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The use of continuous instead of discrete tokens during the Chain-of-Thought (CoT) phase of reasoning
LLMs has garnered attention recently, based on the intuition that a continuous mixture of discrete
tokens could simulate a superposition of several reasoning paths simultaneously. Theoretical results
have formally proven that continuous tokens have much greater expressivity and can solve specific
problems more efficiently. However, practical use of continuous tokens has been limited by strong
training difficulties: previous works either just use continuous tokens at inference time on a pre-trained
discrete-token model, or must distill the continuous CoT from ground-truth discrete CoTs and face
computational costs that limit the CoT to very few tokens.

This is the first work introducing a scalable method to learn continuous CoTs via reinforcement learning
(RL), without distilling from reference discrete CoTs. We use “soft” tokens: mixtures of tokens together
with noise on the input embedding to provide RL exploration. Computational overhead is minimal,
enabling us to learn continuous CoTs with hundreds of tokens. On math reasoning benchmarks with
Llama and Qwen models up to 8B, training with continuous CoTs match discrete-token CoTs for
pass@1 and surpass them for pass@32, showing greater CoT diversity. In systematic comparisons, the
best-performing scenario is to train with continuous CoT tokens then use discrete tokens for inference,
meaning the “soft” models can be deployed in a standard way. Finally, we show continuous CoT RL
training better preserves the predictions of the base model on out-of-domain tasks, thus providing a
softer touch to the base model.
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1 Introduction

Large Language Models (LLMs) have achieved impressive success across a wide range of reasoning tasks,
particularly when enhanced with Chain-of-Thought (CoT) prompting, where models generate intermediate
“thinking tokens” before producing final answers. While effective, standard CoT is constrained by the
discreteness of language tokens: each intermediate step must be sampled sequentially, which can limit
expressivity and hinder exploration of diverse reasoning paths. This contrasts sharply with human cognition,
which often operates over abstract and fluid concepts rather than rigid linguistic symbols. Motivated by this
gap, recent work has explored enabling LLMs to reason in continuous concept spaces, a direction often termed
“continuous CoTs” (Hao et al., 2024) or “Soft Thinking” (Zhang et al., 2025).

From a theoretical perspective, continuous reasoning offers significant potential. Reasoning by Superposition
(Zhu et al., 2025a) shows that continuous thought vectors can act as superposition states, encoding multiple
search frontiers in parallel and enabling efficient breadth-first reasoning. This construction allows a shallow
transformer to solve problems such as directed graph reachability far more efficiently than discrete CoT, which
is forced into sequential exploration and risks being trapped in local solutions. Complementarily, Soft Thinking
(Zhang et al., 2025) proposes replacing discrete (“hard”) tokens with concept tokens—probability-weighted
mixtures of embeddings—that retain full distributional information. This enables the model to implicitly
follow multiple reasoning paths simultaneously, yielding empirical improvements in both accuracy and token
efficiency.

Despite these promising claims, the practical benefits of continuous reasoning at inference time on top of
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Figure 1 Hard, fuzzy and soft generationduringCoTphase.
In hard generation, at each time step, a discrete
token CoTt is sampled from the probability vector
pt−1 and its embedding h0

CoT1
is passed to the trans-

former, generating a sequence of discrete CoT tokens:
CoT1, ..., CoTT over time. In fuzzy and soft genera-
tion, at each time step, noise, ϵt, is injected into the
probability weighted mixture embedding, ht

0 = pt−1E,
where E is the token embedding matrix. This noisy
input embedding is passed to the transformer, generat-
ing a sequence of continuous noisy CoT embeddings:
h̃0
CoT1

, ..., h̃0
CoTT

over time. Additionally, for fuzzy
generation, the temperature τ used in the CoT phase
tends to 0, such that the non-noisy embeddings h0

reduce to embeddings of discrete tokens. We find
that the combination of soft/fuzzy training and hard
inference performs universally best, matching hard
training at pass@1 and surpassing it at pass@32, in-
dicating better preservation of diversity.

discrete-token base models remain contested. In particular, Wu et al. (2025) critically re-examine Soft Thinking
and find that vanilla implementations often underperform their discrete counterparts. Their analysis suggests
that LLMs, when given soft inputs, default to relying on the single highest-probability token—effectively
reducing Soft Thinking to greedy decoding. Further, existing methods for soft thinking are limited to inference
on models trained with discrete CoTs.

Training of continuous-token reasoning models has proven to be difficult, either due to computational
constraints from full backpropagation through all steps of continuous reasoning (this limited the CoT to
6 steps in Hao et al. (2024)), or due to the necessity of strongly grounding the continuous reasoning into
ground-truth discrete reasoning traces (Shen et al., 2025). This is why several of the works above limit
themselves to applying continuous reasoning at inference time without training (Zhang et al., 2025; Wu et al.,
2025).

In this work, we address these limitations by developing an approach to reinforce continuous CoTs with
controlled noise, making them amenable to reinforcement learning (RL) training. We theoretically outline two
types of continuous CoT learning with soft and fuzzy tokens (see Figure 1) and provide extensive empirical
evidence with Llama-3.x and Qwen-2.5 models trained on a number of mathematical datasets (GSM8K, MATH,
DeepScaleR) and evaluate on a variety of mathematical and out-of-domain benchmarks. Our contributions
and findings are as follows:

• Acontinuous-tokenpost-trainingalgorithm. We propose the first continuous CoT finetuning algorithm that
does not require ground-truth CoT annotations, directly tackling the challenge of learning continuous
reasoning representations, at a negligible computational overhead compared to discrete CoTs.

