentally different form of intelligence. Unlike humans, whose decisions reflect logic, emotion,
and beliefs about others’ beliefs, AI relies on pattern recognition and optimization. As a result,
existing frameworks based on human behavior may not capture the strategic dynamics or equilibrium
behavior of AI traders, highlighting the need to study the algorithmic behavior — or “psychology” —
of machines (Goldstein, Spatt and Ye, 2021).

Our work follows recent work on AI collusion in retail markets (e.g., Calvano et al., 2020, 2021;
Johnson, Rhodes and Wildenbeest, 2023). The financial-market setting is fundamentally different as it
exhibits asymmetric information, noise trading, and a price-setting mechanism that is facilitated by
market makers who consider the details of the environment. Hence, we extend the simulation-based
AI experimental framework from the retail-market environment to the financial-market environment
by replacing assumptions of near-perfect information and fixed demand curves with a setting
characterized by substantial asymmetric information and strategically adaptive demand curves
shaped by market makers’ price discovery. As discussed above, our setting is characterized by two
key parameters: the level of noise trading risk and the extent of information-insensitive investor
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presence. We identify two distinct algorithmic mechanisms through which AI collusion can occur and
systematically characterize when each of them arises as a function of these parameters and others.
Our model results present novel contribution to the theoretical literature on financial-market trading,
and our simulation-based experimental results have no parallel in the emerging literature on AI
collusion mentioned above.

While the price-trigger collusion is shown in the simpler setting of Calvano et al. (2020, 2021),
we show that it only holds when there is small noise trading risk and strong information-insensitive
investor presence. Yet, when this mechanism fails, AI collusion typically arises through a distinct
channel: a learning bias driven by the over-pruning of aggressive strategies. In the terminology of
Calvano et al. (2020), this latter channel may not count as collusion, as it arises from a learning bias,
even though it satisfies the two defining features of a collusive equilibrium described above. However,
it is important to note that it is equally robust and has largely the same implications for trading
profits, market liquidity, price informativeness, and mispricing. Hence, understanding how and
when the two mechanisms emerge is of equally high importance. Others have studied algorithmic
mechanisms, which generate supra-competitive profits without the punishment trigger (e.g., Waltman
and Kaymak, 2008; Hansen, Misra and Pai, 2021; Abada and Lambin, 2023; Asker, Fershtman and
Pakes, 2024; Banchio and Mantegazza, 2024; Dolgopolov, 2024; Lambin, 2024), but they largely rely
on simplifying restrictions on the algorithmic capacity. We provide a detailed discussion of these
works in Online Appendix 1. On the other hand, the over-pruning bias we uncover arises in a highly
sophisticated environment, complementing the range of parameters where price-trigger collusion
arises, and points to a pervasive feature of the RL framework: the asymmetric effect of exploitation,
whereby adverse and beneficial shocks influence learning differently.

There are a few early works that investigate the effects that related algorithms may have on
financial or money markets (e.g., Marimon, McGrattan and Sargent, 1990; Routledge, 1999, 2001).
However, they either explore adaptive learning algorithms or more basic RL algorithms than ours.
They do not develop implications such as we develop here regarding collusion and its effects on
market efficiency. A related contemporaneous work, Colliard, Foucault and Lovo (2025), studies
interactions among Q-learning algorithms but focuses on stateless AI market makers. In contrast, we
study AI-powered informed speculators using Q-learning with endogenous state variables, such as
past prices. Unlike them, we uncover the different algorithmic mechanisms that drive AI collusion
and characterize when they dominate. Cartea et al. (2022b) also analyze stateless RL in market making
using a multi-armed bandit algorithm.

Furthermore, our paper contributes to the rapid growing literature on the impact of AI and
big data on the efficiency and functioning of financial markets (e.g., Goldstein, Spatt and Ye, 2021;
Farboodi and Veldkamp, 2023, for literature review). Recent studies theoretically examine how data
abundance and advances in information processing technologies affect price informativeness and
market liquidity (e.g., Dugast and Foucault, 2018; Farboodi and Veldkamp, 2020; Dugast and Foucault,
2024). Another strand of the literature demonstrates that advanced machine learning techniques can
effectively extract predictive signals or latent economic structures from high-dimensional public data,
which are otherwise difficult to detect using traditional methods (e.g., Kaniel et al., 2023; Cao et al.,
2024; Chen, Kelly and Xiu, 2024; Gao, Xiong and Yuan, 2024; Kelly, Malamud and Zhou, 2024; Chen
et al., 2025). In contrast, our paper focuses on understanding the behavior of AI agents that replace
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humans. We examine the resulting AI equilibrium, shaped by algorithmic interactions, highlighting
the importance of examining this equilibrium when assessing the overall impact of AI adoption on
market efficiency.

Finally, our paper is closely related to the literature on imperfect competition in financial markets.
Rostek and Yoon (2024) provide a recent review of the theory of imperfectly competitive financial
markets, covering influential early contributions such as Kyle (1989) and Vayanos (1999), which focus
on non-collusive equilibria. Theoretical works that study the effect of coordination or collusion among
major market participants on market microstructure dynamics under a repeated game framework
include Dutta and Madhavan (1997), Carlin, Lobo and Viswanathan (2007), and Hörner, Lovo and
Tomala (2018), among others. The common feature of these models is that supra-competitive trading
profits are sustained through the threat of punishment. In addition to these models that focus on
market microstructure dynamics, there are other papers that theoretically analyze collusion in financial
markets due to FinTech (e.g., Cong and He, 2019). Several papers provide supporting evidence for
collusion in financial markets across various settings (e.g., Christie and Schultz, 1994, 1995; Christie,
Harris and Schultz, 1994; Chen and Ritter, 2000; Dou, Wang and Wang, 2023; Bryzgalova, Pavlova and
Sikorskaya, 2025; Lehar and Parlour, 2025). We provide new theoretical results characterizing when
collusion can be sustained in financial-market environments and contribute further by showing that
autonomous, self-interested AI-powered trading algorithms can learn to coordinate, even without
any agreement, communication, or intention.

2 AI-Powered Trading Algorithms

While RL encompasses different variants (e.g., Watkins and Dayan, 1992; Sutton and Barto, 2018),
we choose to focus on Q-learning for several reasons. First, Q-learning serves as a foundational
framework for numerous dynamically sophisticated RL algorithms, upon which many recent AI
breakthroughs are built.5 Second, it is widely adopted in practice. Third, it is valued for its simplicity,
transparency, and economic interpretability.

2.1 Bellman Equation and Q-Function

In a multi-agent Markov decision process environment, there are I agents, indexed by i = 1, · · · , I.
The state of the environment is represented by a vector s, which evolves according to a Markov
process. Each agent makes decisions based on the current state, which in turn evolves partly due
to the collective actions of all agents within the system. Agent i’s intertemporal optimization is
characterized by the Bellman equation and solved recursively via dynamic programming:

Vi(s) = max
xi∈X

{
E [πi|s, xi] + ρE

[
Vi(s′)|s, xi

]}
, (2.1)

where xi ∈ X is the action taken by agent i, with X denoting the set of available actions, πi is the
payoff received by agent i that depends on the chosen action xi as well as the actions of other agents,

5Q-learning and other dynamically sophisticated RL algorithms take into account the possibility that actions lead to
state transitions and internalize that an action taken in a given state can affect future states and rewards. In contrast,
multi-armed bandit algorithms, a class of stateless RL methods, are not dynamically sophisticated: they do not incorporate
any notion of state and therefore ignore the possibility that actions influence future decision-making environments.
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and s, s′ ∈ S represent the states in the current and the next period, respectively, with S denoting the
set of states. The state vector s may depend on agent-specific conditions and private signals faced by
each agent i, for all i. The first term on the right-hand side, E [πi|s, xi], is agent i’s expected payoff
in the current period, and the second term, ρE [Vi(s′)|s, xi], is agent i’s continuation value, with ρ

capturing the subjective discount factor.
Equation (2.1) represents the recursive formulation of dynamic control problems (e.g., Bellman,

1954; Ljungqvist and Sargent, 2012). It characterizes behavior along the equilibrium path, where
the optimal value function Vi(s) depends only on the current state s. In contrast, the Q function,
denoted by Qi(s, xi), extends the value function to each possible state-action pair, allowing evaluation
of outcomes not only on the equilibrium path but also for counterfactual or off-path actions. By
definition, the Q-function value for a given (s, xi) corresponds to the right-hand side of equation (2.1):

Qi(s, xi) = E [πi|s, xi] + ρE
[
Vi(s′)|s, xi

]
. (2.2)

Intuitively, the Q-function value, Qi(s, xi), can be interpreted as the quality of action xi in state s. The
optimal value of a state, Vi(s), is the maximum of all the possible Q-function values of state s. That
is, Vi(s) ≡ maxx′∈X Qi(s, x′). By substituting Vi(s′) with maxx′∈X Qi(s′, x′) in equation (2.2), we can
establish a recursive formula for the Q-function as follows:

Qi(s, xi) = E

[
πi + ρ max

x′∈X
Qi(s′, x′)

∣∣∣∣s, xi

]
. (2.3)

When both |S| and |X| are finite, the Q-function can be represented as an |S| × |X| matrix, which
is often referred to as the Q-matrix.

2.2 Q-Learning Algorithm

If agent i possessed knowledge of its Q-matrix, determining the optimal actions for any given state
s would be straightforward. In essence, Q-learning estimates the Q-matrix when the conditional
distribution E [·|s, xi] and off-equilibrium observations (s, xi) are limited. By design, the Q-learning
algorithm addresses both challenges simultaneously: it uses the law of large numbers to learn the
underlying distribution from repeated experiences, while its trial-and-error experiments generates
counterfactual outcomes for state-action pairs that may not occur along the equilibrium path.

Agent i’s iterative experimentation begins with an arbitrary initial estimated Q-matrix, Q̂i,0, and
recursively updates it from Q̂i,t to Q̂i,t+1 in iteration t + 1 as follows:

Q̂i,t+1(st, xi,t) = (1 − α) Q̂i,t(st, xi,t)︸ ︷︷ ︸
Past knowledge

+ α

[
πi,t + ρ max

x′∈X
Q̂i,t(st+1, x′)

]
,︸ ︷︷ ︸

New information from experimentation

(2.4)

where α ∈ [0, 1] captures the forgetting rate.6 Upon agent i choosing action xi,t in state st and
observing the payoff πi,t, the update from Q̂i,t to Q̂i,t+1 at the pair (st, xi,t) occurs immediately after

6The forgetting rate α determines how quickly past experiments are discounted. For consistent learning, α must decay
to zero to ensure convergence of the estimated Q-matrix Q̂i,t as t grows large. A smaller α improves asymptotic accuracy
but slows convergence, reflecting a higher learning capacity at the expense of greater computational cost.
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the next state st+1 is drawn from the Markov transition distribution at the beginning of iteration t + 1,
conditional on the state st, the chosen action xi,t, and the collective actions of all agents in iteration t.

Equation (2.4) indicates that for agent i in iteration t + 1, only the value of the estimated Q-
matrix Q̂i,t(s, x) corresponding to the state-action pair (st, xi,t) is updated to Q̂i,t+1(st, xi,t). All other
state-action pairs remain unchanged. In other words, Q̂i,t+1(s, x) = Q̂i,t(s, x) for cases where s ̸= st

or x ̸= xi,t. The updated value Q̂i,t+1(st, xi,t) is computed as a weighted average of accumulated
knowledge based on the previous experiments, Q̂i,t(st, xi,t), and learning based on a new experiment,
πi,t + ρ maxx′∈X Q̂i,t(st+1, x′). A key distinction between the Q-learning recursive algorithm (2.4)
and the Bellman recursive equation (2.1) lies in how they treat expectations for future payoffs and
continuation Q-values. Q-learning algorithm (2.4) does not form expectations about the continuation
value because the Markovian transition probabilities from st to st+1 are unknown. Instead, it updates
the Q-value using the actual realized payoff and the maximum Q-value of the randomly realized
state st+1 at the beginning of iteration t + 1.

It is crucial to note that the forgetting rate α plays a significant role in the Q-learning algorithm,
balancing past knowledge with new information from experimentation. A higher α not only indicates
a greater impact of present learning on the Q-value update but also implies that the algorithm forgets
past knowledge more quickly, potentially leading to biased learning. To elaborate intuitively, let τ be
the number of times that the Q-value of the state-action pair (s, x) has been updated in the past. As
τ → ∞, the estimated Q-value of (s, x) is approximately equal to

Q̂i,tτ+1(s, x) ≈
τ−1

∑
h=0

α(1 − α)h
[

πi,tτ−h + ρ max
x′∈X

Q̂i,tτ−h

(
stτ−h+1, x′

)]
, (2.5)

where th represents the period in which the estimated Q-value of (s, x) receives the h-th update.
Clearly, when α is not close to 0, the weights α(1 − α)h decay rapidly as τ increases, diminishing
the influence of past data. This weakens the applicability of the law of large numbers, leading to
substantial bias in estimating E[·|s, xi] for future payoffs and continuation Q-values. Conversely,
a smaller α slows the decay, preserving more past information and reducing bias. However, this
requires significantly more iterations to achieve convergence, increasing computational costs.

