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LLMs are known to store vast amounts of knowledge in their parametric memory. However, learning
and recalling facts from this memory is known to be unreliable, depending largely on the prevalence
of particular facts in the training data and other factors which are poorly understood. Practitioners
are lacking tools which will allow them to ensure that the models learn a given body of knowledge
reliably and consistently. To this end, we propose Active Reading: a framework where we train
models to study a given set of material with self-generated learning strategies. First, we demonstrate
models trained with Active Reading on expert domains absorb significantly more knowledge than
vanilla finetuning and other data augmentations. We train expert 8B models that achieve 66% on
a Wikipedia-grounded subset of SimpleQA (+313% relative over vanilla finetuning) and 26% on
FinanceBench (+160% relative over vanilla finetuning) by applying Active Reading to the source
documents for each benchmark. Finally, we show that Active Reading can be utilized at pre-training
scale to build more factual models. As a demonstration of this, we release Meta WikiExpert-8B,
a Wikipedia-expert model trained on 1 trillion generated tokens, which outcompetes models with
hundreds of billions of parameters on factual QA.
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1 Introduction

Large language models (LLMs) have the remarkable ability to store and retrieve a vast amount of world
knowledge in their parameters. However, it is poorly understood how to teach models to reliably learn and recall
facts from this memory. During pretraining, models struggle to learn the long tail of facts that may appear
only sparsely in the pretraining corpora (Kandpal et al., 2023; Wei et al., 2024). Incorporating new knowledge
into models during finetuning has also been shown to be brittle, leading to increased hallucinations (Gekhman
et al., 2024) or memorization without the ability to manipulate new knowledge (Allen-Zhu and Li, 2024).

While models seem to learn common facts from pretraining, a central challenge in language model training is
how to systematically and scalably teach LLMs to learn facts without relying on incidental co-occurrence in
large-scale web corpora. In this work, we study the question: given a closed body of knowledge, how can we
train models to most effectively internalize the information (e.g. to approach perfect factual recall)? Rote
memorization of training data is neither sufficient nor desirable for robust knowledge integration. Instead, we
aim to promote generalization—that is, enabling models to internalize facts in a way that supports accurate
reasoning, transfer to novel contexts, and compositional inference.

To that end, we introduce Active Reading, a scalable and human-inspired framework that enables LLMs to
study a given corpus by self-synthesizing data through a diverse set of learning strategies. While models are
typically trained with a sequential pass through the training text, humans actively study new knowledge to
internalize it. Beyond reading a piece of text once, we might imagine problems to apply a new math theorem
to, relate a new fact to what we already know about a person, or understand a concept by explaining it to
ourselves in a different way (Brown et al., 2014). Active Reading applies the same principles to synthesize
training data for LLMs by allowing the model itself to propose multiple study strategies—e.g., paraphrasing,
knowledge linking, active recall, analogical reasoning—and instantiate these strategies on a per-document
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Figure 1 Active Reading as a two-stage synthetic data generation pipeline. In the first stage, the model comes up with
diverse learning strategies specific to the given document. In the second stage, strategies are applied independently to
generate the self-training data.

basis. Unlike existing synthetic data generation methods that rely on fixed templates such as question-answer
generation or simple repetition, this process results in a highly diverse and contextually grounded training
signal that emulates the way humans actively engage with new information.

First, we show that Active Reading is highly effective at improving factual recall given a closed body of
knowledge (Section 4.1). We achieve state-of-the-art factual recall on SimpleQA by studying the associated
Wikipedia documents (Wei et al., 2024), improving factual recall from 16% to 66% (50% absolute, 312%
relative) compared to naïvely finetuning on the documents. We also show that Active Reading can be used to
train expert models in a specific domain of interest such as finance, improving factual recall by 16% (160%
relative) over vanilla finetuning on FinanceBench (Islam et al., 2023).

We find that Active Reading also exhibits improved scaling trends compared to other synthetic data generation
strategies as we increase data scale (Figure 2). While paraphrasing and synthetic QA generation plateau
in downstream recall performance as we generate more tokens, Active Reading continues to improve as we
generate up to 4B words.

Finally, we push Active Reading to pre-training scale by generating 1 trillion tokens of synthetic Wikipedia
data to train Meta WikiExpert, demonstrating that it can be a viable approach for building more factual
base models. WikiExpert (8B) substantially improves factual accuracy on SimpleQA and NaturalQuestions,
outperforming substantially larger models including the 236B parameter DeepSeekV2 and 405B parameter
Llama 3.1 models and competitive with the state-of-the-art DeepSeekV3 (671B) model.

