A\

Engineering at Anthropic

Writing effective tools for
agents — with agents

Agents are only as effective as the tools we give them. We share how to
write high-quality tools and evaluations, and how you can boost performance
by using Claude to optimize its tools for itself.

Published Sep 11, 2025

The Model Context Protocol (MCP) can empower LLM agents with potentially
hundreds of tools to solve real-world tasks. But how do we make those tools
maximally effective?

In this post, we describe our most effective techniques for improving

performance in a variety of agentic Al systems’.

We begin by covering how you can:

« Build and test prototypes of your tools
o Create and run comprehensive evaluations of your tools with agents

« Collaborate with agents like Claude Code to automatically increase the
performance of your tools

We conclude with key principles for writing high-quality tools we’ve identified
along the way:

« Choosing the right tools to implement (and not to implement)

Namespacing tools to define clear boundaries in functionality

Returning meaningful context from tools back to agents
Optimizing tool responses for token efficiency

Prompt-engineering tool descriptions and specs

Collaborating with Claude Code

0@
> Write me a Gmail MCP Server then run the Gmail & Agent 1
evaluation. Sending an email
e Search thing!
e Write(file_path: gmail_mcp.py)

L Wrote 1,219 lines to gmail_mcp.py Q Agent 2

e Now let me run an evaluation! Searching for a report

e Bash(python evaluate_mcp.py)
L # Evaluation Report

Summary

- #%Accuracyxx: 17/20 (85.0%)

- #%Average Task Duration#*: 15.77s
.. +291 lines (ctrl+r to expand)

@ Agent 3

Summarizing a thread

e There's a bug in the send_email tool. Let me fix
it.

[1]

e Write(file_path: gmail_mcp.py) Ml
L Wrote 23 lines to gmail_mcp.py < .

Building an evaluation allows you to systematically measure the performance of your tools. You can use Claude
Code to automatically optimize your tools against this evaluation.

What is a tool?

In computing, deterministic systems produce the same output every time given
identical inputs, while non-deterministic systems—Ilike agents—can generate
varied responses even with the same starting conditions.

When we traditionally write software, we’re establishing a contract between
deterministic systems. For instance, a function call like getwWeather(“NYC”) will
always fetch the weather in New York City in the exact same manner every time it
is called.

Tools are a new kind of software which reflects a contract between deterministic
systems and non-deterministic agents. When a user asks "Should I bring an
umbrella today?,” an agent might call the weather tool, answer from general
knowledge, or even ask a clarifying question about location first. Occasionally, an
agent might hallucinate or even fail to grasp how to use a tool.

This means fundamentally rethinking our approach when writing software for
agents: instead of writing tools and MCP servers the way we’d write functions and

APIs for other developers or systems, we need to design them for agents.

Our goal is to increase the surface area over which agents can be effective in
solving a wide range of tasks by using tools to pursue a variety of successful
strategies. Fortunately, in our experience, the tools that are most “ergonomic” for
agents also end up being surprisingly intuitive to grasp as humans.

How to write tools

In this section, we describe how you can collaborate with agents both to write
and to improve the tools you give them. Start by standing up a quick prototype of
your tools and testing them locally. Next, run a comprehensive evaluation to
measure subsequent changes. Working alongside agents, you can repeat the
process of evaluating and improving your tools until your agents achieve strong
performance on real-world tasks.

Building a prototype

It can be difficult to anticipate which tools agents will find ergonomic and which
tools they won’t without getting hands-on yourself. Start by standing up a quick
prototype of your tools. If you're using Claude Code to write your tools
(potentially in one-shot), it helps to give Claude documentation for any software
libraries, APIs, or SDKs (including potentially the MCP SDK) your tools will rely
on. LLM-friendly documentation can commonly be found in flat 1lms.txt files
on official documentation sites (here’s our API’s).

Wrapping your tools in a local MCP server or Desktop extension (DXT) will allow
you to connect and test your tools in Claude Code or the Claude Desktop app.

To connect your local MCP server to Claude Code, run claude mcp add <name>

<command> [args...].

To connect your local MCP server or DXT to the Claude Desktop app, navigate to
Settings > Developer Or Settings > Extensions, respectively.

Tools can also be passed directly into Anthropic API calls for programmatic

testing.

Test the tools yourself to identify any rough edges. Collect feedback from your
users to build an intuition around the use-cases and prompts you expect your

tools to enable.

Running an evaluation

Next, you need to measure how well Claude uses your tools by running an
evaluation. Start by generating lots of evaluation tasks, grounded in real world
uses. We recommend collaborating with an agent to help analyze your results
and determine how to improve your tools. See this process end-to-end in our tool
evaluation cookbook.