2.3 Experimentation

Upon state st being realized at the beginning of iteration t, agent i chooses an action xi,t, at the end of
the iteration, according to either an exploitation or exploration mode, as follows:

xi,t =

{
argmaxx∈X Q̂i,t(st, x), with prob. 1 − εt, (exploitation)
x̃ ∼ uniform distribution on X, with prob. εt. (exploration)

(2.6)

To determine the mode, we employ the simple ε-greedy method. As outlined in equation (2.6), after
the state st is realized in iteration t, agent i follows either the exploration or exploitation mode with
exogenous probabilities εt and 1 − εt, respectively. In the exploitation mode, agent i chooses its action
to maximize the estimated Q-value based on st in iteration t, given by xi,t = argmaxx∈X Q̂i,t(st, x). In
contrast, in the exploration mode, agent i randomly chooses its action x̃ from the set of all possible
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values in X, each with equal probability.7 Exploration enables the algorithm to experiment with
actions that appear suboptimal under the estimated Q-values, Q̂i,t, in iteration t. Sufficient exploration
is crucial for accurately approximating the true Q-matrix and mitigating learning bias, as it ensures
that all state-action pairs are sufficiently sampled, especially in complex environments. However, this
comes with a tradeoff: while it enhances learning accuracy, it also increases computational burden
and introduces noise, which can hinder convergence in multi-agent settings. To manage this tradeoff,
the exploration probability εt is set to decrease monotonically toward zero as t increases.

We focus on asynchronous learning, defined by (2.4) and (2.6), which requires no knowledge of the
underlying economic environment or information structure. In contrast, model-based synchronous
learning updates all (s, x) pairs simultaneously in each iteration, assuming precise knowledge of the
environment’s structure, such as transition probabilities and payoff functions (e.g., Asker, Fershtman
and Pakes, 2022, 2024). Model-based approaches are typically vulnerable to misspecification.

3 Model and Laboratory Design

To set up the laboratory for our simulation experiments, we develop a model that incorporates only the
minimal set of ingredients necessary to capture the economic context of securities trading and reveal
key insights. Our model builds on the influential framework of Kyle (1985), highlighting financial
markets as mechanisms for information aggregation, facilitated by market makers’ price discovery.
This mechanism compels informed speculators to trade conservatively on private signals, thereby
keeping price informativeness sufficiently low to preserve information rents. This informational
perspective, central to financial market competition, goes beyond the traditional focus on product
market competition among pricing algorithms (e.g., Calvano et al., 2020).

Specifically, our model introduces two deviations from the Kyle (1985) baseline framework. First,
we consider a setting with oligopolistic informed speculators in a repeated trading environment,
engaging in trading different short-lived assets from one period to the next, rather than a single in-
formed speculator operating in a one-period market.8 Second, we incorporate information-insensitive
investors (e.g., Kyle and Xiong, 2001; Vayanos and Vila, 2021) and market makers with inventory cost
considerations. Together, these elements expand upon the efficient pricing baseline model of Kyle
(1985) by introducing potential price inefficiencies.

3.1 Economic Environment

Model Setup. Time is discrete, indexed by t = 1, 2, ..., and runs forever. There are I ≥ 2 risk-neutral
informed speculators, indexed by i ∈ {1, · · · , I}, a representative noise trader, a representative
information-insensitive investor, and a representative market maker. The environment is stationary,
and all exogenous shocks are independent and identically distributed across periods.

In each period t, a short-lived asset is traded, reaching expiration at the end of the period with
its fundamental value vt realized. The fundamental value vt is distributed as N(v, σ2

v ), where we

7For simplicity, we use a uniform distribution, though smarter choices could improve Q-learning.
8Our repeated trading setup is distinct from a multi-round dynamic trading framework involving a long-term asset

traded within a relatively prolonged period (e.g., Kyle, 1985; Holden and Subrahmanyam, 1992; Rostek and Weretka, 2015).
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set v ≡ σv ≡ 1 for simplicity.9 The noise trader’s order flow ut is distributed as N(0, σ2
u), where σu

denotes the magnitude of noise trading risk.
Each informed speculator i knows vt perfectly but does not observe the noise trader’s order flow

ut when submitting a trade. Speculators understand that their order flow xi,t influences the market
price pt by altering the total order flow, thereby (i) shifting the market-clearing condition and (ii)
partially revealing their private signals about vt to other participants in the asset market. Specifically,
informed speculator i solves:

Vi(st) = max
xi,t

E [(vt − pt)xi,t + ρVi(st+1)|st, xi,t] , (3.1)

where Vi(st) denotes the optimal value function of speculator i in state st, achieved by selecting
the best trading order flow xi,t. The term (vt − pt)xi,t represents the trading profit (or loss), while
ρVi(st+1) is the discounted continuation value for the next-period state st+1, with ρ ∈ (0, 1) being the
subjective discount factor.

In equation (3.1), the state variable st encapsulates all relevant information required for informed
speculators’ decision-making. Specifically, st includes variables such as vt, vt−1, pt−1, yt−1, zt−1, as
well as other historical variables if necessary. The quantity yt ≡ ∑I

i=1 xi,t + ut is the total order flow,
consisting of order flows from both informed speculators and noise traders. Although yt becomes
observable after all trades from informed speculators and noise traders are submitted in period t, its
components cannot be separately identified, making it impossible to distinguish the informed order
flow from the noise trading flow. The quantity zt is the demand of information-insensitive investors,
whose collective demand curve is given by:

zt = −ξ(pt − v), with ξ ≥ 0. (3.2)

The same specification is adopted by Kyle and Xiong (2001), who justify it through the optimal
portfolio choice made by a rational yet information-insensitive investor under certain assumptions.10

These investors can be rational, even though they do not infer fundamental information from the
market price pt or others’ trading behaviors, unlike the rational-expectations uninformed investors in
the models of Grossman and Stiglitz (1980) and Kyle (1989). As discussed in Kyle and Xiong (2001),
the logic behind specification (3.2) is straightforward: the information-insensitive investor, focusing
on the ex-ante expected fundamental value v, buys more as pt − v becomes more negative, perceiving
the asset as undervalued. Including information-insensitive investors in a noisy rational expectations
framework is intended to capture relevant institutional frictions and rigid, technical-analysis-driven
trading responses to price reversal signals.11

Trading occurs through the market maker, who sets the market price pt to absorb order flow while
minimizing inventory costs and pricing errors. Specifically, the market maker observes the total order

9For conciseness, the notations v and σv will be omitted in this manuscript when not needed for comprehension.
10To derive the functional form of the aggregate demand curve of information-insensitive investors, one approach is to

assume CARA utility maximization without any learning or strategic trading, as detailed in Online Appendix 2.1. Studies
indicate that information-insensitive investors with low price elasticity of demand play an important role in shaping asset
prices (e.g., Greenwood and Vayanos, 2014; Vayanos and Vila, 2021; Greenwood et al., 2023).

11This approach has been commonly adopted in the literature (e.g., Hellwig, Mukherji and Tsyvinski, 2006; Goldstein,
Ozdenoren and Yuan, 2013).
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flow, yt, from informed speculators and the noise trader, as well as the order flow schedule, zt, of
information-insensitive investors, which is a deterministic function of the market price pt, specified
in (3.2). Given this information, the market maker sets pt to minimize inventory costs and pricing
errors, solving the following objective function:

min
pt

E

[
(yt + zt)

2 + θ(pt − vt)
2
∣∣∣∣yt

]
, (3.3)

where θ > 0 represents the weight that the market maker places on minimizing pricing errors. Here,
E [·|yt] denotes the market maker’s expectation over vt, conditioned on the observed combined order
flow yt and its understanding of the behavior of informed speculators in equilibrium.

To clear the market, the market maker assumes the position −(yt + zt), incurring quadratic
inventory costs, (yt + zt)2, consistent with the existing literature, such as Mildenstein and Schleef
(1983). The term θ(pt − vt)2 reflects the market maker’s attempt to minimize pricing errors due
to asymmetric information. The parameter θ acts as a reduced-form measure of the benefits from
reducing these errors, such as attracting greater trading flows. The first-order condition leads to

pt =
ξ

ξ2 + θ
yt +

ξ2

ξ2 + θ
v +

θ

ξ2 + θ
E [vt|yt] . (3.4)

In our analyses, we treat θ as a universally fixed, positive constant with a tiny magnitude. By fixing
θ, we exclude it from the comparative-static analysis. With a positive constant θ, our model gains
conceptual coherence by offering two meaningful extreme benchmarks. As ξ approaches infinity, the
price pt converges to v + ξ−1yt, determined by the market clearing condition yt + zt = 0, as in Kyle
and Xiong (2001). Conversely, as ξ decreases towards zero, pt shifts to the efficient price E[vt|yt],
as in Kyle (1985).12 Incorporating the market maker captures financial markets as mechanisms for
aggregating information, where sophisticated players infer fundamental values from the collective
actions of others, integrating this information into the market price, as highlighted by Kyle (1985).

Interpreting the Model through a Specific Market Setting. Our model reflects realistic market
environments, particularly those involving quantitative hedge funds and proprietary trading firms
operating at increasingly short horizons. While the theoretical framework applies broadly to real-
world settings, we anchor our simulation experiments in a concrete example to illustrate the economic
relevance of AI-driven trading algorithms. In each period t, a new short-lived security is introduced
and traded, such as a close-to-maturity option or futures contract. These contracts expire at the end
of the period, with their payoff equal to the fundamental value vt. Close-to-maturity derivatives are
among the most actively traded across the maturity spectrum, making them a natural focal point for
studying algorithmic trading behavior.

Below, we elaborate on each of the four types of market participants in this concrete real-world
example. First, informed speculators, such as quantitative hedge funds and proprietary trading firms,
specialize in extracting private signals about the final payoff of close-to-maturity options and futures,
vt, using proprietary or public data powered by advanced technologies.13 These informed speculators

12Further discussions are provided in Online Appendix 2.1.
13Conceptually, “private signals” here include not only information derived from proprietary sources but also predictive
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typically operate with two teams: (i) a research team that generates private signals about vt, and (ii)
an execution team that converts trading signals into strategically executed orders to maximize trading
profits. Like the structure of Kyle models, our framework assumes that valuable private signals
are already available, while focusing on the strategic execution of trades based on these signals. In
other words, the AI-powered trading algorithms analyzed in this article are those employed by the
execution team to convert private signals into strategic trading orders. These algorithms operate
after the research team has generated the signals and focus on optimizing execution based on their
informational content.

Second, information-insensitive investors, such as retail investors employing technical analysis
and institutional investors seeking hold-to-maturity positions to hedge short-term risks, typically
remain unresponsive to real-time fundamental information related to the terminal payoff vt of close-
to-maturity options and futures. Retail investors using technical analysis base their trades strictly on
observed price patterns in the market (e.g., Lo and MacKinlay, 1999; Lo, Mamaysky and Wang, 2000;
Chen, Peng and Zhou, 2024). The demand specification (3.2) captures the essence of certain technical
analysis strategies, assuming that a positive spread pt − v indicates overbought conditions with prices
likely to fall, whereas a negative spread pt − v indicates oversold conditions with prices likely to rise.
Specifically, the demand specification captures technical analysis tools that provide signals for likely
price reversals. Additionally, information-insensitive investors include institutions such as pension
funds, insurance companies, and mutual funds, which may purchase close-to-maturity derivatives
and hold them to expiration as hedges against near-term risks. These investors tend to increase long
positions when the hedge cost pt is lower.

Third, noise traders, by contrast, make trading decisions unrelated to fundamental information
or technical analysis. Instead, their trades are driven by factors such as liquidity needs, portfolio
rebalancing, market sentiment, or rumors.

Fourth, market makers in close-to-maturity options and futures markets play a critical role by
providing liquidity, facilitating trades, and enhancing price discovery. Market makers are sophisticated
individuals and institutions that use advanced algorithms and robust risk management techniques.
Their primary function in our model is to support price discovery by integrating information from
other market participants’ trading behaviors into the market price.

3.2 Theoretical Benchmarks

We consider three theoretical benchmarks to characterize the steady-state behavior of informed
speculators: the non-collusive Nash equilibrium, the perfect cartel, and the collusive equilibrium,
denoted by N, M, and C in the superscripts of variable notations, respectively.