Taken together, our results suggest that Active Reading is an effective and scalable method to teach models
knowledge.

As part of this work, we make the following contributions:

• We propose ActiveReading, a flexible and scalable pipeline for LLMs to study a corpus with self-generated
learning strategies, enabling more effective fact learning.

• We demonstrate that studying text with Active Reading leads to substantial improvements (160-312%
relative) in factual recall on expert benchmarks and adversarial fact QA tasks, as well as improved
scaling behavior as we scale the amount of synthetic data up to 4B words.

• We scale Active Reading to 1 trillion tokens of synthetic Wikipedia data, demonstrating its viability as
a pre-training augmentation. We release Meta WikiExpert, the most factual 8B parameter model to
date, and the full 1T-token synthetic dataset to support future research in factual language modeling.

Together, these contributions offer a step towards building reliably factual language models.
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2 RelatedWork

Knowledge Incorporation. Large pretrained language models (LLMs) have been shown to encode substantial
world knowledge, effectively acting as implicit knowledge bases (Petroni et al., 2019; Roberts et al., 2020).
Their information storing capacity and ability to use this information scales with model size (Brown et al.,
2020; Tirumala et al., 2022; Morris et al., 2025). It has been repeatedly observed that these abilities are
inconsistent, and degrade substantially for rare facts (Sun et al., 2024; Wei et al., 2024; Kandpal et al., 2023).
Generally, it is not fully understood how to teach models new knowledge after pretraining (Zhao et al., 2025;
Ren and Sutherland, 2025; Sun et al., 2025; Lu et al., 2024b; Chang et al., 2024). Simply finetuning on facts,
paraphrases, or documents exhibit limited effectiveness or poor scaling, knowledge conflicts (Sun et al., 2025)
or unintended side effects like hallucination (Kang et al., 2024; Ghosal et al., 2024). AlKhamissi et al. (2022)
presents a comprehensive survey. Our work provides a method to incorporate large amounts of new knowledge
at pretraining data scale, and finds that factors such as data diversity and mixing in pretraining data are
critical to scale knowledge incorporation.

Synthetic Data Generation. Numerous prior works study synthetic data generation for question answering
(Du et al., 2017; Alberti et al., 2019; Lewis et al., 2021). These explicitly target factuality with a narrow task
focus, however do not consider generalization in the context of general purpose language models. Another line
of work, which resulted in the Phi series of models (Gunasekar et al., 2023; Li et al., 2023b; Abdin et al.,
2024a,b), investigates the use of synthetic training for LLMs for a wider variety of tasks including language
understanding, math and reasoning. However, learning knowledge is an explicit non-goal for this work, and the
models do poorly in this area. For knowledge incorporation, several works try direct paraphrasing to improve
factual recall, as suggested by Allen-Zhu and Li (2024). Ovadia et al. (2024); Maini et al. (2024) apply this
idea at moderate scale, however see only limited gains. More recently, Yang et al. (2024b) propose synthetic
training using the EntiGraph method, which underperformed synthetic QA but showed better generalization.
Our method encompasses all these methods and outperform them due to increased diversity in generation.

Domain Adaptation Domain adaptation of language models for knowledge-intensive expert domains is a
large area of literature in itself (Ling et al., 2023), particularly in medical (Peng et al., 2019; Lee et al., 2020;
Luo et al., 2022; Singhal et al., 2025), financial (Araci, 2019; Liu et al.; Li et al., 2023a) and legal (Chalkidis
et al., 2020; Guha et al., 2023) domains. Most works in this area focus on curating large domain-specific
datasets, with only a few focusing on synthetic data generation (Yue et al., 2021). Our method is both general,
in that it can be applied to any domain, and specific, in that it naturally adapts to the domain it is applied
on, making it unique among prior domain adaptation methods.

3 Active Reading

The prevailing method used by practitioners to improve factual coverage of a given knowledge source is simply
to increase the mixing weight of that source in the data. However, such passive repetition is known to have
very limited effectiveness, since too much repetition causes overfitting without generalization. Recent work
has established that paraphrasing the data can address this issue to some extent (Allen-Zhu and Li, 2024),
by improving generalization while allowing for more repetition of the target semantic content. However,
paraphrasing is but one strategy for learning. Humans learn most effectively by employing several diverse
strategies among which are active recall, spaced repetition, asking and answering questions, using maps and
diagrams and many others (Brown et al., 2014).

