arXiv:2509.13351v1 [csAl] 14 Sep 2025

Teaching LLMs to Plan: Logical Chain-of-Thought
Instruction Tuning for Symbolic Planning

Pulkit Verma Ngoc La Anthony Favier
MIT CSAIL MIT CSAIL MIT CSAIL
Cambridge, USA Cambridge, USA Cambridge, USA
pulkitv@mit.edu ntmla@mit.edu antfav240@mit.edu

Swaroop Mishra* Julie A. Shah
Microsoft Al MIT CSAIL
Mountain View, USA Cambridge, USA
swaromishra@microsoft.com julie_a_shah@csail.mit.edu
Abstract

Large language models (LLMs) have demonstrated impressive capabilities across
diverse tasks, yet their ability to perform structured symbolic planning remains
limited, particularly in domains requiring formal representations like the Planning
Domain Definition Language (PDDL). In this paper, we present a novel instruc-
tion tuning framework, PDDL-INSTRUCT, designed to enhance LLMs’ symbolic
planning capabilities through logical chain-of-thought reasoning. Our approach
focuses on teaching models to rigorously reason about action applicability, state
transitions, and plan validity using explicit logical inference steps. By develop-
ing instruction prompts that guide models through the precise logical reasoning
required to determine when actions can be applied in a given state, we enable
LLMs to self-correct their planning processes through structured reflection. The
framework systematically builds verification skills by decomposing the planning
process into explicit reasoning chains about precondition satisfaction, effect ap-
plication, and invariant preservation. Experimental results on multiple planning
domains show that our chain-of-thought reasoning based instruction-tuned models
are significantly better at planning, achieving planning accuracy of up to 94% on
standard benchmarks, representing a 66% absolute improvement over baseline
models. This work bridges the gap between the general reasoning capabilities
of LLMs and the logical precision required for automated planning, offering a
promising direction for developing better Al planning systems.

1 Introduction

Large Language Models (LLMs) like GPT [OpenAl et al., 2023], Gemini [Team et al., 2023],
LLaMA [Touvron et al., 2023], etc. have demonstrated remarkable success across various domains
including mathematics and coding [Imani et al., 2023, Gaur and Saunshi, 2023, Romera-Paredes
et al., 2023, Ahn et al., 2024]. However, a critical gap remains in their ability to perform structured
symbolic planning, a fundamental capability required for reliable real-world sequential decision-
making systems. Recent studies have highlighted this issue that while LLMs excel at general
reasoning over unstructured text, they struggle with the logical reasoning and systematic verification
required for automated planning tasks [Stechly et al., 2023, Valmeekam et al., 2023a,c, Kambhampati
et al., 2024, Stechly et al., 2025].

*Work done before joining Microsoft AL

https://arxiv.org/abs/2509.13351v1

=1 T/) Domain File Verifier Ez;gla;:":;l”ee
== | Problem File @,‘ [VAL]
- Dataset D, Dataset Dcc
Dataset ID; : Set of . .
" bramamrie % (pays)) | | Reason 11 & (s0,a1,51)
Plan File + .
Explanation Fine- | > (s1,az,52) x Reason > (s1,az,52)
Tuning . CoT Output . . :
%@ Fine-tuned . . Final
LLM (Sn1,an, Sn) H X Reason | LM (Sn1, An, Sn)
SN B H
Pre-trained
LLM Instruction Tuning based on VAL Feedback Output Plan: (@y, Az, ..., an)

Phase 1: Initial Fine-tuning Phase 2: Chain-of-Thought (CoT) Instruction Tuning Evaluation Phase

Figure 1: The PDDL-INSTRUCT approach consists of three phases: Two training phases (Initial and
CoT Instruction Tuning) and evaluation phase. The main innovation lies in the second phase: CoT
Instruction Tuning (highlighted by the red boundary). The initially tuned LLM is further trained
using a structured instruction process that emphasizes complete logical reasoning chains.

This limitation becomes particularly evident when considering formal planning representations such
as the Planning Domain Definition Language (PDDL) [McDermott et al., 1998]. Despite some
promising results with specific configurations [Liu et al., 2023, Wang et al., 2024], these models
generally perform poorly on multi-step reasoning tasks including classical planning [Hsiao et al.,
2025]. This has significant implications for planning tasks, which are PSPACE-complete [Bylander,
1991] and inherently require scaling reasoning efforts with problem complexity.

In this paper, we challenge this limitation by introducing PDDL-INSTRUCT, a novel framework
shown in Fig. 1, that augments LLMs’ reasoning capabilities with the formal reasoning required for
automated planning. PDDL-INSTRUCT explicitly teaches LLMs to reason through the precondition-
effect structure of planning domains using logical chain-of-thought prompting. By decomposing
planning verification into atomic reasoning steps and incorporating this structure into instruction
tuning, our approach enables LLMs to not only generate syntactically correct plans but also to verify
their logical validity through step-by-step reasoning. This ability to perform structured verification
significantly enhances the reliability of LLM-generated plans and opens up possibilities for self-
correction through iterative refinement.

Main contributions of this paper are:

* A novel instruction tuning framework that enhances symbolic planning capabilities in LLMs
through logical chain-of-thought reasoning, focusing specifically on plan generation and
action applicability verification.

* A formalization of the planning verification process as decomposable reasoning chains,
enabling LLMs to systematically check preconditions, apply effects, and validate invariants.

» Empirical evidence demonstrating that instruction-tuned LLMs can develop robust planning
capabilities that generalize across domains.

Our results show that PDDL-INSTRUCT significantly outperforms both baseline models and tradi-
tionally instruction-tuned models, achieving planning validity rates of up to 94% in standard planning
domains. This work not only addresses a critical limitation in current LLM capabilities but also
provides a foundation for developing more trustworthy Al systems capable of reliable planning in
complex scenarios.

2 Related Work

LLMs for planning Various approaches have been recently used for using LLMs for planning,
such as generating executable code dictating the planned behaviors [Liang et al., 2023, Singh et al.,
2023, Nijkamp et al., 2023, Wang et al., 2025], using closed loop with environment feedback [Huang
et al., 2022, Song et al., 2023] or for self-refinement [Wang et al., 2023, Zhou et al., 2024]. A few

recent approaches also synthesize Python programs using LLMs for planning [Silver et al., 2024,
Hao et al., 2025b, Chen et al., 2025b, Corréa et al., 2025].

However, as summarized in [Tantakoun et al., 2025], LLMs face challenges with long-term planning
and reasoning, often producing unreliable plans [Stechly et al., 2024, Pallagani et al., 2023, Momen-
nejad et al., 2023], frequently failing to account for the effects and requirements of actions as they
scale [Stechly et al., 2024], and their performance degrades with self-iterative feedback [Stechly
et al., 2023, Valmeekam et al., 2023a, Huang et al., 2025].

Another approach consists in using LLMs to generate automated planning models (e.g. PDDL
domain and problem) and to rely on existing symbolic solvers to produce sound solutions. This
hybrid paradigm has received a lot of interest [Huang et al., 2025, Mahdavi et al., 2024, Zhang et al.,
2025b, Tantakoun et al., 2025]. Still, generating such structured models accurately is challenging
for LLMs. To reach high accuracy, the process usually relies on human interventions for feedback
and validation [Guan et al., 2023], using external verifiers [Silver et al., 2024, Hao et al., 2025a], or
focuses on limited aspects of the problem (e.g. only generating planning goals [Xie et al., 2023].
NL2P [Gestrin et al., 2024] proposes to use explicit inference steps and Chain of Thoughts back
prompting to generate the PDDL domain and problem from natural language inputs. Here, we
propose to finetune an LLM to learn explicit inference steps to reason on action applicability, state
transitions, and plan validity to generate a plan.

Finetuning for planning improves significantly the model’s capabilities to generate symbolic
plans [Pallagani et al., 2023, Li et al., 2025, Fu et al., 2025]. However, the main drawbacks of
this approach are its high economic, time, and computational costs, as well as the degradation of the
transferability of the model. Finetuning makes the model specialized on the domains and problem
types trained on, with poor transferability to new problems.

Instruction tuning Instruction tuning has emerged as a significant approach in NLP to enable
zero-shot generalization on unseen tasks [Mishra et al., 2022, Wei et al., 2022a, Ouyang et al., 2022].
This technique involves fine-tuning large language models to perform diverse tasks by following
instructions, making the task source crucial for effective tuning [Longpre et al., 2023]. While
existing methods often rely on human-crowdsourced tasks from datasets like TO [Sanh et al., 2022],
FLAN [Wei et al., 2022a, Longpre et al., 2023], and Naturallnstructions [Mishra et al., 2022, Wang
et al., 2022], these high-quality resources demand significant human effort and are typically limited in
quantity. An alternative approach involves model-generated tasks, where powerful language models
like GPT-3 and GPT-4 generate diverse instructions and task pairs [Wang et al., 2022, Peng et al.,
2023], though these can introduce noise when outputs don’t properly correspond to inputs. In this
work, we alleviate this problem by leveraging the automated planning task generators [Seipp et al.,
2022, Valmeekam et al., 2023b] to create the instruction tuning dataset.

Chain-of-Thought Reasoning A significant advancement in improving LLM reasoning ability is
the implementation of Chain of Thought (CoT) prompting [Wei et al., 2022b]. By generating explicit
intermediate reasoning steps, these models can now address complex logical deduction and multistep
problem-solving. Short CoT approaches [Lambert et al., 2025, Kojima et al., 2022] demonstrated
effectiveness for straightforward problems but revealed limitations when confronting more intricate
challenges. The evolution toward longer reasoning chains has subsequently transformed the landscape
of machine reasoning. Stechly et al. [2024] argued that despite its efficacy for reasoning tasks, CoT is
not suitable for planning, but in this work we show that with proper integration of instruction tuning
using better prompts, CoT can indeed be used for planning tasks.

3 Preliminaries

Automated Planning In this section, we briefly describe automated planning. Please refer to
Geffner and Bonet [2013] and Chen et al. [2025a] for more details.

An automated planning problem can be formally characterized as a tuple (P, A, sg, G), where P is
a set of fluents used to describe a discrete and fully-observable state .S, A represents a finite set of
actions, sg € S denotes the initial state, and G specifies the goal conditions. Each action a; € A
is defined as (pre(a;), add(a;), del(a;)), where pre(a;) is the set of fluents that must hold in the
current state for the action to be executable, add(a;) is the set of fluents that become true after

executing a;, and del(a;) is the set of fluents that become false after executing a;. Note that the state
space S in classical planning emerges from all possible truth assignments to the set of fluents.

