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Abstract. Benchmarks such as SWE-bench and ARC-AGI demonstrate how shared datasets accelerate progress
toward artificial general intelligence (AGI). We introduce VCBench, the first benchmark for predicting founder
success in venture capital (VC), a domain where signals are sparse, outcomes are uncertain, and even top investors
perform modestly. At inception, the market index achieves a precision of 1.9%. Y Combinator outperforms the
index by a factor of 1.7x, while tier-1 firms are 2.9x better. VCBench provides 9,000 anonymized founder
profiles, standardized to preserve predictive features while resisting identity leakage, with adversarial tests show-
ing more than 90% reduction in re-identification risk. We evaluate nine state-of-the-art large language models
(LLMs). DeepSeek-V3 delivers over six times the baseline precision, GPT-40 achieves the highest Fj 5, and
most models surpass human benchmarks. Designed as a public and evolving resource available at vebench.com,
VCBench establishes a community-driven standard for reproducible and privacy-preserving evaluation of AGI

in early-stage venture forecasting.

1. Introduction

Benchmark datasets have played a defining role in the
progress of machine learning (ML). By turning open-ended
challenges into standardized and measurable tasks, they
have enabled reproducible comparisons and driven entire
fields forward. As models advance, there is growing de-
mand for benchmarks that not only test raw accuracy but
also allow systematic comparisons between machine and
human performance.

Venture capital (VC) is a compelling testbed for evaluating
expert forecasting, offering a real-world setting to measure
whether models can match or surpass human reasoning un-
der uncertainty. Decisions rely on sparse and uncertain sig-
nals from founder backgrounds and early company data,
while the financial stakes are high. Even leading investors
perform modestly. The market index achieves 1.9% preci-
sion at inception, while Y Combinator reaches 3.2% (1.7x
the index) and tier-1 VC firms are at 5.6% (2.9%x). Re-
cent models (Mu et al., 2025; Griffin et al., 2025) show that
founder profiles alone can yield strong predictive signals,
but the field lacks a standardized benchmark. These limits
highlight both the practical importance and the scientific
value of VC. It provides a domain where forecasting skill
can be measured against expert performance, and exceed-
ing that benchmark would represent a step toward human-
level decision-making.

Building a benchmark for VC faces unique challenges.
Founder data is abundant but noisy. LinkedIn provides
wide coverage, yet its entries are inconsistent and unreg-

ulated. Crunchbase offers structured business metrics, but
with limited scope. Together, these sources create four key
issues: (i) format irregularity, where the same degree or
role appears in many variants; (ii) entry irregularity, such
as inclusion of internships or short courses; (iii) cover-
age imbalance, with many missing or incomplete fields;
and (iv) data contamination, where large language mod-
els (LLMs) can re-identify founders from profile text and
bypass the intended prediction task. As summarized in Ta-
ble 1, these challenges differ from those in previous bench-
marks and require a different approach.

In this paper we introduce VCBench', a standardized and
anonymized benchmark for founder-success prediction.
The dataset contains 9,000 founder profiles, with 810
labeled as successful. A key challenge is ensuring that
models cannot bypass the prediction task by re-identifying
founders. To address this, we conduct adversarial re-
identification experiments, which reduce identifiable
founders by 92% while preserving predictive features.
Building on this foundation, we design a pipeline of
standardization, filtering, enrichment, and anonymization.
We then evaluate nine state-of-the-art LLMs as shown in
Figure 1. To encourage further study, we release a public
leaderboard for continuous evaluation of both LLMs and
purpose-built VC models.
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Benchmark Data Filtering | Data Standardization | Coverage Improvement | Data Anonymization
ARC-AGI-2 - - - -
SWE-Bench v - - -
Microsoft SDBench | — - v -
VCBench v v v v

Table 1. Comparisons with Existing LLM Benchmarks

Our contributions

1. We introduce VCBench, the first anonymized bench-
mark for founder-success prediction in VC.

2. We develop a generalizable pipeline for data cleaning
and anonymization, and validate it with adversarial re-
identification tests.

3. We benchmark nine state-of-the-art LLLMs, several
surpassing human baselines, and release a public
leaderboard at vebench.com.
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Figure 1. Predictive performances of nine vanilla LLMs on
VCBench, with human-level baselines. The human-level base-
line results are scaled linearly to reflect the inflation of success
rate from the real-world (1.9%) to VCBench (9%).