Some of these strategies might be more effective than others. The best strategy might be dependent on what
knowledge we aim to learn. For instance, one might want to study a historical period by putting events on a
timeline. Concepts might be more robustly learned by making connections with related concepts. Moreover,
learning strategies might be complementary, and combining them might be better than using any one of them
in isolation. Instead of trying to engineer the best strategy for learning facts, we ask the model itself to come
up with a diverse set of learning strategies, given a document we want to study. Subsequently, we apply each
generated strategy to the associated document, creating multiple diverse augmentations which can then be
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used to train the model. We refer to this simple two-stage data generation pipeline as Active Reading, which
we illustrate in Figure 1.

While one can think of many ways in which to prompt a model to generate Active Reading strategies, in
this work we instantiate the framework with two prompts. One is a generic prompt which asks the model to
generate strategies to study the given material generally, without any particular application in mind (task
agnostic). The other is a task specific prompt, where the model is told what downstream task it will be
evaluated on (e.g. a trivia competition, or expert financial analysis). This strategy asks the model to first
imagine questions from the downstream task, and then come up with strategies that would help it master the
type of content asked in its self-synthesized questions. This enables it to generate data that is both (1) more
relevant for downstream performance (e.g. focusing on tail facts for a trivia competition), as well as (2) more
diverse, by focusing on specific aspects of the document at a time. We refer to this as task specific Active
Reading. We provide both prompts in the Appendix D.3.

Regardless of the particular strategy prompt, the resulting learning strategies from Active Reading are both
diverse and context specific, providing it an advantage over any single fixed strategy. In fact, we find that
Active Reading recovers many of the previously proposed data augmentation strategies, including paraphrasing
(Allen-Zhu and Li, 2024), synthetic question answering (Lewis et al., 2021), and concept maps (Yang et al.,
2024b). (See Appendix for examples of generated learning strategies.)

4 Applications

We will evaluate Active Reading on two overlapping but distinct use cases.

4.1 Expert Domain Adaptation

First, we investigate whether Active Reading can be an effective strategy to train expert models on a given
knowledge-intensive domain, such as medical or finance. In this setting, given a set of documents, we aim to
internalize as much knowledge as possible from the documents to solve a downstream task (e.g., question
answering)

We use the following benchmarks for this purpose:

FinanceBench (Islam et al., 2023) is a question answering benchmark grounded on financial disclosure
documents of a number of publicly traded companies. The benchmark consists of 10,231 questions, which
are split into categories such as numerical reasoning, logical reasoning, and information extraction. Since
teaching the model knowledge (rather than reasoning) is the focus of our work, we focus on the “information
extraction” category, but also report overall results.

SimpleWikiQA is a subset of 3,449 questions from the recent adversarially collected factual question answering
benchmark SimpleQA (Wei et al., 2024), where at least one reference document for each question is from
Wikipedia. We created this subset for convenience, to make sure we have a set of reference documents for
each question which can be reliably extracted in a standard way. Grounding in Wikipedia also ensures that
the information has been seen multiple times in the pre-training corpus of every mainstream LLM. Despite
the Wikipedia grounding, the obscure questions in this benchmark remain challenging for current models. In
the expert domain setting, we use the set of Wikipedia documents from SimpleWikiQA as our training corpus,
evaluating how effectively models can learn tail facts from this small set of documents that have otherwise
proven difficult for models to learn.

For baselines, we evaluate training on raw documents with simple repetition, paraphrasing and synthetic
question generation. We also provide a baseline where we provide the relevant documents as context to the
model (gold setting) in addition to the question, which serves as an upper bound of performance for this
task. We do not consider EntiGraph(Yang et al., 2024b), since it was shown to underperform synthetic QA
(see their Appendix D therein). For prompts and other implementation details pertaining to baselines, see
Appendix D and Appendix A.
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Table 1 Performance on expert domains. SimpleWikiQA tests general tail knowledge, while FinanceBench focuses on
domain-specific knowledge. The info. subset of FinanceBench consists of questions which pre-dominantly test for
information-extraction, while all corresponds to the performance on the whole set of questions.

