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Many AI models trained on natural images develop representations that resemble those of the human
brain. However, the exact factors that drive this brain-model similarity remain poorly understood.
In order to disentangle how the model architecture, training recipe and data type independently
lead a neural network to develop brain-like representations, we trained a family of self-supervised
vision transformers (DINOv3) that systematically varied these different factors. We compare their
representations of natural images to those of the human brain recorded with both ultra-high field
functional magnetic resonance imaging (fMRI) and magneto-encephalography (MEG), providing
high resolution in spatial and temporal analyses. We assess the brain-model similarity with three
complementary metrics focusing on overall representational similarity, topographical organization,
and temporal dynamics. We show that all three factors – model size, training amount, and image
type – independently and interactively impact each of these brain similarity metrics. In particular, the
largest DINOv3 models trained with the largest amount of human-centric images reach the highest
brain-similarity scores. Importantly, this emergence of brain-like representations in AI models follows
a specific chronology during training: models first align with the early representations of the sensory
cortices, and only align with the late and prefrontal representations of the brain with considerably
more training data. Finally, this developmental trajectory is indexed by both structural and functional
properties of the human cortex: the representations that are acquired last by the models specifically
align with the cortical areas with the largest developmental expansion, the largest thickness, the least
myelination, and the slowest timescales. Overall, these findings disentangle the interplay between
architecture and experience in shaping how artificial neural networks come to see the world as humans
do, thus offering a promising framework to understand how the human brain comes to represent its
visual world.
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A. We compare the activation of DINOv3, a state-of-the-art self-supervised computer vision model trained on natural
images, to the activations of the human brain in response to the same images. B. To understand the factors that
make DINOv3 more-or-less similar to the brain, we train from scratch a variety of models on different image domains
(pictures from human-centric cameras, satellite images or biological data), and with a varying amount of data. C.
We compare each model to both functional Magnetic Resonance Imaging (fMRI, with high spatial resolution) and
Magneto-Encephalography (MEG, with high temporal resolution) by computing the overall linear similarity of their
representations (encoding score) and the similarity of their hierarchical organization (spatial and temporal scores).1
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1 Introduction

Brain-AI similarity. Deep learning has transformed
computer vision over the past decade. State-of-the-
art deepnets now achieve human-level or superior
performance across a variety of tasks including classi-
fication (Siméoni et al., 2025; Tschannen et al., 2025),
object detection (Redmon et al., 2016), semantic seg-
mentation (Cheng et al., 2022), and medical image
analysis (Esteva et al., 2017; Lorenci et al., 2025).

Surprisingly, the internal representations of these
deep learning models appear to be related to those of
the human brain: multiple electrophysiology (Yamins
et al., 2014a; Yamins and DiCarlo, 2016; Schrimpf
et al., 2018; Zhuang et al., 2021), functional Magnetic
Resonance Imaging (Eickenberg et al., 2017; Millet
et al., 2023; Doerig et al., 2025; Tang et al., 2023; Niko-
laus et al., 2024), magneto-encephalography studies
(Cichy et al., 2016; Seeliger et al., 2018; Caucheteux
and King, 2022; Banville et al., 2025) have now con-
sistently shown that the activation patterns of these
models linearly map onto those of the cortex in re-
sponse to the same images.

Theoretical importance. Understanding the princi-
ples at the origin of this representational similarity
between AI models and the human brain is of primary
importance, to understand the laws of information
processing that may be universally shared across neu-
ral networks. Indeed, several lines of research (Hasson
et al., 2020; Huh et al., 2024; van Rossem and Saxe,
2024; Cagnetta et al., 2024; Mehrer et al., 2020; Mah-
ner et al., 2025; Simkova et al., 2025) suggest that
there exists universal principles that constrain the
structure and emergence of representations in neural
networks.