2. Related Work

Benchmarks in machine learning. Benchmark datasets
have long been central to machine learning progress. In
vision and language, VQA (Agrawal et al., 2016) and Im-
ageNet (Russakovsky et al., 2015) defined early standards,
while in reasoning and problem solving, ARC-AGI (Chol-
let, 2019; Chollet et al., 2025) has become a touchstone.
Applied domains have also introduced specialized bench-
marks, such as SDBench for medical diagnosis (Nori et al.,

2025) and SWE-bench for software engineering (Jimenez
et al., 2024). These benchmarks share the common goal
of translating an open-ended task into a reproducible and
measurable challenge that accelerates research. How-
ever, they remain concentrated on perception and reason-
ing tasks. To our knowledge, no existing benchmark eval-
uates decision-making under uncertainty in socioeconomic
contexts such as venture capital, where outcomes are rare,
signals are noisy, and even expert performance is modest.
VCBench fills this gap by establishing a standardized and
anonymized testbed for early-stage startup success predic-
tion.

Venture capital prediction. Several works have explored
predictive models for startup success, utilizing a variety of
machine learning techniques and data formats (Dellermann
et al.,, 2021; Razaghzadeh Bidgoli et al., 2024; Potanin
et al., 2023; Maarouf et al., 2025; Arroyo et al., 2019).
Closely related works, Mu et al. (Mu et al., 2025) and Grif-
fin et al. (Griffin et al., 2025), show that founder profiles
alone can yield strong predictive signals. However, these
studies rely on proprietary or nonstandard datasets, limiting
reproducibility and comparability. Unlike previous work,
VCBench provides a standardized and anonymized dataset
that enables fair comparison across models and establishes
human-level baselines for evaluation.

Data anonymization and leakage. A growing body of
research highlights risks of data contamination in LLM
evaluation. Models may memorize entities and bypass
the intended task by re-identification rather than reason-
ing. In the VC setting, this problem is particularly acute, as
founder profiles are often public. VCBench addresses this
challenge through a multistage anonymization pipeline val-
idated by adversarial re-identification experiments, achiev-
ing a 92% reduction in identifiable founders while preserv-
ing predictive features.

Summary. In contrast to previous benchmarks, predic-
tive models and anonymization studies, VCBench inte-
grates these threads into a single resource. It offers the
first standardized benchmark for founder-success predic-
tion, designed to evaluate models fairly against human ex-
pertise while preventing identity leakage.
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3. Dataset

Scale and success definition. VCBench contains 9,000
anonymized founder profiles with a 9% baseline success
rate (810 founders). Each founder is paired with their most
recently founded company, which determines the success
label. A founder is considered successful if the company
was acquired or had an initial public offering (IPO) above
$500M valuation, or raised more than $500M in funding.
Companies that raised $100K-$4M at inception but did
not achieve an exit, IPO, or substantial follow-on funding
within eight years of founding are classified as unsuccess-
ful. The eight-year horizon reflects expert practice: it typi-
cally takes 8—12 years for startups to reach an IPO, a large-
scale funding, or an exit. Those that fail to do so are not
considered outlier successes in VC.

Coverage. Most companies were founded in the U.S. be-
tween 2010 and 2018. In this period, roughly 5,000 U.S.
startups raised more than $100K annually, suggesting a
base population of 45,000. VCBench therefore covers
about a fifth of this population, making it statistically rep-
resentative of the early-stage startup landscape in the U.S.
Distributions of industries and founding years are presented
in Figures 3 and 4 in Appendix B.

Fields. Each founder record contains structured fields cap-
turing founder attributes and company outcomes:

* success: Binary label indicating founder success as
defined above.

e industry: Sector of the startup.

e iposand acquisitions: Details of the founder’s
prior experience in IPOs and exits as a co-founder.

* educations_json: List of education records with
degree, field, and QS ranking.

* jobs_json: List of job records with role,
company size, industry, and duration.

Sources and filtering. Founder and company data was col-
lected from licensed and publicly available data sources.
LinkedIn provides education and job histories. Crunch-
base helps with enrichment and contributes IPO, acquisi-
tion, and funding records. For each founder, information
is restricted to data available prior to the founding of the
company, simulating real-world early-stage prediction.