Benchmark I: Non-Collusive Nash Equilibrium. This describes the one-shot Nash equilibrium in
the stage game of repeated trading, where each informed speculator i, leveraging private signal vt,

trading signals extracted from vast amounts of public data using advanced technologies such as machine learning (ML)
and large language models (LLMs). While the underlying data may be publicly available, the ability to process and extract
valuable predictive trading signals from it remains beyond the reach of most investors.
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maximizes its expected profit by solving:

xN(vt) = argmax
xi∈X

E[(vt − pN(yt))xi|vt],

under the assumption that other speculators adhere to the equilibrium strategy xN(vt). Here, pN(yt)

denotes the equilibrium market price as a function of the total flow yt. Specifically, speculator i chooses
optimal xi, while accounting for its effect on the equilibrium price, expressed as pN(yt) = v + λNyt,
where yt = xi + (I − 1)xN(vt) + ut. Speculators recognize that λN is dependent on market parameters
and focus on the linear strategy xN(vt) ≡ χN(vt − v) in equilibrium. That is, each informed speculator
maximizes its current-period payoff given others’ actions, without considering how current actions
may affect future payoffs or behavior. In this equilibrium, no one can profitably deviate. Details are
in Online Appendix 2.1.

Benchmark II: Perfect Cartel Benchmark. This benchmark describes a scenario where informed
speculators operate as a monopolistic cartel. The cartel, leveraging private signal vt, maximizes its
expected profit by solving:

xM(vt) = argmax
x∈X

E[(vt − pM(yt))x|vt],

fully accounting for the impact of trading flow x on the equilibrium price pM(yt) = v + λMyt, where
yt = Ix + ut. Speculators recognize that λM is determined by market parameters and focus on the
linear strategy xM(vt) ≡ χM(vt − v) in equilibrium. Details are in Online Appendix 2.1.

Benchmark III: Collusive Equilibrium. Below, we define the economic concept of collusive equilib-
rium in terms of agents’ behaviors, rather than the intent typically emphasized in legal definitions.

Definition 3.1 (Collusive Equilibrium). A collusive equilibrium is characterized by two key properties:
(i) agents achieve collective supra-competitive profits that exceed those obtained in the non-collusive Nash
equilibrium, and (ii) agents have the option to deviate from equilibrium actions for short-term gains, and such
deviations impose costs on others.

In our model, two distinct economic mechanisms can theoretically sustain a collusive equilib-
rium: the collusive Nash equilibrium via price-trigger strategies and the collusive experience-based
equilibrium via learning bias. We explore their existence and theoretical properties in Section 3.3.

3.3 Two Mechanisms Underlying Collusive Equilibrium

Collusive Nash Equilibrium Sustained by Price-Trigger Strategies. With sufficiently high price
informativeness, informed speculators can imperfectly infer order flows of others from market prices,
enabling tacit collusion.14 Price-trigger collusion was introduced by Green and Porter (1984) and
Abreu, Pearce and Stacchetti (1986).15 We formalize this theoretical concept below.

14Under certain conditions, prices can even reveal others’ private values in equilibrium (Rostek and Weretka, 2012), and
act as a sufficient statistic for inferring others’ behavior following unilateral deviations (Rostek and Yoon, 2021).

15The study of tacit collusion via grim-trigger strategies with observable actions, initiated by Fudenberg and Maskin
(1986) and Rotemberg and Saloner (1986), has been further developed in recent finance research, including asset pricing
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Definition 3.2 (Collusive Nash Equilibrium through Price-Trigger Strategies). A collusive equilibrium
in trading, sustained by price-trigger strategies, is a subgame perfect Nash equilibrium with two regimes: the
collusive regime and the punishment regime. In the collusive regime, informed speculators implicitly coordinate
by submitting less aggressive order flows than in the non-collusive Nash equilibrium. If prices cross a critical
threshold, signaling a suspected deviation, the system shifts to the punishment regime, characterized by the
non-collusive equilibrium, where profits are significantly lower than in the collusive regime.

In the collusive regime, informed speculators adopt a trading strategy, xC(vt) ≡ χC(vt − v) in
period t, which is less aggressive than that in the non-collusive Nash equilibrium (i.e., χC < χN).
When selecting χC, they anticipate the corresponding equilibrium market price to be

pC
t = v + φC(vt − v) + λCut, (3.5)

where φC and λC measure the market price’s sensitivity to vt − v and ut, respectively. This reflects
informed speculators’ understanding of how φC and λC depend on market parameters and the
equilibrium trading strategy xC(vt). If vt > v and the observed market price pt exceeds the critical
threshold for the price-trigger strategy, defined as qC

+(vt) ≡ E
[
pC

t |vt
]
+ λCσuω, i.e., pt > qC

+(vt), then
speculators revert to the punishment regime, characterized by the non-collusive Nash equilibrium,
in period t + 1 with probability η. Likewise, if vt < v and pt falls below the lower threshold,
qC
−(vt) ≡ E[pC

t |vt]− λCσuω, i.e., pt < qC
−(vt), then they may also revert to the punishment regime

in period t + 1 with probability η. Upon entering the punishment regime at t + 1, they will remain
there with the same probability η in each period until t + T. Thus, the triple (η, ω, T) characterizes
an implicit coordination scheme among informed speculators. The space of price-trigger strategies is
Ω ≡ {(η, ω, T) : η ∈ [0, 1], ω ∈ [0, ω̄], T ∈ N}.

We now explain why it is sufficient, without loss of generality, to restrict attention to the strategy
space Ω with a sufficiently large but finite upper bound ω̄ in our analysis of the collusive Nash
equilibrium. First, Sannikov and Skrzypacz (2007, Lemma 3) show that a tail test with a bang-bang
property is the optimal mechanism for maximizing expected continuation payoffs while maintaining
incentives against single-period deviations. Building on this insight, we focus on price-trigger
strategies that serve as tail tests with bang-bang properties in our trading setting and support the
collusive Nash equilibrium. Second, for a price-trigger strategy to be effective in deterring deviations
(that is, to function as a powerful tail test), the associated test must have non-negligible test size (type
I error). This requirement, grounded in the Neyman-Pearson lemma, implies that if the test size
(type I error) is too small, the strategy becomes ineffective at detecting deviations and thus fails to
discipline behavior. In particular, as long as the upper bound ω̄ is set sufficiently high, the test size
becomes nearly zero for all ω > ω̄,16 making the strategy incapable of sustaining tacit collusion at
such high ω values. Therefore, no meaningful strategy is omitted by focusing on Ω with a sufficiently
large but finite ω̄. Additional technical details are provided in Online Appendix 2.1.

Collusive Experience-Based Equilibrium Sustained by Learning Bias. Collusive trading behavior,
as outlined in Definition 3.1, can also emerge as an outcome of an experience-based equilibrium

studies (e.g., Opp, Parlour and Walden, 2014; Dou, Ji and Wu, 2021a,b; Chen et al., 2023, 2024).
16e.g., 1 − Φ(ω̄) < 10−15 when ω̄ = 8.
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defined by Fershtman and Pakes (2012), which is closely related to the concept of self-confirming
equilibrium (e.g., Fudenberg and Levine, 1993; Battigalli et al., 2015).17 Specifically, an experience-
based equilibrium is characterized by: (i) a recurrent Markovian state process, (ii) an optimization
condition requiring strategies to be optimized based on potentially incorrect outcome evaluations,
and (iii) a consistency condition requiring that expected discounted net cash flows under the true
distribution, generated by optimal strategies on the equilibrium path, align with on-path evaluations.
Crucially, this condition applies only to on-path outcomes. Players’ beliefs or evaluations about
off-path outcomes need not align with expected discounted cash flows under the true distribution,
allowing for significant biases. In sum, as long as on-path evaluations match historically observed
outcomes, these biases can persist and, in turn, sustain the equilibrium path.

We formalize the theoretical concept of collusive experience-based equilibrium sustained by
learning bias below.

Definition 3.3 (Collusive Experience-Based Equilibrium through Learning Bias). A collusive equilibrium
in trading, sustained by learning bias, is an experience-based equilibrium in which informed speculators
systematically undervalue aggressive trading strategies due to an incorrect outcome evaluation system. This
system remains uncorrected as learning is confined to outcomes observed along the equilibrium path. A notable
case of such an equilibrium arises from a specific form of learning bias — over-perceived aversion to noise
trading risk. In this case, the outcome evaluation system is biased solely by the perceived disutility associated
with aversion to noise trading risk: −ς

2χ2σ2
u , where ς > 0 represents the degree of over-perceived aversion and

χ > 0 reflects the aggressiveness of the trading strategy x(vt) ≡ χ(vt − v).

3.4 Existence of Collusive Equilibrium

Existence of Collusive Nash Equilibrium Sustained by Price-Trigger Strategies. Sustaining coordina-
tion through price-trigger strategies hinges critically on high price informativeness to enable effective
monitoring. Proposition 3.1 below demonstrates the impossibility of sustaining a collusive Nash
equilibrium via price-trigger strategies in a financial market when noise trading risk, captured by σu,
is large or when the presence of information-insensitive investors, captured by ξ, is small relative to
θ, defined in Equation (3.3).

When noise trading risk σu is large, noise trading flow ut dominates price fluctuations, as shown
in (3.5), overshadowing informed trading and reducing price informativeness. This situation parallels
oligopolistic product market competition with latent random price shocks (as in Abreu, Milgrom and
Pearce, 1991; Sannikov and Skrzypacz, 2007). Applying the same economic logic, high noise trading
risk in financial markets undermines market prices as a monitoring tool, making it impossible to
sustain a collusive trading equilibrium through price-trigger strategies in financial markets.

More importantly, our paper provides new insights into the conditions that enable or prevent tacit
collusion in financial market trading, which can be fundamentally distinct from tacit collusion in
product pricing in goods markets, as studied by Abreu, Milgrom and Pearce (1991) and Sannikov
and Skrzypacz (2007). Specifically, when ξ is small relative to θ, reflecting a minimal presence of
information-insensitive investors, the market maker’s objective in (3.3) focuses on price discovery, with

17See also Fudenberg and Kreps (1988), Fudenberg and Kreps (1995), Cho, Williams and Sargent (2002), and Cho and
Sargent (2008) for influential early contributions.
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minimal emphasis on inventory cost minimization. This environment closely aligns with the standard
Kyle (1985) benchmark, which conceptualizes financial markets as mechanisms for information
aggregation, where sophisticated participants infer fundamental values from the collective actions
of others and incorporate this information into prices. In such an environment, informed investors,
understanding how financial markets aggregate information into prices, must trade strategically and
cautiously on private signals to secure meaningful information rents. This deliberate and restrained
trading reduces price informativeness, weakening prices as effective monitoring tools. As a result,
it becomes impossible to sustain a collusive trading equilibrium through price-trigger strategies in
financial markets, regardless of the level of noise trading risk σu.

Proposition 3.1 (Feasibility of Price-Trigger Strategies). With all other parameters held constant, a collusive
Nash equilibrium sustained by price-trigger strategies is not feasible if ξ is small relative to θ or if σu is large.
Conversely, such an equilibrium exists only if ξ is sufficiently large relative to θ and σu is sufficiently small.

The detailed proof is provided in Online Appendix 2.3.

Existence of Collusive Experience-Based Equilibrium Sustained by Learning Bias. In contrast to
the collusive Nash equilibrium sustained by price-trigger strategies in Proposition 3.1, a collusive
equilibrium driven by learning bias, especially through the self-confirming learning process, can
robustly arise as an experience-based equilibrium, as shown in Proposition 3.2.

Proposition 3.2 (Existence of Collusion Through Learning Bias). A collusive experience-based equilibrium
sustained by learning bias, with any trading strategy χC ∈ [χM, χN), exists for all ξ ≥ 0 and σu ≥ 0. In
this equilibrium, informed speculators uniformly undervalue aggressive trading strategies due to an incorrect
outcome evaluation system, which remains uncorrected as learning is based solely on observed outcomes along
the equilibrium path. In particular, such a collusive experience-based equilibrium can be sustained by learning
bias induced by over-perceived aversion to noise trading risk, characterized by the over-perceived aversion
coefficient ς, as introduced in Definition 3.3, with an equilibrium trading strategy χC ∈ [χM, χN).

The detailed proof is provided in Online Appendix 2.4.

3.5 The Impact of Collusive Informed Trading on Market Efficiency

To assess, based on the simulation experimental outcomes, whether informed AI speculators engage
in tacitly collusive trading through price-trigger strategies or learning bias, we derive testable
theoretical properties of the collusive equilibrium corresponding to each of these two distinct
economic mechanisms.

Proposition 3.3 (Supra-Competitive Nature of Collusion). Let πM, πC, and πN represent the expected
profits of informed speculators in the perfect cartel benchmark, the collusive equilibrium (sustained either by
price-trigger strategies or learning bias), and the non-collusive equilibrium, respectively. These profits satisfy:

∆C ≡ πC − πN

πM − πN ∈ (0, 1]. (3.6)

where ∆C represents the normalized trading profitability of informed speculators in the collusive equilibrium.
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The detailed proof is provided in Online Appendix 2.5.