• Pass@1 parity. We show that continuous CoT post-training is competitive with traditional discrete-token
CoTs for pass@1 criteria, with a statistically similar performance on most model-dataset combinations.

• Pass@32 gains. Under sampling (pass@32), continuous CoT training outperforms discrete CoT on
average, demonstrating greater CoT diversity.

• Improved robustness. Continuous CoT training does not degrade the base model’s log-likelihood on
HellaSwag, ARC and MMLU, whereas discrete CoT training does, on average. Further, continuous
CoT training is robust to collapse observed with discrete training on Llama-8B-Instruct with respect to
in-distribution and out-of-distribution performance.

• Hard inference on soft models. In our experiments, adding continuous CoT at inference on top of a
hard-token-finetuned model does not bring benefits, contrasting with Zhang et al. (2025). On the
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opposite, the best performance is obtained when using discrete CoT at inference on top of a continuous
CoT trained model. This means that a practitioner can deploy standard inference methods directly to
reap the advantages from models trained with continuous tokens.

• Entropyanalysis. We present a detailed analysis of the entropy profiles of models, showing how continuous
CoT fine-tuning more closely preserves the entropy profiles of the base Llama models, compared to
discrete CoT.

2 RelatedWork

It is natural to question whether token space is the ideal medium for reasoning, particularly in tasks that
demand higher levels of semantic abstraction. However, unrolling beyond token space during pretraining
departs from the original training distribution and may require additional mechanisms to help a hard-
token–trained LLM adapt to alternative, potentially more expressive, representations of chains of thought.
Several prior works have confronted this challenge. (Goyal et al., 2024) proposes inserting dedicated placeholder
tokens, “Pause Tokens", into rollouts to encourage more deliberate “thinking” in the internal layers. Coconut
(Hao et al., 2024), in contrast, explicitly ventures into continuous-space reasoning by distilling ground-truth
chains of thought into continuous tokens, but its benefits appear confined to a benchmark designed for this
purpose. Furthermore, Coconut requires ground truth chains-of-thought and a gentle “hard-to-soft" distillation
schedule, and comes with computational constraints that have limited it to 6 continuous CoT tokens.

A number of follow-up works have tried to tackle these challenges (see Zhu et al. (2025b) for a survey on
latent-space reasoning). Given the frequent difficulty of making an LLM accept continuous tokens when they
are not native to their training, it makes sense to distinguish when in the pipeline continuous tokens are
invoked (at pretraining, at post-training or at inference). We list those works closest to ours, while necessarily
being incomplete as the scope widens; we recommend the survey by Zhu et al. (2025b) for a taxonomy.

Inference. Zhang et al. (2025) introduce so-called soft tokens as the softmax layers of the output tokens, and
propose to perform inference in soft-token space. Combined with a few other interventions (a hand-crafted
stopping criterion, and only keeping the few top dimensions of embedding space) they seem to gain some
performance on some benchmarks purely through inference-time interventions. A more measured view of the
same is given in Wu et al. (2025), where the previous results are not confirmed, unless noise is introduced at
test time into the soft token generation. Noise is important in our approach for a different reason, to provide
exploration for reinforcement learning.

Post-training. A number of works aim to introduce continuous tokens during post-training as already
mentioned for Coconut (Hao et al., 2024). Codi (Shen et al., 2025) distill a standard discrete CoT model into
a continuous CoT model, by keeping both the emitted tokens and the internal activities of the continuous
model close to that of the original model.

Pretraining. Several works propose changes to pretraining to incorporate some notion of “thinking tokens" or
latent tokens, and attempt to replace the CoT by some internal activations inside, or added to, the transformer.
“Filler tokens” approaches (Lanham et al., 2023; Goyal et al., 2024; Pfau et al., 2024; Ringel et al., 2025)
introduce some bland tokens so that the model can use its continuous internal activations to reason while
reading the bland tokens. Going further, CoCoMix (Tack et al., 2025) intersperses continuous tokens with
hard tokens at pretraining, and uses a pretrained sparse autoencoder to couple the hard and soft tokens.
“Looped transformers” (Saunshi et al., 2025) and “recurrent depth” (Geiping et al., 2025) deploy internal,
continuous CoTs in the depth direction of the transformer, by repeating some internal blocks and making the
CoT depth potentially infinite before every token.

Theoretical arguments. Zhu et al. (2025a) make a strong argument that continuous CoTs are more expressive
than discrete CoTs, on a natural toy problem (reachability in graphs). They prove that a 2-layer transformer
with continuous CoT can solve the problem in O(n) vs O(n2) with discrete tokens. Continuous CoTs are
provably able to use superpositions that explore several reasoning paths at the same time. The experiments
align with the theoretical predictions: the superposition is learned in practice.
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3 Method

In a nutshell. Similarly to Coconut or Soft Tokens, our method keeps the full probability distribution after
the softmax step, instead of emitting a discrete token. This mixture of tokens is fed to the input of the
transformer for the next step. Contrary to prior work, we then inject noise on the input embeddings. This
noise produces the necessary exploration to apply RL fine-tuning. In contrast, Soft Tokens do not fine-tune,
and Coconut relies on backpropagation through time through the whole continuous CoT (coming with strong
computational limitations) plus a curriculum to ground the continuous CoTs into ground truth discrete CoTs.
We now describe our method in detail.

Notation for transformers. We decompose a standard LLM architecture into the following blocks.

We denote by V the vocabulary size. Thus, each token can be seen as a one-hot vector xt ∈ RV , and the
sequence of tokens x<t up to time t can be seen as a matrix of size t× V .