Slack tools

100

80.1%

80

67.4%

60

40

Test-Set Accuracy (%)

20

Human-written Claude-optimized
MCP server MCP server

Held-out test set performance of our internal Slack tools

Generating evaluation tasks

With your early prototype, Claude Code can quickly explore your tools and create
dozens of prompt and response pairs. Prompts should be inspired by real-world
uses and be based on realistic data sources and services (for example, internal
knowledge bases and microservices). We recommend you avoid overly simplistic
or superficial “sandbox” environments that don’t stress-test your tools with
sufficient complexity. Strong evaluation tasks might require multiple tool calls—
potentially dozens.

Here are some examples of strong tasks:

o Schedule a meeting with Jane next week to discuss our latest Acme Corp
project. Attach the notes from our last project planning meeting and reserve
a conference room.

« Customer ID 9182 reported that they were charged three times for a single
purchase attempt. Find all relevant log entries and determine if any other
customers were affected by the same issue.

« Customer Sarah Chen just submitted a cancellation request. Prepare a
retention offer. Determine: (1) why they're leaving, (2) what retention offer
would be most compelling, and (3) any risk factors we should be aware of
before making an offer.

And here are some weaker tasks:

o Schedule a meeting with jane@acme.corp next week.
« Search the payment logs for purchase_complete and customer_id=9182.
« Find the cancellation request by Customer ID 45892.

Each evaluation prompt should be paired with a verifiable response or outcome.
Your verifier can be as simple as an exact string comparison between ground
truth and sampled responses, or as advanced as enlisting Claude to judge the
response. Avoid overly strict verifiers that reject correct responses due to
spurious differences like formatting, punctuation, or valid alternative phrasings.

For each prompt-response pair, you can optionally also specify the tools you
expect an agent to call in solving the task, to measure whether or not agents are
successful in grasping each tool’s purpose during evaluation. However, because
there might be multiple valid paths to solving tasks correctly, try to avoid
overspecifying or overfitting to strategies.

Running the evaluation

We recommend running your evaluation programmatically with direct LLM API
calls. Use simple agentic loops (while -loops wrapping alternating LLM API and
tool calls): one loop for each evaluation task. Each evaluation agent should be
given a single task prompt and your tools.

In your evaluation agents’ system prompts, we recommend instructing agents to
output not just structured response blocks (for verification), but also reasoning
and feedback blocks. Instructing agents to output these before tool call and
response blocks may increase LLMs’ effective intelligence by triggering chain-of-
thought (CoT) behaviors.

If you're running your evaluation with Claude, you can turn on interleaved
thinking for similar functionality “off-the-shelf”. This will help you probe why
agents do or don’t call certain tools and highlight specific areas of improvement

in tool descriptions and specs.

As well as top-level accuracy, we recommend collecting other metrics like the
total runtime of individual tool calls and tasks, the total number of tool calls, the
total token consumption, and tool errors. Tracking tool calls can help reveal
common workflows that agents pursue and offer some opportunities for tools to

consolidate.

Asana tools

100

85.7%

79.6%
80

60

40

Test-Set Accuracy (%)

20

Human-written Claude-optimized
MCP server MCP server

Held-out test set performance of our internal Asana tools

Analyzing results

Agents are your helpful partners in spotting issues and providing feedback on
everything from contradictory tool descriptions to inefficient tool
implementations and confusing tool schemas. However, keep in mind that what
agents omit in their feedback and responses can often be more important than
what they include. LLMs don’t always say what they mean.

Observe where your agents get stumped or confused. Read through your
evaluation agents’ reasoning and feedback (or CoT) to identify rough edges.
Review the raw transcripts (including tool calls and tool responses) to catch any
behavior not explicitly described in the agent’s CoT. Read between the lines;
remember that your evaluation agents don’t necessarily know the correct
answers and strategies.

Analyze your tool calling metrics. Lots of redundant tool calls might suggest
some rightsizing of pagination or token limit parameters is warranted; lots of tool
errors for invalid parameters might suggest tools could use clearer descriptions
or better examples. When we launched Claude’s web search tool, we identified
that Claude was needlessly appending 2025 to the tool’s query parameter,
biasing search results and degrading performance (we steered Claude in the right
direction by improving the tool description).

Collaborating with agents

You can even let agents analyze your results and improve your tools for you.
Simply concatenate the transcripts from your evaluation agents and paste them
into Claude Code. Claude is an expert at analyzing transcripts and refactoring
lots of tools all at once—for example, to ensure tool implementations and
descriptions remain self-consistent when new changes are made.