A solution to a planning problem P, called a plan , is a sequence of actions (ag, a, ..., a,—1) that
transforms the initial state into one satisfying the goal conditions after n steps. Note that 7 produces
state transitions s;11 = a;(s;) = (s; \ del(a;)) U add(a;) for all 0 < ¢ < n such that s,, € G.
7 is considered optimal if it takes the least number of actions (in this work, we consider actions
with uniform cost) to reach a goal state, whereas it is considered satisficing if it reaches the goal
successfully but with more actions than needed by an optimal plan.

The Planning Domain Definition Language (PDDL) [McDermott et al., 1998], based on
STRIPS [Fikes and Nilsson, 1971], provides a standardized specification for automated planning
problems. PDDL consists of a domain D = (P, A) containing the sets of fluents P and actions A
(along with their precondition, add and del sets), and a problem P = (sq, G) containing the initial
state sg, and a goal condition G.

Instruction Tuning Instruction tuning [Mishra et al., 2022, Wei et al., 2022a, Ouyang et al.,
2022] is an approach for fine-tuning LLMs on a labeled dataset. Consider an instruction tuning
dataset Dy = {(x;,7;)}$L, with Q labeled samples, where z; represents an instruction and r; its
corresponding ideal response. We denote our large language model as My with parameters 6. The
model produces output y; = My(x;) for a given instruction x;. The standard instruction tuning
objective aims to find model parameters 8 that minimize expected discrepancy (loss £) between
model predictions (My(z)) and target responses (7) across the instruction dataset (Dataset D1, as
described in Sec. 4):

0* = argrnainIE(am)NDl [L(Mp(x),T)] D

Chain-of-thought reasoning Chain-of-Thought (CoT) reasoning can be formally defined as a
structured decomposition of a complex reasoning task into an explicit sequence of intermediate
logical steps. Given a problem input x and a target output y, a chain-of-thought reasoning process R
is a sequence of K intermediate reasoning states Z(x) = (21, 22, . . ., 2K), Where each z; represents
an atomic reasoning step that transforms the latent state from z;_1 to z;, with zg implicitly defined
as the initial problem state derived from x. Each reasoning step z; can be characterized as a tuple
z; = (si, Ji, ui), where s; represents the symbolic state (the set of derived facts or assertions at step),
7 represents the justification (the logical rule or inference applied), and u; represents the uncertainty
estimate (the model’s confidence in this reasoning step). For simplicity, going forward we will use
symbolic states s; to represent reasoning states z;, when clear from context, as they have a one-to-one
mapping for this work. We also do not use w; estimates for this work, and the LLM is directly asked
for the resulting symbolic states in each CoT step.

Two important properties that characterize effective chain-of-thought reasoning are: (i) logical
coherence [Wei et al., 2022b], and (ii) progressive refinement [Du et al., 2025]. A CoT process R (x)
exhibits logical coherence if for each step z; with ¢ > 1, 3j;_; such that j;_1(s;—1) = s;, meaning
each state follows logically from the application of a justifiable inference rule to the previous state.
A CoT process R(z) exhibits progressive refinement if I(z;;y) > I(z;i—1;y) Vi e {1,2,...,K},
where I(z;;y) represents the mutual information between reasoning state z; and the target output y.

4 Problem Formulation

Input In this work, we use the following inputs: (i) a pre-trained LLM M as input, (ii) a dataset
D of planning domains and problems expressed in PDDL with their solutions (satisficing plans),
and (iii) a plan validator V' used to validate the correctness of plans generated by M. The dataset D
consists of:

1. Aset{Dy,Ds,..., D, } of planning domains expressed in PDDL.
2. For each domain D;, we have problems P; = {P; 1,P; 2, ..., Pim, }-

3. For each planning problem P;;, we have a mix of valid and invalid plans 1I; ; =
{741, i 25 Tijk, , }» Where each plan 7; j; is a sequence of grounded actions; and
their corresponding explanations of their correctness or errors, as needed.

Data Splitting As shown in Fig. 1, our approach has three phases (more details in Sec. 5). To
facilitate this, we partition the dataset D into three sets: D, D, and Dy for Phase 1 training, Phase
2 training, and evaluation, respectively. We add additional data to ID; by adding incorrect plans for
each problem, similar to Naturallnstructions framework [Mishra et al., 2022, Wang et al., 2022].

Output The primary output is an instruction-tuned model M- with enhanced symbolic planning
capabilities. The model should demonstrate improved domain representation, problem representation,
plan generation, action verification, plan verification, and reasoning transparency.

Assumptions Our framework assumes the planning domains follow the features explained in Sec. 3,
i.e., does not contain complex PDDL features such as, e.g., conditional effects or durative actions.
This simplifies the reasoning chain.

5 PDDL-INSTRUCT: Methodology

Fig. 1 illustrates our comprehensive framework for enhancing symbolic planning capabilities in Large
Language Models (LLMs) through logical Chain-of-Thought (CoT) instruction tuning. The approach
consists of two training phases: Initial Instruction Tuning and CoT Instruction Tuning.

5.1 Training the Model

[Phase 1] Initial Instruction Tuning Phase In the initial instruction tuning phase (distinct from
simple finetuning), we take a pre-trained LLM and train it with carefully crafted prompts that pair
planning domains and problems with detailed explanations of their solutions, all derived from Dataset
D;. As shown in Fig. 1, rather than simply exposing the model to planning examples, we explicitly
instruct it to analyze why each action in a plan is valid by explaining precondition satisfaction and
effect application.

This phase incorporates both correct plans and deliberately incorrect plans to teach the model to
recognize and explain various planning errors. For incorrect plans, we include examples where:
(1) action preconditions are not satisfied, (2) effects are incorrectly applied, (3) frame axioms are
violated, or (4) the plan fails to reach the goal state. By exposing the model to both successful and
failed planning attempts with detailed explanations, we establish a foundation for logical verification.

This phase establishes a foundation of planning knowledge while simultaneously teaching the model
to articulate logical justifications for action validity, setting the stage for more advanced reasoning in
subsequent phases. Exact prompts used in this work are available in the supplementary material.

[Phase 2] CoT Instruction Tuning Phase The main innovation of our approach lies in the CoT
Instruction Tuning phase (highlighted by the red boundary in Fig. 1). This second phase is itself a two-
stage process described thoroughly in the next section. At a high level, in this phase, the initially tuned
LLM is further trained using a structured instruction process that emphasizes complete logical reason-
ing chains. When presented with a domain and problem from Dataset D5, this initially tuned model
produces step-by-step state-action-state sequences (Sg, a1, 817, (S1, a2, 82), - .., (Sn—1, an, Sp) that
represent a candidate plan.

These reasoning chains are then passed through a verification module implemented using VAL [Howey
et al., 2004] that systematically checks the validity of each state transition based on action precon-
ditions and effects. Please note that while some approaches have tried using LL.Ms themselves as
verifiers, research shows that currently LLMs do not possess sufficient self-correction capabilities in
terms of reasoning [Huang et al., 2024, Stechly et al., 2025]. Unlike self-reflection approaches where
models attempt to critique their own reasoning without external validation, our chain-of-thought
method explicitly decomposes the planning process into verifiable logical steps, with external verifi-
cation providing ground-truth feedback. This combination of explicit reasoning decomposition with
verified feedback creates a more reliable foundation for enhancing planning capabilities than relying
solely on the model’s internal reasoning.

We explore two distinct types of verification feedback: (1) binary feedback, which simply indicates
whether an action is valid or invalid, and (2) detailed feedback, which provides specific reasoning
about each action generated by VAL in terms of which preconditions failed or which effects were

incorrectly applied. Our hypothesis is that detailed feedback will lead to more robust planning
capabilities by providing explicit guidance on the logical errors in the reasoning process.

The verification results provide crucial feedback that guides further instruction tuning. This feedback
loop ensures that the model learns not only to generate syntactically correct plans but also to reason
about their logical validity. We limit the number of times this feedback loop is used to generate new
CoT plans, denoted by 7. 7 is a hyperparameter which we can vary to see how it affects accuracy.

Our PDDL-INSTRUCT approach prioritizes logical coherence (see Sec. 3) through its explicit
verification of preconditions and effects at each planning step. The verification feedback ensures
that each state transition follows logically from the application of a valid action, maintaining strict
adherence to the domain rules. However, our approach does not ensure progressive refinement (see
Sec. 3). This is because rather than optimizing for the shortest or most efficient plan (which would
increase mutual information with an optimal solution at each step), we focus on producing satisficing
plans that achieve the goal regardless of path length. Generating optimal solutions is a significantly
more difficult problem in practice, both for classical planners and for training LLLMs to produce
them [Ray and Ginsberg, 2008, Domshlak and Nazarenko, 2013].

5.2 Training Methodology for Phase 2 CoT Instruction Tuning: Optimization Process

A distinctive feature of our PDDL-INSTRUCT framework is the two-stage optimization process as
part of the CoT Instruction Tuning that explicitly targets both the quality of logical reasoning for
CoT and the resulting final planning performance. This approach addresses the unique challenges
of symbolic planning by ensuring that the model not only produces correct plans but also develops
robust verification capabilities through logical chain-of-thought reasoning. An algorithm for this is
available in the supplementary material.

Stage 1: Reasoning Chain Optimization In the first stage, we optimize the model parameters 6;
to improve the generation of high-quality reasoning chains. Specifically, the model weight in each
reasoning step r, 6] where t € [0, — 1], is updated as Equation 2:

9: = (9,5 — 51 V@t Lreasoning(etv]D)rteasoning) (2)

where Licasoning 18 a loss function that measures the quality of the generated reasoning chains compared
to ideal logical inference sequences, d; is the learning rate for this stage, and]D)feasoning is the dataset
of individual (s;_1,a;, s;) triplets along with VAL feedback for them. This objective encourages the
model to produce step-by-step reasoning that correctly (i) checks all necessary preconditions before
applying actions; (ii) tracks state changes resulting from action effects; (iii) verifies that invariants are

maintained throughout the plan; and (iv) detects logical inconsistencies in proposed plans.

The reasoning loss explicitly penalizes logical errors such as applying actions with unsatisfied
preconditions, failing to properly propagate effects, or generating steps that violate domain constraints.
By focusing specifically on the reasoning process, this stage helps the model develop the logical
foundation necessary for robust planning.