We denote by E the token embedding matrix of an LLM, that takes a sequence of tokens x<t and returns a
sequence of embeddings h0

<t by a linear, token-wise mapping

h0
<t = x<tE. (1)

Denoting by n0 the dimension of the input embedding of the transformer stack, E is a matrix of size V × n0.

We denote by T the transformer stack, that turns the sequence of input embeddings h0
<t into a sequence of

output embeddings
hL
<t = T (h0

<t) (2)

where L is the depth of the transformer stack. hL
<t is a matrix of size t× nL with nL the dimension of the

output layer of the transformer stack.

Probabilities for next-token prediction are obtained as follows. The output encodings hL
<t are turned into

logits by a decoding matrix Wd of size nL × V where nL is the output dimension of the transformer stack.
The next-token probabilities are obtained by applying a softmax at temperature τ ≥ 0 to these logits:

p<t = softmax(hL
<t Wd/τ) (3)

where p<t is a matrix of size t× V , the softmax is applied for each t independently, and softmax is extended
by continuity for temperature τ = 0.

Standard (hard) tokens. In standard, hard-token models, each token xt is a one-hot vector xt ∈ RV . At
inference time, to compute a next-token prediction xt given the sequence of previous tokens x<t, one first
computes the next-token probabilities p<t given x<t as above. Then the next token is sampled according to
the last component pt−1 of p<t:

Pr(xt = 1i) = pt−1,i (4)

where 1i denotes the one-hot encoding of token i. This is applied inductively to get the sequence of next
tokens.

Soft thinking. In soft thinking (Zhang et al., 2025; Wu et al., 2025), during the CoT phase, instead of sampling
a next token xt according to the probabilities pt, the probabilities are directly used to define a mixture of
embeddings. The next input layer embedding is obtained as

h0
t =

∑
i

Pr(xt = 1i)ei = pt−1E (5)

where ei is the embedding for token i. Then the transformer stack is applied normally to h0. 1

1The model used in Coconut (Hao et al., 2024) is slightly different in that it directly feeds the output embedding as next-step
input embeddings, namely, h0

t = hL
t−1, assuming dimensions are the same. This bypasses the expansion from hidden dimension

to vocabulary size and back, as well as the softmax and temperature.
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After the CoT phase is done, the model samples normal (hard) tokens.

This model is not amenable to direct RL training via Reinforce-like algorithms, because of the absence of
noise or random choices: the whole CoT is a deterministic and differentiable function of the prompt. In
principle, it could be optimized directly by backpropagating through all the timesteps of the CoT, similarly to
Backpropagation Through Time (BPTT). But this leads to technical and memory challenges that we will not
discuss here.

Noisy soft thinking: soft tokens and fuzzy tokens. Instead, we propose to make soft thinking trainable by RL,
just by introducing noise into the soft thinking process. We simply add noise to the computation of h0

t :

h̃0
t = pt−1E + σN(0, Id) (6)

with some standard deviation σ > 0. Then, at the next timestep, the transformer stack is fed h̃0
t .

We also experimented with adding noise at other places, such as on the logits (Appendix F.2).

We call this model soft tokens; we use the term fuzzy tokens when the temperature τ used during the chain of
thought tends to 0, because in that case, the non-noisy embeddings h0 reduce to embeddings of true discrete
tokens, so h̃0 are normal discrete tokens embeddings up to noise σ.

Reinforcement learning on soft tokens. Introducing exploration noise on the soft CoT tokens makes it possible
to optimize the model via reinforcement learning. (For traditional discrete CoT tokens, exploration comes
from the random sampling of a token from the softmax probabilities.)

We describe here the derivation of Reinforce for noisy soft thinking. More advanced Reinforce-like methods
such as RLOO, GRPO, PPO... are derived from Reinforce in the standard way.

Given a prompt, we sample a soft CoT, then sample a final answer a given the CoT. Let R(a) denote the
reward obtained for an answer a. The objective is to maximize the expected reward.

The CoT sampling is fully defined by the sampling of the noisy soft tokens h̃0. Therefore, the objective is to
maximize the expectation

E(h̃,a)∼π[R(a)] (7)

for a given prompt, where π is the current model.

By the standard Reinforce theorem Sutton and Barto (1998), this is equivalent to minimizing the loss

E(h̃,a)∼πsg

[
−R(a)

(
log π(h̃0) + log π(a|h̃0)

)]
(8)

The term log π(a|h̃0) just represents fine-tuning the answer given the CoT, and can be computed in a standard
way, since sampling of a is done in a standard way.

The term log π(h̃0) can be decomposed as a sum over timesteps,

log π(h̃0) =
∑
t

log π(h̃0
t |h̃0

<t) (9)

and each of those terms can be computed easily: indeed, knowing the soft tokens h̃0
<t, we can compute the

non-noisy next-token input embedding h0
t . Since the noise is Gaussian, we just have:

log π(h̃0
t |h̃0

<t) = − 1
2σ2

∥∥∥h̃0
t − h0

t

∥∥∥2 + cst (10)

and we note that h0
t is a differentiable function of the previous soft tokens h̃0

<t, depending on the parameters
of the model.

This makes it possible to apply the family of Reinforce-like algorithms to noisy soft tokens.

Computational overhead is minimal: storing the probability vector pt at each step (vector of size V ), and
injecting noise on the first layer.
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4 Experiments

Models tested. We train three variations of CoT models described in Section 3:

• Hard tokens: Categorical sampling of ordinary hard CoT tokens with temperature τ = 1.0.
• Soft tokens: Instead of sampling hard tokens, we use the full probability mixture at temperature τ = 0.5

to compute embeddings, and add Gaussian noise to the embeddings.
• Fuzzy tokens: Like soft tokens, but at temperature τ = 0.0001, which brings them very close to hard

tokens embeddings, to which we add Gaussian noise.