In fact, most of the advice in this post came from repeatedly optimizing our
internal tool implementations with Claude Code. Our evaluations were created
on top of our internal workspace, mirroring the complexity of our internal
workflows, including real projects, documents, and messages.

We relied on held-out test sets to ensure we did not overfit to our “training”
evaluations. These test sets revealed that we could extract additional

performance improvements even beyond what we achieved with "expert" tool
implementations—whether those tools were manually written by our researchers
or generated by Claude itself.

In the next section, we’ll share some of what we learned from this process.

Principles for writing effective tools
In this section, we distill our learnings into a few guiding principles for writing
effective tools.

Choosing the right tools for agents

More tools don’t always lead to better outcomes. A common error we’ve observed
is tools that merely wrap existing software functionality or API endpoints—
whether or not the tools are appropriate for agents. This is because agents have
distinct “affordances” to traditional software—that is, they have different ways of
perceiving the potential actions they can take with those tools

LLM agents have limited "context" (that is, there are limits to how much
information they can process at once), whereas computer memory is cheap and
abundant. Consider the task of searching for a contact in an address book.
Traditional software programs can efficiently store and process a list of contacts
one at a time, checking each one before moving on.

However, if an LLM agent uses a tool that returns ALL contacts and then has to
read through each one token-by-token, it's wasting its limited context space on
irrelevant information (imagine searching for a contact in your address book by
reading each page from top-to-bottom—that is, via brute-force search). The
better and more natural approach (for agents and humans alike) is to skip to the
relevant page first (perhaps finding it alphabetically).

We recommend building a few thoughtful tools targeting specific high-impact
workflows, which match your evaluation tasks and scaling up from there. In the
address book case, you might choose to implement a search_contacts oOr
message_contact tool instead ofa 1ist_contacts tool.

Tools can consolidate functionality, handling potentially multiple discrete
operations (or API calls) under the hood. For example, tools can enrich tool
responses with related metadata or handle frequently chained, multi-step tasks
in a single tool call.

Here are some examples:

o Instead of implementinga list_users, list_events,and create_event
tools, consider implementing a schedule_event tool which finds availability
and schedules an event.

« Instead of implementing a read_logs tool, consider implementing a
search_logs tool which only returns relevant log lines and some
surrounding context.

« Instead of implementing get_customer_by_id, list_transactions,and
list_notes tools, implement a get_customer_context tool which compiles
all of a customer’s recent & relevant information all at once.

Make sure each tool you build has a clear, distinct purpose. Tools should enable
agents to subdivide and solve tasks in much the same way that a human would,
given access to the same underlying resources, and simultaneously reduce the
context that would have otherwise been consumed by intermediate outputs.

Too many tools or overlapping tools can also distract agents from pursuing
efficient strategies. Careful, selective planning of the tools you build (or don’t
build) can really pay off.

Namespacing your tools

Your Al agents will potentially gain access to dozens of MCP servers and
hundreds of different tools—including those by other developers. When tools
overlap in function or have a vague purpose, agents can get confused about
which ones to use.

Namespacing (grouping related tools under common prefixes) can help delineate
boundaries between lots of tools; MCP clients sometimes do this by default. For
example, namespacing tools by service (e.g., asana_search, jira_search)and by
resource (e.g., asana_projects_search, asana_users_search), can help agents
select the right tools at the right time.

We have found selecting between prefix- and suffix-based namespacing to have
non-trivial effects on our tool-use evaluations. Effects vary by LLM and we
encourage you to choose a naming scheme according to your own evaluations.

Agents might call the wrong tools, call the right tools with the wrong parameters,
call too few tools, or process tool responses incorrectly. By selectively
implementing tools whose names reflect natural subdivisions of tasks, you
simultaneously reduce the number of tools and tool descriptions loaded into the
agent’s context and offload agentic computation from the agent’s context back
into the tool calls themselves. This reduces an agent’s overall risk of making
mistakes.

Returning meaningful context from your tools

In the same vein, tool implementations should take care to return only high
signal information back to agents. They should prioritize contextual relevance
over flexibility, and eschew low-level technical identifiers (for example: uuid,
256px_image_url, mime_type). Fields like name, image_url,and file_type are
much more likely to directly inform agents’ downstream actions and responses.

Agents also tend to grapple with natural language names, terms, or identifiers
significantly more successfully than they do with cryptic identifiers. We’ve found
that merely resolving arbitrary alphanumeric UUIDs to more semantically
meaningful and interpretable language (or even a O-indexed ID scheme)
significantly improves Claude’s precision in retrieval tasks by reducing
hallucinations.