Challenge: Unclear causes. However, the precise
factors responsible for the representational similar-
ity between computer vision models and the human
remain currently unclear. This gap of knowledge is
partly due to the fact that previous studies primarily
focused on pretrained networks, that simultaneously
vary in training objectives, architectures and data
regime (Conwell et al., 2021; Rajesh et al., 2024). How
each of these factors independently and interactively
lead a model to converge to brain-like representations
thus remains unclear.

To address this issue, we systematically train a vari-
ety of DINOv3 models (Siméoni et al., 2025), while
independently varying their size, data type and train-
ing quantity. DINOv3 has the advantage of being
self supervised, and can thus be trained on different

types of naturalistic but non-human centric and non-
labelled data such as satellite images (Siméoni et al.,
2025) and biological images (Lorenci et al., 2025).

Here, we compare a variety of DINOv3 models to
the brain responses to images, as recorded with ul-
tra high field (7T) functional MRI and magneto-
encephalography (MEG) to get a high spatial and
temporal resolution of the cortical representations,
respectively. For this, we implement three similarity
metrics. First, we use a standard linear mapping
metric, often referred to as encoding score (Naselaris
et al., 2011), which evaluates the linear correspon-
dence between the representations of two systems.
Second, we evaluate, with fMRI, whether this lin-
ear mapping follows a similar spatial organization,
whereby the first and last layers of the model would
best match the sensory visual and prefrontal cor-
tices, respectively. Finally we evaluate, with MEG,
whether this mapping follows a similar temporal or-
ganization, whereby the first and last layers of the
model best match the early and late MEG responses,
respectively.

2 Method

2.1 Approach

We aim to identify the factors that make modern
computer vision models process and represent natu-
ral images similarly to the human brain. Following
previous work (Kriegeskorte et al., 2008; DiCarlo
et al., 2012; King and Dehaene, 2014), we rely on the
definition of "representation" as "linearly readable
information". We employ the encoding analysis proce-
dure introduced by Naselaris et al. (2011) to evaluate
the representational similarity between an AI model
and brain recordings. This linear model seeks to find
whether there exists a linear mapping W ∈ Rm×d

that reliably predicts m-dimensional brain activity
(Y ∈ Rn×m) given the d-dimensional model activa-
tion (X ∈ Rn×d) in response to n images:

argmin
W

{
∥Y −XW∥22 + λ∥W∥22

}
with λ the ridge regularization parameter.

For this, we use scikit-learn’s RidgeCV (Pedregosa
et al., 2011) and 10 logarithmically-spaced regular-
ization λ in between 100 and 108, and a 5-split cross-
validation.
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2.2 Metrics

Encoding score Given two representations X and Y ,
we quantify their overall representational similarity
by computing, for each split separately and then av-
eraged, an encoding score with a Pearson correlation
score R ∈ [−1, 1]:

R(d) = corr(WXtest, y
(d)
test)

For clarity, we can either summarize the average
R score across brain dimensions, or plot them all
separately to get information about where brain acti-
vations are linearly predictable from the model. In
some analysis, we use R̃ = R/max(R), the normal-
ized encoding score, which peaks at 1.

Spatial score To assess whether a model organized
its processing hierarchy similar to that of a brain
with a spatial score, we proceed in four steps. First,
we evaluate an encoding score for each dimension
d of the brain, and from 22 layers k ∈ [0, 1] of the
model, where 0 is the first layer, and 1 is the last
layer. Second, we identify the layer that best predicts
this brain response: k∗. Third, we approximate the
hierarchical position d∗ of each brain region, as its
Euclidean distance from V1 in the standardized MNI
space, in mm. Note that this is a coarse approxima-
tion, as the actual cortical hierarchy does not strictly
follow such distances, and may be considerably more
complex (Felleman and Van Essen, 1991). Finally, we
compute the spatial score as the correlation between
d∗ and k∗. For clarity we restrict these analyses to
regions of interest.

Temporal score To evaluate an analogous metrics
from MEG recordings, we estimate a temporal score:
i.e. the correlation between the model layers k and
t∗ – the time at which each layer of the model is
maximally predictive of brain activity. To limit noisy
estimate, we average of the temporal window during
which R̃k ≥ 95% where R̃k is the normalized brain-
score of the layer k.