For the scale of the Gaussian noise, we set this equal to 0.33 times the root-mean-square norm of the token
embeddings, so that the noise is comparable but a bit smaller than the embeddings. In practice we observe
our algorithm is robust to ratios less than or equal to 1.0 (Appendix F.1). In further ablations (Appendix F.3),
we observe that our algorithm is also robust to temperature values τ ∈ [0.0001, 0.1].

Inference settings. At test time, we decouple the inference method from the training method: for each trained
model (hard, soft, fuzzy), we evaluate six inference settings. We vary the decoding of the CoT as follows, but
with answers always greedily decoded at temperature 0:

• Hard Greedy: discrete tokens, CoT temperature τ = 0.0 at test time
• Hard Sample: discrete tokens, CoT temperature τ = 1.0 at test time
• Soft Greedy: Gaussian scale σ = 0.0, CoT temperature τ = 0.5 at test time
• Soft Sample: Gaussian scale σ = 0.33 ∗ root-mean-square norm, CoT temperature τ = 0.5 at test time
• Fuzzy Greedy: Gaussian scale σ = 0.0, CoT temperature τ = 0.0001 at test time
• Fuzzy Sample: Gaussian scale σ = 0.33 ∗ root-mean-square norm, CoT temperature τ = 0.0001 at test

time

For instance, “soft” training with “hard greedy” testing amounts to training with a mixture at τ = 0.5 with
Gaussian noise, then applying the model with hard tokens at test time.

The “sample” settings are the same as the variants used during training for the CoT, while the “greedy” setting
more aggressively target the mode of the distribution at each step of the CoT.

Reinforce with group baseline. We fine-tune the models with RLOO, namely, Reinforce using a per-prompt
leave-one-out (LOO) group baseline (Kool et al., 2019): for each sample and reward, we subtract the average
reward obtained on the other samples for the same prompt. We include the RLOO loss in Appendix A for
completeness.

At each update we draw a mini-batch of B = 2 distinct prompts {xb}Bb=1. For each prompt we sample G = 32
sequences yb,g that contain a chain-of-thought (CoT) followed by a final answer. The prompt instructs the
model to end the CoT with “The final answer is: ” (see Appendix B).

Rewards are computed only on the final answer using the Math Verify package (Kydlíček, 2025) against the
ground-truth label:

rb,g =


100, if Verify(ab,g) = 1,

10, if Verify(ab,g) = 0 and ExtractBoxed(ab,g) = 1,

0, otherwise.

(11)

Datasets and basemodels. We train Llama 3.2 3b Instruct, Llama 3.1 8b Instruct (Dubey et al., 2024) and
Qwen 2.5 3b Instruct (Yang et al., 2024) on math reasoning datasets including GSM8K (Cobbe et al., 2021),
MATH (Hendrycks et al. (2021b) and DeepScaleR (Luo et al., 2025).

For each model trained on a dataset, we evaluate test performance on three math reasoning test datasets:
GSM8K, MATH and OlympiadBench (He et al., 2024). For OlympiadBench, following prior work, we use
the 675 subset of math questions which have final answers and do not contain images or figures. Similarly,
for MATH, we evaluate on the MATH-500 (HuggingFaceH4, 2025) subset of the MATH test set. To assess
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Figure 2 Llama 3b Instruct trained on GSM8K (a) Training performance across steps; one step = two prompts × 32
samples each. (b) Greedy validation performance used for model selection. For the remaining trained models, see
Appendix G.1.
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Figure 3 Hard inference pass@k for Llamamodels (for soft/fuzzy inference and Qwen see Appendix G.2). We observe
soft/fuzzy training improves pass@32, pointing to preserved diversity. Greedy Pass@1 (the triangles) for all training
methods are clustered together.

out-of-distribution generalization, we also test the resulting models on standard benchmarks: HellaSwag
(Zellers et al., 2019), MMLU (Hendrycks et al., 2021a), and ARC/AI2 Reasoning Challenge (Clark et al.,
2018).

On each training dataset, we train for 4k steps and monitor greedy validation performance; the final model
used for testing is the best performing under our greedy validation performance. (For hard CoTs, greedy
performance refers to greedily decoding CoTs and answers. For soft and fuzzy CoTs, greedy performance
refers to decoding CoTs with no Gaussian noise and greedily decoding answers.) During training, we sample a
maximum of 128 CoT tokens for GSM8K and 512 CoT tokens for MATH and DeepScaler respectively, under
our early stopping criterion (see Appendix C); on all datasets we sample 32 answer tokens. For evaluation, in
all cases, we sample a maximum of 512 CoT tokens under our early stopping criterion followed by 32 answer
tokens.

Each setup was run with 3 independent random seeds; the tables report the resulting mean and standard
deviation. Training and validation success rates may be found in Figure 2. For details on hyper-parameters,
see Appendix D.

Results. Across datasets and models, the three training schemes are broadly comparable, generally achieving
similar greedy pass@1 performance as shown in Table 1. This demonstrates that fuzzy and soft training are
effective. On the other hand, soft and fuzzy training have a clear overall advantage for pass@32 over hard
training (this signal is clearest on Llama, as shown in Figure 3).