Formats. To accommodate both LLMs and ML mod-
els, VCBench is distributed in two complementary for-
mats. The first is anonymized prose, a natural-
language summary of each founder constructed from struc-
tured fields, designed for direct LLM input. The second
format exposes structured JSON fields, enabling feature-
level access for custom ML models.

4. Methodology

We construct VCBench in four stages: (i) data coverage
improvement, (ii) format standardization and filtering, (iii)
anonymization at both the entry and dataset levels, and (iv)
iterative field selection guided by adversarial testing. Fig-
ure 2 visualizes the full pipeline on an example profile,
while Table 2 summarizes vocabulary compression after
standardization and filtering.

4.1. Data Coverage Improvement

LinkedIn offers wide coverage but irregular entries.
Crunchbase is structured yet incomplete. Empty fields can
obscure the signal. For example, an empty acquisition field
may indicate the absence of exits or missing information.
To mitigate this without speculative inference, we adopt
two steps:

1. Data source cross-checking. When a field is empty in
one source, we retrieve the corresponding value from
the other source when a direct match is apparent.

2. Cross-record consistency. We enforce consistent val-
ues for the same entity across profiles (e.g., the indus-
try label attached to the same organization) to reduce
label drift.

These steps reduce irregularities and missing values while
maintaining a conservative stance toward uncertain or con-
flicting entries.

4.2. Format Standardization and Data Filtering

LinkedIn entries contain spelling variants, inconsistent
punctuation, and heterogeneous representations of degrees
and roles (e.g., “PhD”, “p.h.d.”, “Doctor of Philosophy”).
We adopt a two-step process:

1. Deterministic canonicalization: Trim whitespace,
normalize conjunctions (“and”, “&”, “/”’), punctua-
tion, and common aliases for degrees and roles.

2. LLM-assisted flagging: LLM identifies strings re-
quiring reformatting and tags nonformal entries using
explicit exclusion categories (e.g., “Intern”, “Course”,
“Visiting”).

Through this process, non-formal education and job entries
are flagged and removed to avoid systematic bias. After fil-
tering, founders with no remaining job record are excluded
from the dataset to ensure well-formed professional histo-
ries. Overall, this stage reduces label fragmentation and
consolidates noisy vocabularies while preserving predictive
structure (Table 2).



Raw JSON

bachelor or science (b.sc.) in computer science
(2009 - 2012) at University Oxford

Software Engineer (DeepMind UK) and Intern in an
unknown industry from 2014-11to 2018-02 at

Google (10007+ employees)

Software Engineer Intern in an unknown industry
from 2013-10to 2014-09 at Microsoft (10007 +
employees)

VCBench

Improvement

Data Coverage in
(2009 - 2012) at University Oxford

epMind UK) and in the
1tindustry from 2014-11 to
gle (10007+ employees)

Software Engineer in the Software
Development industry from 2013-10to 2014-09 at
Microsoft (10001+employees)

Format Standardization
Filtering

Anonymization

BSc in Computer Science (0S

Software Engineer in the Software Development
industry for 4-5 years (10001+ employees)

Bucketing
Feature Preservation

in the Software

Software Engineer
Development industry from to at
(10001+ employees)

Figure 2. Data Cleaning Pipeline

Record Type Original No. unique entries | Final No. unique entries | Percentage Reduction
industry 314 61 80.6%
education degree 2155 404 81.3%
education field of study 6360 3969 37.6%
jobrole 21259 16374 23.0%
education record 20573 15620 24.1%
job record 45975 41183 10.4%

Table 2. An entry-level summary of the format standardization and data filtering process.

4.3. Anonymization

We consider three adversary classes by increasing iden-
tification capability: general-purpose LLMs (e.g., GPT-
40), reasoning models (e.g., 03), and tool-assisted models
with web search. Our approach combines entry-level and
dataset-level anonymization.

Entry-level anonymization. We remove founder
names, company names, locations, and dates from all
fields, including nested text in educations_json and
jobs_json. This prevents direct string lookup (e.g., job
titles such as “Software Engineer (Microsoft India)”).

Dataset-level anonymization. To reduce linkage via rare
attribute combinations, we group simple numeric fields
(ipos and acquisitions). For industry, we fol-
low the following procedure:

1. Embed industry labels using an OpenAl embedding
model.

2. Apply agglomerative hierarchical clustering with co-
sine similarity.

3. Refine clusters using 03 reasoning.

4. Perform a final human pass.

This yields 61 clusters, each containing at least 10
founders.