Stage 2: End-Task Performance Optimization In the second stage, we optimize from the
reasoning-improved parameters 6] to enhance overall planning:

9t+1 = 9: - 62v9{£ﬁnal(9;’]D)?inal) 3

where L, measures how well the final outputs match the expected answers in the training data, - is
the learning rate for this stage, and Df ., final contains the domain, problem, and plan extracted from
CoT output along with VAL feedback specifying if the plan is correct for that problem or not. This
second stage ensures that improvements in logical reasoning translate to practical planning capability
of producing accurate plans.

This two-stage approach is important as Stage 1 develops the logical foundation needed for planning,
while Stage 2 ensures these capabilities are properly applied to generate correct plans. The separation
of these objectives allows our framework to balance between teaching fundamental reasoning skills
and optimizing for task-specific performance, resulting in models that not only produce correct
plans but can also reason about their correctness through explicit logical CoT inference. The exact
formulations of the loss functions Lrcasoning and Lgna and the specific values of the hyperparameters
are discussed in detail in the supplementary material.

5.3 Evaluation Phase

After completing both the Initial Instruction Tuning and CoT Instruction Tuning phases, the final
model is evaluated in the Evaluation Phase (represented on the right side of Fig. 1). In this phase, the
instruction-tuned LLM is presented with new, unseen planning domains and problems from ;.
The model directly generates complete state-action-state sequences (Sq, a1, 81), - -, {(Sn—1,@n, Sn)
that constitute its proposed solution to the planning problem. These generated plans are then evaluated
for correctness using VAL, but only for assessment purposes, i.e., no feedback is returned to the
model. The plan is considered valid if and only if all actions in the sequence are applicable in their
respective states and the final state satisfies all goal conditions.

6 Empirical Evaluation

We conduct a comprehensive empirical evaluation of PDDL-INSTRUCT to assess its effectiveness in
enhancing symbolic planning capabilities in LLMs. Our evaluation leverages PlanBench [Valmeekam
et al., 2023b], a standardized benchmark framework for evaluating LLM planning capabilities.

We evaluate PDDL-INSTRUCT using PlanBench to assess its effectiveness in enhancing symbolic
planning capabilities in LLMs. Our experiments aim to answer the following research questions:

RQ1: Does logical CoT instruction tuning improve plan validity compared to standard approaches?
RQ2: How does the quality of feedback (binary vs. detailed) affect planning performance?
RQ3: How well does the approach generalize across different planning domains?

We implement PDDL-INSTRUCT using Llama-3-8B and GPT-4? foundation models. We compare
against baseline (unmodified models) and post phase 1 versions (instruction tuned on planning
examples with reasoning of why each plan is valid or invalid). For PDDL-INSTRUCT, we test variants
with binary feedback (valid/invalid) and detailed feedback (specific reasoning errors generated by
VAL), each with the number of feedback iteration loop limit to € {10, 15}. All experiments were
conducted on 2 NVIDIA RTX 3080 GPUs.

Domains and Problems PlanBench provides a systematic methodology for evaluating planning
capabilities across diverse planning domains and problem complexities. We evaluate across three
distinct planning domains from PlanBench, each presenting different reasoning challenges:

* Blocksworld: The classical planning domain with blocks that can be stacked on a table or
on other blocks. This domain primarily tests reasoning with a relatively small action set.

* Mystery Blocksworld: A more complex variant of Blocksworld with predicates identical
but semantically obfuscated names.

» Logistics: A transportation planning domain where packages must be moved between
locations using trucks and airplanes, testing the model’s ability to reason about location
connectivity and multi-step transport operations.

Evaluation Metrics Our primary evaluation metric is the Plan Accuracy, measuring the percentage
of planning tasks for which the model generates a valid plan that achieves the specified goal. A
plan is considered valid only if all actions are applicable in their respective states and the final state
satisfies all goal conditions, as verified by VAL. For each domain, we generate 100 test tasks of
varying complexity, with problems including different numbers of objects and requiring different
plan lengths to solve.

7 Results and Discussion

Overall Performance (RQ1) Tab. 1 presents the plan accuracy across models, domains, and
approaches. The results clearly demonstrate that PDDL-INSTRUCT significantly outperforms baseline
models, models after Phase 1 instruction tuning, and models with just Phase 2 CoT instruction tuning.

For Llama-3, PDDL-INSTRUCT with detailed feedback and 7 = 15 achieves validity rates of
94%, 64%, and 79%, respectively in Blocksworld, Mystery Blocksworld, and Logistics. This

’Note that GPT-4 experiments were constrained by limited access.

Only P2 PDDL-INSTRUCT

Model Domain Baseline Only P1

Detailed Binary Detailed
Blocksworld 28% 78% 2% 84% 89% 91% 94%
Llama-3 Mystery BW 1% 32% 17% 47% 49% 59% 64%
Logistics 11% 23% 45% 61% 72% 75% 79%
Blocksworld 35% 41% 76% 79% 84% 87% 91%
GPT-4 Mystery BW 3% 17% 19% 39% 44% 54% 59%
Logistics 6% 27% 51% 64% 69% 72% 78%

Table 1: Results for plan accuracy generated for 100 test tasks from each domain. Our approach
PDDL-INSTRUCT was evaluated with either binary or detailed feedback. Ablation results are for
only Phase 1 (P1), and only Phase 2 (P2) with detailed feedback (as it had the best performance).

represents an average absolute improvement of 35%(SD = 20%) over basic instruction tuning,
and of 66%(SD = 3%) over the baseline. Similarly, for GPT-4, PDDL-INSTRUCT with detailed
feedback and n = 15 achieves validity rates of 91%, 59%, and 78% across the three domains. This
represents an average absolute improvement of 48%(SD = 5%) over basic instruction tuning, and of
61%(SD = 9%) over the baseline. These results show that logical CoT instruction tuning enhances
plan accuracy significantly, not only when compared to unmodified foundation models and but more
importantly, also when compared to models with only basic instruction tuning. The explicit reasoning
about preconditions, effects, and state transitions enables the models to generate accurate plans.

Impact of Feedback Type (RQ2) Comparing the binary feedback and detailed feedback columns
in Tab. 1, we observe that detailed feedback consistently outperforms binary feedback across all
domains and models. For Llama-3 with 7 = 15, detailed feedback improves plan accuracy by 5
percentage points in Blocksworld, 15 percentage points in Mystery Blocksworld, and 7 percentage
points in Logistics compared to binary feedback. Note that our training approach, though developed
independently, has resemblance with LEPA [Zhang et al., 2025a], which also show that providing
specific feedback about why each action fails helps in improving the reasoning capabilities of LLMs.

This pattern confirms our hypothesis that providing specific reasoning errors helps the model develop
more robust verification capabilities. The advantage of detailed feedback is particularly pronounced
in Mystery Blocksworld, the most complex domain with obfuscated predicates. Additionally, we
observe that increasing the iteration limit from 7 = 10 to n = 15 yields consistent improvements
across all configurations. This observation indicates that the model may converge on valid plans
given additional feedback iteration loops, though future experiments with varying n are needed to
confirm this. The improvement is more substantial with detailed feedback (averaging 4.3 percentage
points across all domains and models) than with binary feedback (averaging 3.3 percentage points),
indicating that detailed feedback enables more effective use of additional reasoning iterations.

Cross-Domain Generalization (RQ3) Our results demonstrate significant variations in perfor-
mance across domains, reflecting their inherent complexity and reasoning challenges. Both models
achieve the highest performance on Blocksworld, followed by Logistics, with Mystery Blocksworld
proving the most challenging. For Llama-3 with detailed feedback and 7 = 15, the validity rates
are 94% for Blocksworld, 79% for Logistics, and 64% for Mystery Blocksworld. This pattern is
consistent across all configurations and models, highlighting the increasing difficulty of domains
with hidden predicates and complex state interactions. Notably, while absolute performance varies
across domains, the relative improvement from PDDL-INSTRUCT is substantial in all three domains.
This suggests that our approach enhances planning capabilities in a domain-general manner, with the
logical reasoning framework transferring effectively across different planning scenarios.

The largest relative improvements occur in domains where baseline performance is weakest. For
example, Llama-3’s performance on Mystery Blocksworld improves from just 1% to 64% with PDDL-
INSTRUCT (detailed feedback, n = 15), representing a 64x improvement. This dramatic enhancement
in the most challenging domain demonstrates that explicit logical reasoning is particularly valuable
for complex planning scenarios where simple pattern matching is insufficient.

8 Conclusion

We have presented PDDL-INSTRUCT, a novel framework that significantly enhances the symbolic
planning capabilities of Large Language Models through logical chain-of-thought instruction tuning.
By decomposing the planning process into verifiable logical reasoning chains and providing explicit
verification feedback, our approach enables LLMs to generate valid plans with unprecedented
reliability across diverse planning domains. While our results are promising, we note that our
approach does not achieve 100% accuracy across all domains. However, when combined with
frameworks like LLM-Modulo [Kambhampati et al., 2024], which provides efficient mechanisms for
integrating external tools with LLMs, our method could significantly reduce the number of required
feedback loops with the verifier. This integration would make the planning process more efficient by
allowing the model to leverage its enhanced reasoning capabilities while still benefiting from formal
verification when needed, ultimately resulting in faster and more reliable planning.

A notable advantage of our VAL-based verification approach is its robustness against unfaithful
chain-of-thought reasoning as described by Lyu et al. [2023]. While traditional CoT methods can
generate plausible-sounding but internally inconsistent reasoning chains, our external verification
ensures that each logical step is formally validated against the planning domain’s constraints.

Limitations and Future Work While our results highlight the effectiveness of combining logical
chain-of-thought with verification-guided feedback, several promising directions remain for future:

Optimizing instruction tuning data: We can further refine our approach by applying instruction
optimization techniques as described in Lee et al. [2024] to identify the most effective subset of
instruction examples. Determining which planning scenarios and error types provide the most
informative learning signal could significantly improve training efficiency.

Experimenting with more Models: While our current evaluation across Llama-3-8B and GPT-4
demonstrates consistent improvements across distinct model paradigms and provides strong evidence
for our framework’s effectiveness, future work could explore additional architectures to further
validate the generalizability of our approach. The consistent performance gains observed across
these different model families suggest that our methodology is architecture-agnostic, though broader
evaluation remains a natural extension.