2.3 Models

Architecture. DINOv3 is a state-of-the-art self su-
pervised learning vision transformer model trained
on 1.7 billion natural images (Siméoni et al., 2025).
We train, from scratch, a selection of eight variants
of this DINOv3 model to ensure a comprehensive
evaluation ranging through architectures, training
scale and data types.

First, we leverage the DINOv3-7B, trained across 1e7
checkpoints. We analyze comparatively DINO Small,

Base, Large and Giant, after training for 5e6 training
steps on 1.7B images with the same configuration.
Additionally, we train and analyze comparatively
3 versions of the DINO Large architecture: DINO
Human, DINO Cellular and DINO Satellite. These
models were configured similarly and trained, from
scratch, over 5e6 steps on 10M images; they only
differ in the type of images with which they were
trained.

2.4 Datasets.

Images. DINOv3-7B and Dino Human were trained
on the same human-centric data. This dataset was
constructed from a large pool of web images obtained
from public Instagram posts, street views and Ima-
geNet (Deng et al., 2009). These images went through
platform-level content moderation to prevent harm-
ful contents, in order to obtain an data pool of ap-
proximately 17 billion images. This data pool was
curated following the procedure in (Siméoni et al.,
2025) to obtain a large-scale pre-training dataset of
1.7 billion images. To compare models trained with
different types of images, we re-trained three distinct
large DINOv3 with one of three types of natural im-
ages – human-centric, cellular and satellite images –
matched in terms of quantity (10M images each).

Human-centric images correspond to the dataset used
for training the original DINOv3 model. For our com-
parative analyses on human-centric, cellular and satel-
lite images, we randomly selected from this dataset
of 1.7 billion images a subset of 10 million images.

Cellular images correspond to the ExtendedCHAMMI
dataset, which consists of fluorescent microscopic im-
ages of cells revealing cellular structures into different
channels (e.g. nucleus, mitochondria, microtubules,
etc.) (Lorenci et al., 2025).

Satellite images correspond to a random subset of
the SAT-493M dataset, which consists of approxi-
mately 500 million sampled randomly from Maxar
RGB ortho-rectified imagery at 0.6 meter resolution
(Siméoni et al., 2025).

Magnetoencephalography (MEG). We use the
THINGS-MEG dataset (Hebart et al., 2023a), which
consists of MEG recordings from four healthy partic-
ipants viewing 22,500 naturalistic images, represent-
ing a total of 1,800 object concepts (Hebart et al.,
2023b). Images were presented during 1.5 s, while
participants maintained fixation. To limit the impact
of noise we apply a bandpass filter between 0.1 and
20 Hz, down-sample the signal at 30 Hz, time-lock the
brain responses to individual words, and epoch the
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Model Parameters Layers Batch Size Images
DINOv3 7B 40 4096 Human centric 1.7B
DINOv3 Giant 1.1B 32 4096 Human centric 1.7B
DINOv3 Large 300M 24 4096 Human centric 1.7B
DINOv3 Base 86M 12 4096 Human centric 1.7B
DINOv3 Small 21M 12 4096 Human centric 1.7B
DINOv3 Human 300M 24 2048 Human centric 10M
DINOv3 Cellular 300M 24 2048 Cellular 10M
DINOv3 Satellite 300M 24 2048 Satellite 10M

Table 1 Specifications of DINOv3 model variants.

corresponding neural data between -0.5 s and +3 s
relative to word onset using MNE-Python (Gramfort
et al., 2013). Finally, we z-score MEG signals across
words, for each MEG channel and each time point
independently.
time ROIs. We study individually three 5s-long time
ROIs across the processing time of an image, to study
the relative impact of each layer in the encoding of
the cognitive process at play during that time. These
time windows span .08-.13s, .13-.18s and .5-.55s.
T layer
max . To study the dynamics of each layer, we com-

pute T layer
max , the mean of the temporal window during

which R̃layer ≥ 95% where R̃layer is the normalized
brain-score of each layer.