Education prestige is preserved using QS university rank-
ings, with aliases handled by an LLM to unify naming
conventions (e.g., “California Institute of Technology” vs.
“Caltech”). Job start and end dates are converted into du-
ration buckets, expressed in years, which preserve career
trajectory information while concealing exact timelines.



4.4. Iterative Anonymization and Feature Selection
Process

We refine the dataset with anonymization unit tests that
explicitly target founder identification rather than success
prediction. Initial experiments (Appendix D) using the 03
model due to its powerful reasoning power (with and with-
out web search) identified leakage pathways such as spe-
cific institution names, company names, funding/IPO/ac-
quisition values, and exact dates. We therefore removed or
bucketed these fields and re-tested as described in the prior
sections.

At each iteration, we adopted the following loop: propose a
change, run identification tests, and retain the change only
if it reduces re-identification while preserving predictive
structure. Founders who were identified on at least two
occasions are removed to reduce the risk of data contami-
nation.

5. Experiments and Ablation Analysis

The purpose of the experiments is to validate whether
VCBench achieves strong anonymization while preserv-
ing predictive signal. We designed anonymization unit
tests in which models are explicitly instructed to re-identify
founders rather than predict success. This setting provides
a direct measure of the residual leakage risk.

Experimental design. We sampled 300 successful
founders, as these represent the most high-profile cases and
thus the hardest anonymization challenge. For each pro-
file, we tested whether an adversary could correctly infer
the founder’s identity. We employed two adversaries rep-
resenting distinct threat models: DeepSeek-R1, a reason-
ing model without web access (offline), and Gemini-2.5-
Pro with grounding (web-search, online). The evaluation
metric is the proportion of correctly identified founders.

Ablation formats. We compared five input formats, each
progressively modifying the representation:

¢ JSON: structured education and job records before
anonymization but excluding IPOs and acquisitions.

¢ Base (anonymized JSON): The anonymized format
with the founder names and institution names re-
moved, adding IPOs and acquisitions.

* Base + QS rankings (bucketed): The anonymized
format enriched with QS ranks grouped into intervals
(e.g. 1-20, 20-100).

* Base + QS rankings (unbucketed): The anonymized
format enriched with exact QS ranks.

* Final Format (VCBench): The final anonymization
format with unbucketed QS ranks and bucketed job
durations.

Input Online %  Offline %
Processed JSON 77.0 17.2
Base 18.3 1.2
QS (bucketed) 154 2.3
QS (unbucketed) 12.7 -
Final Format (VCBench) 15.1 1.3

Table 3. Anonymization unit testing results: average identifica-
tion rates for different input formats. Bold formats were tested
three times for reliability.

Results. Identification rates are reported in Table 3. Mov-
ing from the pre-anonymization JSON to the final format
reduced online identification by approximately 80% and
offline identification by 92%. An unexpected but benefi-
cial finding was that explicit QS rankings reduced identi-
fication rates further. Reasoning logs showed that mod-
els often misused current QS lists, which in turn blurred
re-identification. This allowed us to preserve educational
prestige while strengthening anonymity.

Representativeness. Our sample of 300 covers more than
a third of the successful founder cohort, enhancing the gen-
eralizability of our results to the broader successful popu-
lation. Moreover, small-scale experiments that we ran sug-
gest that the unsuccessful founders are about three times
less likely to be identified, supporting our decision to mon-
itor and control the level of anonymization of successful
founders.

Interpretation. By removing identifiers, bucketing rare
values, and clustering industries, multistage anonymization
reduces leakage even under strong adversaries. The final
VCBench format balances data contamination with feature
diversity, supporting robust benchmarking and fair compar-
ison.

6. The VCBench Leaderboard

After constructing VCBench, we evaluated the predictive
performance of nine state-of-the-art LLMs. The dataset of
9,000 founders was split into six folds of 1,500 each, pre-
serving the 9% success rate. Performance is measured us-
ing the Fj 5 score, which weights precision twice as heavily
as recall:

Precision - Recall
(0.52 - Precision) + Recall’

Fos=(1+0.5%)-

This emphasis reflects the VC setting, where false positives
are more costly than false negatives. The average results
are reported in Table 4, with fold-specific outcomes in Ap-
pendix C.