Model / Method SimpleWikiQA FinanceBench
Model Grader info. all

Llama 3.1 8B Base 7.42 3.93 6.00
> repeat 15.92 18.43 10.49
> paraphrase 25.74 43.87 17.64
> synth QA 47.87 44.23 17.16
> Active Reading (task-agnostic) 63.33 66.18 26.83
> Active Reading (task-specific) 66.25 61.49 25.16
> paraphrase + synth QA + AR 66.66 64.45 26.12

> gold context (Llama 3.1 8B Base) 65.85 84.71 44.36
> gold context ceiling (Llama 3.1 70B Instruct) 90.55 92.49 57.43

For the main experiments in this section, we fine tune the Llama3.1 8B base model for 20,000 steps. We fix
the number of tokens generated for each baseline to ∼ 4 billion words. During training, we mix in 10% of
pre-training data from DCLM (Li et al., 2024) to prevent model degradation. For full training details, see
Appendix A.

Results are presented in Table 1. We evaluate the answers of the models using GPT-4o (version 2024-06-01 ).
Compared to the base model performance (Llama 3.1 8B Base), finetuning on the raw documents (repeat)
provides only small gains in downstream QA performance. Training with data augmentations like paraphrase
and synthetic question-answer (synth QA) provides some improvements. Active Reading leads to the strongest
factual recall performance on both SimpleWikiQA and FinanceBench, even matching the gold context baseline
on SimpleWikiQA, where the base model is provided with the documents in context. On FinanceBench,
despite good performance on the information extraction subset, there is still a substantial gap with the gold
ceiling on the overall benchmark, indicating that on questions that require additional reasoning, in-context
processing still outperforms our purely parametric method.

In Figure 2, we show the scaling trends of each method with respect to the size of the generated data up to 4
billion words. This figure confirms that Active Reading outperforms other methods across data scales, and
maintains a stronger scaling trend, likely due to higher data diversity. In particular, paraphrasing saturates
quickly, likely due to the limited number of ways a model can find to paraphrase a particular document.
While synth QA demonstrates strong performance at smaller scales, it also plateaus as we scale the number of
synthetic tokens.

4.2 Fact Learning At Scale

How does Active Reading scale as we increase the size of the corpus of knowledge we want the model to
internalize? With a sufficiently scalable approach, one could imagine integrating Active Reading into large
scale pre-training or mid-training training pipelines, with the hope of mastering domains with large knowledge
corpora (e.g. all medical research) or making base models more factually consistent on a wide set of domains.

To this end, we apply Active Reading on the entire Wikipedia, generating 1 trillion tokens by augmenting 6
million articles. Training on such a large set of (synthetic) data comes with its own challenges, some of which
we go into in the next section.

4.2.1 Scaling Laws for Fact Learning with Synthetic Data

The SimpleWikiQA reference document set is a subset of Wikipedia, covering only about 0.1% of all documents.
When we start expanding this set with more Wikipedia documents in our Active Reading training set, we
unsurprisingly see declines in SimpleWikiQA performance. As the pool of documents gets larger, recall of
specific facts decrease. This problem is analogous to scaling issues faced by dense (Piktus et al., 2022) and
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Figure 2 Scaling trends with respect to the number of generated words for each method. While baseline data
augmentation strategies like paraphrasing and synthetic QA generation plateau in performance as we scale the amount
of synthetic data, Active Reading leads to continued gains in downstream QA accuracy up to 4B generated words.

generative (Pradeep et al., 2023) retrieval models. In Figure 3, we expand our training set with 4x and 16x
more Wikipedia documents and see that the degradation of performance is substantial, even at this moderate
scale (less than 2% of Wikipedia documents).
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Figure3 Effect of distractors in a fine-tuning set-
ting. Expanding the set of Wikipedia documents
4x and 16x leads to substantial degradation of
performance on SimpleWikiQA.

We find that two major modifications to our training setup
greatly improve the scaling behaviour. First, we modify hyper-
parameters to more closely resemble (continued) pre-training
rather than fine-tuning, by greatly increasing the learning rate
(from 1e − 5 to 3e − 4). Second, we increase the weight of
pre-training data in our data mix.

First, we hypothesized that with the typical learning rates
used for fine-tuning (as in the previous section; Figure 3), the
model struggles to allocate enough capacity to learn new facts
at scale. Increasing the learning rate forces the model out of
its local minima, creating more elasticity for learning. How-
ever, the larger learning rate also “breaks” previously learned
capabilities, causing decreased performance on guardrail tasks.
To encourage the model to recover previous capabilities, we
increase the weight of pre-training data in the data mix. In
Figure 4, we plot scaling laws as we scale up the data size
with these changes. We continue training from Llama-3.1-8B
on a data mix of Active Reading-augmented SimpleWikiQA
documents (a subset of Wikipedia documents), Active Reading-augmented Wikipedia, and generic pre-training
data. We keep the mixing ratio of augmented Wikipedia and pre-training data 1:1 and decrease the relative
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(b) Scaling behavior on NaturalQuestions (guardrail task).