Functional Magnetic Resonance Imaging (fMRI).
We leverage the Natural Scenes Dataset (Allen et al.,
2022), a 7 tesla fMRI dataset which consists of record-
ings from eight subjects, each observing a total of
10 000 natural scenes during 4 seconds each, while
performing a continuous recognition task. We encode
the BOLD signal on the fsaverage surface at 5.5 s
after image onset. This timestep corresponds to the
peak of decoding of the image from the BOLD signal.

Regions of interest (ROIs). For clarity, we select a
representative set of 15 regions of interest (ROIs)
spanning the anatomy of the cortex, among the re-
gions encoded with an averaged FDR-corrected t-test
p < 0.01, among voxels forming the ROI). These
ROIs are distributed from posterior-occipital lobe to
prefrontal cortex. To investigate the cortical proper-
ties that index representational similarity, we analyze
our results in light of four cortical maps, made avail-
able through Neuromaps (Markello et al., 2022):
Cortical expansion (Hill et al., 2010) reflects the dif-
ference of cortical surface area between infants and
adults.
Myelin concentration is estimated from the T1w/T2w
ratio in the HCP S1200 dataset (Van Essen et al.,
2013).
Intrinsic timescales are derived from mapping elec-
tromagnetic networks (measured through MEG) to

hemodynamic network (measured through fMRI) and
indexing the temporal integration window of each re-
gion (Shafiei et al., 2021).
Cortical thickness is estimated by measuring the dis-
tance between "white" and "pial" Freesurfer (Fischl,
2012) surfaces from structural MRI in the Human
Connectome Project (Van Essen et al., 2013).

2.5 Statistics

fMRI voxels. We only plot and analyze voxels thresh-
olded with p < 0.01 after a FDR-corrected t-test.
Across subjects. To evaluate statistical estimates
across subjects, we perform a Wilcoxon test using
scipy (Virtanen et al., 2020). To correct for mul-
tiple comparison, we apply a false discovery rate
correction, as implemented in MNE-Python (Gram-
fort et al., 2013).
Half times. To analyze the speed of convergence
of DINO models during training, we estimate the
‘half time‘: the relative training step at which the
similarity metric reaches half of its final value.

3 Results

3.1 DINOv3-brain similarity

Encoding score. To verify that DINOv3 generates
representations of natural images that are similar
to those of the brain, we perform a cross-validated
encoding analysis by evaluating the linear map-
ping between the activations of DINOv3 and of
the brain in response to the same images. Func-
tional MRI results show that DINOv3 has represen-
tations that primarily peak in the visual pathway
(R=.45± .039 - SEM across subjects), mostly in the
lateral-occipitotemporal (MT: R=.34± .026) and ven-
tromedial visual cortex (VMV2: R=.28± .025), Fig
2A.

MEG results show that this similarity rises around 70
ms after image onset (R=.09± .017, Fig 2B) and re-
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Figure 2 Brain-DINOv3 similarity. A. Similarity between DINOv3 embedding and the fMRI responses to corresponding
images as estimated with a Pearson Brain-Score, and fdr-corrected-thresholded at p < 0.01 (left: medial view of left
hemisphere, top right: bottom view; bottom right: lateral view of right hemisphere). B. Similarity between DINOv3
embedding and MEG responses to the corresponding images. The error bar indicates the standard error of the mean
across 4 subjects watching still images.

mains significantly above chance level up to 3 seconds
after image onset (p < 1e-3).

These results are consistent with past studies (Eick-
enberg et al., 2017; Schrimpf et al., 2018; Tang et al.,
2025) and additionally show that areas typically dis-
carded from the visual pathways, e.g. prefrontal
regions BA 44, BA 45, IFSa and IFSp, also present
activations that are linearly predictable from the AI
embedding.