We observe a gap between the hard greedy and hard sample inference settings for the base models and models
trained with fuzzy/soft CoTs, whereas the gap for models trained with hard CoTs is very small (see Figure 3
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and Table 1). We note that, for the base and fuzzy/soft trained models, τ = 1 is evidently not optimal for
pass@1 (greedy τ = 0 is always better). At low values of k, the optimal τ may be some interpolation between
0 and 1. Further, for pass@32, we also observe a closing of the gap between the trained models and base
models. This loss of diversity is well reported for Reinforce style algorithms where the reward is based on
answer correctness alone (Song et al., 2025).

For all training methods (hard, soft or fuzzy), hard inference generally performs best, both for pass@1 and
pass@32 (see Appendix E). In particular, we do not confirm previously reported benefits of soft inference on
hard (normal) training (Zhang et al., 2025).

GSM8K MATH-500 OlympiadBench

Model Training Greedy
pass@1

Sample
pass@1

Sample
pass@32

Greedy
pass@1

Sample
pass@1

Sample
pass@32

Greedy
pass@1

Sample
pass@1

Sample
pass@32

llama 3b
instruct

no finetune 71.4±0.0 45.0±0.0 96.8±0.0 38.0±0.0 25.2±0.0 82.0±0.0 17.9±0.0 12.0±0.0 52.3±0.0

gsm8k hard 75.9±1.3 74.3±0.8 94.1±0.3 34.6±0.2 31.3±0.4 72.4±1.1 10.6±0.9 9.4±0.5 39.3±1.3
gsm8k fuzzy 76.7±1.8 66.4±2.4 97.4±0.3 42.6±3.2 32.4±1.7 83.2±1.1 17.4±0.9 13.0±1.1 55.2±1.2
gsm8k soft 77.2±0.9 70.6±3.4 97.9±0.3 43.5±1.4 37.2±1.0 84.8±0.4 18.9±0.2 15.5±0.7 58.6±1.6

math hard 80.0±0.5 79.7±0.8 96.7±0.1 49.1±1.7 47.8±0.9 78.7±0.9 22.7±1.1 22.2±0.4 49.3±1.3
math fuzzy 79.6±1.4 68.5±2.1 97.6±0.3 48.5±0.3 37.3±1.5 81.5±0.7 21.6±0.6 15.9±0.8 52.8±1.6
math soft 76.8±1.0 70.7±2.4 97.8±0.3 44.5±0.6 38.9±1.9 82.2±1.6 19.2±1.1 16.6±0.4 55.8±1.2

deepscaler hard 79.7±1.3 79.6±0.2 96.6±0.3 49.6±0.9 48.1±0.4 78.1±0.7 23.2±1.4 23.8±0.6 50.8±1.5
deepscaler fuzzy 78.8±0.8 69.8±4.7 97.7±0.5 46.5±2.2 38.6±2.6 83.3±0.3 19.5±1.0 16.6±1.4 54.4±2.1
deepscaler soft 77.9±1.8 71.0±1.5 98.0±0.1 44.7±1.2 37.9±1.3 80.6±2.2 21.0±0.6 16.4±0.7 53.3±1.7

llama 8b
instruct

no finetune 82.6±0.0 64.9±0.0 98.5±0.0 44.4±0.0 31.1±0.0 79.8±0.0 19.6±0.0 11.7±0.0 52.6±0.0

gsm8k hard 81.2±0.2 80.7±0.3 95.1±0.2 20.2±0.8 19.8±1.4 45.4±3.2 3.8±0.5 3.4±0.5 16.4±2.4
gsm8k fuzzy 83.7±1.3 73.1±3.0 98.2±0.2 44.6±2.1 33.8±2.7 83.1±0.9 18.0±1.4 12.5±1.3 56.0±2.6
gsm8k soft 82.6±1.6 73.3±3.9 98.3±0.2 44.7±2.3 34.8±2.2 83.9±1.1 17.9±1.0 13.1±0.7 56.8±1.2

qwen 3b
instruct

no finetune 8.92±0.0 17.2±0.0 95.1±0.0 29.0±0.0 25.5±0.0 81.0±0.0 16.9±0.0 14.3±0.0 50.2±0.0

math hard 84.0±0.8 83.0±0.2 97.2±0.3 59.0±1.7 57.1±0.1 83.6±1.0 29.4±0.3 27.8±0.5 61.1±0.6
math fuzzy 84.4±0.8 81.6±0.9 98.1±0.2 58.1±0.9 55.5±1.2 84.4±0.2 27.2±0.5 24.4±0.7 60.7±0.5
math soft 82.9±0.9 78.7±2.6 97.6±0.5 54.7±0.3 52.2±1.1 84.4±0.7 24.3±1.8 22.0±0.5 58.5±1.0

Table 1 Results of hard inference on GSM8K,MATH-500 andOlympiadBench test sets. In blue the best pass@1 performance
and in green the best pass@32 for each (base model, training set) pair. We observe broadly comparable performance at
pass@1 and improved soft/fuzzy training pass@32. For comparisons of hard, fuzzy and soft inference, see Tables 3, 4, 5
in Appendix E.

One setup stands out: when training Llama-8B-Instruct on GSM8K and testing on MATH-500, only fuzzy and
soft-trained models achieve good scores, while classical hard token fine-tuning is ineffective. Namely, gsm8k-hard
training sharply underperforms on out-of-distribution MATH (hard-greedy at 20.2% and pass@32 at 45.4%),
whereas gsm8k-fuzzy and gsm8k-soft trainings recover to 44.6–44.7% greedy and 83.1–83.9% pass@32 while
maintaining in-distribution performance on GSM8K. Llama-8B-Instruct has a good performance from the
start on GSM8K (presumably because it was exposed to this dataset), but this does not translate to good
performance on MATH. Further hard fine-tuning makes things worse, but further soft or fuzzy fine-tuning on
GSM8K does bring improvement on MATH. Thus, fuzzy and soft training appear to bring more generalization
on Llama-8B-Instruct.