Figure 4 Continued pre-training as we decrease the proportion of SimpleWikiQA training data from 80% to 2.5% by
scaling up the amount of Active Reading Wikipedia and pretraining data. We compare the finetuning baseline (Finetune
with lr=1e-5, 100% Active Reading SimpleWikiQA data) against different amounts of Active Reading-augmented
SimpleWikiQA, Active Reading-augmented Wikipedia, and pretraining data with a higher learning rate (3e-4). We
keep the number of steps on augmented SimpleWikiQA fixed at 5000 but increase the relative amount of augmented
Wikipedia and pretraining data, so that the proportion of SimpleWikiQA varies from 80% to 2.5%. Surprisingly, when
we increase the relative amount of pretraining data, we not only recover guardrail performance, but also recover the
original performance on SimpleWikiQA despite doing the same number of steps on this data.

weight of augmented SimpleWikiQA, so that the relative proportion of SimpleWikiQA data varies between
80% (mostly SimpleWikiQA) to 2.5% (mostly augmented Wikipedia and pre-training data). For the largest
scaling run, we do a total of 200k steps with 2.5% augmented SimpleWikiQA (5k steps), 48.75% augmented
Wikipedia (97.5k steps), 48.75% pre-training data (97.5k steps). To keep the number of gradient steps we do
on SimpleWikiQA constant, we increase the total number of steps as we decrease the relative proportion of
SimpleWikiQA. The detailed configurations, details on training dynamics, and performance arc on guardrail
metrics can be found in Appendix B.

As seen in Figure 4b, increasing the relative amount of pre-training data recovers guardrail performance on
NaturalQuestions(Kwiatkowski et al., 2019), a Wikipedia-based question answering benchmark. Surprisingly,
we also recover performance on our target task of SimpleWikiQA, even as we scale down the relative proportion
of augmented SimpleWikiQA training data. The poorly performing intermediate checkpoints still output
well-formed and reasonable incorrect answers (e.g. when asked “Who received the IEEE Frank Rosenblatt
Award in 2010?”, the 40% model responds “geoffrey hinton,” an award winner for another year mentioned in
the document). This suggests that the typical explanation of catastrophic forgetting of underlying model
capabilities does not fully account for the scaling behavior we observe. This poses an interesting question for
future work as to why mixing in pre-training data is beneficial for learning, which we discuss in Section 6.

4.2.2 Training aWikipedia Expert

Based on these scaling experiments, for our final model we train for 4 epochs over 1T tokens of Active
Reading-augmented Wikipedia data and 1T tokens of pretraining data, resulting in 8T tokens of training. We
do not upweight the SimpleWikiQA documents for this run. We refer to this model as Meta WikiExpert, and
evaluate it on 3 factuality benchmarks:

• SimpleQA (Wei et al., 2024), and adversarially collected QA benchmark which measures the ability of
models to recall tail facts from their pre-training data

• NaturalQuestions (NQ) (Kwiatkowski et al., 2019), a popular Wikipedia-based question answering

7



Table 2 Performance comparison across factual QA benchmarks: SimpleQA, Natural Questions (NQ) and TriviaQA
(TQA). Qwen and DeepSeek numbers are reported at https://github.com/deepseek-ai/DeepSeek-V3.

Model SimpleQA NQ TQA

Llama 8B 7.3 29.0 64.3
WikiExpert-8B 23.5 31.2 68.5

Qwen2.5 72B 9.1 33.2 71.9
DeepSeekV2 236B 10.2 38.6 80.0
Llama 405B 17.1 41.5 82.7
DeepSeekV3 671B 24.9 40.0 82.9

benchmark which covers a more natural distribution of facts

• TriviaQA (Joshi et al., 2017), a question answering dataset sourced from trivia websites

We summarize results for each benchmark in Table 2. For tail-fact recall as measured by SimpleQA, we
see that WikiExpert improves over it’s base model by 222% (7.2 → 23.5), outperforms much larger models
including the 236 billion parameter DeepSeekV2 and the 405 billion parameter Llama 3.1 models, and is
competitive with the state-of-the-art DeepSeekV3 (671B) model. On non-adversarial factual QA benchmarks,
WikiExpert also improves over its base model (7.6% on NQ and 6.5% on TQA), approaching the performance
of a SoTA 72B model. These results suggest that Active Reading is a scalable approach for learning knowledge
and has the potential to be useful more broadly in pre-training or mid-training pipelines.