Model Precision (%) Recall (%) Fy.5 (%)

GPT-40 29.1 16.2 25.1
DeepSeek-R1 37.6 8.4 22.1
GPT-40-mini 29.5 10.1 21.2
03 42.4 7.0 20.9
Gemini-2.5-Pro 17.2 59.0 20.1
Claude-3.5-Haiku 16.9 48.6 19.4
GPT-5 53.7 4.3 16.2
Gemini-2.5-Flash 12.6 69.1 15.1
DeepSeek-V3 59.1 3.0 11.8

Table 4. Predictive performance of nine LLMs on VCBench, av-
eraged across six folds and ordered by average Fp.s. Results
should be interpreted cautiously when extrapolating from the 9%
dataset success rate to the real-world 1.9% success rate.

Results. GPT-40 achieved the highest Fj5 (25.1).
DeepSeek-V3 recorded the highest precision (59.1%) but
with a low recall, while Gemini-2.5-Flash obtained the
highest recall (69.1%) but modest precision.

Cost and efficiency. Inference cost and latency are
summarized in Table 5. GPT-40-mini offers strong per-
formance at low cost, while DeepSeek-V3 offers cost-
effective reasoning with better performance over other rea-
soning models such as Gemini-2.5-Pro and GPT-5.

Leakage check. Comparatively high precision obtained
on fold 4 documented in Appendix C (Table 6) moti-
vated closer inspection. We reviewed prediction reason-
ing logs and ran additional anonymization unit tests on 300
founders in that fold. Identification rates remained low
(4.3% for 03; 7.3% for Gemini-2.5-Pro with web search),
and no explicit identifications appeared in model outputs.
The elevated precision was instead due to a concentration
of founders with extreme outcomes (e.g., prior [IPO/acqui-
sition events above $500M), confirming that improvements
reflected predictive signal rather than identity leakage.

Interpretation. These results demonstrate that
anonymized founder profiles preserve enough predic-
tive signal for LLMs to outperform human experts in
startup investing. GPT-4o0 achieves the best Fj 5 score
(25.1) with a precision of 29%, representing a 3.2x
improvement over the precision baseline and exceeding the
2.9x performance of tier-1 VC firms (Figure 1). DeepSeek
and Gemini models highlight different points on the
precision—recall frontier: DeepSeek-V3 produces highly
precise predictions with low coverage, whereas Gemini-
2.5-Flash recalls nearly 70% of successful founders at the
expense of precision. Crucially, leakage tests confirm that
these gains are not explained by identity re-identification.

Mitigation of Future Leakage. An essential considera-
tion for modern benchmarks is mitigating the risk of leak-

Model Cost In/Out  Latency
GPT-40 $2.50/$10.00 3.59s
DeepSeek-R1 $0.55/$2.19  37.83s
GPT-40-mini $0.15/$0.60  3.04s
o3 $2.00/ $8.00 6.90 s
Gemini-2.5-Pro $1.25/%$10.00 10.73s
Claude-3.5-Haiku  $0.80 / $4.00 3.36s
GPT-5 $1.25/7%$10.00 1.54s
Gemini-2.5-Flash ~ $0.30/$2.50 8325
DeepSeek-V3 $0.27/$1.10  10.07 s

Table 5. Cost per 1M tokens and latency for models evaluated on
VCBench, ordered by average Fp 5.

age into the pre-training corpus of future LLMs, which
would introduce inherent biases into model comparisons.
We address this by only releasing half of the dataset (4,500
founders) publicly. The remaining half is reserved for pri-
vate evaluation. Leaderboard scores are computed on the
private fold, preserving the integrity of model assessments.

7. Discussion

We assess VCBench in terms of benchmark validity and
design trade-offs. Its interpretation is bounded by several
factors: the inflated success rate (9% vs. 1.9% in the real-
world), potential sampling bias from LinkedIn/Crunch-
base, right-censoring from the eight-year horizon, and
residual noise after standardization. To extend utility with-
out weakening predictive value, we suggest anonymized
proxies for company prestige, scalable clustering for high-
cardinality fields, trajectory-level features that balance pri-
vacy and signal, broader model coverage, and a sequen-
tial simulation mode for decision-making under resource
constraints. Together, these directions clarify how current
scores should be read and outline a path toward a more re-
alistic and robust benchmark.