Definition 3.4. The price informativeness, market liquidity, and mispricing are measured, respectively, by

I ≡ var(xt)

var(ut)
, L ≡

[
∂|mt|
∂ut

]−1

, and E ≡ |E[pt|vt]− vt| , (3.7)

where xt, zt, ut, and mt ≡ −(yt + zt) denote the total order flow of informed speculators, information-
insensitive investors, noise traders, and market makers, respectively, and pt denotes the market price.

Next, we examine how ∆C, IC, LC, and EC vary across different market structures and information
environments within the collusive equilibrium, driven by two distinct mechanisms.

Proposition 3.4 (Market Structures and Collusive Trading: Consequences for Market Efficiency). The
two collusion mechanisms yield similar implications when I changes, differing implications when ρ varies, and
opposing implications when σu changes:

(i) If a collusive Nash equilibrium sustained by price-trigger strategies exists, the following holds in this
equilibrium when I is sufficiently large:

ρ ↓, σu ↑, or I ↑ =⇒ ∆C ↓ (i.e., collusion capacity ↓)

=⇒ IC/IM ↑, LC/LM ↑, and EC/EM ↓ (i.e., market efficiency ↑), (3.8)

where C and M represent the collusive Nash equilibrium and the perfect cartel benchmark, respectively.

(ii) If a collusive experience-based equilibrium sustained by over-perceived aversion to noise trading risk
exists, the following holds in this equilibrium:

σu ↓, or I ↑ =⇒ ∆C ↓ (i.e., collusion capacity ↓)

=⇒ IC/IM ↑, LC/LM ↑, and EC/EM ↓ (i.e., market efficiency ↑), (3.9)

where C and M represent the collusive experience-based equilibrium and the perfect cartel benchmark,
respectively. The result for LC/LM holds when ξ is sufficiently large. Importantly, ρ does not affect ∆C,
IC/IM, LC/LM, or EC/EM in this equilibrium.

The detailed proof is provided in Online Appendix 2.6.

4 Simulation Experiments on AI Trading Algorithms

As a proof of concept, this section presents simulation experiments to test whether informed AI
speculators, equipped with autonomous model-free Q-learning algorithms, can achieve and sustain
collusive behavior under asymmetric information and an adaptive asset demand curve that endoge-
nously responds to their trading strategies. We specifically examine whether such collusive behavior
by AI speculators can arise without explicit agreement, communication, or pre-programmed intent.
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4.1 Algorithms as Experimental Subjects

Informed AI Speculators. We now analyze the behavior of the algorithms as experimental subjects.
Specifically, these experiments replace the theoretical agents, referred to as “informed speculators” in
the model, as detailed in Section 3, with Q-learning algorithms, as described in Section 2.

The dimensionality of the state vector st directly impacts the learning capacity and efficiency
of Q-learning algorithms. High-dimensional state spaces create computational challenges, often
requiring deep learning techniques for function approximation and effective exploration.18 To ensure
numerical tractability, transparency, and highlight key insights, we select a minimal set of state
variables, st ≡ {pt−1, vt−1, vt}, which capture the information advantage of informed speculators and
enable AI collusion through price-trigger strategies, akin to the theoretical benchmark of the collusive
Nash equilibrium in Definition 3.2.19 In this setup, informed AI speculators make trading decisions in
period t based on the current private signal vt and a one-period memory of the previous fundamental
value vt−1 and price pt−1. In our simulation experiments, we find that expanding the state variable st

by incorporating additional variables, such as lagged order flows or extended histories of market
prices and fundamental values, strengthens tacit collusion among informed AI speculators through
price-trigger strategies, resulting in higher trading profits. By limiting st to pt−1, vt−1, and vt, we
impose a stringent bar for Q-learning algorithms to achieve AI collusion sustained by price-trigger
strategies.

Adaptive Market Maker. The market maker does not know the distributions of randomness. It
stores and analyzes historical data on the asset’s value and price, the order flows from information-
insensitive investors, and the combined order flows from informed AI speculators and the noise
trader, i.e., Dt ≡ {vt−τ, pt−τ, zt−τ, yt−τ}Tm

τ=1, where Tm is a large integer. The market maker estimates
the demand curve of information-insensitive investors and the conditional expectation of the asset’s
value, E [vt|yt], using the following linear regression models, respectively:

zt−τ = ξ0 − ξ1 pt−τ + ϵz,t−τ, and vt−τ = γ0 + γ1yt−τ + ϵv,t−τ, where τ = 1, · · · , Tm. (4.1)

Here, ϵz,t−τ and ϵv,t−τ represent the residual terms from linear regressions. The estimated coefficients
ξ̂0,t, ξ̂1,t, γ̂0,t, and γ̂1,t are based on the rolling-window dataset Dt in period t. The pricing rule
adaptively follows the optimal policy through a plug-in procedure:

p̂t(y) = γ̂0,t + λ̂ty with λ̂t =
θγ̂1,t + ξ̂1,t

θ + ξ̂2
1,t

, (4.2)

where θ is defined in (3.3). Our results remain robust even when the market maker employs
Q-learning algorithms (see Online Appendix 4.11).

Protocol for Simulation-Based Experiments. We summarize the experimental protocol as follows.
At t = 0, each informed AI speculator i ∈ {1, · · · , I} is assigned with an arbitrary initial Q-matrix

18RL algorithms, augmented by deep learning techniques to address high-dimensionality challenges, form the backbone
of many successful real-world AI applications, including “AlphaGo.”

19Tracking both pt−1 and vt−1, rather than just pt−1, helps informed AI speculators assess potential deviations in period
t − 1 by comparing pt−1 against vt−1.
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Q̂i,0 and state s0. Then, the economy evolves from t to t + 1 according to the following steps:

(1) In period t, each informed AI speculator i independently enters exploration with probability εt

or exploitation with probability 1 − εt, submitting order flow xi,t, as in (2.6).

(2) The noise trader submits its order flow ut, which is randomly drawn from N(0, σ2
u).

(3) The market maker analyzes the historical data Dt ≡ {vt−τ, pt−τ, zt−τ, yt−τ}Tm
τ=1 to estimate p̂t(y)

according to (4.2). Upon observing yt = ∑I
i=1 xi,t + ut, the market price is set at pt = p̂t(yt).

(4) Observing pt, information-insensitive investors submit their aggregate order flow zt in accor-
dance with (3.2). Each informed AI speculator i realizes its profits πi,t = (vt − pt)xi,t.

(5) At the start of period t + 1, the state variable transitions from st = {pt−1, vt−1, vt} to st+1 =

{pt, vt, vt+1}, where vt+1 is independently drawn from N(v, σ2
v ). Each informed AI speculator i

updates its Q-value for (st, xi,t) using the recursive rule in (2.4).

Merits of Simulation-Based Experiments for Algorithms. The interaction among (i) AI speculators
using Q-learning with lagged prices as endogenous state variables, (ii) an adaptive market maker
learning from historical data, and (iii) randomness from noise traders and stochastic asset values
makes it extremely difficult, if not impossible, to prove general results on convergence or long-run
behavior. As in prior work (e.g., Calvano et al., 2020), our simulation-based approach is well-suited to
study algorithmic behavior, strategic interaction, and resulting equilibrium outcomes. First, no general
convergence results exist for environments of this complexity, let alone closed-form characterizations
of their asymptotic behavior.

Second, although stochastic approximation theorems can, in principle, establish convergence in
certain simplified settings, they are generally not applicable to settings of this complexity. Moreover,
they rely on strict regularity conditions for the algorithms, such as decaying hyperparameters over
time, which are rarely satisfied in practice. For example, hyperparameters are often held constant
in real-world applications. As a result, the steady-state behavior observed through numerical
convergence may be more practically relevant than the theoretical limit derived under idealized
conditions.20 In real-world applications, particularly in robotics and securities trading, RL algorithms
operating in multi-agent environments face several practical challenges. These include the absence
of theoretical guarantees on convergence and decriptions of equilibrium properties, the need for
costly exploration, the inherently slow pace of learning, and the high cost and limited availability
of real-world data. These factors make real-time training impractical. Consequently, training RL
algorithms in simulation-based synthetic environments has become a widely adopted approach in
practice. This aligns closely with the spirit of our simulation-based experiments. For example, hedge
funds often use simulated financial markets to train RL-based execution strategies before deploying
them in live trading, just as autonomous vehicles are first trained in virtual environments using
simulated data before operating in the real world.

Third, even if a theoretical analysis of a multi-agent system with Q-learning algorithms in a
repeated game setting like ours were feasible, despite being widely regarded as intractable, the

20Simulation-based algorithmic experiments fundamentally differ from numerical solutions of theoretical equilibria (e.g.,
Kubler and Schmedders, 2005; Dou et al., 2023; Duarte, Duarte and Silva, 2024; Hansen, Khorrami and Tourre, 2024).
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mathematical proofs would provide little insight into why or how algorithms reach a collusive
equilibrium. This is because such analyses typically rely on stochastic approximation methods, which
focus on verifying high-level regularity conditions and technical details.21

To complement our simulation-based experiments across various trading environment specifica-
tions in the general model, we provide clear intuitions and heuristic justifications for the numerical
convergence of multiple informed AI speculators using Q-learning algorithms, as well as for the
steady-state properties of the resulting AI trading equilibrium, within a simplified model. The results
are presented in Sections 5 and 6, with heuristic justifications provided in Online Appendix 3.

4.2 Numerical Specifications

We detail the numerical setup of our simulations, including the discretization of state and action
spaces, Q-matrix initialization, parameter selection, and convergence criteria.

Discretization of State and Action Spaces. We approximate the distribution N(v, σv) using nv grid
points, V = {v1, · · · , vnv}, with equal probabilities assigned to each grid. The grid points are located
according to vk = v + σvΦ−1((2k − 1)/(2nv)) for k = 1, · · · , nv, where Φ−1 is the inverse cumulative
density function of the standard normal distribution.22 We discretize the choice space of informed AI
speculator i for order flow xi using grids based on the optimal trading strategies in two benchmarks:
the non-collusive Nash equilibrium, xN = (v − v)/[(I + 1)λ], and the perfect cartel benchmark,
xM = (v − v)/(2Iλ). Specifically, we discretize the interval [xM − ι(xN − xM), xN + ι(xN − xM)] for
v > v and [xN − ι(xM − xN), xM + ι(xM − xN)] for v < v into nx equally spaced grid points, denoted
by X = {x1, · · · , xnx}. The parameter ι > 0 enables informed AI speculators to choose order flows
that exceed the boundaries set by the theoretical benchmarks xM and xN , offering flexibility to explore
strategies beyond these theoretical limits. The grid points of the market price p are determined
similarly to those for xi, with adjustments to account for the noise trader’s impact on market prices.
Specifically, the upper bound is set at pH = v + λN (

I max{xM, xN}+ 1.96σu
)

and the lower bound
at pL = v + λN (

I min{xM, xN} − 1.96σu
)
, corresponding to the 5% and 95% percentiles of the noise

trader’s order flow distribution, N(0, σu). The interval [pL − ι(pH − pL), pH + ι(pH − pL)] is then
discretized into np grid points, denoted by P = {p1, · · · , pnp}.

Initial Q-Matrix and States. We initialize the Q-matrix at t = 0 with the discounted payoff that
informed AI speculator i would earn if other informed AI speculators randomize their actions
uniformly over the grid points in X, and the noise trading flow is set to zero, which corresponds
to the expected value of the distribution N(0, σ2

u).23 Specifically, for each informed AI speculator

21Recent studies have established convergence of Q-learning algorithms to (collusive) Nash equilibria in simplified
models, typically in 2 × 2 Prisoner’s Dilemma settings (e.g., Cartea et al., 2022a; Possnig, 2024). These proofs rely heavily
on existing stochastic approximation results and focus on technical verification with little intuitive explanation of the
algorithmic mechanisms behind convergence.

22The results remain robust under alternative discretization schemes.
23Different initial values for the Q-matrix have minimal impact on the results. For example, assigning high initial values

encourages Q-learning algorithms to explore all actions thoroughly in the early learning phase, as subsequent iterations
gradually reduce these values toward their theoretical true levels. This approach accelerates the learning process and
effectively facilitates thorough exploration early on and exploitation in later stages.
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i = 1, · · · , I, we set its initial Q-matrix Q̂i,0 at t = 0 as follows:

Q̂i,0(s, x) =
1

(1 − ρ)nx
∑

x−i∈X

[
v − (v + λN(x + (I − 1)x−i))

]
x,

for s = (p, v, v) ∈ P×V×V and x ∈ X. The initial states of our simulation, s0 = {p−1, v−1, v0}, are
randomized uniformly over P×V×V.