5 Analysis
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Figure 5 Coverage of n=100 SimpleWikiQA answers in
data synthesized by different methods. Most questions are
answerable after generating 75 chunks for all methods.
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Figure6 Diversity of data synthesized by different methods,
measured with self-BLEU between synthetic data docu-
ments for the same source document. We observe that
the more effective methods generally exhibit higher data
diversity.

5.1 Understanding Active Reading Data

What accounts for the difference between data generated by Active Reading and those generated by other
synthetic data generation methods—i.e., why is it so much more effective to learn with Active Reading?

First, we investigate whether different methods differ in their coverage of the answers in SimpleWikiQA.
One hypothesis for why Active Reading is more effective is that generating long-form synthetic documents
incorporates knowledge from the source documents more comprehensively, whereas methods like synthetic
QA may only help the model to answer a test question correctly if it happens to generate the exact question
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Table 3 Impact of scaling size of the trained model and data-generating model.

Model SimpleQA

Llama 8B Base 7.42
trained with 8B-generated data 66.25
trained with 70B-generated data 62.26

Llama 70B Base 75.76
trained with 8B-generated data 71.52
trained with 70B-generated data 77.14

during data generation. We sample a subset of 100 SimpleWikiQA questions and ask a Llama 3.1 70B Instruct
model to judge whether the question is answerable from each synthetic document chunk generated from the
source document for that question. In Figure 5, we plot the fraction of answerable questions (i.e. at least
one document contains the answer) as we increase the number of synthetic documents, corresponding to
training with more synthetic tokens. Synthetic QA data exhibit the highest coverage, despite underperforming
Active Reading. Generally, the differences between methods are small, and most questions are answerable
after generating 75 document chunks (corresponding to approximately 1M to 2M total generated words on
Figure 2). Therefore, we conclude that the differences between the methods are not primarily accounted for
by coverage of the target answers.

We hypothesize that Active Reading data is more effective because it is more diverse, which may improve
knowledge incorporation and learning. We quantify the diversity of the data by measuring Self-BLEU (Zhu
et al., 2018), considering each synthetic document as the hypothesis and all other synthetic document as the
references and averaging these BLEU scores. Lower self-BLEU scores indicate more diversity (less n-gram
overlap) between different synthetic data samples for the same source document. In Figure 6, we compare
self-BLEU for 100 sampled source documents as we increase the number of synthetic words generated. As we
generate more synthetic tokens, we expect to see self-BLEU scores increase, as it becomes more likely that we
generate repetitions of the same way to study the content. Even with few synthetic augmentations per source
document, data generated from synthetic QA and paraphrasing is highly self-similar, while data generated
by both Active Reading methods is more diverse. Task-specific Active Reading is also more diverse than
task-agnostic, aligning with the improved scaling properties that we observe.

5.2 ScalingModel Size

We investigate the impact of scaling model size on performance by additionally training and generating
data with 70B models. We show the performance of task-specific Active Reading in Table 3 as we scale
model size. Surprisingly, training the 8B model with data generated by the 70B model does not outperform
using self-generated data, despite intuitions that 70B-generated data may be more diverse or higher quality.
One hypothesis is that training on data that is closer to the model’s existing comprehension capabilities
and knowledge leads to better learning (i.e. not too challenging or out-of-distribution for the model), and
perhaps that it may important to generate the data from the exact model itself. We leave these hypotheses as
directions for future work to investigate.

6 Discussion & Conclusion

6.1 Understanding the role of pretraining data in knowledge acquisition.

In Figure 4, we found that mixing in a large amount of pretraining data was necessary to recover performance
on SimpleWikiQA. We kept the number of steps on SimpleWikiQA fixed, decreasing the proportion of this
data as we increase the pretraining weight. This poses a question for future work as to why mixing in
pre-training data helps with knowledge acquisition: is it because we recover some underlying capability of
the base model that is important for task performance, or because some feature of diverse pre-training data
induces more “plasticity,” making the model more amenable to absorbing or organizing new knowledge (e.g.,
by reversing knowledge entropy decay (Kim et al., 2024)?). By understanding what feature of pre-training
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leads to robust knowledge acquisition may enable practitioners to train models that master any domain of
interest, and may be a key milestone towards lifelong learning settings where the model continually acquires
new knowledge without catastrophic forgetting.

