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Abstract

Beyond scratch coding, exploiting large-scale code reposito-
ries (e.g., GitHub) for practical tasks is vital in real-world
software development, yet current benchmarks rarely eval-
uate code agents in such authentic, workflow-driven sce-
narios. To bridge this gap, we introduce GitTaskBench, a
benchmark designed to systematically assess this capabil-
ity via 54 realistic tasks across 7 modalities and 7 domains.
Each task pairs a relevant repository with an automated,
human-curated evaluation harness specifying practical suc-
cess criteria. Beyond measuring execution and task success,
we also propose the alpha-value metric to quantify the eco-
nomic benefit of agent performance, which integrates task
success rates, token cost, and average developer salaries.
Experiments across three state-of-the-art agent frameworks
with multiple advanced LLMs show that leveraging code
repositories for complex task solving remains challenging:
even the best-performing system, OpenHands+Claude 3.7,
solves only 48.15 % of tasks. Error analysis attributes over
half of failures to seemingly mundane yet critical steps like
environment setup and dependency resolution, highlighting
the need for more robust workflow management and in-
creased timeout preparedness. By releasing GitTaskBench,
we aim to drive progress and attention toward repository-
aware code reasoning, execution, and deployment—moving
agents closer to solving complex, end-to-end real-world
tasks. The benchmark and code are open-sourced at https:
//github.com/QuantaAlpha/GitTaskBench.

Introduction
In just two years, fueled by the transformative progress of
large language model (LLM) agents, an increasing number
of code benchmarks have reached saturation (Chen et al.
2021; Austin et al. 2021a; Hendrycks et al. 2021; Lu et al.
2021). However, most early code-agent works and bench-
marks target isolated, static problems, such as algorith-
mic tests (Hendrycks et al. 2021; Li et al. 2022; Zheng et al.
2025), code completion at the function (Chen et al. 2021;
Austin et al. 2021a; Lai et al. 2023), class (Du et al. 2023),
or repository level (Liu, Xu, and McAuley 2023; Ding et al.

2023), or program repair (Jimenez et al. 2023)—failing to
assess agents’ capacity in real-world problem solving.

Recent efforts have begun to develop more practical, com-
prehensive benchmarks. Some works still focus on code gen-
eration, requiring agents to produce increasingly complex
code, even generating entire repositories from scratch (Yu
et al. 2024; Ihle 2025; Chan et al. 2025; Miserendino et al.
2025; Starace et al. 2025). However, such a heavy burden
remains prohibitively difficult for most current agent sys-
tems (Li et al. 2024; Starace et al. 2025). Moreover, fo-
cusing solely on code generation overlooks the broader
scope of real-world developer practice (Masood 2024),
and provides diminishing insight into agent capabili-
ties (Gao et al. 2024). Another line of work rethinks eval-
uation paradigms (Ishibashi and Nishimura 2024) by inte-
grating code generation with external tools or API calls (Li
et al. 2023; Wang et al. 2024; Ye et al. 2024; Zhuo et al.
2024; Tang et al. 2025; Dong et al. 2025), thus easing the
generation burden but still sidestepping the harder challenge
of understanding and repurposing the full repositories.

However, real-world programmers usually exploit open-
source libraries1 to tackle diverse real-world tasks without
reinventing “the wheel”. Previous code-agent benchmarks
ignore the ability of autonomous environment setup and
leveraging open-source repositories for solving complex,
end-to-end tasks, which is a more user-centric setting in
practical software engineering (Lyu et al. 2023; Tang et al.
2023; Wang et al. 2025a).

To this end, we design and develop GitTaskBench (Git-
TaskBench 2025), which systematically evaluates how
well agents leverage code repositories to automatically
solve real-world tasks end-to-end in realistic scenarios,
focusing on the following three key dimensions:

• Overall coding mastery: Navigating extensive documen-
tation, understanding code dependencies, and dynami-
cally generating, modifying, or debugging code.

1Current GitHub has 28 million repositories and 190 million
public projects to be exploited.
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Figure 1: Overview of GitTaskBench. 7 example real-life tasks from different modalities and their evaluations are shown.

• Task-oriented execution: Efficiently comprehending user
intent, completing tasks via multi-turn reasoning and ap-
propriate tool usage. All generated code is task-focused.

• Autonomous environment provisioning: Independently
managing environment setup and dependency resolution
in the sandbox without pre-built support.

The construction of GitTaskBench follows a rigorous
four-step process: task and repository selection, complete-
ness verification, execution framework design, and evalu-
ation framework development, each performed by humans
and some assisted by LLMs. The resulting benchmark cov-
ers 54 real-life, multimodal tasks across 7 domains and 24
subdomains, going far beyond the technically narrow scope
of traditional machine learning tasks (Liu et al. 2018; Tang
et al. 2023; Chan et al. 2025). Each task comes with human-
designed, automated evaluation scripts that assess both exe-
cution completion and task pass by practical success criteria.

Beyond these core metrics, we further introduce the alpha
metric, which jointly considers cost and effectiveness.
Previous work has rarely analyzed or quantified the tangi-
ble benefits of agent applications, especially in multimodal
scenarios (Yang et al. 2024; Maslej et al. 2025; Chen et al.
2025). Our alpha metric integrates task completion quality,
agent token usage, and market-rate human labor costs into
a unified framework, enabling direct, interpretable compar-
isons between agent and human efficiency.

Experiments are conducted on multiple code agents with
advanced LLMs, and the results show the following find-
ings: (1) Complex repository-centric tasks remain challeng-

ing, with the top success rate of only 48.15% (OpenHands,
Claude3.7). (2) Replacing humans with agents is not always
cost-effective; evaluating cost-efficiency is key for practical
application. (3) Agents excel in purely textual tasks versus
multimodal ones. (4) Better environment configuration and
dependency management in the experimental workflow are
crucial for accelerating real-world code agent deployment.

Our main contributions are summarized as follows:

1. We present GitTaskBench, the first open-source bench-
mark that tests agents on solving real-world com-
plex tasks by leveraging open-source repositories in
a human-like manner, encompassing 54 tasks drawn
from 18 GitHub projects across 7 modalities.

2. Each task includes hand-crafted test scripts and cor-
responding practical success criteria to enable rigor-
ous and automated evaluation.

3. We propose a novel domain-specific “alpha value” for-
mula to quantitatively assess agent economic benefits,
providing actionable insights for agent deployment.

4. We benchmark state-of-the-art agent frameworks with
both open- and closed-source LLMs, perform hyperpa-
rameter sensitivity analysis, and conduct a detailed error
analysis to highlight the remaining challenges.

Related Work
Existing code-agent benchmarks can broadly be divided into
two categories: code-generation- and task-solving-centric.



Benchmark Task Num Task Type Multimodal Repo Use Repo-level CodeGen Auto Env Setup

RepoBench (Liu, Xu, and McAuley 2023) 7778 Code Completion ✓

Swe-Bench-Verified (Jimenez et al. 2023) 500 Program Repair ✓

LiveCode (Jain et al. 2024) 584 Programming Competitions

MLAgentBench (Huang et al. 2023) 13 ML Tasks ✓ ✓

MLE-Bench (Chan et al. 2025) 72 Kaggle (ML) Tasks ✓ ✓

PaperBench (Starace et al. 2025) 20 Paper Code Replication Tasks ✓ ✓ ✓

GitTaskBench (Ours) 54 User-centric, Daily-life Tasks ✓ ✓ ✓ ✓

Table 1: Comparison of GitTaskBench (Ours) with Existing Benchmarks of Similar Complexity and Comprehensiveness.

Code Generation Benchmark
In the first category, benchmarks evaluate code generation
tasks of increasing complexity and granularity—from early
single-function-level tasks (e.g., HumanEval (Chen et al.
2021) and MBPP (Austin et al. 2021a)), to class-level com-
pletion (Du et al. 2023), program synthesis (Austin et al.
2021b), and algorithmic generation (Hendrycks et al. 2021;
Li et al. 2022), further extending to repository-level com-
pletion (e.g., RepoBench (Liu, Xu, and McAuley 2023),
CrossCodeEval (Ding et al. 2023)). More recently, more
challenging benchmarks like SWE-Bench (Jimenez et al.
2023) have targeted resolving GitHub issues, but are al-
ready nearly saturated (Claude 4-sonnet: 80.2%). SWE-
Lancer (Miserendino et al. 2025) expands into real-world
software engineering jobs with payouts, but 90% of its Indi-
vidual Contributor tasks remain narrowly bug fixing in pre-
configured environments. These benchmarks share two main
limitations: (1) tasks are still relatively isolated with small
granularity, and (2) evaluations typically occur within sim-
plified or synthetic environments rather than dynamic, re-
alistic conditions. Our GitTaskBench benchmark addresses
these through realistic, repository-aware tasks and practical
coding environments that mirror authentic user scenarios.

Programming Task Benchmark
In the second category, task-oriented benchmarks evaluate
general programming skills involving tool usage and ex-
ternal API calls. Examples include library-involved tasks
(Odex (Wang et al. 2022)), data science-specific evalua-
tions (PandasEval (Jain et al. 2022), NumpyEval (Zhang
et al. 2023), DS-1000 (Lai et al. 2023)), API-based tasks
(CodeAct (Wang et al. 2024), ToC (Ni et al. 2024)),
and machine learning (ML) challenges in closed environ-
ments (Liu et al. 2018; Tang et al. 2023; Chan et al.
2025; Wang et al. 2025b). However, these tasks remain
predominantly technical-oriented, missing a critical capa-
bility widely practiced: leveraging GitHub repositories
("wheels") to solve real-world daily problems.