7.1. Limitations
VCBench carries several known caveats:

* Prevalence shift. The benchmark sets the success
rate at 9% rather than the real-world 1.9%. This in-
flated prevalence stabilizes testing and improves sta-
tistical significance, but also introduces caveats. Pre-
cision does not scale linearly with prevalence, so rela-
tive multipliers (e.g., 3.2 for GPT-40 versus 2.9 x for
tier-1 VCs) may not hold under the true 1.9% distri-
bution. Reported gains should therefore be interpreted
cautiously when extrapolated back to deployment set-
tings.

¢ Comparability of human baselines. The normal-



ization procedure assumes that human investors and
LLMs face the same distribution of opportunities. In
reality, VCs self-select their deal flow, and access is
constrained by competition, reputation, and human
bandwidth. This structural difference means that even
after normalization, comparisons between model and
human performance may misrepresent the actual gap
in practice.

¢ Bias in collected data. Although VCBench covers
a statistically significant share of U.S. founders from
2010 to 2018, it still inherits biases from LinkedIn and
Crunchbase. Coverage is stronger for technology star-
tups and founders with public visibility, while non-
tech sectors, self-funded companies, and underrepre-
sented demographics are more likely to be absent or
inconsistently represented. These biases may skew the
benchmark toward patterns that generalize poorly be-
yond the VC mainstream.

e Temporal bias. The eight-year horizon used to de-
fine success introduces a right-censoring effect. Com-
panies founded later in the window are more likely
to be labeled unsuccessful simply because their out-
comes have not yet had time to materialize. For exam-
ple, a startup founded in 2017 is penalized relative to
one founded in 2012, which has had additional years
to mature and demonstrate success. While the eight-
year cutoff reflects the median time to major outcomes
such as IPO or acquisition, it inevitably places more
recent cohorts at a disadvantage.

* Residual irregularities. Despite multistage clean-
ing, large-scale founder data remains noisy. Stochas-
tic LLM standardization and irregular entries make it
difficult to guarantee full consistency.

7.2. Future Work

Several directions can extend VCBench and address the
limitations mentioned above. First, continued community-
driven refinement will be important. Releasing updates as
feedback arrives will improve data coverage and reduce
residual irregularities, making VCBench a “living bench-
mark” rather than a static artifact. Second, anonymization
can be enhanced by incorporating company prestige signals
(e.g., Fortune-500 or NASDAQ-100) that preserve organi-
zational context without revealing identities. Third, the cur-
rent clustering approach works well for industries but not
for high-cardinality fields like job roles or education. De-
veloping scalable clustering methods would enable more
complete dataset-level anonymization.

On the feature side, more advanced feature engineering
could transform structural and temporal patterns (such as
job sequences, career trajectories, or prestige proxies) into

predictive variables that reduce re-identification risk while
strengthening model accuracy. On the evaluation side,
the leaderboard should expand to include both additional
LLMs and domain-specific VC models, enabling richer
comparisons across approaches. Finally, moving beyond
static classification, we envision a VC-simulation mode in
a tournament-style format where startups appear sequen-
tially and investment decisions must be made under bud-
get constraints. This would capture the real dynamics of
venture investing and test whether models can make con-
sistent, resource-limited decisions. Looking further, we are
exploring a gamified arena where human investors, LLMs,
and purpose-built VC models compete side by side, cre-
ating an open platform for benchmarking decision-making
under uncertainty in real time.

8. Conclusion

We introduced VCBench, the first standardized and
anonymized benchmark for founder-success prediction in
venture capital. The dataset was constructed using a mul-
tistage anonymization pipeline, validated by adversarial
tests, which reduced re-identification risk by over 90%
while preserving predictive signal.

Using this benchmark, we evaluated nine state-of-the-art
LLMs and found that several outperform not only the
market index but also the leading VC firms, with GPT-
40 achieving the highest Fj 5 score. These results show
that anonymized founder profiles are sufficient to surpass
human-expert baselines in early-stage venture forecasting.