Out-of-domain robustness. One risk of LLM fine-tuning on a dataset is degrading the general performance of
the model on other datasets. To assess this, we test the trained models on three standard benchmarks in
Table 2. We report both the success rate (with hard greedy sampling) and the negative log-likelihood per
token (NLL) of the correct answer.

The results show comparable success rate for the three training methods (hard, fuzzy, soft). However, the
NLL of the correct answer is visibly better for fuzzy and soft than for hard, especially on ARC but also with
Qwen on MMLU: hard training degrades the base model NLL on out-of-domain datasets, while fuzzy and soft
training preserve it.

2On Qwen no fine-tune, we observe much lower performance compared to what is reported in the Qwen report Yang et al.
(2024). The discrepancy is due to our (zero shot) prompting and the resulting CoT generation format, and does not affect our
RL trained models (see Appendix I for details).
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Hellaswag ARC MMLU
Model Training Accuracy NLL Correct Accuracy NLL Correct Accuracy NLL Correct

llama 3b
instruct

no finetune 66.46±0.00 2.53±0.00 72.79±0.00 2.86±0.00 60.85±0.00 1.61±0.00

math hard 66.20±0.10 2.57±0.00 73.45±0.43 3.19±0.03 61.11±0.11 1.65±0.01
math fuzzy 67.00±0.12 2.53±0.00 73.25±0.32 2.88±0.03 61.16±0.04 1.60±0.02
math soft 67.12±0.06 2.53±0.01 72.76±0.18 2.92±0.02 61.20±0.14 1.59±0.02

deepscaler hard 66.18±0.26 2.58±0.01 73.99±0.57 3.18±0.03 60.66±0.37 1.66±0.01
deepscaler fuzzy 66.88±0.06 2.55±0.01 73.05±0.62 2.94±0.03 61.20±0.20 1.60±0.02
deepscaler soft 66.48±0.46 2.56±0.04 72.85±0.39 2.93±0.08 60.34±1.20 1.68±0.12

gsm8k hard 66.44±0.18 2.57±0.00 73.53±0.25 3.16±0.01 61.48±0.20 1.65±0.01
gsm8k fuzzy 66.97±0.21 2.53±0.01 73.10±0.15 2.89±0.01 61.30±0.21 1.60±0.02
gsm8k soft 67.13±0.19 2.53±0.01 72.99±0.36 2.89±0.04 61.36±0.30 1.59±0.01

llama 8b
instruct

no finetune 74.24±0.00 2.34±0.00 81.20±0.00 2.82±0.00 69.00±0.00 1.40±0.00

gsm8k hard 74.44±0.10 2.37±0.00 81.49±0.15 3.13±0.03 68.90±0.04 1.41±0.00
gsm8k fuzzy 74.41±0.03 2.35±0.00 81.63±0.39 2.81±0.01 68.90±0.11 1.40±0.00
gsm8k soft 74.32±0.08 2.35±0.00 81.46±0.14 2.82±0.00 68.78±0.14 1.40±0.01

qwen 3b
instruct

no finetune 74.94±0.00 2.29±0.00 83.00±0.00 4.67±0.00 68.08±0.00 1.19±0.00

math hard 75.01±0.10 2.30±0.00 82.86±0.40 5.62±0.12 67.86±0.06 1.51±0.02
math fuzzy 75.07±0.02 2.29±0.00 83.00±0.28 4.74±0.11 68.16±0.07 1.21±0.02
math soft 75.25±0.12 2.30±0.01 83.12±0.15 5.49±0.64 68.01±0.06 1.33±0.06

Table 2 Out-of-domain results. Outside of mathematical reasoning domains, fuzzy and soft training on average result
in lower negative log-likelihood of the correct answer compared to hard training, indicating a softer touch on the base
model’s capabilities.

Entropy behavior. Next, we report the entropy of the distribution of next-token predictions during the CoT,
as a function of the index within the CoT.

The base Llama models exhibit a very different entropy profile whether greedy or temperature sampling
is used. This shows a difference in next-token prediction behavior on prefixes sampled from temperature
T = 0 or T = 1: with the latter, entropy blows up as the CoT progresses with hard sampling, indicating
very high uncertainty as the CoT goes on. Interestingly, soft or fuzzy sampling on the base model does not
show any entropy blowup. The entropy blowup is also not present on Qwen, as seen in Appendix G.3 Figure
16. Analyzing base models is not our main topic, but we still report how this entropy profile changes after
different types of training.

As observed in Figure 4 (and Figures 17, 18,19 in Appendix G.3), soft or fuzzy training keep roughly the same
entropy profile as the base model, whether inference is greedy or sampled. On the other hand, hard training
changes the hard sampling entropy profile to resemble greedy sampling on the base model: entropy values are
substantially lower. We pose that an explanation for this is that hard training makes the model overconfident,
consistent with lower pass@32, the worse NLL values we observe on out-of-domain tasks (see Table 2) and the
occasional performance collapse we see for hard training (see Table 1).

5 Conclusion

We have introduced the first reinforcement learning framework for training continuous Chains-of-Thought
in LLMs with minimal computational overhead and without relying on ground-truth discrete CoTs. Across
mathematical reasoning benchmarks, our approach performs on par with discrete token training for pass@1
success rate and improves pass@32 scores. Moreover, it seems to fine-tune the base model with a softer
touch, better preserving the model’s out-of-distribution behavior. This suggests distinct behavioral differences
between soft and hard reasoning processes. These results provide evidence that continuous reasoning is not
just a theoretical curiosity but a practical alternative for fine-tuning large models.