GitTaskBench
GitTaskBench rigorously evaluates code agents on realistic,
repository-centric tasks closely aligned with common user
queries (see Figure 1). Agents must autonomously analyze
and reuse existing repositories to complete tasks that mirror
authentic user workflows, handling any errors without hu-
man intervention. The benchmark is primarily handcrafted

Category Metric (Mean) Value

Instances

# Domain 7
# Subdomain 24
# Tasks 54
# Modality 7

Repos

# Size 18
# Files 204 (7-1157)
# Classes 263.61 (2-1130)
# Functions 1274.78 (25-4915)
# Dependency 1242.72 (33-6979)
# Calls 8651.28 (180-40552)
# Code Lines 52.63 (0.575-351.42) k
# Tokens 448.95 (4.87-2888.35) k

Table 2: Summary Statistics of GitTaskBench.

and validated by five computer science PhDs to ensure qual-
ity. Each task pairs a representative full-scale GitHub repos-
itory accompanied by a specific natural-language instruc-
tion specifying input-output requirements, and tailored task-
specific evaluation metrics reflecting both correctness and
utility, allowing meaningful automated assessment of agent
performance. Below is how we constructed it.

Task and Repository Selection
We began by identifying the target domains through ex-
tensive literature reviews, deep LLM-driven research, and
consultation with domain experts, combining these insights
with practical, everyday experience. For each domain, we
selected subdomains that mirror frequent user needs, in-
cluding a broad spectrum of modalities. We prioritized tasks
that are non-trivial, typically requiring the integration or
reuse of existing tools or codebases, to ensure that bench-
marks are both meaningful and challenging for code agents.
Human completion time for these tasks ranged up to three
hours, averaging 1.34 hours per task (see Appendix A).

For each domain, we run targeted deep researches
(prompts in Appendix C to locate suitable GitHub repos.
Candidates must (1) be Python-based, (2) have ≥ 50 stars
with activity in the past five years (including issue updates),
and (3) provide ready-to-use weights and a simple setup. We
then inspect key statistics like stars, forks, license, commit
history, and manually verify functionality. The resulting set
formed the pool of potential repositories.

Task and repository selection was iterative and tightly
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Figure 2: Overview of Task Domains in GitTaskBench.

coupled—repository capabilities and task requirements
were refined in parallel, with each informing the other. When
a promising repository was identified, we would expand po-
tential task formulations around its core features.

Summary statistics of GitTaskBench are presented in Ta-
ble 2. Figure 2 illustrates the features of each domain.
GitTaskBench supports both data generation and analysis-
oriented objectives. See Appendix A for details.

Completeness Verification
Following the Repository Selection phase, each chosen
repository undergoes a stringent Completeness Verifica-
tion. In this human-driven stage, experts follow the repos-
itory’s documented instructions, performing tasks exactly as
an agent would, ensuring both a 100% human success rate
and outputs that satisfy all task requirements. This pro-
cess confirms that the repository is fully operational and free
of hidden obstacles that could hinder execution.

The verification process includes: Checking for es-
sential dependencies, such as requirements.txt or
package.json; Confirming the availability of key config-
uration files, like config.yaml or setup.py; Ensuring
that the required datasets and pre-trained models are pub-
licly accessible and properly formatted.

If any required resources are gated or instructions are only
available via external links, we supplement the repository by
downloading relevant files and inlining essential documenta-
tion into the README.md, ensuring all information needed
for task execution is completely self-contained.

Execution Framework Design
To evaluate code agents in realistic and repository-
leveraging contexts, we design an execution framework that
integrates structured task formulation, automated execu-
tion, and output verification. This framework not only tests
agents’ capabilities for understanding and utilizing existing

codebases but also ensures reproducibility and automation
throughout the evaluation process.

Task Formulation. We meticulously define each task,
specifying the expected input format (e.g., image path, text
string) and the desired output format (e.g., processed image,
generated report), ensuring clarity in task goals and reducing
ambiguity in prompt interpretation. A single repository may
host multiple distinct tasks, each with its clear definition.

Agent Inputs and Expected Outputs. The framework
provides the agent with two inputs: a GitHub repository and
a task definition prompt. Unlike conventional code genera-
tion settings that require only code snippets, our framework
emphasizes end-to-end functionality. Agents are expected to
return the final task-specific output, which could be a file,
text, or visual result, depending on the task requirements.

Execution Workflow. Agents are evaluated on their abil-
ity to autonomously solve tasks in the multi-stage pro-
cess: (1) Repository Understanding: Agents not just read
the repository’s code, but analyze its structure, dependen-
cies, and available functionalities, often leveraging entry-
point documentation such as README.md and selectively
parsing key source files. (2) Code Generation or Modifica-
tion: Based on their understanding and the task definition,
agents generate new scripts or adapt existing files to ful-
fill the task. (3) Environment Setup: Agents are expected
to construct the required execution environment, including
issuing installation commands (e.g., pip install -r
requirements.txt) and resolving dependency issues.
(4) Code Execution: The generated or modified code is ex-
ecuted automatically in the sandbox, directly assessing the
agent’s ability to produce runnable and correct solutions.

Evaluation Framework
To support automated, practical, and cost-benefit evaluation,
we introduce the following metrics, which are implemented
through hand-verified custom-built test scripts.

Execution Completion Rate (ECR). ECR measures the
proportion of cases where the agent successfully executes
the target code repository and generates outputs in an ac-
ceptable format (e.g., .jpg or .png for image processing
tasks). This metric reflects the agent’s compatibility with the
code repository and its basic operational capability. It en-
sures that: (1) the output file(s) exist, (2) the output file(s)
are not empty, and (3) the output format can be correctly
processed by the testing scripts.

Task Pass Rate (TPR). TPR quantifies the agent’s ac-
tual performance quality in task completion. It is deter-
mined by formulating evaluation test functions and defining
concrete success and failure criteria using established met-
rics tailored to each task, drawing on standards recognized
within the domain developer community. TPR requires the
agent’s outputs to satisfy predefined quality standards, such
as functional correctness, result completeness, or achieving
specific task objectives. For example, in speech enhance-
ment tasks, success might be defined by achieving a PESQ
≥ 2.0 (indicating acceptable perceptual quality) and a SNR
≥ 15dB (suggesting good suppression of noise). Tasks fail-
ing to meet these thresholds are marked as failures.
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Both of the above metrics are evaluated using hand-
crafted test scripts. Additionally, we streamlined the
benchmarking process so that all tasks can be automatically
assessed with a single shell command. The evaluation out-
puts a clear “Process” and “Result” status (success or fail-
ure), along with detailed “Comments” explaining the out-
come—such as which metric exceeded a threshold, which
criterion caused failure, or any error messages encountered
during execution. See Appendix A for example test results.

Alpha Practical Value Assessment. We introduce a
new perspective for evaluating LLM agents by incorporat-
ing market-driven cost considerations. While technical met-
rics like ECR and TPR are essential, they overlook cost-
effectiveness. High technical performance alone does not
guarantee practical utility—an agent is only valuable if it
completes tasks more cheaply than human labor, without
sacrificing quality. In practice, agents incur tangible opera-
tional costs, like API fees for proprietary LLMs or hardware
expenses for open-source solutions. We estimate the eco-
nomic value of agent-completed tasks by quantifying poten-
tial cost savings, efficiency gains, and market impact from
automation and scalability of these tasks. Accordingly, we
propose the α-score, a value-based metric defined as the av-
erage net benefit generated by the agent across tasks:

α =
1

n

n∑
i=1

[(T ×MV ×Q)− C] (1)

where n is the number of tasks in the evaluated area; T is a
binary indicator of task success (1 if the agent successfully
executes the target code repository, 0 otherwise), consistent
with the definition of ECR; MV represents the estimated,
prevailing market value of the task if completed by a human;
Q is a quality factor (ranging from 0 to 1) that measures
how closely the agent’s output approximates the groundtruth
produced by a human executing the same code repository;
and C denotes the agent’s total operational cost, which is
approximated here as the API cost. The resulting α-score
clearly reflects the economic viability and gains of the agent-
based automation approach across the evaluated areas.

Human Check. Experts compare the automatically gen-
erated assessment of a repository/task with their own manual
execution and evaluation, identifying any discrepancies or
inconsistencies. For generating the groundtruth, humans can
interpret the task requirements and iteratively adjust reposi-

tory parameters to obtain the best possible output.
Because this expert-guided result provides a reliable up-

per bound on quality, we derive Q through human assess-
ment. Five raters independently compare each agent output
with the groundtruth and assign it to one of five levels—far
below human (0), large gap (0.25), moderate gap (0.50),
near parity (0.75), or indistinguishable from/better than hu-
man (1). The level chosen by the majority is recorded as the
final Q value. MV is drawn from publicly listed freelance
fees on the platforms (Upwork 2025; Fiverr 2025; Free-
lancer 2025) for similar deliverables—for example, roughly
$10 per restored photo on Fiverr—providing a consistent
task-level benchmark for the α-score. Details on estimated
market values for all GitTaskBench tasks, application cases,
and analysis are provided in Appendix D.

Experiments
Setup
We evaluate three representative open-source frameworks
that are capable of handling our benchmark tasks: Aider
(Aider-AI 2025), OpenHands (Wang et al. 2025c), and
SWE-Agent (Yang et al. 2024). Execution configurations
and framework settings are detailed in Appendix B. In terms
of LLMs, we evaluate multiple advanced models, includ-
ing the closed-source GPT-4o-2024-08-06 (OpenAI 2024),
GPT-4.1 (OpenAI 2025b), and o3-mini (medium reasoning
effort) (OpenAI 2025a), Claude-3-5-sonnet-20241022 (An-
thropic 2024) and Claude-3-7-sonnet-20250219 (Anthropic
2025), Gemini-2.5-pro (Gemini Team 2025), as well as the
open-source DeepSeek-V3-0324 (Liu et al. 2024), Qwen3-
8b, 14b, 32b (Yang et al. 2025) and Llama3.3-70b (Meta AI
2025). For robustness, all reported results are averaged over
two independent runs under identical settings.

Comparative Analysis
Different framework–LLM pairings exhibit substantial per-
formance disparities, affecting both effectiveness (ECR,
TPR) and efficiency (token usage, cost, API calls).