Spatial score. Does the hierarchy of representations
of DINOv3 correspond to the visual hierarchy in the
human brain? To address this question, we estimate
the "spatial score". The fMRI results confirm that
the lowest layers of DINOv3 tend to best predict the
lower-level sensory regions such as V1, whereas the
highest layers tend to best predict higher-level regions
of the brain, such as the prefrontal cortex (Fig 3A, C,
E). A Pearson correlation between (i) the Euclidean
distance between each brain region and V1, and (ii)
the best encoding layer is highly significant, R=0.38,
p < 1e−6 (Fig 3E).

Temporal score. To complement this fMRI "spatial
score", we evaluate an MEG "temporal score". For
this, we identify the layer which best predicts each
time ROIs relative to image onset in the MEG (Fig
3B). The results show a significant correlation be-
tween T layer

max and layers, hereafter referred to as the
temporal score (Fig 3B, D, F). The temporal score
R=0.96, p< 1e−12, shows that the first and last layers
of DINOv3 consistently align with the earliest and

latest MEG responses, respectively.

3.2 What factors lead DINOv3 to become
brain-like?

Impact of training. To clarify the emergence of
brain-like processes in DINOv3, we evaluate the en-
coding score, spatial score and temporal score at each
selected training step of DINOv3, and then summa-
rize their developmental speed with a “half time”:
i.e. the training step where half of the final score is
reached.

First, before training the encoding score reaches
R=.03± 2e−4, after training it ultimately converges
to R=.09± 5e−4. These R-scores are averaged across
voxels – the best voxel peaking at R=.45± .038(Fig
4A, B, E). The half time of the encoding score occurs
around 2% of the training, around 105 training steps
(i.e. 800 million images). Second, the temporal scores
emerge faster than brain-scores: with a half time
around 0.7% of the training, and a convergence at
R=0.96 (p< 1e−12). Finally, the spatial score reaches
its half time at 4% of the training and converges to
R=0.4 (p< 1e−6). Are these developmental trajec-
tories identical across temporal and brain regions of
interest ? To address this issue, we evaluate the same
analyses on specific regions or temporal windows of
interest. Functional MRI results show that low-level
visual regions (e.g. V1, V2) are marked by lower
half times than high-level prefrontal cortices (e.g.
IFSp, IFSa; Fig 5A,C). The correlation between half
time and anatomical location (coarsely defined as the
Euclidean distance to V1) is R=0.91, p< 1e−5. Sim-
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Figure 3 The representational hierarchy of DINOv3 corre-
sponds to the brain’s A. Voxel-wise best encoding layers
of DINOv3, FDR-corrected and thresholded at p < 0.01
(left: medial view of left hemisphere, top right: bottom
view; bottom right: lateral view of right hemisphere). B.
Dynamic brain-score across time between each layer of
DINOv3 and MEG responses to the corresponding still
images. C. Scaled brain-scores across layers for three re-
gions of interest across the cortex: V1 (up), Fusiform Face
Cortex (middle) and Broadmann 44 (down). Encoding
scores scores are scaled for each layer, by the maximal
encoding score of this layer among the 15 studied ROIs. D.
Scaled brain-scores across layers for three time windows of
interest during the processing of an image: .08-.12s (up),
.13-.18s (middle) and .5-.55s (down). Encoding scores are
scaled for each layer, by the maximal encoding score of
this layer across time. E. Plotting the correlation between
the best encoding layer for each region and the euclidean
distance of this region from V1, in mm. The Pearson cor-
relation is r = 0.38, p < 1e-6. Plotted regions are encoded
with FDR-corrected thresholding at p < 0.01. F. Plotting
the correlation between the best encoding layer for each
timestep and the T layer

max , in s. The Pearson correlation
is r = 0.84, p < 1e-5. Plotted regions are encoded with
FDR-corrected thresholding at p < 0.01.

ilarly for MEG, earlier windows (e.g. <200ms) are
marked by lower half times than late time windows
(e.g. >1,500 ms; Fig 5B,D). The correlation between
half time and temporal peak is R=0.84, p< 1e−5.
Overall, these results show that the brain responses
of the sensory and prefrontal cortices contain repre-
sentations of images that are acquired relatively early
and late in the training of DINOv3, respectively.