Advancing to Optimal Planning: Our current work focuses on satisficing planning—finding any valid
plan that achieves the goal. A natural extension would be to incorporate plan quality metrics and
develop instruction tuning approaches that guide models toward generating not just valid plans but
optimal ones with minimal actions or resource usage.

Expanding PDDL Coverage: To simplify the logical reasoning effort, we currently limit to use only a
subset of PDDL features. Future work could address this limitation and incorporate more advanced
PDDL features such as conditional effects, derived predicates, action costs, and temporal constraints,
gradually expanding the expressive power of the planning capabilities.

Self-Verification Capabilities: While we currently rely on an external verifier (VAL), an intriguing
direction is developing self-verification capabilities where models learn to accurately critique their
own plans. As LLMs continue to improve, reducing or eliminating dependence on external verifiers
could make planning more autonomous and efficient.

Dynamic Iteration Control: Our current approach uses fixed iteration limits (7). Developing tech-
niques to dynamically determine the optimal number of iterations based on problem complexity or
feedback patterns could improve efficiency, especially as we hypothesize that return will diminish on
increasing 1 beyond certain values.

Expanding Domain Coverage: Currently PlanBench supports 3 domains we used in this work. Extend-
ing the evaluation to include a wider variety of planning domains would enable more comprehensive
evaluation and potentially reveal new opportunities for improving logical reasoning in planning.

Beyond Planning: Finally, the logical reasoning framework developed in this work could extend
beyond planning to other sequential decision-making tasks that require long-horizon reasoning, such
as theorem proving, complex puzzle solving, and multi-step logical deduction. The combination of
chain-of-thought reasoning with verification-guided feedback appears to be a powerful paradigm that
could enhance LLM capabilities across diverse reasoning tasks.

9 Broader Impacts

A key positive impact is the potential to improve autonomous decision-making and to be highly
beneficial to domains such as healthcare robotics, autonomous vehicles, or disaster response. By
enabling LLMs to reason about action applicability, state transitions, and plan validity, our approach
supports more interpretable and verifiable Al behavior. Additionally, it contributes to bridging neural
and symbolic Al, potentially democratizing access to formal planning tools for non-expert users.

However, the approach also raises risks. Over-reliance on LLM-generated plans in safety-critical
domains may lead to failures. The hybrid nature of neural-symbolic reasoning may obscure responsi-
bility and complicate error attribution. Additionally, enhanced planning capabilities could be misused
for strategic manipulation or multi-step malicious behavior. To mitigate these risks, we recommend
incorporating external verification, human oversight, and usage safeguards in real-world deployments.

Acknowledgments

This work was supported in part by the ONR under grant NO00142312883.

References

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui Zhang, and Wenpeng Yin. Large language models
for mathematical reasoning: Progresses and challenges. In Proceedings of the 18th Conference
of the European Chapter of the Association for Computational Linguistics: Student Research
Workshop (EACL), 2024.

Tom Bylander. Complexity results for planning. In Proceedings of the 12th International Joint
Conference on Artificial Intelligence (IJCAI), 1991.

Dillon Z. Chen, Pulkit Verma, Siddharth Srivastava, Michael Katz, and Sylvie Thiébaux. Al planning:
A primer and survey (Preliminary report). In AAAI 2025 Workshop on Bridging the Gap Between
Al Planning and Reinforcement Learning (PRL), 2025a.

Dillon Ze Chen, Johannes Zenn, Tristan Cinquin, and Sheila A. Mcllraith. Language models
for PDDL planning: Generating sound and programmatic policies. In RLC 2025 Workshop on
Programmatic Reinforcement Learning, 2025b.

Augusto B Corréa, André G Pereira, and Jendrik Seipp. Classical planning with LLM-generated
heuristics: Challenging the state of the art with python code. arXiv preprint arXiv:2503.18809,
2025.

Carmel Domshlak and Anton Nazarenko. The complexity of optimal monotonic planning: The bad,
the good, and the causal graph. Journal of Artificial Intelligence Research, 48:783—-812, 2013.

Chengyu Du, Jinyi Han, Yizhou Ying, Aili Chen, Qianyu He, Haokun Zhao, Haoran Guo, Sirui
Xia, Jiaging Liang, Zulong Chen, Liangyue Li, and Yanghua Xiao. Think thrice before you act:
Progressive thought refinement in large language models. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2(3-4):189-208, 1971.

Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma GongQue, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. AgentRefine: Enhancing agent generalization
through refinement tuning. In Proceedings of the 13th International Conference on Learning
Representations (ICLR), 2025.

Vedant Gaur and Nikunj Saunshi. Reasoning in large language models through symbolic math word
problems. In Findings of the Association for Computational Linguistics: ACL 2023, 2023.

Hector Geffner and Blai Bonet. A Concise Introduction to Models and Methods for Automated
Planning: Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool
Publishers, 1st edition, 2013. ISBN 1608459691.

10

Elliot Gestrin, Marco Kuhlmann, and Jendrik Seipp. Towards robust LLM-driven planning from
minimal text descriptions. In ICAPS 2024 Workshop on Human Aware and Explainable Planning
(HAXP), 2024.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task planning.
In Proceedings of the 37th Conference on Advances in Neural Information Processing Systems
(NeurlIPS), 2023.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can solve real-
world planning rigorously with formal verification tools. In Proceedings of the 2025 Conference of
the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL), 2025a.

Yilun Hao, Yang Zhang, and Chuchu Fan. Planning anything with rigor: General-purpose zero-shot
planning with LL.M-based formalized programming. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025b.

Richard Howey, Derek Long, and Maria Fox. VAL: Automatic plan validation, continuous effects and
mixed initiative planning using PDDL. In Proceedings of the 16th IEEE International Conference
on Tools with Artificial Intelligence (ICTAI), 2004.

Vincent Hsiao, Morgan Fine-Morris, Mark Roberts, Leslie N Smith, and Laura M. Hiatt. A critical
assessment of LLMs for solving multi-step problems: Preliminary results. In AAAI 2025 Workshop
on Planning in the Era of LLMs (LM4Plan), 2025.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In Proceedings of the
12th International Conference on Learning Representations (ICLR), 2024.

Sukai Huang, Nir Lipovetzky, and Trevor Cohn. Planning in the dark: LLM-symbolic planning
pipeline without experts. In AAAI 2025 Workshop on Planning in the Era of LLMs (LM4Plan),
2025.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Tomas Jackson, Noah Brown, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In Proceedings of the 6th Annual Conference on Robot
Learning (CoRL), 2022.

Shima Imani, Liang Du, and Harsh Shrivastava. MathPrompter: Mathematical reasoning using large
language models. In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (ACL), 2023.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Mudit Verma, Kaya Stechly, Siddhant
Bhambri, Lucas Paul Saldyt, and Anil B Murthy. Position: LLMs can’t plan, but can help planning
in LLM-Modulo frameworks. In Proceedings of the 41th International Conference on Machine
Learning (ICML), 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Proceedings of the 36th Conference on Advances in
Neural Information Processing Systems (NeurIPS), 2022.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman,
Lester James Validad Miranda, Alisa Liu, Nouha Dziri, Xinxi Lyu, Yuling Gu, Saumya Malik,
Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Christopher
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi.
Tulu 3: Pushing frontiers in open language model post-training. In Proceedings of the 2nd
Conference on Language Modeling (COLM), 2025.

Changho Lee, Janghoon Han, Seonghyeon Ye, Stanley Jungkyu Choi, Honglak Lee, and Kyunghoon
Bae. Instruction matters: A simple yet effective task selection for optimized instruction tuning of
specific tasks. In Proceedings of the 2024 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 2024.

11

Wenjun Li, Changyu Chen, and Pradeep Varakantham. Unlocking the planning capabilities of
large language models with maximum diversity fine-tuning. In Findings of the Association for
Computational Linguistics: NAACL 2025, 2025.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), 2023.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
LLM+P: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V.
Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: designing data and methods
for effective instruction tuning. In Proceedings of the 40th International Conference on Machine
Learning (ICML), 2023.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang, Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. Faithful chain-of-thought reasoning. In Proceedings of the 13th International
Joint Conference on Natural Language Processing and the 3rd Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics (IJCNLP-AACL 2023), 2023.

Sadegh Mahdavi, Raquel Aoki, Keyi Tang, and Yanshuai Cao. Leveraging environment interaction
for automated PDDL translation and planning with large language models. In Proceedings of the
38th Conference on Neural Information Processing Systems (NeurIPS), 2024.

Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, A. Ram, Manuela Veloso, Daniel S.
Weld, and David Wilkins. PDDL — The Planning Domain Definition Language. Technical Report
CVC TR-98-003/DCS TR-1165, Yale Center for Computational Vision and Control, 1998.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task generalization
via natural language crowdsourcing instructions. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (ACL), 2022.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid
Palangi, Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large
language models with cogeval. In Proceedings of the 37th Conference on Advances in Neural
Information Processing Systems (NeurIPS), 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese, and
Caiming Xiong. CodeGen: An open large language model for code with multi-turn program
synthesis. In Proceedings of the 11th International Conference on Learning Representations
(ICLR), 2023.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. Training language models to follow instructions with human feedback. In Proceedings
of the 36th Conference on Advances in Neural Information Processing Systems (NeurIPS), 2022.

Vishal Pallagani, Bharath Muppasani, Biplav Srivastava, Francesca Rossi, Lior Horesh, Keerthiram
Murugesan, Andrea Loreggia, Francesco Fabiano, Rony Joseph, and Yathin Kethepalli. Plansformer
tool: Demonstrating generation of symbolic plans using transformers. In Proceedings of the 32nd
International Joint Conference on Artificial Intelligence (1JCAI), 2023. Demo Track.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with
GPT-4. arXiv preprint arXiv:2304.03277, 2023.

12

Katrina Ray and Matthew L Ginsberg. The complexity of optimal planning and a more efficient
method for finding solutions. In Proceedings of the 18th International Conference on Automated
Planning and Scheduling (ICAPS), 2008.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco J R Ruiz, Jordan S. Ellenberg, Pengming Wang, Omar
Fawzi, Pushmeet Kohli, Alhussein Fawzi, Josh Grochow, Andrea Lodi, Jean-Baptiste Mouret,
Talia Ringer, and Tao Yu. Mathematical discoveries from program search with large language
models. Nature, 625:468 — 475, 2023.