OpenHands achieves the best overall performance
across all frameworks. As shown in Table 3, (1) Open-
Hands+Claude 3.7 delivers the best results (ECR 72.22%,
TPR 48.15%) among all evaluated settings. (2) With the
same LLM, OpenHands consistently outperforms Aider and



Framework LLM ECR (%) ↑ TPR (%) ↑ Input Tokens (k) ↓ Output Tokens ↓ Cost ($) ↓

Aider

GPT-4o 5.56 1.85 10.67 492.67 0.0316
GPT-4.1 11.11 7.41 14.83 734.17 0.0355
Claude 3.5 16.67 12.96 7.48 534.00 0.0304
DeepSeekV3 20.37 16.67 7.51 599.64 0.00269

SWE-Agent

GPT-4o 17.58 10.19 275.53 1282.70 0.778
GPT-4.1 38.89 31.48 301.11 2098.33 0.661
o3-mini 25.93 20.37 158.45 215.20 0.175
Claude 3.5 41.67 22.23 455.34 943.30 1.38
Claude 3.7 64.81 42.59 552.79 807.63 1.67
DeepSeekV3 18.52 12.04 412.65 1649.82 0.113
Qwen3-32b∗ 7.41 3.70 1445.97 2405.00 -
Qwen3-32b∗† 16.67 11.11 124.15 559.11 -
Llama3.3-70b∗ 25.83 18.52 397.03 1985.64 -

OpenHands

GPT-4o 21.30 14.82 760.53 3990.31 1.94
GPT-4.1 55.56 42.59 465.94 1535.47 0.942
o3-mini 29.63 22.22 2523.53 183637.53 3.58
Claude 3.5 53.70 40.74 2858.00 24929.47 8.95
Claude 3.7 72.22 48.15 9501.25 85033.05 29.8
Gemini-2.5-pro 51.85 35.19 760.88 35173.29 2.18
DeepSeekV3 45.37 26.85 4717.78 31957.67 1.31
Qwen3-8b∗ 1.85 1.85 846.26 2045.00 -
Qwen3-14b∗ 11.11 5.56 339.42 2540.17 -
Qwen3-32b∗ 35.19 25.93 591.02 2097.89 -
Qwen3-32b∗† 44.44 29.63 208.00 8755.35 -
Llama3.3-70b∗ 27.78 20.37 132.69 872.93 -

Table 3: Performance Comparison of Different Frameworks and LLMs on GitTaskBench. Bold values indicate the best among
all models for each metric; underlined values denote the second-best. The best-performing row for each metric is highlighted.
All token values are rounded to two decimal places. ∗ means our self-deployed model. †: with think mode.

SWE-Agent, likely due to its robust code execution capabil-
ities and more proactive and explorative strategies.

OpenHands offers higher success rates, while SWE-
Agent balances moderate cost and efficiency as a lower-
cost alternative. SWE-Agent consistently uses fewer tokens
than OpenHands when paired with top-performing closed-
source models, indicating stronger control over context to-
ken usage. Meanwhile, Aider+DeepSeek V3 yields the low-
est cost (< $0.003) with reasonable output.

GPT-4.1 is more cost-efficient than Claude. (1) In
SWE-Agent, Claude 3.7 leads but costs 2x more than 2nd-
place GPT-4.1. (2) Under OpenHands, GPT-4.1 also delivers
the 2nd-best ECR/TPR at just 1/10 or 1/30 of Claude’s cost.

Open-source models generally underperform closed
ones. But Qwen3-32B (with think mode) is impressive—
reaching up to 60% of top closed Claude3.5’s performance
with far lower token usage. In contrast, Gemini 2.5 Pro un-
derwhelms in think mode, likely due to the added context
burden in our long, token-heavy, complex real-world tasks.

These findings highlight trade-offs between performance,
cost, and interaction complexity when choosing agents—
framework and model combinations. Next, we drill down
into domain-specific performance, as visualized in Figure 4.

Agents perform notably better on purely textual tasks
compared to multimodal, model-based tasks. Specifi-

cally, (1) most agents process office documents effectively,
such as parsing Excel files with Eparse or splitting PDFs
using PyPDF. That is because these workflows typically re-
quire reading simple wrapper scripts that import the library
API. (2) In contrast, multimodal tasks, especially in im-
age or speech processing domains, mainly involve model-
based processing and prediction and thus demand much
deeper competence. For example, removing image scratches
with DeScratch entails installing multiple dependencies,
downloading pretrained weights, and configuring runtime
arguments—all of which require a nuanced understanding
of the repository’s build and execution process.

Current agents often struggle with such complex work-
flows, suggesting that future work should focus on richer
codebase comprehension and automated environment
management beyond what a simple README scan provides.

Sensitivity Analysis to Configuration Changes
Since OpenHands consistently outperformed SWE-Agent
overall, we examined how its key hyperparameters affect
performance. Notably, GPT-4o with OpenHands lagged be-
hind despite strong overall results, with execution traces re-
vealing frequent failures from environment setup errors and
flawed code generation. To clarify these issues, we tested
two critical hyperparameters. timeout: Maximum time
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Figure 4: Performance Evaluation of GPT-4o, GPT-4.1, Claude 3.5, DeepSeek V3 across Different Task Domains.

Figure 5: Effect of Timeout (max_iteration = default) and
Max Iteration (timeout = 600s) on OpenHands (GPT-4o).

per iteration. max_iteration: Total environment inter-
actions allowed. Performance variation is in Table 5.

Results show that more generous settings significantly
boost performance. Increasing the timeout (from 120s to
1800s) raises both ECR and TPR, but also incurs more to-
kens, indicating that environment setup may be the pri-
mary time-consuming step in repurposing repositories.
Similarly, increasing max_iteration (from 30 to 100)
consistently improves ECR and TPR, suggesting that more
interaction rounds could help mitigate errors within rea-
sonable limits. Overall, these findings underscore the im-
portance of tuning both interaction depth and time budgets
to balance effectiveness and computational efficiency.

Practical Benefits Analysis
Given OpenHands’ strong overall performance, we select it
as the evaluation backbone for estimating the practical value
of the three most cost-effective models. We treat each reposi-
tory as a domain, capturing agents’ domain-specific applica-
bility and their ability to leverage the code. For each repos-
itory, we computed α-score by averaging net gains of all n
tasks executed with that repository, as defined in Eq (1).

Figure 6 (a) presents the α score (green revenue minus
red cost) of each repository, facilitating a direct cost-benefit
comparison across models and repositories. Figure 6 (b) dis-
plays the Pareto curves, illustrating how each model’s to-
tal alpha is distributed across repositories. The dashed 45-
degree reference line represents a perfectly even distribu-
tion: if the cumulative alpha curve rises steeply and sur-
passes the diagonal early, it means just a few repositories
contribute most of the total benefit (high concentration). In
contrast, if a curve close to the diagonal means alpha is more

Repositories (Sorted by Alpha Score in Descending Order)
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Figure 6: The α per Repository (a) and Pareto Curves (b).

evenly spread across repositories. This directly reveals the
difference in benefit concentration for each model.

Expensive tasks are always profitable if completed by
the agent, while cheap tasks require careful cost control.
Repositories with intrinsically high human market value
(MV ), like VideoPose3D, FunASR, and NeuroKit,
yield the largest positive α when agents succeed. Low-MV
image-processing tasks (MV ≈ $5–10) often produce nega-
tive α once the agent’s average cost exceeds $1–2. This pat-
tern underscores the importance of controlling operational
costs for tasks with limited commercial potential.

DeepSeek V3 delivers the highest overall benefit and best
cost–performance for most repositories. GPT-4.1’s perfor-
mance is more consistent and robust across scenarios, with
fewer large losses. Claude 3.5 has the most dispersed re-
turns, excelling at information extraction but being cost-
sensitive on compute-intensive vision tasks.

The α score captures meaningful distinctions that tech-
nical metrics (ECR/TPR) alone may miss, emphasizing the
need to align agent deployment with task-specific economic
profiles. Details are provided in Appendix D.

Error Analysis
To better understand the challenges in such repository-
centric tasks, we studied execution errors encountered across
various agents. We grouped all errors into five types: E1,
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Environment-Setup; E2, Workflow Planning; E3, Reposi-
tory Comprehension; E4: Runtime; and E5: Failures to Fol-
low Instructions. Case studies are shown in Appendix F.

As summarized in Figure 7 (b), E1 errors were the most
common, constituting 65.04% of all failures. These usually
came from dependency conflicts, missing binary wheels, or
absent system-level libraries. Notably, env setup doesn’t im-
prove results but causes most failures—showing its unavoid-
able importance in real-world agent applications. E2 errors
mainly reflected agents’ inability to orchestrate execution
sequences or their stagnation at setup stages. E3 errors oc-
curred when agents misidentified entry-point scripts or mis-
used APIs within repositories. E4 errors involved premature
termination due to system freezes, timeouts, or interrupts
(Ctrl+C). E5 errors, the least frequent, included things like
wrong file naming, incorrect output formats, missing deliv-
erables, or solving the task without using the repository as
required. Check Appendix F for examples of each.

We compared errors across agents/models and found sim-
ilar weaknesses regardless of architecture (see Figure 7 (a)).
Key improvements could be summarized as: robust depen-
dency management, enhanced execution planning, deeper
repo comprehension, smarter resource handling during run-
time, and rigorous instruction following—all crucial for
more reliable and effective real-world agent performance.