Specification of Exploration Rates. We consider the state-dependent ε-greedy scheme:

εt(v) = e−βt(v), (4.3)

where β > 0 governs the speed that informed AI speculators’ exploration rate diminishes over time
and t(v) captures the number of times that the system visited v ∈ V in the past.

Parameter Values. The parameters used in our numerical experiments are categorized into four
groups based on their roles. First, “environment parameters” describe the underlying economic
environment and, importantly, their values are unknown to both the informed AI speculators and
the market maker. In the baseline calibration, we set I = 2 and ξ = 500, and consider two different
values for σu, which are σu = 10−1 and σu = 102, representing trading environments with low and
high noise trading risk, respectively. Later, we examine the implications of varying these parameters.

Second, “preference parameters” include the subjective discount factor for informed AI specula-
tors, ρ, and the market maker’s weight on the pricing error term, θ. We set ρ at a relatively high level,
ρ = 0.95, to reflect the high-frequency trading environment. We examine the implications of varying
ρ values in Section 6. We fix θ ≡ 0.1 as a universal constant throughout our simulation experiments.

Third, “discretization parameters” detail the methods used to discretize the system for simulation
experiments. We set nv = 10. Under this discretization, the standard deviation of vt is σ̂v =√

n−1
v ∑nv

k=1(vk − v)2 = 0.938, which is close to the theoretical value σv = 1.24 We set ι = 0.1, nx = 15,
and np = 31.25 We set Tm = 10, 000 for the market maker. Increasing Tm does not alter any results.

Lastly, “hyperparameters” consist of α and β. Like in any machine learning algorithms, hyperpa-
rameters (or tuning parameters) are crucial for controlling the learning process of RL algorithms. In
our baseline calibration, we set α = 0.01 and β = 5 × 10−7. All results are robust to choosing different
values of α and β so long as they are in the reasonable range that ensures sufficiently good learning
outcomes. Our baseline choice of β = 5 × 10−7 implies that any action x ∈ X is, on average, visited
just due to random exploration by nv

nx
1

1 − exp(−5 × 10−7)
≈ 1, 333, 333 times before exploration

completes. In Online Appendix 4.12, we conduct experiments with varying values of α and β. We
also study scenarios where informed AI speculators adopt different values of α. In Online Appendix
4.13, we consider two-tier Meta Q-learning algorithms that enable informed AI speculators to learn
the optimal α for the lower-tier agent as part of the upper-tier agent’s optimal decision.

24In the remainder of this paper, the non-collusive Nash equilibrium and perfect cartel benchmark are computed using
σ̂v, to ensure consistency with the discretization scheme of vt used in the simulation experiments.

25Our choice of np ≈ 2nx ensures that, all else equal, a one-grid point change in one informed AI speculator’s order flow
will result in a change in price pt over the grid defined by P.
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Criterion for Numerical Convergence. Each experiment contains Nsim = 1, 000 independent simula-
tion sessions. We adopt a stringent criterion for convergence: all informed AI speculators’ optimal
strategies must remain unchanged for 1, 000, 000 consecutive periods within a single session, and all
Nsim sessions must continue running until each meets this convergence condition. The number of
periods required for convergence varies substantially across experiments, depending on parameter
values, and can also differ significantly across sessions within the same experiment. Across simulation
experiments, convergence occurs within a range of approximately 20 million to 50 billion periods.26

5 AI Trading Equilibrium: Outcomes from Simulation Experiments

In this section, we present the results of simulation experiments that examine the behavior of AI-
powered trading algorithms within a theoretical laboratory framework and explore the properties of
AI trading equilibrium. Building on the theoretical benchmarks in Sections 3.3 and 3.4, Section 5.1
illustrates the exploration-exploitation tradeoff in RL algorithms that underpins the two algorithmic
mechanisms driving AI equilibria, and Section 5.2 provides an overview of simulation results across
various cases defined by different levels of σu and ξ. Section 5.3 presents simulation experiments in
trading environments with a strong presence of information-insensitive investors (ξ is large relative
to θ). In contrast, Section 5.4 focuses on simulation experiments in environments with a minimal
presence of information-insensitive investors (ξ is small relative to θ). Section 5.5 further elaborates
on the intuitions behind how AI collusion arises through two distinct algorithmic mechanisms
corresponding to the two economic mechanisms. Finally, Section 5.6 provides a discussion on the
role of information-insensitive investors.

5.1 Two Distinct Algorithmic Mechanisms behind AI Collusion

Parallel to the two economic mechanisms underlying collusive equilibrium in trading, as defined in
Definitions 3.2 and 3.3, our simulation experiments with Q-learning algorithms reveal two distinct
algorithmic mechanisms through which informed AI speculators can autonomously learn to achieve
a collusive trading equilibrium. The first mechanism is AI collusion via price-trigger strategies,
approximating the collusive Nash equilibrium sustained by such strategies, as defined in Definition
3.2. The second is AI collusion driven by over-pruning bias in learning, which mirrors the collusive
experience-based equilibrium arising from a learning bias caused by over-perceived aversion to noise
trading risk, as defined in Definition 3.3.

Which algorithmic mechanism prevails, and consequently which type of AI equilibrium emerges,
depends on the effectiveness of the exploration-exploitation tradeoff in the RL algorithm. Similar to
the bias-variance tradeoff in supervised learning and high-dimensional statistics, this tradeoff aims to
balance pruning the action space and reducing outcome variability. In RL, exploration (i.e., trying
new actions) is essential to minimize bias in estimating the optimal action, while exploitation (i.e.,
selecting the optimal actions based on past experience) reduces noise in received rewards, thereby
lowering variability in the estimation of the optimal action. Similar to shrinkage techniques in

26Our programs are written in C++, using −O2 to optimize the compiling process. We use a high-powered computing
server cluster with 400 CPU cores. Completing all simulation sessions in one experiment can take up to 6 hours.
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supervised learning and high-dimensional statistics, exploitation narrows the choice space to improve
convergence speed and reduce variance, although it may introduce some bias.

Drawing on the theoretical results establishing the existence of collusive equilibria sustained
by two distinct economic mechanisms, as summarized in Propositions 3.1 and 3.2, the type of
AI equilibrium reached by the system of RL algorithms after convergence depends on two key
factors: the risk of noise trading flows, captured by σu, and the presence of information-insensitive
investors, measured by ξ. Together, these parameters determine the informativeness of market prices,
which is shaped by the underlying economic structure and, in turn, affects the effectiveness of the
exploration-exploitation tradeoff.

AI collusion through the price-trigger-strategy mechanism becomes the dominant steady state
when the exploration-exploitation tradeoff functions effectively, guiding learning without introducing
significant bias. In this setting, a system of algorithms autonomously learns to sustain a collusive
AI equilibrium that approximates a Nash equilibrium, even though each algorithm unilaterally
maximizes its own trading profit. Crucially, each algorithm not only learns how the state vector
(i.e., the “environment”) responds to its trading behavior in effect but also integrates this knowledge
into its profit optimization process. This dynamic sophistication allows the algorithms to converge
to a steady-state equilibrium that extends beyond the non-collusive Nash equilibrium. For this
exploration-exploitation tradeoff to function effectively, price informativeness must be sufficiently
high, which in turn requires a low σu and a high ξ. Intuitively, when price informativeness is high,
the information obtained from occasional exploration is more reliable. This allows exploitation to
better focus on optimal trading strategies, while any bias introduced by exploitation can be effectively
corrected through exploration. Further intuition is provided in Section 5.5.

AI collusion through the over-pruning learning bias mechanism emerges as the dominant steady
state when the exploration-exploitation tradeoff fails to effectively guide the estimation of optimal
trading strategies, resulting in significant bias. In this case, the system of algorithms does not converge
to a collusive AI equilibrium that approximates a Nash equilibrium. Instead, an imbalance between
exploration and exploitation causes the systematic over-pruning of aggressive trading strategies,
resulting in a collusive AI equilibrium driven by over-pruning bias. This outcome closely parallels
the theoretical collusive experience-based equilibrium, which arises from a learning bias induced by
over-perceived aversion to noise trading risk. The exploration-exploitation tradeoff fails to effectively
guide estimation when price informativeness is not sufficiently high, which can result from a high
σu or a low ξ. Importantly, as long as ξ is low, price informativeness remains endogenously low,
regardless of the level of σu. Intuitively, when price informativeness is low, information obtained
from occasional exploration can be misleading, causing exploitation to become trapped in unilaterally
suboptimal strategies that are collectively supra-competitive. In such cases, the significant bias
introduced by exploitation cannot be effectively corrected through exploration. Further intuition is
provided in Section 5.5.

To illustrate how over-pruning bias arises from an imbalance between exploration and exploitation,
consider environments with low ξ or high σu, where market prices and trading profits are predomi-
nantly driven by noise trading shocks ut. In these settings, the behavior of RL algorithms depends
critically on how they process feedback from such shocks. Exploitation introduces asymmetries into
the learning process, depending on whether a shock is adverse or beneficial. An adverse noise trading
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shock moves in the same direction as the informed AI speculator’s trade, causing substantial trading
losses and sharply reducing the estimated Q-value of the chosen action. In contrast, a beneficial
shock moves in the opposite direction, generating significant trading profits and potentially inflating
the estimated Q-value, though this overestimation is more likely to be corrected over time through
continued and repeated exploitation.

More precisely, following an adverse noise trading shock, the algorithm often classifies the
chosen strategy as a “disastrous action,” assigning it a significantly low Q-value. Exploitation
then discourages the algorithm from revisiting this strategy in subsequent iterations, reinforcing the
downward bias and preventing correction for such off-equilibrium-path actions. In contrast, following
a beneficial shock, the algorithm tends to label the strategy as a “fantastic action” and assigns it
an inflated Q-value. Because exploitation promotes repeated use of high-Q-value strategies, the
algorithm continues to select and update this strategy, eventually correcting any initial overestimation.
Aggressive strategies, by their nature, are more exposed to noise trading shocks, making them
especially vulnerable to this asymmetric learning dynamic. As a result, they tend to be persistently
undervalued and prematurely pruned from the set of candidate optimal strategies, reinforcing the
over-pruning bias. Consequently, informed AI speculators gravitate toward more conservative trading
strategies, consistent with the collusive behavior described in Definitions 3.1 and 3.3.

One way to interpret the asymmetric effect of exploitation is that it effectively makes RL algo-
rithms risk-averse to randomness in their rewards. In decision theory, risk aversion arises from
the asymmetric impact of adverse and beneficial shocks. Similarly, in RL, exploitation discourages
revisiting poorly rated strategies while reinforcing successful ones, leading to an asymmetric impact
of adverse and beneficial shocks on the learning process. This asymmetry, in turn, causes aggressive
trading strategies — more exposed to noise trading shocks — to be prematurely pruned from the set
of potential optimal strategies, reinforcing over-pruning bias in learning. As a result, the algorithm
behaves as if it were risk-averse, opting against aggressive strategies that expose profits to high risk.

5.2 Key Findings on AI Collusion

We begin with an overview of the key simulation findings, summarized in Figure 1, before digging
into the details of our simulation experiments in Sections 5.3 and 5.4, followed by a discussion of
the intuitions behind the AI collusive equilibrium in Section 5.5 and heuristic justifications in Online
Appendix 3. To comprehensively characterize the AI collusive equilibrium, we classify all possible
trading environments into three cases: (i) high ξ and low σu, (ii) high ξ and high σu, and (iii) low ξ.
The corresponding theoretical benchmarks and key simulation findings are summarized as follows:

(i) High ξ & low σu: Both a collusive Nash equilibrium via price-trigger strategies and a collusive
experience-based equilibrium via learning bias can theoretically be achieved by informed
speculators in such environments, as established in Propositions 3.1 and 3.2. However, in our
simulations, informed AI speculators using Q-learning consistently converge to an AI collusive
equilibrium sustained by price-trigger strategies, rather than one driven by over-pruning bias.

(ii) High ξ & high σu: No collusive Nash equilibrium sustained by price-trigger strategies exists in
theory, whereas a collusive experience-based equilibrium driven by learning bias can theoreti-
cally be achieved by informed speculators in such environments, as established in Propositions
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Note: The symbol “✓” indicates that the equilibrium exists, while “×” indicates that it does not. The presence of
information-insensitive investors, ξ, is the slope coefficient of the asset demand curve, as specified in (3.2), while the noise
trading risk, σu, denotes the standard deviation of the noise trading flow, ut.

Figure 1: Summary of our main findings.

3.1 and 3.2. Consistent with these theoretical benchmarks, simulations show that multiple
informed AI speculators using Q-learning converge solely to an AI collusive equilibrium driven
by over-pruning bias in learning, rather than one sustained by price-trigger strategies.