In some instances, agents may require the flexibility to interact with both natural
language and technical identifiers outputs, if only to trigger downstream tool
calls (for example, search_user(name='jane’) — send_message(id=12345)). You
can enable both by exposing a simple response_format enum parameter in your
tool, allowing your agent to control whether tools return “concise” or

“detailed” responses (images below).

You can add more formats for even greater flexibility, similar to GraphQL where
you can choose exactly which pieces of information you want to receive. Here is
an example ResponseFormat enum to control tool response verbosity:

enum ResponseFormat {
DETAILED = "detailed",
CONCISE = "concise"

B Copy

Here’s an example of a detailed tool response (206 tokens):

® I'll search slack for recent bug reports and use the detailed format to see which channel IDs and threads to
investigate further.

e slack - search (MCP)(query: "bug", sort: "timestamp", sortDir: "desc", limit: 100, responseFormat:
"detailed")
L Search results for: "bug"

== Result 1 of 89 ==

Channel: #dev (C1234567890)

From: @jane.doe (U123456789)

Time: 2024-01-15 10:30:45 UTC

TS: 1705316445.123456

Text: Found a critical bug in the login flow.

== Result 2 of 89 ==

Channel: DM with @john.smith

From: @john.smith (U987654321)

Time: 2024-01-14 15:22:18 UTC

TS: 1705247738.234567

Text: The bug report for issue #123 is ready for review
Files: bug-report-123.pdf

Here’s an example of a concise tool response (72 tokens):

XX
@ I'll search slack for recent bug reports and use the concise format to read as many messages as possible.

® slack - search (MCP)(query: "bug", sort: "timestamp", sortDir: "desc", limit: 100, responseFormat: "concise")
L Search: "bug" (89 results)

1. #dev - @jane.doe: Found a critical bug in the login flow. [Jan 15]
2. DM - @john.smith: The bug report for issue #123 is ready for review [Jan 14]

Slack threads and thread replies are identified by unique thread_ts which are required to fetch thread replies.
thread_ts and other IDs (channel_id, user_id) can be retrieved from a “detailed” tool response to enable
further tool calls that require these. “concise” tool responses return only thread content and exclude IDs. In
this example, we use V5 of the tokens with “concise” tool responses.

Even your tool response structure—for example XML, JSON, or Markdown—can
have an impact on evaluation performance: there is no one-size-fits-all solution.
This is because LLMs are trained on next-token prediction and tend to perform
better with formats that match their training data. The optimal response
structure will vary widely by task and agent. We encourage you to select the best
response structure based on your own evaluation.

Optimizing tool responses for token efficiency
Optimizing the quality of context is important. But so is optimizing the quantity
of context returned back to agents in tool responses.

We suggest implementing some combination of pagination, range selection,
filtering, and/or truncation with sensible default parameter values for any tool
responses that could use up lots of context. For Claude Code, we restrict tool
responses to 25,000 tokens by default. We expect the effective context length of
agents to grow over time, but the need for context-efficient tools to remain.

If you choose to truncate responses, be sure to steer agents with helpful
instructions. You can directly encourage agents to pursue more token-efficient
strategies, like making many small and targeted searches instead of a single,
broad search for a knowledge retrieval task. Similarly, if a tool call raises an error
(for example, during input validation), you can prompt-engineer your error

responses to clearly communicate specific and actionable improvements, rather

than opaque error codes or tracebacks.

Here’s an example of a truncated tool response:

LN N
e I'll find all of your transactions on Stripe and provide a summary for you.

e stripe - transactions_search (MCP)(limit: 5000, responseFormat: "concise")
L ## Transaction Search Results

Found *%2,847 transactions** matching your query.
The results are truncated. Showing first 3 results:

Date | Description | Amount | Category |

! ! ! |
T T U 1

|
;
| 2024-01-15 | Payment from Acme Corp | +$5,200.00 | Revenue |
|
|

2024-01-14 | Payment from TechStart | +$3,100.00 | Revenue |
2024-01-13 | Payment from Cloud Co. | +$3,100.00 | Revenue |

*xSummary of all 2,847 results:*x
- Total Revenue: $458,291.00
- Date Range: Jan 1 - Jan 15, 2024

#t To refine these results, you can:

- *xSearch for specific vendorsx*: Use “transactions_search(payee: "Acme Corp") to see only Acme Corp
charges

- %xFilter by amount range*x: Use “transactions_search(minAmount: 1000, maxAmount: 5000)"

- *xGet next pagex*: Use “transactions_search(query: <query>, page: 2)°

Here’s an example of an unhelpful error response:

LN N J
e Sure. I'll fetch John's contact information from his profile.