Conclusion
We introduced GitTaskBench, a benchmark for evaluat-
ing agents’ ability to leverage repository code for com-
plex task solving. With carefully curated tasks, thoroughly
reviewed repositories, and practical automated evaluation,
GitTaskBench sets a new standard for assessing real-world
agent utility. We hope this benchmark drives greater focus on
repository utilization for everyday, non-technical challenges
and encourages economic value-driven agent applications.
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Appendices
A. Details of GitTaskBench

Tasks.
The GitTaskBench benchmark includes a wide range of real-
world tasks spanning 7 domains and 24 subdomains. The
statistics of tasks by Domain are shown in the Table 4. The
largest category is Image Processing, encompassing 16 tasks
(29.63%), which include style transfer (9.26%), image en-
hancement (5.56%), background processing (5.56%), image
coloring (3.70%), restoration (3.70%), and scratch detec-
tion (1.85%). Speech Processing ranks second with 8 tasks
(14.81%), covering speech recognition (7.41%), separation
(3.70%), enhancement (1.85%), and analysis (1.85%). Se-
curity and Privacy also accounts for 9 tasks (16.67%) evenly
divided into 3 data simulation tasks, 3 watermark embed-
ding tasks, and 3 watermark extraction tasks. The Office
Document Processing domain contributes another 9 tasks

(16.67%), divided into PDF content extraction (7.41%), Ex-
cel document parsing (5.56%), and PDF processing (3.70%).
Other domains include Web Scraping (6 tasks, 11.12%),
Video Processing (3 tasks, 5.55%), and Physiological Signal
Processing (3 tasks, 5.55%)—the latter dealing with elec-
trodermal activity, electrocardiogram, and electrooculogram
data analysis.

Repositories.

The repositories included in GitTaskBench span a wide
range of codebases, exhibiting considerable diversity in
scale, structure, and complexity. For instance, repositories
like FunASR and Faker contain over 1,000 files, with more
than 3,000 functions and 10,000 function calls, highlight-
ing the massive code volume. Some repositories, such as
SpeechBrain and Scrapy, feature extremely high internal
connectivity with more than 40,000 function calls and thou-
sands of import dependencies. On average, each repository
has over 200 files, 1,200 functions, and nearly 8,600 intra-
repository calls, with more than 448,000 tokens per repos-
itory. These figures reflect not only the sheer volume of
code and modularity but also the highly entangled depen-
dencies and large-scale function interactions present across
projects. As such, understanding and effectively leverag-
ing these repositories pose significant challenges for code
agents, especially in tasks requiring comprehensive reason-
ing over multiple modules, imports, and usage patterns. The
comprehensive statistics are demonstrated in the Table 5.

The "Manual Reproduction Time" column measures the
approximate time, in hours, that a PhD student in computer
science needs to fully understand and use each repository to
complete its associated tasks. Across the 18 repositories an-
alyzed, this time varies between 0.50 hours and 3.00 hours,
with an average of 1.34 hours. These findings shed light on
the complexity of the repositories. Even for highly skilled in-
dividuals, such as PhD students, it takes more than an hour
on average to comprehend and implement the code effec-
tively. For instance, the VideoPose3D repository stands out,
requiring up to 3.00 hours, which emphasizes the challeng-
ing nature of its tasks.

This further suggests that working with these repositories
is far from straightforward—it’s a significant effort, even for
experienced professionals. Beyond that, these results also
serve as an important reference point for assessing how well
automated systems can manage similarly intricate tasks.

Task Success Criteria in Evaluation.

Table 6 presents examples of representative tasks and
their corresponding success criteria in GitTaskBench. Git-
TaskBench spans a broad spectrum of seven modalities—
images, video, audio, text, physiological time-series, and
web data—enabling the evaluation of both data generation
and analysis-oriented objectives. All tasks and their detailed
success criteria are openly available in the official GitHub
repository of GitTaskBench (GitTaskBench 2025), support-
ing transparent benchmarking and reproducibility for the re-
search community.



Domain (Task Count, %) Subdomain Percentage (%)

Image Processing (16, 29.63%)

Style Transfer 9.26
Image Coloring 3.70
Image Restoration 3.70
Scratch Detection 1.85
Image Enhancement 5.56
Background Processing 5.56

Video Processing (3, 5.55%)
Video Action Analysis 1.85
Style Transfer 1.85
Video Coloring 1.85

Speech Processing (8, 14.81%)

Speech Recognition 7.41
Speech Separation 3.70
Speech Enhancement 1.85
Speech Analysis 1.85

Physiological Signal Processing (3, 5.55%)
Electrodermal Activity Data Analysis 1.85
Electrocardiogram Data Analysis 1.85
Electrooculogram Data Analysis 1.85

Security and Privacy (9, 16.67%)
Data Simulation 5.56
Watermark Embedding 5.55
Watermark Extraction 5.56

Web Scraping (6, 11.12%)
Web Scraping 5.56
Web Crawling 5.56

Office Document Processing (9, 16.67%)
Excel Document Parsing 5.56
PDF Content Extraction 7.41
PDF Content Processing 3.70

Overall Total 100.00

Table 4: Statistics of Tasks by Domain in GitTaskBench

Examples of Automated Evaluation Results.
Below, we present several results from automated evalua-
tion. The key “Process” indicates whether execution was
completed, while “Result” reflects whether the task was suc-
cessfully passed.

Example 1 (test_results/DeScratch_02/results.jsonl):
{"Process": true, "Result": false,
"TimePoint": "2025-0x-18T21:46:21",
"comments": "Test failed, average IoU:
0.117, average Dice: 0.210"}
Example 2 (test_results/Faker_02/results.jsonl):
{"Process": true, "Result": true,
"TimePoint": "2025-0x-18T21:47:56",
"comments": "All 5 company records
passed structural and content checks."}
Example 3 (test_results/VideoPose3D_01/results.jsonl):
{"Process": false, "Result": false,
"TimePoint": "2025-0x-18T21:47:58",
"comments": "Error: Incorrect input
file format, expected shape (frames,
joints, 3), got (100, 1, 17, 2)"}
Example 4 (test_results/SpeechBrain_03/results.jsonl):

{"Process": false, "Result": false,
"TimePoint": "2025-0x-18T21:46:21",
"comments": "Invalid file
format, expected .txt:
GitTaskBenchoutputSpeechBrain_03output"}

B. Details of the Agent Frameworks
For complex tasks that require understanding and repurpos-
ing repositories to meet realistic user needs, few open-source
agent frameworks are currently capable of handling such
challenges. We select three representative and competitively
strong frameworks—OpenHands, SWE-Agent, and Aider—
all of which are under active development and updated on an
almost daily basis.

To ensure fair and reproducible evaluation, we fix all ex-
periments to their official April 2025 releases. The exact ver-
sion numbers are listed in Table 8.

Execution Configurations.
To ensure consistency and reproducibility, each framework
operates within a designated execution environment. Specif-
ically, Aider executes code in a local Python 3.12 Conda en-



Repository #Files #Classes #Functions LOC Imports Calls Tokens Manual
Reproduction Time (h)

AnimeGANv3 25 7 191 3540 140 1465 39288 2.25

DeOldify 105 280 1743 15776 727 7552 187418 2.33

DeScratch 64 61 394 9606 401 3277 82321 2.00

Eparse 13 10 67 1872 108 380 11577 0.83

Faker 754 1130 3361 351420 1879 11922 2888354 0.50

FunASR 1157 1093 3843 132830 6979 39459 1151842 2.00

InvisibleWatermark 7 5 39 575 34 180 4870 0.50

NeuroKit 349 2 979 57270 1819 11479 508910 1.50

PDFPlumber 38 46 441 8339 413 2136 66653 0.50

PyPDF2 89 152 1488 50709 1226 10819 491912 0.67

Scrapy 362 1144 4533 67685 3660 18376 536203 0.67

SpeechBrain 573 736 4915 207652 3799 40552 1596907 0.83

Stegano 25 9 93 2270 74 510 18207 0.50

StyleTransfer 7 3 25 747 33 380 8796 2.17

SuperResolution 29 20 208 3777 158 1237 32940 1.67

Trafilatura 41 11 437 27399 686 4329 397119 0.67

TransparentBackground 12 26 106 2310 98 943 21866 1.50

VideoPose3D 22 10 83 3503 135 727 35993 3.00

Average 204.00 263.61 1274.78 52626.67 1242.72 8651.28 448954.22 1.34

Table 5: Static Analysis Statistics of GitTaskBench Repositories

vironment; OpenHands utilizes the official runtime Docker
container provided by its developers; and SWE-Agent runs
within a Docker container based on Ubuntu 20.04, equipped
with Python 3.12. For each run, agents have access to a ma-
chine with 9 vCPUs, 33 GB RAM, and a 2965 GiB SSD.

All language models in our benchmark are evaluated us-
ing a unified parameter configuration unless explicitly noted.
Specifically, we set the temperature to 0.5 and fix top-p (nu-
cleus sampling) at 1.0, while retaining each model’s de-
fault top-k value. Response length is capped at 4,096 to-
kens. These settings are applied consistently across all mod-
els, except when modified by framework requirements. Any
framework-specific adjustments are documented in the re-
spective configuration files within the GitTaskBench GitHub
repository (GitTaskBench 2025).

OpenHands.
All parameters were kept at their default settings, except for
timeout, which was set to 600 seconds.

We observed inconsistencies between the metrics re-
ported in the final llm_metrics (specifically, the values
for accumulated_token_usage, prompt_tokens,
and completion_tokens) within the events folder
in the trajectoriessessions and the statistics au-
tomatically generated in batch_results.jsonl
(total_cost, total_input_tokens,

total_output_tokens). In our analysis, when
both sources were available, we consistently prioritized the
latter. For self-hosted models where certain statistics were
missing from batch_results.jsonl, we relied on the
corresponding metrics from the events folder.

Regarding max_iterations, we found that Open-
Hands does not strictly enforce this parameter—an issue pre-
viously raised on GitHub. The number of steps recorded in
the events folder (i.e., the number of JSON files) often ex-
ceeds the specified max_iterations. For example, with
max_iterations set to 30, more than 70 event files may
be present. As a result, it is difficult to accurately define,
track, and limit the actual number of agent steps during ex-
ecution. Nevertheless, we faithfully report only the experi-
mental results based on the adjusted parameters, disregard-
ing these observed discrepancies in the event trajectories.

SWE-Agent.