Victor Sanh, Albert Webson, Colin Raffel, Stephen Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey, M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal Nayak, De-
bajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica, Sheng Shen,
Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj, Jos Rozen,
Abheesht Sharma, Andrea Santilli, Thibault Fevry, Jason Alan Fries, Ryan Teehan, Teven Le Scao,
Stella Biderman, Leo Gao, Thomas Wolf, and Alexander M Rush. Multitask prompted training
enables zero-shot task generalization. In Proceedings of the 10th International Conference on
Learning Representations (ICLR), 2022.

Jendrik Seipp, Alvaro Torralba, and Jorg Hoffmann. PDDL generators. https://doi.org/10.
5281/zenodo. 6382173, 2022.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B Tenenbaum, Leslie Kaelbling, and Michael Katz.
Generalized planning in PDDL domains with pretrained large language models. In Proceedings of
the 38th AAAI Conference on Artificial Intelligence (AAAI), 2024.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. ProgPrompt: Generating situated robot task plans
using large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), 2023.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
LLM-Planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2023.

Kaya Stechly, Matthew Marquez, and Subbarao Kambhampati. GPT-4 doesn’t know it’s wrong: An
analysis of iterative prompting for reasoning problems. In NeurlPS 2023 Workshop on Foundation
Models for Decision Making (FMDM), 2023.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness? An
analysis of CoT in planning. In Proceedings of the 38th Conference on Advances in Neural
Information Processing Systems (NeurlPS), 2024.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limitations
of large language models on reasoning and planning tasks. In Proceedings of the 13th International
Conference on Learning Representations (ICLR), 2025.

Marcus Tantakoun, Xiaodan Zhu, and Christian Muise. LLMs as planning modelers: A survey
for leveraging large language models to construct automated planning models. In AAAI 2025
Workshop on Planning in the Era of LLMs (LM4Plan), 2025.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: A family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal Azhar, et al. LLaMA: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Karthik Valmeekam, Matthew Marquez, and Subbarao Kambhampati. Can large language models
really improve by self-critiquing their own plans? In NeurlPS 2023 Workshop on Foundation
Models for Decision Making (FMDM), 2023a.

13

https://doi.org/10.5281/zenodo.6382173
https://doi.org/10.5281/zenodo.6382173

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambham-
pati. PlanBench: An extensible benchmark for evaluating large language models on planning and
reasoning about change. In Proceedings of the 37th Conference on Advances in Neural Information
Processing Systems (NeurIPS), 2023b.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models - A critical investigation. In Proceedings of the 37th
Conference on Advances in Neural Information Processing Systems (NeurIPS), 2023c.

Evan Z Wang, Federico Cassano, Catherine Wu, Yunfeng Bai, William Song, Vaskar Nath, Ziwen
Han, Sean M. Hendryx, Summer Yue, and Hugh Zhang. Planning in natural language improves
LLM search for code generation. In Proceedings of the 13th International Conference on Learning
Representations (ICLR), 2025.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
Transactions on Machine Learning Research, 2024. ISSN 2835-8856.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi, Yeganeh Kordi, Amirreza Mirzaei,
Atharva Naik, Arjun Ashok, Arut Selvan Dhanasekaran, Anjana Arunkumar, David Stap, Eshaan
Pathak, Giannis Karamanolakis, Haizhi Lai, Ishan Purohit, Ishani Mondal, Jacob Anderson,
Kirby Kuznia, Krima Doshi, Kuntal Kumar Pal, Maitreya Patel, Mehrad Moradshahi, Mihir
Parmar, Mirali Purohit, Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma, Ravsehaj Singh Puri,
Rushang Karia, Savan Doshi, Shailaja Keyur Sampat, Siddhartha Mishra, Sujan Reddy A, Sumanta
Patro, Tanay Dixit, and Xudong Shen. Super-Naturallnstructions: Generalization via declarative
instructions on 1600+ NLP tasks. In Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2022.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with LLMs enables open-world multi-task agents.

In Proceedings of the 37th Conference on Advances in Neural Information Processing Systems
(NeurlIPS), 2023.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In Proceedings
of the 10th International Conference on Learning Representations (ICLR), 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th Conference on Advances in Neural Information Processing
Systems (NeurIPS), 2022b.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural language
to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023.

Jin Zhang, Flood Sung, Zhilin Yang, Yang Gao, and Chongjie Zhang. Learning to plan before
answering: Self-teaching LLMs to learn abstract plans for problem solving. In Proceedings of the
13th International Conference on Learning Representations (ICLR), 2025a.

Xiaopan Zhang, Hao Qin, Fuquan Wang, Yue Dong, and Jiachen Li. LaMMA-P: Generalizable
multi-agent long-horizon task allocation and planning with LM-driven PDDL planner. In 2025
IEEE International Conference on Robotics and Automation (ICRA), 2025b.

Zhehua Zhou, Jiayang Song, Kunpeng Yao, Zhan Shu, and Lei Ma. ISR-LLM: Iterative self-refined
large language model for long-horizon sequential task planning. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), 2024.

14

A Detailed Experimental Setup

A.1 Hyperparameter Configuration

Tab. 2 provides the complete hyperparameter configuration used in our experiments.

Parameter Phase 1 Phase 2 (CoT)
Learning Rate 2e-5 01: le-5, d9: 5e-6
Batch Size 16 8

Max Sequence Length 2048 4096
Training Epochs 5 3
Warmup Steps 500 200
Weight Decay 0.01 0.001
Gradient Clipping 1.0 0.5
Temperature (Generation) 0.7 0.3

Max Generation Length 1024 2048
Optimizer AdamW AdamW
B, B2 0.9, 0.999 0.9, 0.999

€ le-8 le-8
Iteration Limit () N/A 10, 15

Table 2: Complete hyperparameter configuration for PDDL-INSTRUCT

Learning Rates (d1, J2) The learning rates control how aggressively the model weights are updated
during training, with Phase 1 using a single learning rate and Phase 2 employing two distinct
learning rates for its two-stage optimization process. Phase 1 uses a learning rate of 2 x 10~° for
initial instruction tuning, set relatively higher because the model must learn entirely new planning
capabilities from its pre-trained foundation, applying this rate to the standard cross-entropy loss
when learning to generate plans with detailed explanations of action validity. Phase 2 employs two
separate learning rates within its chain-of-thought instruction tuning: §; = 1 x 10~° for Stage
1 reasoning chain optimization (Equation 2) and § = 5 x 1075 for Stage 2 final performance
optimization (Equation 3). The first learning rate d; focuses on improving the quality of step-by-step
logical reasoning chains, while the second learning rate 5 is set lower to carefully optimize overall
planning performance without disrupting the reasoning capabilities developed in Stage 1. Both Phase
2 learning rates are deliberately lower than Phase 1 to enable fine-tuning of the chain-of-thought
reasoning without disrupting the foundational planning knowledge already acquired.

Batch Size The batch size determines how many training examples are processed simultaneously
before updating model weights, with values carefully chosen to balance computational efficiency
with memory constraints and training dynamics. Phase 1 uses a batch size of 16, which provides
sufficient gradient signal for learning basic planning concepts while remaining within GPU memory
limits for the 2048-token sequences typical of initial instruction examples. Phase 2 reduces the batch
size to 8 to accommodate the significantly longer chain-of-thought sequences and the additional
memory overhead introduced by VAL feedback processing. The smaller batch size in Phase 2 also
enables more frequent weight updates during the iterative refinement process, which is crucial for the
feedback-driven learning mechanism where the model must quickly adapt to validation signals from
the external verifier.

Maximum Sequence Length The maximum sequence length defines the upper limit of tokens
the model can process in both input and output, with values scaled to accommodate the increasing
complexity of reasoning required across training phases. Phase 1 sets this limit to 2048 tokens,
which sufficiently captures domain definitions, problem statements, generated plans, and basic
explanations of action validity without excessive computational overhead. Phase 2 doubles this
limit to 4096 tokens to accommodate the detailed chain-of-thought reasoning sequences that include
comprehensive state analysis, action selection justification, explicit precondition checking, effect
application reasoning, state transition tracking, and goal progress evaluation. This increased capacity
is essential for the model to generate the verbose logical reasoning chains that characterize effective
planning verification.

15

Training Epochs The number of training epochs represents complete passes through the respective
training datasets, with values chosen to ensure adequate learning while preventing overfitting to
domain-specific patterns. Phase 1 employs 5 epochs to establish foundational planning knowledge,
requiring more iterations because the model must learn to understand PDDL syntax, action semantics,
state representations, and goal achievement from its general language understanding baseline. Phase
2 uses only 3 epochs because the model already possesses basic planning capabilities and needs only
to refine its chain-of-thought reasoning processes. The reduced epoch count in Phase 2 also prevents
overfitting to the specific feedback patterns generated by VAL, ensuring that the learned reasoning
generalizes beyond the particular validation scenarios encountered during training.

Warmup Steps Warmup steps implement a gradual increase in learning rate from zero to the
target value at the beginning of training, preventing training instability that can arise from large
initial weight updates on a partially trained model. Phase 1 uses 500 warmup steps to ensure stable
convergence when adapting the pre-trained language model to the structured domain of planning,
where the token distributions and semantic relationships differ significantly from general text. Phase
2 employs 200 warmup steps, fewer than Phase 1 because the model has already been adapted to
the planning domain and requires less careful initialization. The warmup mechanism is particularly
important in Phase 2 given the complex loss landscape created by the two-stage optimization process
and the feedback-driven training dynamics.

Weight Decay Weight decay implements L2 regularization by adding a penalty term proportional
to the squared magnitude of model weights, preventing overfitting by discouraging the model from
relying too heavily on specific parameter configurations. Phase 1 uses a weight decay of 0.01,
relatively high to prevent the model from memorizing specific instruction-response patterns rather
than learning generalizable planning principles. Phase 2 reduces weight decay to 0.001 to allow
more fine-grained parameter adjustments necessary for learning subtle logical reasoning patterns
while still providing some regularization against overfitting to the VAL feedback patterns. The lower
weight decay in Phase 2 recognizes that the chain-of-thought reasoning requires precise parameter
configurations that might be overly penalized by stronger regularization.