6.2 Parametric knowledge vs. retrieval-augmented generation.

A common approach to improving factuality, particularly on rare domains and tail queries, is retrieval
augmented generation (RAG). In this work, we have refrained from directly comparing with RAG systems,
opting to stay within the closed-book setting. We do provide “gold-context” baselines, which would reflect the
performance of a RAG system with an oracle retrieval. Modern RAG systems are reported to perform close
to this oracle baseline on the benchmarks we evaluated on in this work. Therefore our results suggest that
there is still a substantial gap between the RAG setting and what can be achieved in the closed-book setting.

Nevertheless, there are numerous advantages to improving parametric model knowledge (vs. using an external
knowledge index). Practically, RAG pipelines are considerably more complex, with larger storage cost, higher
memory and compute requirements (due to longer context demanded by additional context) and higher latency,
due to the need to query an external index. In the long term, storing knowledge natively in the model’s
parameters may provide generalization advantages, as the model can relate different pieces of knowledge in its
parameters. This is particularly apparent for complex or indirect queries, where simple retrieval augmentation
falls short (Yang et al., 2024a). We believe integrating our method with more powerful reasoning models can
make progress in these areas.

6.3 Scaling up Active Reading as a training paradigm.

Our scaling results suggest that Active Reading has potential to be scaled up as a standard pre-training
or mid-training procedure. One could imagine augmenting training data with Active Reading by default—
ensuring the model always “studies” new information in diverse enough contexts for learning, and providing a
solution to concerns that pre-training is increasingly limited by data scale (Villalobos et al., 2024).

What would be needed to get to 100% recall on all facts (that we care about) in the pre-training data?
Whether or not LLMs can eventually replace search engines seems to be a recurring question (Tay et al., 2022;
Bevilacqua et al., 2022). Recent work (Lu et al., 2024a) has suggested that this is an altogether infeasible
goal. The capacity of LLMs to store facts with respect to the number of parameters remains an open area of
research. Architectures which allow scaling this capacity without increasing FLOPs would be of particular
interest in studying these scaling laws (Shazeer et al., 2017; Berges et al., 2024).
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Appendix

A Training details

The training runs from Table 1 and Figure 2 had the following hyperparameters: Trained for 20,000 steps,
total batch size of 128 and sequence length of 4,096 with a constant learning rate of 10−5. We report the
performance of the best checkpoint after 20,000 steps, evaluating every 2,000 steps.

The training data for the repeat method is the raw documents. For the scaling experiments, we generated
approximately 4 billion words for each method. The actual word count was: 3,486,858,220 for paraphrasing,
3,694,833,139 for synthetic QA, 4,000,262,090 for active reading task-agnostic and 4,000,330,802 for active
reading task-specific. For Figure 2, each dataset was subsampled from 4B generated words to the indicated
number of words. In all runs, we mix in 10% of pre-training data from DCLM (Li et al., 2024), although
we did not find it strictly necessary to prevent model degradation at the scale of these experiments and
performance improves on SimpleWikiQA by a couple of percentage points if we do not mix pre-training data.

B Scaling Law Training Configurations

For Figure 4, we use the following hyperparameters for each method. We vary the proportions of Active
Reading-augmented SimpleWikiQA documents, Active Reading-augmented Wikipedia documents, and generic
pretraining data by varying the mixing weights. For all methods, we use a sequence length of 4096 and batch
size of 4,194,304 tokens.

Finetune 80% 40% 20% 10% 5% 2.5%

Learning Rate 1e-5 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Weight AR SimpleWikiQA 100 755.2 125.87 47.20 20.98 9.94 4.84
Weight AR Wikipedia 0 94.4 94.4 94.4 94.4 94.4 94.4
Weight Pretraining 0 94.4 94.4 94.4 94.4 94.4 94.4
% AR SimpleWikiQA 100% 80% 40% 20% 10% 5% 2.50%
% AR Wikipedia 0 10% 30% 40% 45% 47.50% 48.75%
% Pretraining 0 10% 30% 40% 45% 47.50% 48.75%
# Steps on SimpleWikiQA 5000 5000 5000 5000 5000 5000 5000
# Total Steps 5000 6250 12500 25000 50000 100000 200000
Total Tokens 2.10E+10 2.62E+10 5.24E+10 1.05E+11 2.10E+11 4.19E+11 8.39E+11