Impact of model size. Dino models of larger scale
appear to converge quicker and encode higher-level
ROIs more accurately. How does model size impact
convergence? Model size consistently leads to bigger
encoding scores at the end of training (RGiant =
0.107 > RLarge = 0.105 > RBase = 0.101 > RSmall =
0.096 with p < 1e−3), Fig 6B). Similar, although
noisier phenomena can be observed for spatial scores
and temporal scores (p < 1e−3), Fig 6A, B.

Does model size impact encoding scores similarly
across ROIs? Applying the same analysis for each
ROI separately (Fig 6C, D) shows that model size
primarily increases encoding of higher-level cortices
like BA44 and IFS as compared to visual cortices
like V1, V2. All models present this size-dependent
increased encoding significantly in higher-ROIs, only
the smallest ones in V1, V2 (p < 1e−3), Fig 6C, D.

Impact of image type. To assess how image types
influence the development of brain-like representa-
tions in a model, we trained, from scratch, three
distinct DINO models, each using one of three nat-
ural images datasets: satellite images, cell images
and classic (human-centric) images. We focus on
a single DINOv3 architecture (Dino Large), with a
fixed training length and training data quantity (10M
images) and have data type as the only varying factor.
Training improves encoding scores, spatial scores and
temporal scores for all image types (Fig 7A), sug-
gesting that these models learn visual features that
are universal across these different types of natural
images. However, these brain-similarity metrics are
lower for satellite and cell images than for human cen-
tric images, for encoding, spatial and temporal scores.
Interestingly, this difference is observed across most
regions of interest: e.g. both V1 (p < 1e−3) and IFSa
(p < 1e−3) are better encoded by a model trained
with human centric photos than other models. At the
end of training, Dino Human reaches a significantly
higher performance regarding brain-score, temporal
and spatial scores (p < 1e−3), Fig 7B. These results
might unravel from the fact that human centric im-
ages reflect visual input that brains are exposed to,
whereas satellite images and cell images are images
that brains have not been trained to process.

3.3 Link to cortical properties

Is the development of brain-like representations pre-
dicted by functional, structural and developmental
properties of the cortex? To explore this issue, we
evaluate the correlation between the representational
half time of encoding and four properties of the cor-
tex.
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Figure 4 A. fMRI and MEG encoding scores from an untrained DINOv3. B. Encoding scores for a DINOv3 trained at
68% of its training. C. Scores for an untrained DINOv3. Left. Best encoding layer for each voxel of each fMRI ROI.
Right. Relative encoding score for 10 representative layers of an untrained DINOv3 (0=first layer, 1=last layer). D.
Same as C for a DINOv3 trained at 68% of its training. E. Evolution of temporal, encoding and spatial scores as a
function of DINOv3’s training.
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Figure 5 Emergence of brain-like representations. A. Normalized brain encoding scores as a function of training for
each brain ROI. The dashed line indicates the 50% of the maximum encoding score for each region. B. Same as A
for MEG time region of interest. C. Half time for each brain region of interest. D. Half time for each time region of
interest. E. Correlation between half time of encoding score across training, and distance of each ROI from V1. F.
Correlation between half time of encoding score across training, and time position of the encoded cognitive process.
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Figure 6 Impact of model size. For inter-model comparisons, significance to p<1e−3 are represented by asterisks ∗. A.
Encoding (reds), spatial (purples), and temporal scores (greens) as a function of training and model size. Logarithmic
fits of scores across training. B. Scores on the final k=4e5 training steps. C. Brain ROIs. D. Encoding scores for each
ROI at the end of training.