Gradient Clipping Gradient clipping prevents exploding gradients by setting a maximum allowed
norm for gradient vectors, ensuring training stability particularly in the complex optimization land-
scape of instruction tuning. Phase 1 employs gradient clipping at 1.0, providing stability during
the initial adaptation from general language modeling to planning-specific tasks where gradient
magnitudes can vary significantly across different types of planning problems. Phase 2 uses more
conservative clipping at 0.5 because the model is more stable after Phase 1 training, and the chain-
of-thought training process requires more careful weight updates to maintain the delicate balance
between logical reasoning accuracy and plan generation quality. The tighter clipping in Phase 2 also
helps manage gradient spikes that can occur when VAL feedback indicates dramatic plan validity
changes.

Temperature (Generation) The temperature parameter controls the randomness in text generation
during training validation and inference, with lower values producing more deterministic outputs and
higher values encouraging exploration of diverse response patterns. Phase 1 uses a temperature of
0.7, allowing moderate exploration of different planning approaches and explanation styles while
maintaining coherent output quality. This higher temperature helps the model discover various ways
to explain action validity and plan construction during the foundational learning phase. Phase 2
reduces temperature to 0.3 to focus generation on precise, logical reasoning steps where consistency
and accuracy are more important than diversity. The lower temperature ensures that chain-of-thought
reasoning follows logical patterns rather than exploring creative but potentially incorrect reasoning
paths.

Maximum Generation Length The maximum generation length sets the upper bound on tokens
the model can produce in response to prompts, scaled to accommodate the verbosity requirements of
each training phase. Phase 1 limits generation to 1024 tokens, sufficient for producing plans with
basic explanations of action applicability and goal achievement without excessive computational
cost. Phase 2 increases this limit to 2048 tokens to accommodate detailed step-by-step reasoning
chains that include comprehensive state analysis, action justification, precondition verification, effect
application reasoning, and goal progress tracking. This increased generation capacity is essential for

16

the model to produce the verbose logical reasoning that characterizes effective planning verification
and enables meaningful feedback from the VAL validator.

Optimizer (AdamW) AdamW serves as the optimization algorithm for both training phases,
chosen for its superior performance in transformer fine-tuning scenarios compared to standard
optimizers. AdamW combines the adaptive learning rate benefits of Adam with improved weight
decay handling, making it particularly effective for instruction tuning where the model must adapt
pre-trained knowledge to new task-specific patterns. The optimizer handles sparse gradients well,
which is crucial in planning scenarios where many potential actions are invalid in any given state,
leading to sparse activation patterns. AdamW’s momentum-based updates help navigate the complex
loss landscape created by the combination of language modeling objectives and planning-specific
constraints.

Beta Parameters (51, 52) The beta parameters control the exponential decay rates for AdamW’s
moment estimates, with 51 = 0.9 governing the first moment (gradient moving average) and
B2 = 0.999 governing the second moment (squared gradient moving average). These standard
values have proven effective across a wide range of transformer training scenarios and provide
appropriate momentum characteristics for instruction tuning. The 3, value of 0.9 provides sufficient
momentum to smooth gradient noise while remaining responsive to genuine changes in gradient
direction, particularly important when learning from VAL feedback in Phase 2. The 5, value of
0.999 provides stable variance estimates essential for adaptive learning rate scaling across the diverse
parameter space of large language models.

Epsilon (¢) The epsilon parameter adds a small constant of 1 x 10~2 to the denominator in AdamW’s
update rule to prevent numerical instability from division by zero or near-zero values. This value
represents a standard choice that provides numerical stability without meaningfully affecting the
optimization dynamics. The parameter becomes particularly important during Phase 2 training where
the complex loss landscape and feedback-driven updates can occasionally produce very small gradient
variances that might otherwise cause numerical issues. The chosen value ensures robust training
across the full range of planning problems and feedback scenarios encountered during instruction
tuning.

Iteration Limit () The iteration limit is unique to Phase 2 and controls how many feedback loops
the model experiences with the VAL validator during chain-of-thought instruction tuning. Values
of 10 and 15 represent the number of times the model can generate a plan with reasoning, receive
detailed feedback about logical errors, learn from this feedback, and attempt improved solutions.
This parameter directly controls the trade-off between training thoroughness and computational cost,
as each iteration requires plan generation, validation, and model updating. Higher values of n allow
more refinement of reasoning capabilities but significantly increase training time and computational
requirements. The specific values were chosen to provide sufficient learning opportunities while
maintaining practical training times.

A.2 Mathematical Formulation of Loss Functions

We formally define the two specialized loss functions that drive our two-stage optimization process
in Phase 2. These functions are carefully designed to target both the logical reasoning capabilities
and final planning performance of the model.

A.2.1 Reasoning Chain Loss Function

The reasoning chain loss function Lreasoning measures the quality of the model’s step-by-step logical
reasoning over state-action-state transitions:

1
£reasoning(9t7 Dﬁeasoning) = 1Nt Z [/stcp(si—la Ay Si, fz) “4)

| reasonin, ‘ t
2 (Si— 1,044,584, fi) eDreasDning

where each training example consists of a state transition (s;_1, a;, s;) and VAL feedback f;. The
step-wise loss Ly is defined as:

17

4
Lsep(Si—1, iy 8y fi) = dsate (815 55 7) + Ateedback * Lteedvack (f:) (5)

where s;" eted i the deterministically computed next state given action a; applied to s;_1, and dyue

is the state distance function defined as:
dyae(8,8') = |sAs'| = |s\ 8| + 15"\ 5] (6)

This measures the symmetric difference between the two sets of predicates, counting predicates that
are in one state but not the other.

The feedback loss Lieednack incorporates VAL verification results to guide logical reasoning:

0 if action a; is valid
« 4 if precondition violation detected
Efeedback(fi) - precom i . . (7)
Oleffect if incorrect effect application
Olgoal if goal achievement failure

where Oprecond = 1.0, Qefreer = 1.0, aigoar = 1.5 are penalty weights for different error types, and
Afeedback = 0.1 balances the feedback signal with the primary reasoning objective.

A.2.2 Final Performance Loss Function

The final performance loss function Lg,, measures how well the complete plans generated through
chain-of-thought reasoning achieve the planning objectives:

1
Leinal (0:7 Dgnal) = W Z ['plan(dv p,m, ’U) (8)
final (d,p,w,v)e]l])gnal
where each training example consists of a domain d, problem p, generated plan 7, and binary validity
label v from VAL. The plan-level loss is:

Eplan(dapa T, v) = H[U = O] ’ ﬂ +a- BCE(”? {)) ©

where I[v = 0] is an indicator function that equals 1 when the plan is invalid (providing a fixed
penalty 8 = 2.0 for invalid plans) and 0 when valid; and BCE(v, ©) is the binary cross-entropy loss
between the VAL validity label v and the model’s predicted validity ©, with o = 0.5 balancing plan
generation accuracy with validity prediction.

A.2.3 Dataset Construction for Loss Computation

t

The reasoning dataset Dreasonmg

thought sequences:

contains individual state-action-state triplets extracted from chain-of-

Dfeasoning = {(s;—1,a, i, f;) : ¥ steps in CoT plans generated at iteration ¢} (10)
The final dataset D}, contains complete planning instances with validity judgments:
Dot = {(d;, pj, 7r§-, vﬁ) : V problems j at iteration ¢} (11)

where 7r§- is the complete plan generated for problem j at iteration ¢, and v;? is the corresponding VAL
validity assessment.

18

A.3 Algorithm

Algorithm 1: PDDL-INSTRUCT: Chain-of-Thought Instruction Tuning for Symbolic Planning

Input: Pre-trained LLM Mp, , Phase 1 dataset D, Phase 2 dataset Dy, VAL validator,

iteration limit 7, learning rates d1, 6o

Output: Instruction-tuned model My-

—_
—eY

PRIL AR

Phase 1: Initial Instruction Tuning
for epoch e = 1to F; do
for batch (diapi> T, fl) € D; do
yi < Moy(d;,pi) > Generate plan with explanation
Ly « —log P(m;, fildi, pi, 0)
0« 6— 51 Vgﬁl
end for
end for
01+ 0 > Save Phase 1 model
Phase 2: CoT Instruction Tuning

: for iteration ¢t = 1 to n do
12:

13:

14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:

32:
33:
34:
35:
36:

37:
38:

39:
40:
41:
42:
43:

Initialize datasets DL, oning < 0 D0 < 0
for problem (d;, p;) € D, do
Generate CoT plan:] = {(s¢, a1, 1), (51,02,52), -, (Sn—1,0n, Sn)}

using Mo, (d;,p;) ,
Validate plan with VAL: f; < VAL(77,d;,p;)
if f; indicates valid plan then

D?inal —]D)gcinal U {(dj’pj? ﬂ—g’ 1)}
else

Extract detailed feedback for each invalid step
D?inal — D?inal U {(dj’pj7 ﬂ—g’ 0)}
end if)
for each step (s;_1,a;, s;) € m do
Get step-level VAL feedback: f; <— VAL-step(s;—1,a;, S, d;)
]D)f"easoning — Df‘easoning U {(Si—17 Qi Siy fl)}
end for
end for
Stage 1: Reasoning Chain Optimization
for epoch e = 1 to F5, do
for batch B € D;“**°"""9 do
Lreasoning — ﬁ Z(sifl,ai,si,fi)EB Lstep(sifla g, Si, fz)
9{ — et - 61Vt9t Lreasoning
end for
end for
Stage 2: Final Performance Optimization
for epoch e = 1 to Fy, do
for batch B € D/ do
L final &ﬁ‘ Z(d,pﬂr,’u)EB £plan(da P, T, V)
Or1 < 07 — 02Vor Linal
end for
end for
end for
return My- where 0" = 0,

19

A.4 Hardware and Computational Resources

Resource Phase1 Phase 2
GPU Memory (per GPU) 24 GB 24 GB
Number of GPUs 2 2
Training Time 12 hours 18 hours
CPU Cores 16 16
RAM 64 GB 64 GB
Total Training Time 30 hours
Inference Time (per problem) 2.3 seconds

Table 3: Computational resource requirements

B Sample Prompts for Blocksworld Domain

This section presents the specific prompt templates used in our PDDL-INSTRUCT framework for the
Blocksworld domain. We provide examples for both Phase 1 (Initial Instruction Tuning) and Phase 2
(CoT Instruction Tuning) to demonstrate how our approach teaches models to reason about action
applicability and state transitions.