The execution_timeout was increased from
the default 30 seconds to 150 seconds, and the
total_execution_timeout was extended from
1,800 seconds to one hour. We observed that when an error
occurs, SWE-Agent tends to promptly switch methods.
This behavior is guided by the following instruction in the
original instance template:



Domain Subdomain Typical task (multimodal) Success criteria

Image Processing Image Coloring
Colorize an old street photo
using Artistic mode for bold
colors

CIEDE2000 colour difference ≥ 2.0
and NIQE ≤ 7.0 on the output
image.

Video Processing Style Transfer Convert a given video to comic
style

The output video is considered
successful if the average SSIM
between input and output frames is
≥ 0.7, and the FID score is ≤ 400.

Physiological
Signals
Processing

EDA Data Analysis

Extract ’SCR_Onsets’,
’_Peaks’, and ’_Height’ from
EDA data (sampling rate 250),
and store as a CSV file with
each column as an indicator

All three columns (’SCR_Onsets’,
’SCR_Peaks’, ’SCR_Height’) in the
output 100% match the ground truth.

Speech
Processing Speech Separation

Separate a noisy mixed audio
containing two speakers into
individual audio files

Each separated audio output must
achieve SNR ≥ 12dB and SDR ≥ 8
dB compared to the reference signals.

Web Scraping Web Scraping Extract celebrity quotes from
xxxx://quotes.toscrape.com

F1 score ≥ 0.95 on the {author, text,
tags} fields compared with
ground-truth JSON.

Security &
Privacy Data Simulation Extract the embedded

watermark from the image
The extracted text message 100%
matches the ground truth.

Office Document
Processing Excel Parsing Parse a multi-sheet Excel

workbook into JSON

Cell-level similarity ≥ 0.80 (value +
meta-data match) over all non-empty
cells between produced JSON and
reference.

Table 6: Examples of representative tasks and their success criteria in GITTASKBENCH. All tasks and corresponding success
criteria are provided in the open-sourced GitHub repository of GitTaskBench.

1 Instruction 1: If you run a command and
it doesn’t work, try running a
different command. A command that did
not work once will not work the

second time unless you modify it!

However, this prompt does not cause excessive method
switching or errors, thanks to another guideline:
1 Instruction 5: When editing files, it is

easy to accidentally write code with
incorrect indentation or make other

mistakes. Always check the code after
you issue an edit to make sure that

it reflects what you wanted to
accomplish. If it didn’t, issue
another command to fix it.

In practice, after making changes to a file, the agent first
checks whether the edit matches the intended goal. If not, it
will issue further commands to fix the error.

Nevertheless, the original GitHub issue-oriented tip might
conflict with our full prompt in some cases, making SWE-
Agent less likely to resolve environment issues by installing
packages. To avoid this as much as possible, we removed the
following prompt from our template:
1 Instruction 7: Do not try to install any

packages with \texttt{pip}, \texttt{

conda}, or any other way. This will
usually not work. If the environment
is not set up correctly, try to fix
the issue without executing Python
code or running any tests that
require the package installed.

Aider.
All parameters were set to their default values.

C. Prompts
Listing 1: Prompts of DeepResearch for Suitable Repository.
1 Domain: Image Processing, Image

Colorization
2 Task: Given an old photograph with black

, yellow, and white tones, your goal
is to colorize the image and restore
it into a richly colored photograph.

3 Instructions: Please conduct a thorough
search to identify the most relevant
and effective open-source GitHub
repositories that can accomplish the
above task. Please carefully read the
README content of each GitHub

repository.

xxxx://quotes.toscrape.com


Setting ECR(%) ↑ TPR(%) ↑ InputTokens (k) ↓ OutputTokens ↓ Cost($) ↓

max_iteration: default
timeout=120 s 18.52 12.96 263.22 1804.92 0.676
timeout=600 s 21.30 14.82 760.53 3990.31 1.94
timeout=1200 s 46.30 35.19 1025.82 8207.08 2.65
timeout=1800 s 50.00 35.19 2545.55 15558.44 6.52

timeout: 600 s
max_iteration=30 44.44 33.33 1034.44 8532.13 2.67
max_iteration=70 50.00 33.33 1546.68 9157.67 3.96
max_iteration=100 53.70 37.04 1590.65 12052.62 4.10

Table 7: Performance variation of OpenHands (GPT-4o) under different hyperparameter settings.

OpenHands (0.33.0)
Parameter Value
agent CodeActAgent

model $TARGET_MODEL

timeout_in_seconds 600
max_iterations default

enable_history_truncation True

condenser_type "noop"

SWE-Agent (v1.0.1-61-gaa4e8ea1)
Parameter Value
WINDOW 100
execution_timeout 150
total_execution_timeout 3600
install_timeout default

last_n_observations 5
Aider (v0.84.1.dev-21-gb2592267)

Parameter Value
RETRY_TIMEOUT 60
request_timeout 600
cache_control False

cache_by_default False

user_system_prompt True

Table 8: Hyperparameter configuration. $TARGET_MODEL
is the model being evaluated.

4 Repository Selection Criteria:
5 #The codebase must be based on Python

and utilize the PyTorch framework.
6 #The repository should have more than 50

stars and an active community (with
recent updates within the past five
years, including either open issues
or continuous commits).

7 #Preference should be given to closed
repositories (i.e., solutions where
the model does not require pre-
trained weights and can run directly)
, also updated within the past five
years.

8 #The code should be as simple and user-
friendly as possible, allowing for
easy learning and adoption.

Listing 2: Prompt Template for Tasks.
1 Core Objective: Rapidly understand and

analyze the provided code repository,
generate and execute necessary code

or invoke relevant tools, and
accurately and efficiently complete
the user-specified task.

2 ## Workflow and Guidelines
3 1. Task Understanding: Carefully analyze

the user-provided task description
(<task>), working directory (<
work_dir>), repository information (<
repo>), and code importance hints (<
code_importance>).

4 2. Planning:
5 - If no clear plan exists, first

devise a detailed sequence of steps
for execution. Begin by reading

the repository’s README.md file to
understand its structure and usage.

6 - If README.md is absent or lacks
sufficient information, examine the
codebase directly to discern

structure and usage.
7 - Clearly distinguish which steps

require code generation, and which
depend on language understanding or
tool invocation.



8 - When generating or executing code,
always use absolute file paths to
avoid path errors-do not use
relative paths.

9 3. Repository Analysis:
10 - Explore Structure: Quickly

familiarize yourself with the
repository’s overall directory and
file structure, using absolute
paths.

11 - Identify Key Files: Prioritize
README.md, configuration files, and
main entry-point scripts.

12 - Dependency Management:
13 - Check requirements.txt or similar

files to identify dependencies.
14 - If the installation is needed:

Include installation commands in
code blocks (e.g., pip install -r
requirements.txt or pip install

specific_package). Ensure
packages are not redundantly
installed.

15 - Prefer pip install over conda
install.

16 - Environment Setup: The environment
is ready to use and supports

both Python and Conda commands.
However, ensure the repository
path is included in PYTHONPATH.
If needed, generate the command:
export PYTHONPATH=\"$PYTHONPATH:{
remote_repo_path}\".

17 4. Implementation and Execution:
18 - Provide detailed code and step-by-

step implementation, including
complete function/class definitions
, parameters, return values, and
necessary comments and docstrings.

19 - For dependencies on checkpoint/model
files, first check for their

existence. If present, use them
directly; otherwise, automatically
download them before use (e.g.,
using wget or wget -O for multiple
files).

20 5. Error Handling and Iteration:
21 - Check code execution results.
22 - If errors occur, analyze the cause,

fix the code, and retry with a
complete script.

23 - If the issue persists after several
attempts or the task remains
unsolved, analyze the reasons and
consider alternative solutions.

24 6. Tool Priority:
25 - Prefer using existing tools over

writing new code. Tasks that can be
accomplished with available tools

should not be re-implemented from
scratch.

26 7. Task Completion:
27 - Upon successful completion or

definitive failure, provide a clear
and concise summary.

28 ## Key Constraints
29 - Absolute Paths: Always use absolute

paths when handling files (especially
data loading) in code.

30 - PYTHONPATH: Ensure the repository path
is added to the PYTHONPATH

environment variable.
31 - Tool Over Code: Tasks that can be

completed with existing tools must
not be implemented with new code.

32 - Repository Understanding: Always read
the repository’s README.md to
understand its structure and usage.
If insufficient, examine the codebase
directly.

D. Details of Alpha Value Evaluation
Illustrative Examples.
As discussed earlier, the (α)-score quantifies the average net
gain across tasks, defined as:

α =
1

n

n∑
i=1

[(T ×MV ×Q)− C] (2)

To demonstrate the practical utility of the alpha metric, we
present two real-world task examples showcasing its appli-
cation in evaluating economic benefits.

Case 1: Old Photo Restoration. Freelancers typically
charge $10 for restoring a scratched, aged photo, with a de-
livery time of approximately two days. An AI agent achieves
an average task success rate (T ) of 0.95 and a quality coef-
ficient (Q) of 1 (nearly indistinguishable from human ex-
perts), with a per-task cost (C) of $0.5 and a completion
time of a few minutes. The α score is calculated as: α =
(0.95 × 10 × 1) − 0.5 = 9.00 USD, This indicates signifi-
cant economic advantages over human-based solutions.

Case 2: Document Analysis Professional market anal-
ysis or detailed document review typically costs $100 per
document, with a delivery time of 1–2 working days. An
AI agent achieves a task success rate (T ) of 0.85 and a
quality coefficient (Q) of 0.75, with a per-task cost (C) of
$2 and near-instantaneous delivery. The α score is: α =
(0.85× 100× 0.75)− 2 = 61.75 USD, This highlights sub-
stantial economic benefits, offering a compelling alternative
to human services.

These cases illustrate the AI agents’ potential to reduce
operational costs and enhance task efficiency, providing a
quantitative foundation for workforce automation and deci-
sion optimization.