Acknowledgments. We thank Shobhita Sundaram for the helpful discussions. JK acknowledges support by
the Simons Foundation through the Collaborative Grant “The Physics of Learning and Neural Computation”.
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Figure 4 Llama 3b Instruct CoT entropy on GSM8K test set. Fuzzy and soft training preserves entropy profile of base
models; we observe a large change in hard sample profile with hard training.
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A Reinforce with Leave-One-Out (RLOO) Baseline

For completeness, we describe here the implementation of RLOO that we use, directly based on (Kool et al.,
2019).

We fine-tune with Reinforce using a per-prompt leave-one-out (LOO) group baseline. At each update we draw
a mini-batch of B distinct prompts {xb}Bb=1. For each prompt we sample G sequences yb,g that contain a
chain-of-thought (CoT) followed by a final answer. Each such sequence provides a reward rb,g as described in
Section 4.

For each prompt xb, the LOO group baseline for sample g averages the other G−1 rewards from the same
prompt:

r̄
(−g)
b =

1

G− 1

G∑
j=1
j ̸=g

rb,j , Ab,g = rb,g − r̄
(−g)
b . (12)

Baselines and rewards are treated as constants w.r.t. θ; i.e., stop-gradient.

Let yb,g,1:Tb,g
denote all tokens in yb,g (CoT + answer). With policy πθ, the per-sequence log-probability is

ℓb,g =

Tb,g∑
t=1

log πθ

(
yb,g,t | yb,g,<t, xb

)
. (13)

Our loss is the advantage-weighted negative log-likelihood averaged over batch and group:

L(θ) = − 1

BG

B∑
b=1

G∑
g=1

Asg
b,g ℓb,g, (14)

∇θL(θ) = − 1

BG

B∑
b=1

G∑
g=1

Ab,g

Tb,g∑
t=1

∇θ log πθ

(
yb,g,t | yb,g,<t, xb

)
. (15)

where sg denotes a stop-grad operator on the advantages.

B Task Prompt

To guide the model’s behavior during our experiments, we provided the following explicit instruction. This
prompt ensures that the assistant follows a structured reasoning process before giving the final answer.

Task Prompt

A conversation between User and Assistant. The user asks a question, and the Assistant solves
it. The assistant first shows the complete reasoning process step by step, then provides the final
answer in \boxed{}. The assistant must always follow the format: ‘User: [question] Assistant:
[detailed reasoning] The final answer is: \boxed{[answer]}.’ User: QUESTION Assistant:

C Stopping Criterion and Prefilling

Stopping criterion.

• Hard: Monitor the generated text and stop as soon as it ends with The final answer is: .
• Soft/Fuzzy: During continuous generation, form a greedy shadow sequence by taking the highest-

probability hard token at each step and stop when this shadow ends with The final answer is: .

If neither condition is met, decoding continues until the maximum chain-of-thought length L.
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Prefilling.

• If early stopping is reached, prefill \boxed{.
• If L is reached, prefill The final answer is: \boxed{.

D Hyperparameter Search

All models were trained with the AdamW optimizer and a cosine learning-rate schedule using 20 warm up
steps.

We tuned all hyperparameters using greedy validation performance. The learning rate and scale factors were
used for fuzzy and soft, thus we only sweep over values for fuzzy.

Learningrate. For both the hard and fuzzy, we swept over {1e−5, 9e−6, . . . , 2e−6, 1e−6} for each combination
of models. The same optimal rates were found for both hard and fuzzy:

• Llama 3B Instruct: 6e−6
• Llama 8B Instruct: 3e−6
• Qwen 3B Instruct: 8e−6

Scale factor (fuzzy only). We additionally swept scale factors {0.1, . . . , 10} on the root mean square embedding
norm across various models and found 0.33 to be best, though most values below 1 performed well. An
ablation in Section F.1 supports the finding that our algorithm is robust to scale values below 1.

E Results on Soft and Fuzzy Inference

We evaluate base models and all RL trained models (hard, fuzzy and soft) under six inference settings: hard
greedy, hard sample, fuzzy greedy, fuzzy sample, soft greedy and soft sample, described in Section 4. Here, we
report test performance on GSM8K (Table 3), MATH-500 (Table 4) and OlympiadBench (Table 5). Contrary
to previously reported benefits of soft inference on hard trained models (Zhang et al., 2025), we do not observe
any improvement in soft inference. Interestingly, we do not observe any gains of soft inference on soft trained
models either. In our experiments, hard inference on all models achieves the best performance.

Inference Settings

Model Training
Hard

Greedy
pass@1

Hard
Sample
pass@1

Hard
Sample
pass@32

Fuzzy
Greedy
pass@1

Fuzzy
Sample
pass@1

Fuzzy
Sample
pass@32

Soft
Greedy
pass@1

Soft
Sample
pass@1

Soft
Sample
pass@32

llama 3b
instruct

no finetune 71.4±0.0 45.0±0.0 96.8±0.0 70.5±0.0 69.3±0.0 93.9±0.0 68.4±0.0 65.2±0.0 94.9±0.0

gsm8k hard 75.9±1.3 74.3±0.8 94.1±0.3 75.5±0.6 74.7±0.5 92.3±0.4 75.7±0.5 74.2±0.4 92.6±0.1
gsm8k fuzzy 76.7±1.8 66.4±2.4 97.4±0.3 76.4±2.1 75.2±1.8 92.0±1.1 75.1±1.8 73.5±1.7 93.5±0.8
gsm8k soft 77.2±0.9 70.5±3.3 97.9±0.3 76.8±0.8 76.0±1.4 93.4±0.3 74.5±1.5 74.1±2.0 94.2±0.2