By releasing both the dataset and a public leaderboard, we
provide a foundation for reproducible research in this high-
stakes domain. VCBench is designed as a community-
driven benchmark that will evolve with feedback, richer
features, and new evaluation modes, including simulation
and human—AI competitions, offering a path toward more
realistic tests of decision-making under uncertainty.
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Appendix
A. Prompts and Input Formats

A.1. Example raw JSON founder profile

"industry": "Research Services",
"twitter_url": null,
"Jobs": [
{
"title": "Professor",

"company": "Duke University",
"company_industry": "Higher Education

"started_at": "2013-07-13",
"ended_at": "still working"

b

{
"title": "Founder, President, CEO",
"company": "Applied Quantum

Technologies™",
"company_industry": null,
"started_at": "2006-08-13",

"ended_at": "2020-02-13"

by

{
"title": "Associate Professor",
"company": "Duke University",
"company_industry": "Higher Education

"started_at": "2010-07-13",

"ended_at": "2013-06-13"

by

{
"title": "Assistant Professor",
"company": "Duke University",
"company_industry": "Higher Education

"started_at": "2004-06-13",

"ended_at": "2010-06-13"

by

{
"title": "MTS and Technical Manager",
"company": "Lucent Technologies /

Bell Labs",
"company_industry":
Telecommunications",

"started_at": "1999-03-13",
"ended_at": "2004-03-13"
}
1,
"educations": [
{
"university": "Young Dong High School
n
14
"degree": null,
"fields": null,
"started_on": null,
"ended_on": null

A.2. Example anonymized prose format

"This founder leads a startup in the IT
Services & Digital Solutions industry.

Education:

* BA in History (Institution QS rank 42)

Professional experience:

+ Board Member for <2 years in the
Management, Strategy & Professional
Services™ industry (51-200 employees)

* Board Member for 2-3 years in the
Education & Training Services™ industry

(51-200 employees)

* Angel Investor, Advisor for 4-5 years

«* VP for <2 years in the “Software
Development™ industry (1001-5000
employees)

* Co-Founder, CEO for 6-9 years in the
Software Development”™ industry (51-200
employees)

* Board Member for <2 years

* Director (Corporate Development) for <2
years

* Co-Founder for <2 years

They have overseen one acquisition as a
founder: one 15M - 50M in value."

A.3. Anonymization unit testing prompt

You are given the profile of an
entrepreneur who founded at least one
startup after 2010. This includes
information like the founder's
education and job histories.

### Your Task
1. Examine the profile in JSON format below

2. Deduce the most likely identity of the
founder (using web search as an aid).

3. Respond in the exact format specified
under "Required Output".

### OUTPUT FORMAT

Put the founder's full name right at the
beginning. Avoid abbreviations or
nicknames for first and last names. Do
not include middle names. Do not
include any other text before it.

Do not return the text "Founder's name".
Always give a guess, even if you are
not sure.

In addition, include the following
information:

Reasoning: <one brief paragraph explaining
how the data led you to this name>

Confidence: <Low, Medium, High>

### Inputs
{profile}



B. VCBench Distributions

Industry Distribution in VCBench Dataset

Industries
Software Development (1,221)
Technology, Information & Internet Platforms (1,003)
IT Services & Digital Solutions (767)
Financial Services (439)
Biotechnology & Nanotechnology Research (406)
Clinical & Diagnostic Healthcare (358)
Marketing, Advertising & Events (249)
Industrial & Agricultural Machinery Manufacturing (231)
Wellness & Community Health (211)
Food & Beverage Services & Retail (202)
Other (3,542)

L\

Figure 3. Distribution of industries in VCBench after bucketing.

Distribution of Founder Start Years in VCBench Dataset

Number of Founders

Founder Start Year

Figure 4. Distribution of startup founding years in VCBench.

C. Per-fold Results for Vanilla LLMs

Table 6 reports per-fold precision, recall, and Fj 5 for each
model (six folds; 1,500 founders per fold; 9% prevalence).
Averages match with Table 4 in the main text.
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Model | Fold 1 (%) Fold2 (%) Fold3 (%) Fold4 (%) Fold5 (%) Fold6(%) | Avg (%)