(iii) Low ξ: No collusive Nash equilibrium sustained by price-trigger strategies exists in theory,
whereas a collusive experience-based equilibrium driven by learning bias can still theoretically
be achieved by informed speculators in such environments, regardless of the level of σu > 0,
as established in Propositions 3.1 and 3.2. Consistent with these theoretical benchmarks,
simulations demonstrate that multiple informed AI speculators using Q-learning converge
solely to an AI collusive equilibrium driven by over-pruning bias in learning, rather than one
sustained by price-trigger strategies. Notably, the results in this case are the same as those in
case (ii), characterized by high ξ and high σu.

5.3 Simulation Experiments in Trading Environments with High ξ

This section presents simulation results for cases (i) and (ii) described in Section 5.2. In trading
environments where ξ is large relative to θ, indicating a significant presence of information-insensitive
investors, the market maker primarily sets the market price to minimize inventory costs, rather than
to reduce pricing errors, as described in (3.4).

U-Shaped Profitability in AI Collusion: Two Distinct Mechanisms. Panel A of Figure 2 plots the
average ∆C as log σu varies from −5 to 5 along the x-axis. The horizontal dotted line represents the
theoretical benchmark for a perfect cartel (∆M ≡ 1), while the horizontal dash-dotted line indicates
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Figure 2: Two distinct mechanisms behind AI collusion.

the benchmark for a non-collusive Nash equilibrium (∆N ≡ 0). The solid U-shaped line between 0
and 1 represents the average normalized trading profitability of informed AI speculators, that is, the
average value of ∆C across all Nsim = 1, 000 simulation sessions. The average value of ∆C reflects the
collusion capacity of the informed AI speculators. The grey area around the solid line represents the
range of ∆C from the 1st to the 99th percentile across all Nsim simulation sessions.27

The normalized profitability of AI trading, ∆C, lies between 0 and 1, suggesting that a collusive
equilibrium with significant supra-competitive profits, as defined in Definition 3.1, emerges robustly,
irrespective of the noise trading risk level, σu. Importantly, the normalized trading profitability, ∆C,
and the noise trading risk, σu, exhibit a strong U-shaped relationship, indicating that AI-driven
collusive trading is particularly pronounced when σu is either high or low. However, the algorithmic
mechanisms underlying these AI collusion patterns differ significantly between the high and low σu

scenarios, as discussed in Section 5.1 and further detailed in Section 5.5. This distinction is evident
from the opposing relationships between σu and ∆C in these two scenarios. When noise trading risk
σu is low, collusion capacity, as reflected in ∆C, decreases as σu increases. In contrast, when noise
trading risk σu is high, collusion capacity, as reflected by ∆C, increases with σu.

Panel B of Figure 2 shows the proportion of the Nsim parallel simulation sessions that converge to a
specific type of AI collusive equilibrium. Collusive equilibria sustained by price-trigger strategies are
represented by the solid line, while those sustained by over-pruning bias in learning are represented
by the dashed line. In each simulation session, the type of AI collusion is identified based on the
defining features of price-trigger AI collusion and over-pruning AI collusion, as determined by the
impulse response patterns described in Figure 3.28 The results show that when σu is low, nearly all
simulation sessions converge to an AI collusive equilibrium sustained by price-trigger strategies,

27The U-shaped pattern in the normalized trading profitability of informed AI speculators remains highly robust across
different levels of ξ, as demonstrated in Figure IA.4 in Online Appendix 4.6.

28Additional details on the classification are provided in Online Appendix 4.5.
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with almost none converging to an equilibrium sustained by over-pruning bias in learning. As σu

increases, the proportion of sessions converging to price-trigger AI collusion decreases, while the
proportion converging to over-pruning learning bias AI collusion rises. At high levels of σu, nearly
all sessions converge to an AI collusive equilibrium sustained by over-pruning bias in learning, with
almost none converging to an AI collusive equilibrium sustained by price-trigger strategies.

The simulation results illustrated in Panel B are consistent with the theoretical benchmarks
established in Propositions 3.1 and 3.2. Theoretically, when ξ is large and σu is small, both a collusive
Nash equilibrium sustained by price-trigger strategies and a collusive experience-based equilibrium
driven by over-perceived aversion to noise trading risk can exist. However, Proposition 3.4 reveals that
in low noise trading risk environments (i.e., low σu), the collusion capacity of informed speculators,
as measured by their normalized trading profitability ∆C, is typically high in a price-trigger Nash
equilibrium but low in an experience-based equilibrium sustained by the over-perceived aversion
to noise trading risk. Consequently, informed AI speculators in such environments autonomously
learn to achieve an AI collusive equilibrium sustained by price-trigger strategies rather than one
driven by over-pruning bias in learning, as explained in Section 5.1, with further intuition and
heuristic justification detailed in Section 5.5. In contrast, as shown by Propositions 3.1 and 3.2, when
ξ is large and σu is large, only a collusive experience-based equilibrium driven by over-perceived
aversion to noise trading risk can be sustained, while a collusive Nash equilibrium sustained by
price-trigger strategies becomes theoretically infeasible. Consequently, informed AI speculators in
such environments autonomously learn to achieve an AI collusive equilibrium driven by over-pruning
bias in learning rather than one sustained by price-trigger strategies, as explained in Section 5.1, with
further intuition and heuristic justification detailed in Section 5.5.

The U-shaped relationship between ∆C and σu becomes clear when analyzing Panels A and B
of Figure 2 together. In Panel A, the circles (◦) represent the average ∆C conditioned on simulation
sessions classified as price-trigger AI collusive equilibria, while the diamonds (⋄) represent the
average ∆C conditioned on simulation sessions classified as over-pruning AI collusive equilibria.
When noise trading risk is low (i.e., log σu ≤ 1), informed AI speculators sustain collusion mainly
through price-trigger strategies, achieving significant supra-competitive profits. As σu increases, the
collusion capacity, reflected in normalized trading profitability ∆C, decreases. This decline occurs
because higher noise trading risk reduces the informativeness of market prices, making it increasingly
challenging to sustain collusive trading through price-trigger strategies. These findings align with
the theoretical benchmark established in Proposition 3.4.

In contrast, when noise trading risk is high (i.e., log σu ≥ 3), informed AI speculators sustain
collusion mainly through over-pruning bias in learning, also achieving substantial supra-competitive
profits. As σu increases, the collusion capacity, reflected in normalized trading profitability ∆C, also
increases. This occurs because higher noise trading risk disrupts the balance between exploration and
exploitation by amplifying the asymmetric effects of exploitation on the learning of aggressive trading
strategies in response to beneficial and adverse noise trading shocks. Specifically, it exacerbates
this asymmetry to the point where these effects become increasingly difficult to correct through
exploration updates. As a result, higher noise trading risk reinforces over-pruning bias, making
aggressive trading strategies even less viable. As highlighted in Section 5.1, the asymmetric effect
of exploitation can be interpreted as risk aversion embedded in algorithms toward randomness
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in rewards. Intuitively, greater noise trading risk further discourages algorithms from selecting
aggressive trading strategies. These simulation findings are consistent with the theoretical benchmark
established in Proposition 3.4.

To further provide direct evidence of the two AI collusion mechanisms across environments with
low and high noise trading risk, as demonstrated in Figure 2, we conduct impulse response analyses
throughout the remainder of this section using our simulation experiments. We begin by showing that
in low noise trading risk scenarios, informed AI speculators autonomously learn to sustain collusive,
supra-competitive trading profits through price-trigger strategies, without requiring any form of
agreement, communication, or pre-programmed intent. To be more precise, we emphasize that, while
this AI collusive equilibrium resembles the collusive Nash equilibrium sustained by price-trigger
strategies, as described in Definition 3.2 and Proposition 3.1, it does not fully satisfy the requirements
of subgame perfect Nash equilibrium.29 We then show that in high noise trading risk scenarios,
informed AI speculators still sustain collusive, supra-competitive trading profits, but through a
different mechanism: over-pruning bias in learning.30 This AI collusive equilibrium corresponds to
the collusive experience-based equilibrium sustained by over-perceived aversion to noise trading risk,
as described in Definition 3.3 and Proposition 3.2.

Impulse Responses: AI Collusion via Price-Trigger Strategies When σu Is Low. We first examine
how the trained informed AI speculators respond to an exogenous shock in the noise order flow,
which influences the asset’s market price through the market maker’s endogenous and adaptive
pricing rule. At t = 0, all Nsim simulation sessions have converged. The market price of the asset, pt,
is determined by the market maker’s adaptive pricing rule, which responds to the random variables
vt and ut along each simulation path, independently across the parallel simulation paths. At t = 3,
an unexpected exogenous shock, ushock, is introduced to the noise order flow ut, simultaneously
and uniformly affecting all Nsim simulation sessions. This shock is designed to adversely impact the
trading profits of informed AI speculators, with ushock > 0 when vt > v and ushock < 0 when vt < v.
As a result, the market price pt rises unexpectedly if vt > v and falls unexpectedly if vt < v, with
the magnitude of the price change determined by the size of ushock. Each impulse-response curve
in a panel represents the average impulse response dynamics across Nsim independent simulation
sessions.31 The cross-sectional distribution of path-by-path impulse response dynamics across Nsim

simulation sessions is provided in Online Appendix 4.4.
Panel A of Figure 2 shows that, in environments with a significant presence of information-

insensitive investors (here, ξ = 500) and low noise trading risk (specifically, σu = 10−1), the average
value of ∆C across Nsim parallel simulation paths is approximately 0.75. Under these conditions,
informed AI speculators achieve average trading profits that are about 10% higher than those in the
non-collusive equilibrium benchmark.

29Our numerical tests suggest that this AI collusive equilibrium is approximately Nash, meaning no local deviation is
preferred. Numerical tests are detailed in Online Appendix 4.10.

30In both scenarios, the equilibrium is classified as an experience-based equilibrium, based on the formal tests proposed
by Fershtman and Pakes (2012). Details of these tests are provided in Online Appendix 4.2. This is unsurprising, as the
experience-based equilibrium framework is broader and encompasses subgame perfect Nash equilibrium as a special case.

31Each of the Nsim simulation sessions averages 10,000 simulation paths to smooth out the randomness of vt and ut,
ensuring a reasonable comparison with the impulse response analysis based on the deterministic model of Calvano et al.
(2020), which has no information asymmetry or stochastic economic environment.
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Note: All plots correspond to a trading environment with ξ = 500, indicating a significant presence of information-
insensitive investors, and σu = 10−1, representing a low noise trading risk level. Panels A and D depict the percentage
deviation of the asset’s price from its long-run mean, expressed as ( p̃t − E[ p̃t])/E[ p̃t], where p̃t = (pt − v)× sgn(vt − v),
and sgn(·) is the sign function ensuring p̃t > 0. Panels B and E depict the percentage deviation of average profits from their
long-run mean for each informed AI speculator, expressed as (πi,t − E[πi,t])/E[πi,t]. Panels C and F depict the percentage
deviation of order flows from the long-run mean for each informed AI speculator, defined as (x̃i,t − E[x̃i,t])/E[x̃i,t], where
x̃i,t = xi,t × sgn(vt − v). The sign function ensures that x̃i,t > 0.

Figure 3: Impulse response function (IRF) following an exogenous noise trading shock ushock for
σu = 10−1 under Q-learning (left column) and the theoretical benchmark (right column).

To examine how informed AI speculators behave in steady-state equilibrium, we analyze their
impulse responses to exogenous shocks of varying magnitudes. In the “small deviation” experiment,
|ushock| is approximately 0.25% of the average magnitude of informed AI speculators’ order flow |xi,t|,
resulting in a minor impact on the asset price pt at t = 3. In contrast, in the “medium deviation,”
“large deviation,” and “ultra large deviation” experiments, |ushock| corresponds to roughly 2.5%,
11.5%, and 15.0% of the average |xi,t|, respectively, leading to progressively larger changes in pt.

To provide direct evidence that the behavior of informed AI speculators in equilibrium aligns
closely with a theoretical collusive Nash equilibrium sustained by price-trigger strategies, we present
the impulse responses to the exogenous shocks mentioned above for AI-powered trading in the left

31



column of Figure 3, alongside the corresponding theoretical benchmarks in the right column. For a
meaningful comparison, Panels D through F use the same magnitudes of unexpected price deviations
at t = 3 as those in the simulation experiments shown in Panels A to C. Additionally, all shared
parameters between the theoretical benchmarks and the simulation experiments are set to identical
values. The parameters (T, ω, η), which specify the price-trigger punishment scheme in theory, are
not relevant to the structure of the Q-learning simulations. Here, we set T = 2 to align with the
two-period punishment observed in the Q-learning experiments, ω = 2.826 to achieve an average
profitability ∆C of approximately 0.75, and η = 0.327 to match the average order flow deviation in
the “ultra large deviation” case at t = 4 in the Q-learning simulations. This side-by-side comparison
highlights the strong resemblance between the AI collusive equilibrium and the corresponding
theoretical benchmarks of collusive Nash equilibrium sustained by price-trigger strategies.