C Performance ofWikiExpert on guardrail tasks

Model OBQA PIQA HellaS. Winog. ARC-e RACE-m MMLU BOOLQ GSM8k MBPP

WikiExpert 8B 44.4 81.3 80.5 75.1 78.4 64.7 65.5 83.1 48.6 39.4
LlaMA3.1 8B 45.8 81.0 80.7 74.3 81.5 65.3 66.4 83.4 54.4 48.0

Table 4 Benchmark performance of WikiExpert 8B and Llama3.1 8B on guardrail tasks

D Generation prompts

For all generation, {chunk} is replaced by the corresponding document that we are trying to augment.

D.1 Paraphrasing
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Figure 7 Drop and recovery of performance for guardrail task HellaSwag, mirroring the drop and recovery on
NaturalQuestions seen in Figure 4b.

Use the in fo rmat ion in the f o l l ow i ng sn ippet to wr i t e an in f o rmat i ona l paragraph in your own
words . Make sure to cover a l l the in format ion , i n c l ud ing a l l e n t i t i e s , dates and p l a c e s in
the o r i g i n a l document . Do not add add i t i o n a l mate r i a l . D i r e c t l y output the paragraph and

nothing e l s e , e . g . do not say "Here ’ s the paragraph " .

<document>
{chunk}
</document>

D.2 Synthetic Question Answer
Generate a comprehensive l i s t o f a l l que s t i on s and correspond ing answers that can be
answered from th i s document .
Make sure a l l e n t i t i e s ( i n c l ud ing people , dates and l o c a t i o n s ) are covered .

Output one quest ion - answer pa i r per l i n e , answer sepe ra ted from the ques t i on by a s i n g l e
space . Quest ions should be unambiguous , have proper c a p i t a l i z a t i o n and a ques t i on mark . The
answers should be as c onc i s e as p o s s i b l e . Do not output anything add i t i ona l , only output

quest ion - answer p a i r s ( do not s t a r t with "Here are the que s t i on s and . . . " ) .

Example l i n e s o f output :
What i s the nat ive range o f the European fan worm? The nor thea s t e rn At l an t i c Ocean , the
North Sea and the Mediterranean Sea .
What c oun t r i e s are in the European fan worm ’ s na t ive range ? The United Kingdom , I r e l and ,
France , Spain , Portugal , I t a l y , Greece , and Turkey .
I s the European fan worm found in South America ? Yes .
( . . . )

<document>
{chunk}
</document>

D.3 Active Reading

For active reading, in addition to {chunk} the model is given a strategy. In the following prompt, {strategy}
is replaced an active reading strategy. The prompts used to create the strategy are in Section D.3.1 and D.3.2

Here ’ s a l e a rn i n g s t r a t e gy :
{ s t r a t e gy }

Apply t h i s s t r a t e gy to the f o l l ow i n g document :
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<document>
{chunk}
</document>

D.3.1 Task Agnostic strategy generation

Consider the f o l l ow i n g document . What are some s t r a t e g i e s s p e c i f i c to t h i s document that I
can use to he lp me l e a rn and remember a l l o f the in fo rmat ion conta ined ? Use markdown and
p r e f i x each s t r a t e gy with ##

<document>
{chunk}
</document>

D.3.2 Task Specific strategy generation

I need to study f o r a t r i v i a compet i t ion . Generate a l i s t o f que s t i on s that cover s every
p i e c e o f in fo rmat ion in t h i s document . Af te r gene ra t ing a l l the ques t ions , f o r each quest ion
, generate a gene ra l study s t r a t e gy or prompt that would help me memorize that kind o f
in fo rmat ion ( without f o cu s i ng too much on the p a r t i c u l a r ques t i on ) . The prompt should
ou t l i n e a d e t a i l e d s e t o f g u i d e l i n e s or step - by - s tep f o r how I should r ehea r s e or e x e r c i s e
the in fo rmat ion to most e f f e c t i v e l y i n t e r n a l i z e i t .

Output a l l the ques t ions , then <s t a r t_s t r a t e g i e s >, then a l l the s t r a t e g i e s . P r e f i x each
s t r a t e gy with a ##.

<document>
{chunk}
</document>
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