B.1 Phase 1: Initial Instruction Tuning Prompts

B.1.1 Correct Plan Example

Phase 1 Prompt - Correct Plan

[INSTRUCTION] Given the following PDDL domain and problem, analyze the
provided plan and explain why each action is valid.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on 7x 7y) (ontable ?x) (clear 7x) (handempty) (holding ?7x))
(:action pick-up
:parameters (7x)
:precondition (and (clear ?7x) (ontable ?7x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))
(not (clear 7x)) (holding 7x)))
(:action put-down
:parameters (7x)
:precondition (holding 7x)
:effect (and (not (holding 7x)) (handempty)
(ontable ?x) (clear 7x)))
(:action stack
:parameters (7x 7y)
:precondition (and (holding 7x) (clear 7y))
reffect (and (not (holding 7x)) (mot (clear 7y))
(handempty) (on 7x 7y) (clear ?7x)))
(:action unstack
:parameters (7x 7y)
:precondition (and (on 7x ?7y) (clear ?x) (handempty))
:effect (and (not (on ?7x ?7y)) (not (handempty))
(holding ?x) (clear ?7y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)

20

(:objects a b ¢)
(:init (ontable a) (ontable b) (ontable c)

(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b ¢))))

[PLAN]

1. (pick-up b)
2. (stack b ¢)
3. (pick-up a)
4. (stack a b)

[EXPECTED RESPONSE] This plan is VALID. Let me analyze each action:

[Action 1: (pick-up Db)]

- Preconditions: (clear b), (ontable b), (handempty)

- Initial state satisfies all preconditions: b is clear, b is on table, and
hand is empty

- Effects: b is now held, hand is not empty, b is not on table, b is not
clear

- Resulting state: (ontable a) (ontable c) (clear a) (clear c) (holding b)

[Action 2: (stack b c)]

- Preconditions: (holding b), (clear c)

- Current state satisfies preconditions: holding b and c is clear

- Effects: b is stacked on c, hand becomes empty, c is no longer clear, b
becomes clear

- Resulting state: (ontable c) (ontable a) (clear a) (clear b) (on b c)
(handempty)

[Action 3: (pick-up a)l

- Preconditions: (clear a), (ontable a), (handempty)

- Initial state satisfies all preconditions: a is clear, a is on table, and
hand is empty

Effects: a is now held, hand is not empty, a is not on table, a is not
clear

- Resulting state: (on b c) (ontable c) (clear b) (holding a)

[Action 4: (stack a b)]

- Preconditions: (holding a), (clear b)

- Current state satisfies preconditions: holding a and b is clear

- Effects: a is stacked on b, hand becomes empty, b is no longer clear, a
becomes clear

- Resulting state: (ontable c) (on b c) (on a b) (clear a) (handempty)

The plan succeeds because a is stacked on b, and b is stacked on c.

B.1.2 Incorrect Plan Example

Phase 1 Prompt - Incorrect Plan

[INSTRUCTION] Given the following PDDL domain and problem, analyze the
provided plan and explain why each action is valid.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?x 7y) (ontable 7x) (clear 7x) (handempty) (holding 7x))
(:action pick-up
:parameters (7x)

21

:precondition (and (clear ?7x) (ontable ?7x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))
(not (clear 7x)) (holding 7x)))
(:action put-down
:parameters (7x)
:precondition (holding 7x)
teffect (and (not (holding ?x)) (handempty)
(ontable ?x) (clear 7x)))
(:action stack
:parameters (7x 7y)
:precondition (and (holding 7x) (clear 7y))
:effect (and (not (holding 7x)) (mot (clear 7y))
(handempty) (on 7x 7y) (clear ?7x)))
(:action unstack
:parameters (7x 7y)
:precondition (and (on 7x ?y) (clear ?x) (handempty))
reffect (and (not (on 7x ?7y)) (not (handempty))
(holding ?x) (clear 7y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c)
(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PLAN]
1. (stack a b)
2. (stack b c)

[EXPECTED RESPONSE] This plan is INVALID. Let me analyze each action:

[Action 1: (stack a b)]

- Preconditions: (holding a), (clear b)

- Current state: (ontable a) (ontable b) (ontable c) (clear a) (clear b)
(clear c) (handempty)

- VIOLATION: The precondition (holding a) is not satisfied - the hand is
empty and a is on the table

- To stack a on b, we must first pick up a

[Action 2: (stack b c)]
- Since Action 1 failed, this action cannot be evaluated in a valid state

sequence
- Even if Action 1 succeeded, we would need to be holding b to stack it on c

The plan fails because it attempts to stack blocks without first picking
them up. The correct sequence would be: (pick-up a), (stack a b),
(pick-up b), (stack b c).

B.2 Phase 2: Chain-of-Thought Instruction Tuning Prompts

B.2.1 CoT Generation Prompt

Phase 2 CoT Generation Prompt

[INSTRUCTION] Generate a plan for the given problem using step-by-step
reasoning. For each action, explicitly verify preconditions, apply
effects, and track state changes.

[DOMAIN]

22

(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on 7x 7y) (ontable ?x) (clear 7x) (handempty) (holding ?7x))
(:action pick-up
:parameters (7x)
:precondition (and (clear ?7x) (ontable ?7x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))
(not (clear 7x)) (holding 7x)))
(:action put-down
:parameters (7x)
:precondition (holding 7x)
reffect (and (not (holding 7x)) (handempty)
(ontable ?x) (clear 7x)))
(:action stack
:parameters (7x ?7y)
:precondition (and (holding 7x) (clear 7y))
:effect (and (not (holding 7x)) (mot (clear 7y))
(handempty) (on 7x 7y) (clear ?7x)))
(:action unstack
:parameters (7x 7y)
:precondition (and (on 7x ?7y) (clear ?x) (handempty))
:effect (and (not (on 7x ?7y)) (not (handempty))
(holding ?x) (clear ?7y))))

[PROBLEM]
(define (problem bw-tower)
(:domain blocksworld)
(:objects a b c)
(:init (on c b) (ontable b) (ontable a)
(clear c¢) (clear a) (handempty))
(:goal (and (on a c) (on c b))))

[EXPECTED RESPONSE]

Initial State Analysis:

Current state: (on c b), (ontable b), (ontable a), (clear c), (clear a),
(handempty)

Goal: (on a c), (on c b)

[STEP BY STEP PLANNING]

[Step 1: State sO Action al State si]
- Current state sO: (on c b), (ontable b), (ontable a), (clear c), (clear
a), (handempty)
- Proposed action al: (pick-up a)
- Precondition check:
- (clear a): TRUE in sO
- (ontable a): TRUE in sO
- (handempty): TRUE in sO
- Action is APPLICABLE
- Effect application:
- Add: (holding a)
- Delete: (ontable a), (handempty), (clear a)
- Resulting state sl1: (on c b), (ontable b), (clear c), (holding a)

[Step 2: State s1 Action a2 State s2]
- Current state sl: (on c b), (ontable b), (clear c), (holding a)
- Proposed action a2: (stack a c)
- Precondition check:
- (holding a): TRUE in sl
- (clear c¢): TRUE in si
- Action is APPLICABLE

23

- Effect application:
- Add: (on a c), (handempty), (clear a)
- Delete: (holding a), (clear c)
- Resulting state s2: (on c b), (ontable b), (on a c), (handempty), (clear a)

[GOAL ACHIEVEMENT CHECK]

Required: (on a c), (on c b)

Current state s2: (on c b), (ontable b), (on a c), (handempty), (clear a)
- (on a c): TRUE in s2

- (on ¢ b): TRUE in s2

Goal is ACHIEVED.

[FINAL PLAN] (pick-up a), (stack a c)

B.2.2 CoT with Feedback Integration: Incorrect Plan
B.2.2.1 Binary Feedback

Phase 2 CoT Binary Feedback - Incorrect Plan

Phase 2 CoT with Binary Feedback Prompt

[INSTRUCTION] You previously generated a plan with step-by-step reasoning.
The

validator has provided feedback on your reasoning. Use this feedback to

generate a corrected plan with improved logical reasoning.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?7x 7y) (ontable 7x) (clear 7x) (handempty) (holding 7x))
(:action pick-up
:parameters (7x)
:precondition (and (clear 7x) (ontable 7x) (handempty))
:effect (and (not (ontable 7x)) (not (handempty))
(not (clear ?7x)) (holding 7x)))
(:action put-down
:parameters (7x)
:precondition (holding 7x)
:effect (and (not (holding 7x)) (handempty)
(ontable ?x) (clear ?7x)))
(:action stack
:parameters (7x 7y)
:precondition (and (holding ?x) (clear ?7y))
teffect (and (not (holding 7x)) (not (clear 7y))
(handempty) (on 7x ?7y) (clear ?7x)))
(:action unstack
:parameters (7x 7y)
:precondition (and (on 7x ?7y) (clear 7x) (handempty))
:effect (and (not (on ?x 7y)) (not (handempty))
(holding ?7x) (clear 7y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c)
(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b ¢))))

24

[PREVIOUS PLAN]

Step 1: (pick-up b) - VALID
Step 2: (stack b ¢) - VALID
Step 3: (stack a b) - INVALID

[VAL FEEDBACK]

Plan Validation details
Checking next happening (time 1)
Deleting (ontable b)

Deleting (handempty)

Deleting (clear b)

Adding (holding b)

Checking next happening (time 2)
Deleting (holding b)

Deleting (clear c)

Adding (handempty)

Adding (on b c)

Adding (clear b)

Checking next happening (time 3)
Plan failed because of unsatisfied precondition in:
(stack a b)

Plan failed to execute

[GENERATE CORRECTED PLAN WITH REASONING]

B.2.2.2 Detailed Feedback

Phase 2 CoT Detailed Feedback - Incorrect Plan

Phase 2 CoT with Binary Feedback Prompt

[INSTRUCTION] You previously generated a plan with step-by-step reasoning.
The

validator has provided feedback on your reasoning. Use this feedback to

generate a corrected plan with improved logical reasoning.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?7x 7y) (ontable 7x) (clear 7x) (handempty) (holding 7x))
(:action pick-up
:parameters (7x)
:precondition (and (clear ?x) (ontable ?7x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))
(not (clear 7x)) (holding ?7x)))
(:action put-down
:parameters (7x)
:precondition (holding 7x)
:effect (and (not (holding 7x)) (handempty)
(ontable ?x) (clear 7?x)))
(:action stack
:parameters (7x 7y)
:precondition (and (holding ?x) (clear ?7y))
:effect (and (not (holding 7x)) (not (clear 7y))
(handempty) (on 7x ?7y) (clear ?7x)))
(:action unstack
:parameters (7x 7y)