® asana - user_info (MCP)(userId: "john.doe@acme.corp")
L {
"error": {

"code": "RESOURCE_NOT_FOUND",

"status": 422,

"message": "Invalid value",

"details": {
"field": "userId",
"value": "john.doe@acme.corp",
"type": "invalid_value"

Here’s an example of a helpful error response:

eoo
e Sure. I'll fetch John's contact information from his profile.

® asana - user_info (MCP)(userId: "john.doe@acme.corp")
L Tool Response:

Resource Not Found: Invalid “userId-

Error Summary
Your request to “/api/user/info’ failed because the ‘userId” ~“john.doe@acme.corp” does not exist or is in

the wrong format.

#H Valid User IDs
Examples:

- 71928298149291729°
- 79381719375914731°

t#H Resolving a User ID
- Call user_search()

Tool truncation and error responses can steer agents towards more token-efficient tool-use behaviors (using
filters or pagination) or give examples of correctly formatted tool inputs.

Prompt-engineering your tool descriptions

We now come to one of the most effective methods for improving tools: prompt-
engineering your tool descriptions and specs. Because these are loaded into your
agents’ context, they can collectively steer agents toward effective tool-calling
behaviors.

When writing tool descriptions and specs, think of how you would describe your
tool to a new hire on your team. Consider the context that you might implicitly
bring—specialized query formats, definitions of niche terminology, relationships
between underlying resources—and make it explicit. Avoid ambiguity by clearly
describing (and enforcing with strict data models) expected inputs and outputs.
In particular, input parameters should be unambiguously named: instead of a
parameter named user , try a parameter named user_id.

With your evaluation you can measure the impact of your prompt engineering
with greater confidence. Even small refinements to tool descriptions can yield
dramatic improvements. Claude Sonnet 3.5 achieved state-of-the-art
performance on the SWE-bench Verified evaluation after we made precise

refinements to tool descriptions, dramatically reducing error rates and
improving task completion.

You can find other best practices for tool definitions in our Developer Guide. If
you're building tools for Claude, we also recommend reading about how tools are
dynamically loaded into Claude’s system prompt. Lastly, if you’re writing tools
for an MCP server, tool annotations help disclose which tools require open-world
access or make destructive changes.

Looking ahead

To build effective tools for agents, we need to re-orient our software development
practices from predictable, deterministic patterns to non-deterministic ones.

Through the iterative, evaluation-driven process we’ve described in this post,
we've identified consistent patterns in what makes tools successful: Effective
tools are intentionally and clearly defined, use agent context judiciously, can be
combined together in diverse workflows, and enable agents to intuitively solve
real-world tasks.

In the future, we expect the specific mechanisms through which agents interact
with the world to evolve—from updates to the MCP protocol to upgrades to the
underlying LLMs themselves. With a systematic, evaluation-driven approach to
improving tools for agents, we can ensure that as agents become more capable,
the tools they use will evolve alongside them.

Acknowledgements

Written by Ken Aizawa with valuable contributions from colleagues across
Research (Barry Zhang, Zachary Witten, Daniel Jiang, Sami Al-Sheikh, Matt Bell,
Maggie Vo), MCP (Theodora Chu, John Welsh, David Soria Parra, Adam Jones),
Product Engineering (Santiago Seira), Marketing (Molly Vorwerck), Design (Drew
Roper), and Applied Al (Christian Ryan, Alexander Bricken).

'Beyond training the underlying LLMs themselves.

Looking to learn more?

Master API development, Model Context Protocol,
and Claude Code with courses on Anthropic
Academy. Earn certificates upon completion.

Explore courses

Get the developer newsletter

Product updates, how-tos, community spotlights, and more. Delivered monthly to your
inbox.

Enter your email

Please provide your email address if you’d like to receive our monthly developer
newsletter. You can unsubscribe at any time.

Claude

Claude Code
Max plan

Team plan
Enterprise plan
Download app
Pricing

Log in to Claude

Models
Opus
Sonnet

Haiku

Solutions

Al agents

Code modernization
Coding

Customer support
Education

Financial services

Government

Claude Developer Platform
Overview

Developer docs

Pricing

Amazon Bedrock

Google Cloud’s Vertex Al

Console login

Learn

Courses

Connectors

Customer stories
Engineering at Anthropic
Events

Powered by Claude

Service partners

Startups program

Company

Anthropic

Careers

Economic Futures
Research

News

Responsible Scaling Policy
Security and compliance

Transparency

Help and security
Availability
Status

Support center

Terms and policies

Privacy choices

Privacy policy

Responsible disclosure policy
Terms of service: Commercial
Terms of service: Consumer

Usage policy

© 2025 Anthropic PBC

B X o