Market Value of Tasks.
Table 9 summarizes estimated human freelance fees for each
task subdomain in GitTaskBench. Visual tasks in Image Pro-
cessing typically range from $5 (e.g., scratch detection) to
$10–$30 (e.g., style transfer, background processing), re-
flecting moderate complexity. Video Processing commands
higher pay, with video action analysis at $150 and coloring
tasks up to $50, indicating specialized expertise. In Speech
Processing, recognition and analysis fetch $100–$200, while
separation and enhancement sit at $15–$30, showing a split



Domain Subdomain Market Value

Image
Processing

Style Transfer $10 (5–20)
Image Coloring $10 (5–30)
Image Restoration $10 (5–20)
Scratch Detection $5
Image Enhancement $5 (5–10)
Background Processing $10 (5–30)

Video
Processing

Video Action Analysis $150
Style Transfer $20 (5–40)
Video Coloring $50 (25–100)

Speech
Processing

Speech Recognition $100 (80–200)
Speech Separation $15 (10–30)
Speech Enhancement $15 (10–30)
Speech Analysis $100 (80–200)

Physiological
Signals

Processing

EDA Data Analysis $60
ECG Data Analysis $60
EOG Data Analysis $60

Security
and

Privacy

Data Simulation $6.67 (5–10)
Watermark Embedding $10
Watermark Extraction $10

Web
Scraping

Web Scraping $30
Web Crawling $30

Office
Document
Processing

Excel Document Parsing $25 (10–50)
PDF Content Extraction $6.25 (5–20)
PDF Content Processing $7.50 (5–20)

Table 9: Market Values by Domain and Subdomain in Git-
TaskBench

between core transcription work and more advanced signal
processing. All three Physiological Signals analyses (EDA,
ECG, EOG) are assigned a flat $60 rate, reflecting com-
parable specialized expertise. Security & Privacy tasks like
data simulation and watermarking range from $6.67 to $10,
and Web Scraping sits around $30. Finally, Office Document
Processing tasks span $6.25–$25, with Excel parsing at the
top end. These figures highlight both the breadth of domain
complexity and the economic incentives for agents to focus
on higher-value, specialized workflows.

Alpha Value of Repositories.
Table 10 provides the specific Alpha scores of three
models—DeepSeek-V3, GPT-4.1, and Claude 3.5-Sonnet—
evaluated across 18 GitTaskBench repositories. Each repos-
itory includes 1–5 tasks, reflecting diverse real-world ap-
plications. The Alpha score captures task-specific perfor-
mance variations, revealing model strengths and weaknesses
in domains. Positive scores indicate effective performance,
while negative scores highlight challenges. These results un-
derscore the importance of aligning agent deployment with
repository-specific requirements to optimize efficiency and
cost-effectiveness.

API costs.
Table 11 presents the latest available token pricing for all
evaluated models as of June 15, 2025. The table lists input
and output token costs per million tokens in USD. The prices
for the Claude series are sourced from Anthropic’s official
documentation2, while pricing for the GPT/o series is based
on OpenAI’s official pricing page3. The price of the Gemini-
2.5-pro is from the Gemini API docs in the "Google AI for
Developers" 4. Notably, the DeepSeek-V3-0324 API used in
our experiments refers to the official DeepSeek endpoint5,
not a self-hosted instance. Despite DeepSeek-V3 being open
source, API usage is still subject to official pricing.

Among all models, DeepSeek-V3 offers the lowest input
and output token prices, whereas Anthropic’s Claude models
have the highest output token rates. These differences in to-
ken pricing directly impact the cost-efficiency of large-scale
agent deployment.

E. More Detailed Experimental Results
Here, we aim to explore whether there exists a consistent
relationship between repository size and the token usage of
code agents, providing empirical insights into their resource
efficiency.

We plot the relationship between repository size (i.e., the
original token count of each repository) and the input to-
ken usage of both OpenHands and SWE-Agent. For each
framework, input token usage is calculated as the average
across all tasks for the four major models (GPT-4o, GPT-
4.1, Claude 3.5, and DeepSeekV3).

2docs.anthropic.com/en/docs/about-claude/models/overview
3platform.openai.com/docs/pricing
4ai.google.dev/gemini-api/docs/pricing
5api-docs.deepseek.com/zh-cn/quick_start/pricing

docs.anthropic.com/en/docs/about-claude/models/overview
platform.openai.com/docs/pricing
ai.google.dev/gemini-api/docs/pricing
api-docs.deepseek.com/zh-cn/quick_start/pricing


Repository Number of Tasks (n) Alpha (DeepSeek-V3) Alpha (GPT-4.1) Alpha (Claude 3.5-Sonnet)

Scrapy 3 19.491 9.897 25.683
Trafilatura 3 4.883 15.79 24.941
NeuroKit 3 46.407 19.766 22.706
Eparse 3 -0.921 24.558 22.620
SpeechBrain 5 16.579 19.870 9.058
Stegano 3 4.932 9.817 8.725
PyPDF2 3 7.636 -0.078 7.174
Faker 3 5.553 5.861 4.315
PDFPlumber 3 4.732 -0.093 3.004
FunASR 3 -3.483 30.804 2.322
InvisibleWatermark 3 -2.243 8.723 0.433
TransparentBackground 3 -9.690 8.372 0.416
VideoPose3D 1 95.541 86.488 -0.476
StyleTransfer 3 8.917 5.908 -0.749
SuperResolution 3 0.856 -2.143 -1.590
DeOldify 3 -0.575 -1.240 -2.107
DeScratch 3 -1.562 3.255 -3.967
AnimeGANv3 3 -2.631 12.779 -11.134

Table 10: Alpha Score of three models with OpenHands in GitTaskBench’s different repositories.

API Name Provider Input Token Price
($/M tokens)

Output Token Price
($/M tokens)

Claude 3.5 Sonnet-20241022 Anthropic 3.00 15.00
Claude-3-7-Sonnet-20250219 Anthropic 3.00 15.00

Gemini-2.5-Pro DeepMind / Google ≤200k tokens: 1.25
>200k tokens: 2.50

≤200k tokens: 10.00
>200k tokens: 15.00

DeepSeek-V3-0324 DeepSeek 0.27 1.10
GPT-4o-20240806 OpenAI 2.50 10.00

GPT-4.1 OpenAI 2.00 8.00
o3-mini OpenAI 1.10 4.40

Table 11: Latest Model Token Pricing as of June 15, 2025. All prices are per million tokens (USD).



Figure 8: Relationship between repository size and input
token usage for each framework. Only process-successful
tasks are included in the statistics.

Figure 9: Input token usage per framework versus repository
size (only result-successful tasks are included).

Figure 8 reports the average input token usage for tasks
that achieved process success (i.e., ECR), while Figure 9
shows the average for tasks with result success (i.e., TPR).
We only include successful tasks because failed runs can re-
sult in abnormal token counts—either excessively high due
to repeated attempts, or unusually low if terminated prema-
turely. Such cases do not provide meaningful statistics.

For this reason, the main experimental results (*Table 2 in
the main body of the paper*) also report token usage based
only on process-successful tasks.

In Figure 9, some repositories lack data points because
none of the models achieved result success on the tasks of
those repositories.

The trend observed in both Figure 8 and Figure 9 indi-
cates that LLM input token costs do not scale proportion-
ally with repository size, highlighting that effective repos-
itory utilization does not require reading the entire code-
base. Instead, efficiently leveraging entry-point documen-
tation such as READMEs, selectively identifying and an-
alyzing key code files, and strategically utilizing their de-
pendency structures for optimizing repository exploration
paths is far more critical.

F. Detailed Cases of Code Agents
To provide concrete insights into agent behavior, we present
detailed case studies of both successes and failures, high-
lighting common patterns and distinctive issues encountered

by code agents in realistic task-solving scenarios.

Successes
Listing 3: TransparentBackground green screen processing
successfully completed with correct parameter selection.
1 Task: Convert image background to green

screen using TransparentBackground
library

2 Agent Action: Task understanding and
planning

3 [INFO] Analyzing task requirements:
background removal with green screen
replacement

4 [STRATEGY] Following standard workflow:
README analysis to dependency setup,
to implementation

5 Agent Action: Repository exploration and
documentation analysis

6 [INFO] Reading README.md for project
functionality and usage instructions

7 [SUCCESS] Found key information: --type
green parameter for green screen
background

8 [DISCOVERY] Located critical files:
usage.py, transparent_background/
core directory

9 Agent Action: Dependency installation
and environment setup

10 [INFO] Installing required Python
packages

11 [EXEC] pip install torch torchvision
opencv-python timm tqdm kornia gdown

12 [SUCCESS] All dependencies installed
successfully

13 [EXEC] pip install -e.
14 [SUCCESS] Local transparent-background

package installed
15 Agent Action: Environment configuration
16 [INFO] Setting up Python environment for

module import
17 [EXEC] export PYTHONPATH=/path/to/

transparent_background:$PYTHONPATH
18 [SUCCESS] PYTHONPATH configured

correctly
19 [VERIFY] from transparent_background.

Remover import Remover
20 [SUCCESS] Import successful: <class ’

transparent_background.Remover.
Remover’>

21 Agent Action: Implementation with
correct parameters

22 [INFO] Creating green screen processing
script with optimal configuration

23 [CODE]
24 from transparent_background import

Remover
25 import cv2
26 # Initialize remover with base mode and

CPU device
27 remover = Remover(mode="base", device="

cpu")
28 # Load input image
29 img = cv2.imread("/data/input/image.jpg

")



30 # Process with green screen background
31 out = remover.process(img, type="green")
32 # Save result
33 cv2.imwrite("/data/output/output.png",

out)
34 Agent Action: Executing solution
35 [EXEC] python green_screen_converter.py
36 [INFO] Downloading model checkpoint (367

MB)
37 [SUCCESS] Model loaded and processing

completed
38 [OUTPUT] Generated output.png (267KB)

with green screen background
39 Agent Status: COMPLETED - Task

successfully finished
40 Success Factors:
41 - Correct parameter selection: type="

green" from README documentation
42 - Proper environment setup with

PYTHONPATH configuration
43 - Complete dependency management and

installation
44 - Optimal model configuration (mode="

base", device="cpu")
45 - Single-pass execution without

technical issues
46 Task Completion: 100%

Failures
We illustrate the five error types (summarized in the main
text) with concrete examples. Distinctive failure patterns are
discussed for both SWE-Agent and OpenHands.