25

:precondition (and (on 7x ?7y) (clear ?7x) (handempty))
:effect (and (not (on ?7x ?7y)) (not (handempty))
(holding 7x) (clear 7y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c)
(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b c))))

[PREVIOUS PLAN]

Step 1: (pick-up b) - VALID
Step 2: (stack b c) - VALID
Step 3: (stack a b) - INVALID

[VAL FEEDBACK]

Plan Validation details
Checking next happening (time 1)
Deleting (ontable b)

Deleting (handempty)

Deleting (clear b)

Adding (holding b)

Checking next happening (time 2)
Deleting (holding b)

Deleting (clear c)

Adding (handempty)

Adding (on b ¢)

Adding (clear b)

Checking next happening (time 3)
Plan failed because of unsatisfied precondition in:
(stack a b)

Plan failed to execute
Plan Repair Advice:

(stack a b) has an unsatisfied precondition at time 3
(Set (holding a) to true)

[EXPLANATION] This plan is INVALID. Here is the analysis of each action:

[Action 1: (pick-up b)]

- Preconditions: (clear b), (ontable b), (handempty)

- Initial state satisfies all preconditions: b is clear, b is on table, and
hand is empty

- Effects: b is now held, hand is not empty, b is not on table, b is not
clear

- Resulting state: (ontable a) (ontable c) (clear a) (clear c) (holding b)

[Action 2: (stack b c)]

- Preconditions: (holding b), (clear c)

- Current state satisfies preconditions: holding b and c is clear

- Effects: b is stacked on c, hand becomes empty, c is no longer clear, b
becomes clear

- Resulting state: (ontable c) (ontable a) (clear a) (clear b) (on b c)
(handempty)

[Action 3: (stack a b)]

26

- Preconditions: (holding a), (clear b)

- Current state: (ontable c) (ontable a) (clear a) (clear b) (on b c)
(handempty)

- VIOLATION: The precondition (holding a) is not satisfied - the hand is
empty and a is on the table

[GENERATE CORRECTED PLAN WITH REASONING]

B.2.3 CoT with Feedback Integration: Correct Plan
B.2.3.1 Binary Feedback

Phase 2 CoT Binary Feedback - Correct Plan

Phase 2 CoT with Binary Feedback Prompt

[INSTRUCTION] You previously generated a plan with step-by-step reasoning.
The

validator has provided feedback on your reasoning. Use this feedback to

generate a corrected plan with improved logical reasoning.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on ?7x 7y) (ontable 7x) (clear 7x) (handempty) (holding 7x))
(:action pick-up
:parameters (?7x)
:precondition (and (clear 7x) (ontable 7x) (handempty))
:effect (and (not (ontable ?x)) (not (handempty))
(not (clear 7x)) (holding 7x)))
(:action put-down
:parameters (7x)
:precondition (holding 7x)
:effect (and (not (holding 7x)) (handempty)
(ontable ?x) (clear ?7x)))
(:action stack
:parameters (7x 7y)
:precondition (and (holding ?x) (clear ?7y))
teffect (and (not (holding ?x)) (mot (clear ?y))
(handempty) (on 7x 7y) (clear ?7x)))
(:action unstack
:parameters (7x 7y)
:precondition (and (on 7x ?7y) (clear 7x) (handempty))
:effect (and (not (on ?x 7y)) (not (handempty))
(holding ?7x) (clear 7y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c)
(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b ¢))))

[PREVIOUS PLAN]

Step 1: (pick-up b) - VALID
Step 2: (stack b c) - VALID
Step 3: (pick-up a) - VALID
Step 4: (stack a b) - VALID

27

[VAL FEEDBACK]

Plan Validation details
Checking next happening (time 1)
Deleting (ontable b)

Deleting (handempty)

Deleting (clear b)

Adding (holding b)

Checking next happening (time 2)
Deleting (holding b)

Deleting (clear c)

Adding (handempty)

Adding (on b c)

Adding (clear b)

Checking next happening (time 3)
Deleting (ontable a)

Deleting (handempty)

Deleting (clear a)

Adding (holding a)

Checking next happening (time 4)

Deleting (holding a)

Deleting (clear b)

Adding (handempty)

Adding (on a b)

Adding (clear a)

Plan executed successfully - checking goal
Plan valid

B.2.3.2 Detailed Feedback

Phase 2 CoT Detailed Feedback - Correct Plan

Phase 2 CoT with Binary Feedback Prompt

[INSTRUCTION] You previously generated a plan with step-by-step reasoning.
The

validator has provided feedback on your reasoning. Use this feedback to

generate a corrected plan with improved logical reasoning.

[DOMAIN]
(define (domain blocksworld)
(:requirements :strips)
(:predicates
(on 7?x 7y) (ontable ?x) (clear 7x) (handempty) (holding 7x))
(:action pick-up
:parameters (7x)
:precondition (and (clear ?7x) (ontable ?7x) (handempty))
:effect (and (not (ontable ?7x)) (not (handempty))
(not (clear 7x)) (holding 7x)))
(:action put-down
:parameters (7x)
:precondition (holding 7x)
:effect (and (not (holding 7x)) (handempty)
(ontable ?x) (clear 7?x)))
(:action stack
:parameters (7x 7y)
:precondition (and (holding ?x) (clear ?7y))
teffect (and (not (holding 7x)) (not (clear 7y))
(handempty) (on 7x ?7y) (clear ?7x)))

28

(:action unstack
:parameters (7x 7y)
:precondition (and (on 7x ?7y) (clear ?7x) (handempty))
:effect (and (not (on ?7x ?7y)) (not (handempty))
(holding ?x) (clear ?7y))))

[PROBLEM]
(define (problem bw-simple)
(:domain blocksworld)
(:objects a b c)
(:init (ontable a) (ontable b) (ontable c)
(clear a) (clear b) (clear c) (handempty))
(:goal (and (on a b) (on b ¢))))

[PREVIOUS PLAN]

Step 1: (pick-up b) - VALID
Step 2: (stack b c) - VALID
Step 3: (pick-up a) - VALID
Step 4: (stack a b) - VALID

(VAL FEEDBACK]

Plan Validation details
Checking next happening (time 1)
Deleting (ontable b)

Deleting (handempty)

Deleting (clear b)

Adding (holding b)

Checking next happening (time 2)
Deleting (holding b)

Deleting (clear c)

Adding (handempty)

Adding (on b c)

Adding (clear b)

Checking next happening (time 3)
Deleting (ontable a)

Deleting (handempty)

Deleting (clear a)

Adding (holding a)

Checking next happening (time 4)

Deleting (holding a)

Deleting (clear b)

Adding (handempty)

Adding (on a b)

Adding (clear a)

Plan executed successfully - checking goal
Plan valid

[EXPLANATION] This plan is VALID. Here is the analysis of each action:

[Action 1: (pick-up Db)]

- Preconditions: (clear b), (ontable b), (handempty)

- Initial state satisfies all preconditions: b is clear, b is on table, and
hand is empty

- Effects: b is now held, hand is not empty, b is not on table, b is not
clear

- Resulting state: (ontable a) (ontable c) (clear a) (clear c) (holding b)

[Action 2: (stack b c)]
- Preconditions: (holding b), (clear c)

29

- Current state satisfies preconditions: holding b and c is clear

- Effects: b is stacked on c, hand becomes empty, ¢ is no longer clear, b
becomes clear

- Resulting state: (ontable c) (ontable a) (clear a) (clear b) (on b c)
(handempty)

[Action 3: (pick-up a)l

- Preconditions: (clear a), (ontable a), (handempty)

- Initial state satisfies all preconditions: a is clear, a is on table, and
hand is empty

- Effects: a is now held, hand is not empty, a is not on table, a is not
clear

- Resulting state: (on b c¢) (ontable c) (clear b) (holding a)

[Action 4: (stack a b)]

- Preconditions: (holding a), (clear b)

- Current state satisfies preconditions: holding a and b is clear

- Effects: a is stacked on b, hand becomes empty, b is no longer clear, a
becomes clear

- Resulting state: (ontable c) (on b c) (on a b) (clear a) (handempty)

The plan succeeds.

C Extended Experimental Results

C.1 Ablation Study Results

Configuration Blocksworld Mystery BW Logistics
Baseline (No Training) 28.0+4.2 1.0+1.0 11.0 £ 2.8
Phase 1 Only 78.0 £ 3.1 320+ 4.6 23.0£39
Phase 2 Only (Detailed Feedback, n = 15) 72.0 £ 6.5 170 £ 3.2 45.0 £ 4.7
Phase 1 + Binary Feedback (n = 15) 89.0 £2.7 49.0+5.2 72.0 £ 4.1
Phase 1 + Detailed Feedback (n = 15) 94.0 + 1.5 64.0 + 3.8 79.0 £ 3.2

Table 4: Ablation study showing contribution of each component for Llama-3

C.2 Error Analysis and Failure Modes

Error Type Blocksworld Mystery BW Logistics
Precondition Violation 2.1 8.7 53
Incorrect Effect Application 1.4 12.4 6.8
Goal Not Achieved 1.8 9.2 6.1
Invalid Action Sequence 0.7 5.7 2.8
Total Failure Rate 6.0 36.0 21.0

Table 5: Breakdown of planning failures by error type (%) for Llama-3 with Phase 1 and Phase 2
with Detailed Feedback and nn = 15

30

	Introduction
	Related Work
	Preliminaries
	Problem Formulation
	PDDL-Instruct: Methodology
	Training the Model
	Training Methodology for Phase 2 CoT Instruction Tuning: Optimization Process
	Evaluation Phase

	Empirical Evaluation
	Results and Discussion
	Conclusion
	Broader Impacts
	Detailed Experimental Setup
	Hyperparameter Configuration
	Mathematical Formulation of Loss Functions
	Reasoning Chain Loss Function
	Final Performance Loss Function
	Dataset Construction for Loss Computation

	Algorithm
	Hardware and Computational Resources

	Sample Prompts for Blocksworld Domain
	Phase 1: Initial Instruction Tuning Prompts
	Correct Plan Example
	Incorrect Plan Example

	Phase 2: Chain-of-Thought Instruction Tuning Prompts
	CoT Generation Prompt
	CoT with Feedback Integration: Incorrect Plan
	CoT with Feedback Integration: Correct Plan

	Extended Experimental Results
	Ablation Study Results
	Error Analysis and Failure Modes