The price-trigger punishment scheme is evident throughout Panels A to C. Specifically, immedi-
ately after the shock at t = 3 (starting at t = 4), the responses display two defining characteristics of
price-trigger strategies, as outlined in Definition 3.2 and Proposition 3.1. These features of trigger-type
strategies, also reflected in the theoretical benchmark shown in Panels D to F, are as follows: (i) there
is, on average, no response when the price deviation at t = 3 is small (i.e., the “small deviation”
scenario, represented by the solid curve), and (ii) when the price deviation at t = 3 is sufficiently large,
AI speculators respond by adopting similarly aggressive trading strategies starting at t = 4, despite
significant differences in the deviation’s magnitude at t = 3 (i.e., the “medium deviation,” “large
deviation,” and “ultra large deviation” cases, represented by the dotted, dashed, and dash-dotted
curves, respectively).

To further validate the price-trigger punishment scheme among informed AI speculators, Panel A
shows that for large and ultra-large price deviations, the percentage deviation of the asset’s price
at t = 4 decreases relative to t = 3 but remains above the long-run mean. In the medium deviation
case, the percentage deviation at t = 4 surpasses that at t = 3. Notably, in the medium, large, and
ultra-large cases, price deviations at t = 4 converge to similar magnitudes, driven by comparable
order flow deviations at t = 4, as shown in Panel C. In contrast, for the small deviation case, both the
asset price and informed AI speculators’ profits revert to the long-run mean at t = 4. These nuanced
patterns of the AI collusive equilibrium closely align with those of the collusive Nash equilibrium
sustained by price trigger strategies, as depicted in Panels D through F.

We emphasize that, although the Q-learning algorithms rely only on the one-period lagged market
price pt−1 and fundamental value vt−1 for their decisions at period t, the punishment can extend
beyond a single period. Panels A through C of Figure 3 illustrate that informed AI speculators
continue to enforce punishment at t = 5, albeit significantly weaker on average than at t = 4. This
pattern demonstrates that informed AI speculators learn to sustain the collusive equilibrium using
price-trigger strategies, where the punishment scheme generally lasts for more than one period.

To confirm that the price-trigger strategy employed by informed AI speculators in Panels A
through C of Figure 3 is indeed the driving force behind the collusive, supra-competitive trading
profitability observed in Figure 2 under low noise trading risk, we disable the AI speculators’ ability
to use lagged market prices as a monitoring tool. This is accomplished by removing the lagged
market price pt−1 from the state variable st used for decision-making at period t. Our findings reveal
that even in environments with both a significant presence of information-insensitive investors (i.e., a
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Note: Both plots are based on Q-learning simulation experiments in a trading environment with ξ = 500, indicating a
significant presence of information-insensitive investors, and σu = 102, indicating high noise trading risk.

Figure 4: Impulse response function (IRF) of informed AI speculators using Q-learning algorithms
following an exogenous noise trading shock ushock for σu = 102.

high ξ) and low noise trading risk (i.e., a low σu), the price-trigger punishment scheme cannot be
learned, and the collusion capacity, measured by ∆C, drops to zero.

Impulse Responses: No AI Collusion via Price-Trigger Strategies When σu Is High. Next, we
demonstrate that the collusive, supra-competitive trading profitability observed under high noise
trading risk (i.e., high σu) in Figure 2 is not driven by price trigger strategies, in contrast to the low
noise trading risk (i.e., low σu) scenario. The setup of simulation experiments in Figure 4 is the same
as that in Figure 3 for a straightforward comparison. In Figure 4, we investigate the average IRF
over the Nsim simulation paths in the environment with high noise trading risk (i.e., σu = 102). A
comparison between Panel B of Figure 4 and Panel C of Figure 3 shows that informed AI speculators
do not respond at all to the exogenous shock to noise trading flow (ushock) when σu is high, let alone
respond according to price-trigger strategies. This finding is consistent with the theoretical result
of Proposition 3.1, which states that a collusive Nash equilibrium sustained through price-trigger
strategies does not exist in an environment with high noise trading risk.

Impulse Responses: AI Collusion via Over-Pruning Bias When σu Is High. Lastly, we investigate
how informed AI speculators achieve and sustain supra-competitive profits despite being unable to
learn and employ price-trigger strategies under high noise trading risk (i.e., high σu). Our analysis
demonstrates that informed AI speculators can reach an AI collusive equilibrium through over-
pruning bias in learning. This behavior corresponds to the theoretical collusive experience-based
equilibrium, sustained by an over-perceived aversion to noise trading risk, as described in Definition
3.3 and Proposition 3.2. To illustrate this, we compare the IRFs following a unilateral trading deviation
by one informed AI speculator in two environments: one with low noise trading risk (σu = 10−1) and
the other with high noise trading risk (σu = 102), as shown in Figure 5. Specifically, we exogenously
force a single informed AI speculator, labeled as i, to deviate from its learned optimal strategy for
one period at t = 3, uniformly across all Nsim simulation paths. This one-period deviation at t = 3 is
designed to increase the contemporaneous trading profit of the deviating speculator. Concretely, we
exogenously increase the order flow of the deviating speculator by xi,shock if vt > v and reduce its
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Note: All the plots are based on simulation experiments using Q-learning algorithms in a trading environment with
ξ = 500, indicating a significant presence of information-insensitive investors.

Figure 5: Impulse response function (IRF) following a unilateral deviation in trading order flows
xi,shock, shown for σu = 10−1 (left column) and σu = 102 (right column) under Q-learning.

order flow by xi,shock if vt < v.
Serving as a benchmark for comparison, Panels A through C of Figure 5 show the IRF following a

unilateral deviation by AI speculator i (solid line) at t = 3, under the low noise trading risk scenario
(σu = 10−1). Panel C specifically illustrates the exogenous deviation that forces AI speculator i (solid
line) to trade more aggressively at t = 3, while the other AI speculator (dashed line) maintains its
original trading behavior at t = 3. As shown in Panel A, the aggressive trading by AI speculator i
causes the market price pt to rise at t = 3. Panel B illustrates that the deviating AI speculator (solid
line) achieves higher profits, while the non-deviating AI speculator (dashed line) incurs losses at
t = 3. According to Definition 3.1, which formally defines a collusive equilibrium, the IRF results
support the findings in Figure 2. Together, they show that informed AI speculators can interact and
learn to sustain such an equilibrium in low noise trading risk environments. More importantly, the
responses of informed AI speculators to this unilateral deviation in subsequent periods, starting
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from t = 4, further reinforce the findings of Figure 3, confirming that the AI collusive equilibrium is
sustained by price-trigger strategies, closely resembling the behavior of a collusive Nash equilibrium
through price-trigger strategies. Specifically, at t = 4, Panel C shows that both AI speculators, on
average, engage in equally aggressive trading as a form of punishment for the deviation that occurs
at t = 3. As shown in Panel B, this behavior results in losses for both AI speculators at t = 4 due to
the sharp increase in the market price.

In a parallel comparison to the simulation experiments under the low noise trading risk scenario
(σu = 10−1), Panels D through F of Figure 5 show the IRF for the same experiment, conducted under
the high noise trading risk scenario (σu = 102). Specifically, Panel F illustrates AI speculator i being
forced to trade more aggressively at t = 3, while the other AI speculator (dashed line) maintains its
original trading behavior at t = 3. Panel D shows that this aggressive trading by AI speculator i drives
the market price pt higher at t = 3. Consistent with the pattern in Panel B, Panel E demonstrates that
the deviating AI speculator (solid line) achieves higher profits at t = 3, while the non-deviating AI
speculator (dashed line) incurs losses at t = 3. According to Definition 3.1, these IRF results support
the findings of Figure 2, demonstrating that informed AI speculators can still reach an AI collusive
equilibrium in environments with high noise trading risk. However, while the immediate reactions
at t = 3 are similar to those in the low noise trading risk scenario, the subsequent responses from
t = 4 onward differ significantly. The deviating AI speculator reverts to its original trading order
flow, while the non-deviating AI speculator’s behavior remains unchanged, as shown in Panel F.

Importantly, we emphasize that the pattern observed in Panel F, where the non-deviating AI
speculator remains unresponsive to the deviation behavior, is highly robust. This holds even though,
as shown in Panel E, the deviating AI speculator exploits the non-deviating one at t = 3 by imposing
costs on it. This provides clear evidence that the AI collusive equilibrium in the high noise trading
risk scenario is not driven by price-trigger strategies, which theoretically sustain a collusive Nash
equilibrium. Instead, this AI collusive equilibrium closely mirrors a theoretical collusive experience-
based equilibrium, sustained by over-perceived aversion to noise trading risk. Consistent with
the experience-based equilibrium, the persistent over-pruning bias in learning prevents the AI
equilibrium from being altered through new trial-and-error observations within a single period. In
Online Appendix 4.2, we formally verify that the AI collusive equilibrium meets the criteria of an
experience-based equilibrium, following the methodology of Fershtman and Pakes (2012).

5.4 Simulation Experiments in Trading Environments with Low ξ

The previous section covers cases (i) and (ii) described in Section 5.1. This section provides evi-
dence that over-pruning bias, rather than price-trigger strategies, drives AI collusion in the trading
environment of case (iii), where a low ξ leads to strong price discovery by market makers.

In a parallel comparison to the simulation experiments with a high ξ value (ξ = 500) in Figure 5,
Figure 6 presents the IRFs for the same experiment, where an informed AI speculator deviates at
t = 3 by trading more aggressively (solid line in Panels C and F), conducted in a trading environment
with a low ξ value (ξ = 5). Specifically, the left column corresponds to a trading environment with
σu = 10−1, while the right column corresponds to one with σu = 102. The patterns observed in both
columns of Figure 6 are the same as those in the right column of Figure 5. The immediate reversion
at t = 4 is highly robust regardless of the level of σu, even though the deviating AI speculator exploits
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Note: All the plots are based on simulation experiments using Q-learning algorithms in a trading environment with ξ = 5,
reflecting a minimal presence of information-insensitive investors.

Figure 6: Impulse response function (IRF) following a unilateral deviation in trading order flows
xi,shock in the trading environment with ξ = 5, shown for σu = 10−1 (left column) and σu = 102 (right
column) under Q-learning.

the non-deviating AI speculator at t = 3 by imposing costs on it, as shown in Panels B and E.
These patterns clearly show that the AI collusive equilibrium in a low-ξ environment is not driven

by price-trigger strategies. Instead, it is sustained by over-pruning bias against aggressive strategies,
closely resembling a theoretical experience-based equilibrium driven by over-perceived aversion to
noise trading risk. In Online Appendix 4.2, following Fershtman and Pakes (2012), we formally verify
that the AI collusive outcome meets the criteria for an experience-based equilibrium.

5.5 Intuition Behind AI Collusion and Its Underlying Algorithmic Mechanisms

This section explains why AI collusion through price-trigger strategies or over-pruning bias in
learning either occurs or does not occur across three trading environments: (i) high ξ and low σu, (ii)
high ξ and high σu, and (iii) low ξ. Detailed explanations are provided in Online Appendix 3.
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Case (i): Low σu and High ξ. Why cannot an AI collusive equilibrium sustained by over-pruning
bias emerge in such environments? When σu is low and ξ is high, noise trading flows have minimal
impact on an informed AI speculator’s profit. This allows the exploration-exploitation tradeoff
to operate effectively, mitigating over-pruning bias against aggressive strategies. Since algorithms
rarely incur large losses from noise trading shocks, even when exploring aggressive strategies, these
strategies are not prematurely pruned and remain in the learning process. As a result, they are
properly evaluated and retained, preventing the emergence of AI collusion through over-pruning
bias. Further details are provided in Result 1 of Online Appendix 3.1.1.

We now explain why an AI collusive equilibrium sustained by price-trigger strategies emerges in
such environments, focusing on how informed AI speculators achieve it using Q-learning algorithms.
High price informativeness is essential, as it ensures that market prices reflect the trading order flow of
informed speculators. This allows algorithms to condition their strategies on the unobserved actions
of others, indirectly, through observed prices. In these environments, aggressive trading strategies
make the market price pt moves strongly with the fundamental value vt, and this strong alignment
is reflected in the next period’s state vector, defined as st+1 = {pt, vt, vt+1}. Conversely, when all
algorithms trade conservatively, the price pt responds only moderately to vt, and this moderate
alignment is similarly captured in the state vector st+1 = {pt, vt, vt+1}. Thus, from the perspective
of the next period, the lagged price pt, as an endogenous state variable, becomes informative about
whether all algorithms traded conservatively in period t. This informativeness is a necessary condition
for price-trigger strategies to be effective. Model-free Q-learning algorithms do not logically infer the
relationship between lagged prices and others’ past order flows. Instead, they focus solely on learning
the optimal trading strategy for a given state. Nonetheless, their update rules inherently account for
how current trading behavior is mechanically connected with the next period’s price state, and this
connection is incorporated into the Q-value update, as shown in (2.4). This is a process of pattern
recognition, not logical reasoning. It fundamentally differs from logic-based human coordination,
which requires understanding punishment-for-deviation causality and logically inferring others’
actions from prices.