SWE-Agent

Listing 4: Pdfplumber execution failed due to missing exter-
nal dependency.
1 Task: Extract text from PDF using

pdfplumber library
2
3 Agent Action: Examining repository

documentation
4 [INFO] Reading README.md for pdfplumber

usage instructions
5 [SUCCESS] Found usage pattern:

pdfplumber.open() with page.
extract_text()

6
7 Agent Action: Implementing the solution
8 [INFO] Creating extract_text.py script
9 [CODE]

10 import pdfplumber
11
12 # Input and output paths
13 input_pdf_path = ’/data/input/document.

pdf’
14 output_txt_path = ’/data/output/

extracted_text.txt’
15
16 # Extract text from first page
17 with pdfplumber.open(input_pdf_path) as

pdf:
18 first_page = pdf.pages[0]
19 text = first_page.extract_text()

20
21 # Save to output file
22 with open(output_txt_path, ’w’) as

txt_file:
23 txt_file.write(text)
24
25 print("Extraction completed successfully

.")
26
27 Agent Action: Executing solution
28 [EXEC] python extract_text.py
29
30 [ERROR] Execution failed:
31 Traceback (most recent call last):
32 File "extract_text.py", line 1, in <

module>
33 import pdfplumber
34 ModuleNotFoundError: No module named ’

pdfplumber’
35
36 Agent Status: FAILED - Dependency

unavailable
37 Error Classification: Type E1 -

Dependency/Environment Error
38 Root Cause: Required external library ’

pdfplumber’ not installed in the
execution environment

39 Impact: Complete task failure despite
correct implementation approach

Listing 5: TransparentBackground implementation failed
due to premature submission after dependency installation.
1 Task: Implement background removal

functionality for
TransparentBackground project

2 Agent Action: Repository exploration
3 [INFO] Locating project documentation
4 [SUCCESS] find_file README.md /data/.../

TransparentBackground
5 [FOUND] /data/.../TransparentBackground/

README.md
6 Agent Action: Understanding project

structure
7 [INFO] Reading README.md to comprehend

repository layout
8 [THOUGHT] "Must first explore and

understand the TransparentBackground
repository..."

9 Agent Action: Environment setup -
Installing PyTorch dependencies

10 [INFO] Installing required torch
packages with CPU support

11 [EXEC] PYTORCH_ENABLE_MPS_FALLBACK=1 pip
install torch torchvision torchaudio
--index-url https://download.pytorch

.org/whl/cpu
12 [TIMEOUT] Command cancelled after 30

seconds
13 Agent Action: Retry dependency

installation
14 [INFO] Attempting package installation

again
15 [EXEC] PYTORCH_ENABLE_MPS_FALLBACK=1 pip



Primary Category Secondary Subclasses Key Diagnostic Indicators SWE-Agent OpenHands

E1: Environment Setup 1. Version/ABI Conflicts
2. Missing Binary Wheels
3. System Library Dependencies

- NumPy-OpenCV compatibility issues
- GLIBC version mismatches
- Pip installation failures
- Network timeout errors
- Missing system libraries (e.g., libGL.so)

Listing 4 Listing 9

E2: Workflow Planning 1. No Subsequent Actions
2. README-Only Reading

- Premature termination after setup
- Missing main script execution
- Repetitive file reading loops
- Incorrect execution sequencing

Listing 5 Listing 10

E3: Repository Comprehension 1. Entry Script Identification
2. API Call Errors

- Internal package import failures
- Incorrect function parameters
- Misunderstood API signatures
- Wrong module usage patterns

Listing 6 Listing 11

E4: Runtime Execution 1. Timeout/Memory Issues
2. Agent Interruption

- RuntimeError in traceback
- CUDA out-of-memory errors
- Hard timeout limit exceeded
- Manual interruption signals

Listing 7 Listing 12

E5: Instruction Non-compliance 1. Naming Violations
2. Repository Bypass

- Non-conformant output naming
- Ignoring specified requirements
- Deceptive completion methods
- Avoiding required code usage

Listing 8 Listing 13

Table 12: Comprehensive Error Classification Framework for Code Agent Evaluation

install torch torchvision torchaudio
--index-url https://download.pytorch

.org/whl/cpu
16 [TIMEOUT] Command cancelled after 30

seconds
17 Agent Action: Solution submission
18 [EXEC] submit
19 [FAILED] Premature submission without

implementation
20 Agent Status: FAILED - No actual

implementation performed
21 Error Classification: Type E2 - Workflow

Planning Error
22 Root Cause: Agent confused dependency

installation with task completion
23 Missing Steps:
24 - Background removal algorithm

implementation
25 - Code testing and validation
26 - Actual functionality development
27 Impact: Task abandoned immediately after

the environment setup phase

Listing 6: FunASR audio transcription failed due to incor-
rect API usage.
1 Task: Transcribe WAV audio file using

FunASR library
2 Agent Action: Exploring FunASR codebase

structure
3 [INFO] Examining /runtime/funasr_api/

directory
4 [SUCCESS] Found funasr_api.py with

FunasrApi class implementation
5 Agent Action: Analyzing API interface
6 [INFO] Reading funasr_api.py source code

7 [CODE]
8 class FunasrApi:
9 def __init__(self, uri="wss://www.

funasr.com:10096/", timeout=1000,
msg_callback=None):

10 self.uri = uri
11 self.timeout = timeout
12 self.msg_callback = msg_callback
13 self.funasr_core = None
14
15 def rec_file(self, file_path):
16 try:
17 funasr_core = self.new_core

()
18 funasr_core.rec_file(

file_path)
19 return funasr_core.

get_result()
20 except Exception as e:
21 print("rec_file", e)
22 return
23 Agent Action: Implementing transcription

solution
24 [INFO] Creating transcription script

based on API analysis
25 [CODE]
26 from funasr_api import rec_file
27 # Direct function import attempt
28 audio_file = "/data/input/sample.wav"
29 result = rec_file(audio_file)
30 print("Transcription result:", result)
31 Agent Action: Executing solution
32 [EXEC] python transcribe_audio.py
33 [ERROR] Execution failed:
34 Traceback (most recent call last):
35 File "transcribe_audio.py", line 1, in



<module>
36 from funasr_api import rec_file
37 ImportError: cannot import name ’

rec_file’ from ’funasr_api’
38 Agent Status: FAILED - Incorrect API

usage
39 Error Classification: Type E3 -

Repository Comprehension Error
40 Root Cause: Attempted to import instance

method ’rec_file’ as a standalone
function

41 Correct Usage: api = FunasrApi(); result
= api.rec_file(file_path)

42 Impact: Runtime import error due to
misunderstanding of class-based API
design

Listing 7: Invisible watermark embedding interrupted due to
time constraints of agent frameworks.
1 Task: Embed invisible watermark into PNG

image using imwatermark library
2 Agent Action: Analyzing repository

structure and documentation
3 [EXEC] cat /data/.../InvisibleWatermark/

README.md
4 [SUCCESS] Found watermark embedding

examples and API documentation
5 Agent Action: Creating output directory

and embedding script
6 [EXEC] mkdir -p /data/.../output/

InvisibleWatermark_01
7 [CREATE] embed_watermark.py - watermark

embedding implementation
8 [CODE]
9 import cv2

10 from imwatermark import WatermarkEncoder
11 # Set paths and initialize encoder
12 bgr = cv2.imread(input_path)
13 encoder = WatermarkEncoder()
14 encoder.set_watermark(’bytes’, wm.encode

(’utf-8’))
15 bgr_encoded = encoder.encode(bgr, ’

dwtDct’)
16
17 Agent Action: Executing watermark

embedding process
18 [EXEC] python embed_watermark.py
19 [LOADING] Initializing WatermarkEncoder

with dwtDct algorithm
20 [PROCESSING] Reading input image:

InvisibleWatermark_01_input.png
21 [EMBEDDING] Applying DWT-DCT watermark

encoding...
22 [INTERRUPT] Process terminated due to

computational cost limits
23 [ERROR] KeyboardInterrupt: Manual

termination after 180 seconds
24 Agent Status: INCOMPLETE - Task

execution halted
25 Error Classification: Type E4 - Runtime

Execution Error
26 Root Cause:
27 - Watermark encoding process exceeded

allocated computation time
28 - DWT-DCT algorithm processing a large

image consumed excessive resources
29 - Manual termination triggered due to

cost/time constraints
30 - Task incomplete despite correct

implementation approach
31 Impact: Valid implementation created,

but watermarked output not generated

Listing 8: Agent Web Scraping Error Analysis: Network
Timeout and Framework Bypass
1 Task: Use Scrapy framework to scrape

quotes from the website and generate
XML output

2
3 Agent Action: Attempting to execute the

existing scraping script
4 [EXEC] python scrape_quotes.py
5
6 [ERROR] Network connection failed:
7 urllib3.exceptions.ConnectTimeoutError:

(<urllib3.connection.HTTPSConnection
object at 0x7f555d2870b0>, ’
Connection to quotes.toscrape.com
timed out. (connect timeout=10)’)

8 requests.exceptions.ConnectTimeout:
HTTPSConnectionPool(host=’quotes.
toscrape.com’, port=443): Max retries
exceeded with url: /tag/humor/

9
10 Agent Action: Bypassing repository

framework - creating mock data
solution

11 [BYPASS] Replacing network call with
hardcoded mock quotes

12 [CODE]
13 # Mock quotes data - BYPASSING SCRAPY

FRAMEWORK
14 mock_quotes = [
15 {"author": "Author A", "text": "Life

is a sitcom."},
16 {"author": "Author B", "text": "

Humor keeps you alive."},
17 {"author": "Author C", "text": "