Figure 7 Impact of image type. For inter-model comparisons, significance to p<1e−3 are represented by asterisks ∗. A.
Encoding (reds), spatial (purples), and temporal scores (greens) as a function of training and image type. B. Scores on
the final k=4e5 training steps. C. Brain ROIs. D. Encoding scores for each ROI at the end of training.
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Cortical expansion. First, we focus on the develop-
mental expansion of cortical regions. Using an atlas
comparing infant and adult cortical structures (Hill
et al., 2010), we found a strong positive correlation
(R=0.88, p < 1e−3) between half time and cortical
expansion (Fig 8A). This indicates that cortical areas
marked by greater developmental growth are also
those whose representations emerge later in the AI
model.

Cortical thickness. Second, we assess the correspon-
dence with cortical thickness, utilizing HCP S12000
estimates. Our results show a significant correlation
(R=0.77, p < 1e−2), suggesting that cortical areas
with larger cortical sheets exhibit longer half times
(Fig 8B).

Cortical dynamics. Third, the areas with the slow-
est intrinsic dynamics, as estimated from a source-
reconstruction of MEG activity, are also those that
tend to have the longest half times (R=0.71, p =
.022). This result directly echoes our MEG results
(Fig 5), whereby deeper layers of DINOv3 tend to be
associated with slower brain responses (Fig 8C).

Cortical myelin. Finally, this dynamic property ap-
pears linked to myelin concentration (Van Essen et al.,
2013). Myelin, which facilitates faster neuronal trans-
mission, demonstrated a strong negative correlation
with half time (R=-0.85, p-val =1e−3). This implies
that higher myelin concentration is associated with
shorter half times (Fig 8D).

In summary, these findings demonstrate a strong
predictive relationship between the speed at which
brain-like representations emerge in AI models and
various structural and functional characteristics of
the cortex, across development and once developed.

4 Discussion

Main findings. Understanding why artificial neural
networks develop representations that resemble those
in the human brain remains a fundamental challenge
to neuroscience and AI (Huh et al., 2024; Hasson et al.,
2020; Shen et al., 2025; Caucheteux and King, 2022).
While recent studies have documented brain–model
similarities across a wide range of architectures and
training paradigms (Conwell et al., 2022), the exact
factors that cause this convergence remain unclear.
Here, we independently manipulate three indepen-
dent factors – model size (from DINOv3 small to
giant), training length (from 0 to 1e7 steps on several
training sets of 10M and of 1.7B images) and image

type (human-centric, satellite images and biological
images) to test how each of them contributes to the
emergence of brain-like representations of natural
images. Our findings demonstrate that these three
factors all independently and interactively impact the
extent to which a self supervised model converges to
brain-like visual processing.

Nativism and empiricism. In particular, the
model–brain similarity increases consistently with
larger architectures, longer training, and more ecolog-
ically valid data. These results are consistent with an
increasing set of studies showing linearly aligned rep-
resentations of natural images (Yamins et al., 2014b;
Kriegeskorte, 2015; Schrimpf et al., 2018; Tang et al.,
2025; Thobani et al., 2025), with a hierarchy that
maps the functional organization of the visual cortices
(Eickenberg et al., 2017; La Tour et al., 2022), and dy-
namics that reflect the ordering of the model’s layers
(Seeliger et al., 2018; Cichy et al., 2016; Caucheteux
and King, 2022).

In addition to its factorial disentanglement, our study
provides additional contributions.
First, this model-brain alignment is not confined to
the visual pathways (Eickenberg et al., 2017; Schrimpf
et al., 2018; Tang et al., 2025) but extends into high-
level – multi-modal – regions of the cortex, including
the prefrontal cortex (although see e.g. Solomon
et al. (2024) for a low-dimensional set of image fea-
tures identified in the prefrontal lobe).
Second, our independent manipulation of model size,
training duration, and data type further show how
these factors interact with one another: the largest
architectures best align with brain activity as (1)
they get trained and (2) on ecologically-relevant nat-
uralistic images.
Third, even non-human-centric datasets (satellite im-
ages, biological images) support partial convergence
in early visual areas, implying that low-level statistics
shared across environments are sufficient to bootstrap
early representations. Overall, these results suggest
that while the architecture supplies a potential, the
data remain critical in making these systems learn
representations that are similar to the brain. This
interaction between architectures, training and data
provides an empirical framework to the long-standing
debates in cognitive science on nativism versus em-
piricism, – showing how ‘innate’ and ‘experiential’
interact with one another in the development of cog-
nition.