In addition, for algorithms to adopt price-trigger strategies, they must first learn to assign very
low Q-values to aggressive trading strategies across all states. This learning process unfolds in
two distinct phases. In the early phase, when exploration dominates (i.e., exploration rates remain
high for all algorithms), strategies are selected largely at random, and Q-values are updated based
on realized payoffs. During this phase, aggressive strategies tend to receive higher Q-values than
conservative ones. This is because aggressive strategies yield much higher payoffs when played
against opponents who randomly choose to trade aggressively. This asymmetry causes algorithms
to assign higher Q-values to aggressive trading strategies than conservative ones early on. As
the exploration rate gradually declines to zero, the system transitions into a phase dominated
by exploitation. Algorithms begin to consistently choose actions with higher learned Q-values.
Thus, early in this exploitation-intensive phase, algorithms continue to favor aggressive strategies
inherited from the earlier exploration-intensive phase. They then settle on a state-action pair in
which lagged market prices move strongly with lagged fundamentals and trading flows respond
aggressively to current private signals about fundamental values. This dynamic persists because
even when the system occasionally enters states where lagged prices respond only moderately to
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lagged fundamentals, algorithms continue to select aggressive actions, which push the market, in
the next period, back to states where lagged prices respond strongly to lagged fundamentals. These
actions result in both low immediate profits and weak continuation values. Consequently, over many
iterations, the Q-values of aggressive trading strategies gradually decline across all states, whether
characterized by lagged prices strongly tracking lagged fundamentals or only moderately responding
to them, due to persistently poor outcomes in both immediate profits and continuation values.

Lastly, for algorithms to adopt price-trigger strategies, they must eventually learn to assign
very high Q-values to conservative trading in states where lagged prices respond only moderately
to lagged fundamentals. How does this occur? As discussed earlier, over many iterations, the
Q-values of aggressive strategies in states where lagged prices respond only moderately to lagged
fundamentals gradually decline to very low levels and eventually fall below those of conservative
strategies in the same states. Once this shift occurs, the algorithms begin to reinforce the state-action
pair characterized by lagged prices responding only moderately to fundamentals and conservative
trading in response to current fundamental signals. They consistently choose conservative actions in
these states, which keeps the market anchored in this region of the state space and yields both high
immediate rewards and increasingly strong continuation values. Over iterations, this reinforcement
drives the Q-values for this state-action pair to converge to very high levels. See Result 2 in Online
Appendix 3.1.1 for details.

Case (ii): High σu and High ξ. We first explain why no AI collusive equilibrium sustained by
price-trigger strategies exists when σu is high, even if ξ is large. When σu is high, the state variable
pt becomes very noisy, providing little useful information for the Q-learning algorithms to track.
Consequently, the algorithms learn to make optimal decisions with minimal reliance on the state
variables, effectively behaving as if no state variable is being used. In this scenario, the optimization
problem becomes effectively static, and the Q-learning algorithms operate more like bandit algorithms,
lacking dynamic sophistication. When price is not an informative state variable, the mechanism
behind price-trigger strategies becomes ineffective, as the state variable pt is now primarily driven by
noise trading flows ut rather than by the trading behavior of informed AI speculators. As a result, no
AI collusive equilibrium sustained by price-trigger strategies can be achieved by multiple informed
AI speculators using Q-learning algorithms when σu is high, even if ξ is large. More details can be
found in Result 3 of Online Appendix 3.1.2.

However, AI collusion still arises in this environment, but through a different algorithmic mech-
anism. Specifically, it is sustained by a learning bias that systematically over-prunes aggressive
strategies. This bias results from an inherent asymmetry in the way Q-values are updated following
noise trading shocks, a generic feature of RL due to its reliance on exploitation.

When noise trading flows move in the same direction as the algorithm’s trade, they tend to cause
large losses for the algorithm. In response, the algorithm sharply lowers the Q-value of the associated
strategy, treats it as a “disastrous action,” and avoids selecting it in future iterations, which locks in
the downward bias. By contrast, when noise trading flows move in the opposite direction as the
algorithm’s trade, the algorithm may record large profits and significantly overestimate the Q-value,
treating the strategy as a “fantastic action.” Because exploitation leads to frequent reuse of high
Q-value strategies, the algorithm continually revisits this action, allowing its Q-value to be gradually
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corrected through subsequent updates.
In environments where trading outcomes are driven primarily by random noise rather than

informed behavior, exploration cannot effectively correct the asymmetry in the learning process
caused by the exploitation scheme of RL algorithms. This imbalance between exploration and
exploitation leads to the premature pruning of aggressive strategies because their higher exposure to
noise trading shocks makes them more susceptible to exploitation-driven undervaluation. As a result,
the algorithm converges to a biased Q-value system that systematically favors conservative trading.
See Result 4 in Online Appendix 3.1.2 for further discussion.

Case (iii): Low ξ. We now explain why no AI collusive equilibrium sustained by price-trigger
strategies can arise when ξ is low, regardless of the level of σu. In this setting, the minimal presence
of information-insensitive investors forces market makers to prioritize price discovery. As a result,
AI speculators must trade conservatively to preserve information rents, leading to endogenously
low price informativeness. The equilibrium price becomes dominated by noise trading shocks and
fails to serve as a useful state variable for Q-learning algorithms. This lack of price informativeness
undermines the sustainability of price-trigger strategies, following the algorithmic mechanism
described in case (ii). See Result 5 in Online Appendix 3.2 for further details.

Why, then, can an AI collusive equilibrium sustained by over-pruning bias still arise under the
same low-ξ condition? As discussed above, when ξ is low, the equilibrium price is endogenously
dominated by noise trading shocks, as in case (ii). Although the underlying reason for low price
informativeness differs, the consequence for the RL process is the same: the exploitation-driven
learning asymmetry disproportionately penalizes aggressive strategies due to their higher exposure
to noise trading shocks. See Result 6 in Online Appendix 3.2 for further details.

5.6 Winners and Losers: The Role of Information-Insensitive Investors

We now examine who gains and who loses from AI collusion, and how this depends on the role
of information-insensitive investors, captured by ξ, across three distinct trading environments. In
case (i), with high ξ and low σu, the AI collusive equilibrium is driven by price-trigger strategies.
Here, informed AI speculators primarily trade against information-insensitive investors, who absorb
most of their order flow. In the simulation with ξ = 500 and σu = 10−1, each informed AI speculator
earns an average profit of approximately 54, totaling a loss of about 108 for information-insensitive
investors. Noise traders and market makers earn near-zero profits.

In case (ii), with high ξ and high σu, the AI collusion is sustained by the over-pruning bias
mechanism. Here, informed AI speculators earn supra-competitive profits from trading against both
information-insensitive investors and noise traders. In the simulation with ξ = 500 and σu = 102,
each informed AI speculator earns about 54 on average, derived from average losses of 88 from
information-insensitive investors and 20 from noise traders. Market makers again break even.

The contrast between σu = 10−1 and σu = 102, holding ξ = 500 fixed, illustrates the shift in the
mechanism sustaining AI collusion, from price-trigger strategies to over-pruning bias. To further
explore this shift, we conduct additional simulations under an extreme case with σu = 2.5 × 102.
When noise traders submit large orders that generate substantial losses for themselves, information-
insensitive investors begin trading more in line with informed AI speculators. In this case, each
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Note: Parameters are set according to the baseline economic environment specified in Section 4.2.

Figure 7: Implications of the number of informed AI speculators.

informed AI speculator earns about 54.5, while information-insensitive investors gain roughly 16,
together extracting approximately 125 in total losses from noise traders. Market makers continue to
earn near-zero profits.

Notably, in our model, information-insensitive investors can be interpreted as retail investors
who follow technical analysis (see Section 3.1). Our results align with empirical evidence from Chen,
Peng and Zhou (2024), which shows that AI-driven strategies earn profits primarily by exploiting
sentiment among retail investors using technical analysis. Their finding that such investors may earn
positive trading profits in high-noise environments is also consistent with our simulation outcomes.

In case (iii), with low ξ, AI collusion sustained by price-trigger strategies does not arise. Instead,
an AI collusive equilibrium driven by over-pruning bias emerges robustly, similar to case (ii). In
this case, informed AI speculators earn supra-competitive profits primarily from trading against
noise traders, rather than from exploiting information-insensitive investors. In the simulation with
ξ = 5 and σu = 2, each informed AI speculator earns about 0.54 on average, derived from average
losses of 1.08 from noise traders. Market makers again earn near-zero profits. By design, the role of
information-insensitive investors in this environment is negligible.

6 Comparative Statics of AI Equilibrium

Effect of the Number of Informed AI Speculators (I). Figure 7 shows how the AI equilibrium changes
as I increases from 2 to 9 in the baseline environment under both low and high noise trading risk
conditions. Panels A to D focus on the scenario with low noise trading risk (i.e., σu = 10−1), revealing
the following patterns as I increases: ∆ decreases (for I ≥ 4), IC/IM and LC/LM both increase,
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Figure 8: Implications of the subjective discount factor.

while EC decreases. These findings are consistent with the theoretical results in Proposition 3.4 for
collusive Nash equilibrium sustained by price-trigger strategies.

For comparisons, in panels E to H, we focus on the environment with high noise trading risk (i.e.,
σu = 102). In this environment, informed AI speculators achieve supra-competitive profits due to
AI collusion through over-pruning bias in learning. These panels reveal the following patterns as I
increases: ∆ decreases, IC/IM and LC/LM both increase, while EC decreases. These findings are
consistent with the theoretical results in Proposition 3.4 for collusive experience-based equilibrium
sustained by over-perceived aversion against noise trading risk.

Effect of Subjective Discount Factor (ρ). Figure 8 illustrates how the AI equilibrium changes as
ρ increases from 0.05 to 0.95 in the baseline environment under both low and high noise trading
risk conditions. Panels A to D focus on the low noise trading risk scenario (i.e., σu = 10−1) and
reveal the following patterns as ρ increases: ∆ rises, IC/IM and LC/LM both decline, while EC

increases. These findings are consistent with the theoretical results in Proposition 3.4 for collusive
Nash equilibrium sustained by price-trigger strategies and, more broadly, with the Folk theorem for
repeated games.

In sharp contrast, Panels E to H show that ρ has little effects on the AI equilibrium when noise
trading risk is high (i.e., σu = 102). The insignificant impact of ρ in this environment is due to the
algorithmic property that ρ does not meaningfully affect the magnitude of over-pruning learning
biases. These findings are consistent with the theoretical results in Proposition 3.4 for collusive
experience-based equilibrium sustained by over-perceived aversion against noise trading risk.
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7 Conclusions

This paper shows that AI collusion in securities trading can robustly emerge through two distinct
algorithmic mechanisms: one based on price-trigger strategies, and the other driven by over-pruning
bias in learning. We characterize the conditions under which each mechanism prevails and show that
both correspond to established game-theoretic equilibrium concepts. This highlights a fundamental
insight about AI: algorithms relying solely on pattern recognition can exhibit behavior that closely
resembles logical and strategic reasoning.

Financial markets differ from product markets in their role as platforms for information aggrega-
tion and price discovery, with market makers playing a central role. The over-pruning bias identified
in this paper is not the result of specific, nonstandard algorithmic assumptions or limitations, but a
generic feature of RL that persists even in sophisticated settings.

These findings raise new and pressing policy and regulatory challenges. While restricting
algorithmic complexity or memory capacity may help deter price-trigger AI collusion, such measures
can inadvertently exacerbate over-pruning bias by amplifying distorted learning dynamics that
prematurely eliminate aggressive yet efficient strategies from the set of potentially optimal options.
As a result, well-intentioned constraints may unintentionally undermine market efficiency. Designing
effective guardrails for AI in financial markets requires a deep and rigorous understanding of how
algorithmic learning dynamics interact with the structure of trading environments to govern machine
behavior and shape the resulting AI-driven equilibrium.

This study serves as a proof of concept for analyzing AI-driven manipulation risks in financial
markets and opens the door to a broader research agenda. Future work should extend this qualitative
framework into a full-scale, data-driven quantitative model, incorporating estimated synthetic trading
environments and state-of-the-art RL strengthened by deep learning techniques. Such developments
would enable quantitative assessments of AI’s impact on market efficiency. In parallel, extending
the framework to incorporate bubbles and crashes would offer valuable insights into the role of
AI-powered trading in amplifying or dampening market instability.
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