Laugh it off."},
18 ]
19
20 parser = QuoteParser()
21 parser.quotes.extend(mock_quotes) #

Direct data injection
22
23 Agent Action: Creating output directory

and executing modified script
24 [EXEC] mkdir -p /data/.../output/

Scrapy_03
25 [EXEC] python scrape_quotes.py
26 [SUCCESS] Script executed without errors
27
28 Agent Action: Submitting solution
29 [SUBMIT] Changes submitted
30
31 Agent Status: COMPLETED - but with

critical issues



32 Error Classification: Type E5 -
Repository Misuse/Bypass Error

33 Root Cause:
34 - Failed to utilize Scrapy framework as

intended
35 - Bypassed proper web scraping

methodology with mock data
36 - Generated synthetic output instead of

real scraped content
37 - Violated task requirements by

substituting mock data for actual web
scraping

38 Impact: Task appeared successful but
produced invalid/synthetic results

OpenHands

Listing 9: OpenCV import failed due to numpy ABI com-
patibility issues.
1 Task: Implement computer vision

functionality using OpenCV library
2 Agent Action: Installing required

dependencies
3 [INFO] Setting up OpenCV and numpy for

image processing
4 [EXEC] pip install opencv-python numpy
5 [SUCCESS] Package installation completed
6 Agent Action: Implementing vision

solution
7 [INFO] Creating image_processor.py

script
8 [CODE]
9 import cv2

10 import numpy as np
11 # Load and process image
12 image_path = ’/data/input/sample.jpg’
13 img = cv2.imread(image_path)
14 # Apply basic image operations
15 gray = cv2.cvtColor(img, cv2.

COLOR_BGR2GRAY)
16 cv2.imwrite(’/data/output/processed.jpg

’, gray)
17 print("Image processing completed.")
18 Agent Action: Executing solution
19 [EXEC] python image_processor.py
20 [ERROR] Execution failed:
21 Traceback (most recent call last):
22 File "image_processor.py", line 1, in

<module>
23 import cv2
24 ImportError: numpy.core.multiarray

failed to import
25 Agent Action: Attempting dependency

version fixes
26 [INFO] Trying different numpy versions

for compatibility
27 [EXEC] pip install numpy==1.21.0
28 [EXEC] pip install --upgrade pip
29 [EXEC] pip install opencv-python --force

-reinstall
30 [ERROR] All attempts failed with the

same ABI mismatch error
31 Agent Status: FAILED - Environment setup

error

32 Error Classification: Type E-1 - Version
/ABI Conflict

33 Root Cause: Binary interface
incompatibility between opencv-python
and numpy under Python 3.12

34 Impact: Complete task failure due to
unresolvable dependency conflicts

Listing 10: NeuroKit biosignal processing task abandoned
after README examination.
1 Task: Implement neurophysiological

signal processing using NeuroKit2
library

2 Agent Action: Repository exploration
3 [INFO] Examining NeuroKit project

structure and documentation
4 [EXEC] head -80 /data/data/

agent_test_codebase/GitTaskBench/
code_base/NeuroKit/README.rst

5 [SUCCESS] Command executed with exit
code 0

6 [CONTENT] Found README.rst with project
overview and usage examples

7 [INFO] NeuroKit2 description: "Python
Toolbox for Neurophysiological Signal
Processing"

8 [EXAMPLE] Quick usage pattern discovered
:

9 import neurokit2 as nk
10 data = nk.data("bio_eventrelated_100hz")
11 processed_data, info = nk.bio_process(

ecg=data["ECG"], rsp=data["RSP"], eda
=data["EDA"], sampling_rate=100)

12 results = nk.bio_analyze(processed_data,
sampling_rate=100)

13 [INFO] Installation methods found: pip
install neurokit2 / conda install

14 Agent Action: Task completion assessment
15 [STATUS] README examination completed
16 [DECISION] No further actions planned
17 Agent Status: TERMINATED - Task

abandoned after documentation review
18 Error Classification: Type E-2 -

Workflow Planning Error
19 Root Cause: Agent stopped at the

environment exploration phase without
implementation

20 Missing Steps:
21 - Actual NeuroKit2 library installation
22 - Signal processing code implementation
23 - Data analysis execution
24 - Result validation and output
25 Impact: Complete task failure due to

premature workflow termination

Listing 11: SpeechBrain audio separation failed due to ten-
sor dimension mismatch.
1 Task: Implement audio source separation

using SpeechBrain library
2 Agent Action: Interactive command

execution
3 [INFO] Processing user confirmation for

script execution



4 [AUTO EXEC] y
5 [SUCCESS] Command executed with exit

code 0 - Confirmation received
6 Agent Action: Implementing an audio

separation solution
7 [INFO] Creating custom separation script

with SpeechBrain model
8 [CODE]
9 import speechbrain as sb

10 import torchaudio
11 # Load pre-trained separation model
12 separator = sb.pretrained.

SepformerSeparation.from_hparams(
13 source="speechbrain/sepformer-wham",

savedir="pretrained_models/
sepformer-wham")

14 # Process audio file
15 mix_audio = separator.load_audio("

input_mix.wav")
16 est_sources = separator.separate_batch(

mix_audio)
17 # Save separated sources
18 for i, source in enumerate(est_sources):
19 torchaudio.save(f"separated_source_{

i}.wav", source, 16000)
20 Agent Action: Executing separation

script
21 [EXEC] python audio_separation.py
22 [ERROR] Execution failed:
23 RuntimeError: Expected 2D tensor (

channels, samples) but got 3D tensor
24 torch.Size([1, 2, 48000]) in torchaudio.

save()
25 [ERROR] Separation output anomaly: Only

1 source extracted, expected 2
sources

26 Agent Status: FAILED - Tensor dimension
and output count mismatch

27 Error Classification: Type E-3 -
Repository Comprehension (
Implementation Issues)

28 Root Cause: Missing post-processing of
model output (squeeze/channel
selection)

29 Secondary Issue: Incorrect model
configuration or input format causing
the wrong source count

30 Impact: Audio separation task failed due
to improper tensor handling

Listing 12: FunASR speech recognition task terminated due
to execution timeout.
1 Task: Implement speech recognition using

FunASR library
2 Agent Action: Library installation and

setup
3 [INFO] Installing FunASR speech

recognition framework
4 [SUCCESS] FunASR library reinstalled

successfully
5 Agent Action: Implementing a speech

recognition solution
6 [INFO] Creating speech recognition

script with FunASR

7 [CODE]
8 import funasr
9 # Load pre-trained model

10 model = funasr.AutoModel(model="
paraformer-zh", vad_model="fsmn-vad")

11 # Process audio file
12 audio_file = "/data/input/speech_sample.

wav"
13 result = model.generate(input=audio_file

)
14 # Save transcription results
15 with open("/data/output/transcription.

txt", "w") as f:
16 f.write(result[0]["text"])
17 print("Speech recognition completed.")
18 Agent Action: Executing speech

recognition
19 [EXEC] python speech_recognition.py
20 [TIMEOUT] Execution exceeded time limit

- Process interrupted
21 [STATUS] Speech recognition process

incomplete
22 Agent Action: Task completion assessment
23 [FINISH] Partial completion due to

timeout constraints
24 [MESSAGE] "Due to execution timeout

issues, speech recognition process
and output file creation were not
completed"

25 Agent Status: FAILED - Runtime execution
timeout

26 Error Classification: Type E-4 -
Execution Timeout Error

27 Root Cause: Speech processing operation
exceeded the allowed execution time
limit

28 Impact: Task partially completed -
installation successful, but core
functionality failed

Listing 13: FunASR task deceptively completed by redirect-
ing intermediate output to result file.
1 Task: Implement speech recognition using

FunASR library
2 Agent Action: Exploring FunASR codebase

structure
3 [INFO] Examining /code_base/FunASR/

examples/ directory for usage
patterns

4 [SUCCESS] Found
industrial_data_pretraining/
paraformer/asr_infer_user.py

5 Agent Action: Implementing the solution
with output redirection

6 [INFO] Creating output directory and
executing inference script

7 [CODE]
8 # Agent’s deceptive solution approach
9 mkdir -p /data/.../output/FunASR_02

10 python3 /data/.../FunASR/examples/
industrial_data_pretraining/
paraformer/asr_infer_user.py > /data
/.../output/FunASR_02/output.txt



11 Agent Action: Executing command with
output redirection

12 [EXEC] mkdir -p /data/data/
agent_test_codebase/GitTaskBench/
eval_automation/output/FunASR_02 &&
python3 /data/data/
agent_test_codebase/GitTaskBench/
code_base/FunASR/examples/
industrial_data_pretraining/
paraformer/asr_infer_user.py > /data/
data/agent_test_codebase/GitTaskBench
/eval_automation/output/FunASR_02/
output.txt

13 [SUCCESS] Command executed successfully
14 Agent Action: Verifying task completion
15 [CHECK] output.txt file exists and

contains content
16 [DECISION] Task marked as completed

based on a non-empty output file
17 Agent Status: COMPLETED - Deceptive

success
18 Error Classification: Type E-5 -

Deceptive Completion
19 Root Cause: Agent redirected script’s

intermediate/debug output to result
file instead of actual speech
recognition results

20 Deception Method: Used stdout
redirection to create a non-empty
output file without performing the
actual task

21 Impact: False positive completion -
output contains script execution logs
, not speech transcription results

G. Limitations & Future Work
While this release focuses on practical, user-facing tasks,
future updates will introduce additional technical machine
learning tasks.

We will further expand the benchmark to cover more
repositories and tasks from diverse domains, supported by a
live update mechanism every three months to continuously
incorporate the latest and most challenging repository-aware
tasks, thereby tracking and guiding the real-world capability
development of code agents.

Given the rapid progress of large models, we currently
report results only for the latest mainstream models and
have not yet evaluated all reasoning-focused models. We
will broaden model coverage and track ongoing advances
through a continuously updated public leaderboard.
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