Towards a model of the visual cortex ontogeny. This
model-brain alignment follows a surprisingly steady
developmental trajectory. Early in training, the mod-
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Figure 8 Relation between shared representations and cortical properties. A. Left. Cortical expansion index, as
estimated from the difference between adults and infants’ brains, for each ROI (Hill et al., 2010). Right. Correlation
between cortical expansion and half time. Each dot is an ROI. B. Same as A for cortical thickness, as estimated from
(Van Essen et al., 2013). C. Same as A for cortical time scales, as estimated from MEG source reconstruction in (Shafiei
et al., 2021). D. Same as A for myelin concentration, as estimated from (Van Essen et al., 2013).

els rapidly acquire representations that align with
the fast and low-level visual responses of the sen-
sory cortices. In contrast, the emergence of slow and
high-level representations – particularly those align-
ing with the prefrontal cortex – appears to require
both far more training data.
This developmental trajectory echoes the biological
development of the human cortex: the brain areas
with which the AI models align last during their
training are precisely those with the greatest corti-
cal thickness, slower intrinsic timescales, prolonged
maturation, and lower levels of myelination – i.e. the
areas of the associative cortices that are known to
slowly develop throughout the first two decades of life
(Dehaene, 2021). This result suggests that the sequen-
tial acquisition of representations in artificial neural
networks may spontaneously model some of the de-
velopmental trajectories of brain functions. In doing
so, they may ultimately provide a new computational
framework to understand the staged maturation of
visual processing in biological systems (Vogelsang
et al., 2024).

Open questions. Several results were not anticipated.
First, the temporal score, encoding score and spatial
score do not appear to emerge simultaneously – hence
leading to the novel question of why these metrics

follow this specific order. Second, the spatial and
temporal scores are initially negative at the beginning
of model training. This means that the deepest layers
of a random DINOv3 tend to best predict fast and
low-level brain responses at the very early (but not
late) stages of training. Finally, the half times of
these three metrics are reached in between 1% and
4% – i.e. only n=1.6B images – of DINOv3 training
quantity. This suggests that while low-level brain-
like representations are very quickly learnable, the
high-level representations of the brain require a very
large amount of data to be fully acquired.

Limitations. While this study offers a controlled
analysis of brain–model convergence, several limita-
tions warrant consideration. First, our findings are
based exclusively on a single family of self-supervised
vision models (DINOv3), which are hierarchical by
design. It thus remains an open question whether
similar spatial, temporal and encoding scores would
emerge with other architectures and training ob-
jectives (Conwell et al., 2021). Second, fMRI and
MEG offer limited resolution and thus provide coarse
population-level brain activity and may overlook fine-
grained neural mechanisms. Third, our analyses focus
solely on the adult brain, leaving open the question
of how these alignments emerge across development.
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Understanding when these correspondences arise will
require data from infants, children, or longitudinal
cohorts (Evanson et al., 2025). Finally, while we
quantify the similarity between representations from
models and the brain, the exact nature and semantic
structure of these neuronal representations continues
to be a subject of intense ongoing research (Gifford
et al., 2025; Graumann et al., 2022). Closing this in-
terpretability gap certainly remains a major challenge
to both neuroscience and AI.

Conclusion. Beyond the characterization of the
spontaneous convergence between AI models and
brains, these findings chart a path toward using AI
models as tools to investigate the organizing prin-
ciples of biological vision in the human brain. By
showing how machines can come to see like us, our
findings provide cues as to how the human brain may
come to see the world.
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