Claude-3.5-Haiku

Precision 17.0 17.1 17.6 17.5 12.9 19.5 16.9

Recall 50.4 50.4 51.1 48.1 37.8 54.1 48.6

Fys 19.6 19.7 20.2 20.0 14.8 22.3 194
DeepSeek-V3

Precision 77.8 50.0 - 42.9 83.3 41.7 59.1

Recall 5.2 3.0 0.0 2.2 3.7 3.7 3.0

Fos 20.5 12.0 0.0 9.2 15.7 13.7 11.8
DeepSeek-R1

Precision 27.0 30.0 22.2 50.0 46.2 50.0 37.6

Recall 7.4 6.7 4.4 11.1 8.9 11.9 8.4

Fos 17.7 17.6 12.4 29.4 25.1 30.4 22.1
Gemini-2.5-Flash

Precision 13.9 12.7 13.1 12.6 10.5 12.9 12.6

Recall 74.8 72.6 72.6 66.7 57.8 70.4 69.1

Fos 16.6 15.3 15.7 15.0 12.5 15.5 15.1
Gemini-2.5-Pro

Precision 17.9 17.5 17.9 17.3 15.5 17.5 17.2

Recall 60.7 62.2 62.2 57.0 51.1 60.7 59.0

Foys 20.9 20.4 20.8 20.1 18.0 204 20.1
GPT-40-mini

Precision 35.2 26.5 27.5 26.5 31.9 294 29.5

Recall 14.1 6.7 8.2 9.6 11.1 11.1 10.1

Fys 27.1 16.6 18.6 19.6 23.2 22.1 21.2
GPT-4o0

Precision 31.1 25.7 31.5 27.9 27.4 31.0 29.1

Recall 17.0 14.1 17.0 14.1 14.8 20.0 16.2

Fys 26.7 22.0 26.9 233 234 28.0 25.1
GPT-5

Precision 63.6 333 50.0 58.3 63.6 53.3 53.7

Recall 5.2 2.2 2.2 5.2 5.2 59 4.3

Fys 19.6 8.8 94 19.1 19.6 20.5 16.2
03

Precision 35.5 26.1 35.7 47.1 58.3 52.0 42.4

Recall 8.2 4.4 3.7 59 10.4 9.6 7.0

Fys 21.2 13.2 13.1 19.7 30.3 27.7 20.9

Table 6. Per-fold and average results for all models. All results are recorded as percentages. Note that DeepSeek-V3 encountered an
undefined precision on Fold 3 (no positives predicted), so the average precision was calculated across the remaining 5 folds; average
recall and Fp. 5 were still calculated across all folds.
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D. Example Initial Experiment with 03

The following demonstrates one of the initial founder iden-
tification experiments. Using web searches, the OpenAl 03
model correctly identified the given founder in under two
minutes, despite the absence of any explicit identifier. The
exceptionally successful exit was the point of failure in this

case.

User:

You

Who

are an expert in venture capital tasked
with identifying successful founders
from their unsuccessful counterparts.
All founders under consideration are
sourced from LinkedIn profiles of
companies that have raised between
$100K and $4M in funding. A successful
founder is defined as one whose company
has achieved either an exit or IPO
valued at over $500M. Given the
following founder {'Industry':
Biotechnology Research', 'Education':
[1, 'Work Experience': [{'title': 'VP
Applications', 'company': 'consumer
genomics unicorn (>$3 B exit)', '
company_industry': 'Biotechnology
Research', 'started_at': '2010', '
ended_at': '2012'}, {'title': 'First
Employee, Founding Architect, Director
of R&D', 'company': 'digital PCR
startup (>$150 M M&A exit)', !
company_industry': 'Biotechnology
Research', 'started_at': '2006', '
ended_at': '2010'}]1}

is this founder?"

OpenAI 03:
I'm considering several possibilities for

The

the "consumer genomics unicorn" with a
>$3B exit. Ancestry.com was sold in
2012 for $1.6B, and later for $4.7B in
2020, which doesn't fit. The Grail spin
-off from Illumina could work, but its
exit didn't happen until 2020 with a
$7B deal. Sequenom, a PCR startup,
raised $150M for an exit around 2010
but was sold in 2017. Natera could also
be a contender, though its valuation
was smaller initially. Still, the Grail
sale seems the closest.

-)

search results point to Serge Saxonov
as matching both the Quantalife and 23
andMe roles, though the timeline is
reversed in the data. This could be a
misorder in the dataset, but the
identity seems to be correct. I also
considered Ben Hindson, though he didn'
t work at 23andMe. It looks like Serge
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Saxonov is the founder. Next step: let'
s confirm by checking for other people
who may have had roles at both
QuantalLife and 23andMe.