math hard 80.0±0.5 79.7±0.8 96.7±0.1 80.1±0.5 78.9±0.7 95.3±0.5 79.5±0.8 78.6±0.7 95.5±0.3
math fuzzy 79.6±1.4 68.5±2.1 97.6±0.3 78.8±0.9 78.1±0.8 95.2±0.1 77.9±0.9 75.9±1.1 95.7±0.3
math soft 76.8±1.0 70.8±2.5 97.8±0.3 76.9±0.3 76.2±0.6 94.6±0.6 76.3±0.5 74.8±0.7 95.3±0.8

deepscaler hard 79.7±1.3 79.5±0.3 96.6±0.3 79.6±1.1 78.9±0.5 94.7±0.6 79.8±1.0 78.5±0.5 94.8±0.2
deepscaler fuzzy 78.8±0.8 69.6±4.7 97.7±0.5 78.3±0.9 77.2±1.1 94.8±0.4 76.5±0.7 75.4±1.3 95.3±0.6
deepscaler soft 77.9±1.8 71.0±1.4 98.0±0.1 77.5±1.3 76.9±1.4 94.4±0.6 77.5±1.7 75.5±1.6 95.2±0.4

llama 8b
instruct

no finetune 82.6±0.0 64.9±0.0 98.5±0.0 82.6±0.0 69.3±0.0 96.1±0.0 81.2±0.0 63.8±0.0 96.1±0.0

gsm8k hard 81.2±0.2 80.6±0.4 95.1±0.2 80.0±1.3 69.0±0.7 94.5±0.3 78.3±2.2 68.3±0.7 94.3±0.1
gsm8k fuzzy 83.7±1.3 73.2±3.0 98.2±0.2 83.4±0.7 73.5±1.1 95.5±0.3 82.3±0.8 69.8±1.7 95.5±0.7
gsm8k soft 82.6±1.6 73.3±3.9 98.3±0.2 82.4±1.7 72.9±1.0 95.2±0.8 81.6±1.3 69.0±1.2 95.6±0.4

qwen 3b
instruct

no finetune 8.9±0.0 17.2±0.0 95.1±0.0 10.5±0.0 11.5±0.0 58.5±0.0 8.6±0.0 13.8±0.0 71.9±0.0

math hard 84.0±0.8 82.9±0.3 97.2±0.3 84.0±0.9 83.2±0.3 94.6±0.2 84.0±0.7 83.0±0.2 94.9±0.2
math fuzzy 84.4±0.8 81.6±1.0 98.1±0.2 84.1±0.3 84.2±0.3 94.3±0.1 84.0±0.6 84.1±0.3 95.0±0.3
math soft 82.9±0.9 78.7±2.6 97.6±0.5 82.5±1.3 82.1±1.3 94.8±0.4 82.9±1.1 81.9±1.5 95.4±0.4

Table 3 Results on GSM8K test set. In blue the best pass@1 performance and in green the best pass@32 for each (base
model, training set) pair.
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Inference Settings

Model Training
Hard

Greedy
pass@1

Hard
Sample
pass@1

Hard
Sample
pass@32

Fuzzy
Greedy
pass@1

Fuzzy
Sample
pass@1

Fuzzy
Sample
pass@32

Soft
Greedy
pass@1

Soft
Sample
pass@1

Soft
Sample
pass@32

llama 3b
instruct

no finetune 38.0±0.0 25.2±0.0 82.0±0.0 37.8±0.0 34.9±0.0 78.4±0.0 37.2±0.0 33.1±0.0 79.2±0.0

gsm8k hard 34.6±0.2 31.2±0.4 72.4±1.1 34.6±0.0 32.7±0.5 71.6±0.9 33.2±1.6 32.1±0.8 70.1±0.2
gsm8k fuzzy 42.6±3.2 32.6±1.6 83.2±1.1 41.6±2.1 41.2±2.0 79.5±1.7 40.3±1.5 38.7±1.7 79.5±2.0
gsm8k soft 43.5±1.4 37.0±1.0 84.8±0.4 44.2±0.5 42.5±0.7 78.1±0.4 42.0±2.3 40.7±0.8 79.6±1.0

math hard 49.1±1.7 47.9±0.9 78.7±0.9 49.7±1.0 47.0±1.0 76.5±0.2 48.1±1.7 46.8±1.0 76.3±1.0
math fuzzy 48.5±0.3 37.5±1.6 81.5±0.7 47.4±0.7 46.9±0.9 79.7±0.6 45.6±1.6 44.8±0.6 79.9±0.1
math soft 44.5±0.6 39.1±1.8 82.2±1.6 45.1±1.4 43.4±0.6 79.3±1.7 43.2±0.8 42.0±0.3 80.2±0.9

deepscaler hard 49.6±0.9 48.3±0.6 78.1±0.7 49.2±0.7 47.9±0.4 77.7±0.5 50.0±0.6 47.4±0.2 77.7±1.1
deepscaler fuzzy 46.5±2.2 38.5±2.6 83.3±0.3 46.0±1.7 45.3±1.2 79.8±0.3 45.8±0.9 43.5±1.4 78.9±0.5
deepscaler soft 44.7±1.2 37.4±1.3 80.6±2.2 44.6±1.1 42.8±0.7 78.5±1.2 40.9±1.4 41.3±1.6 77.9±1.2

llama 8b
instruct

no finetune 44.4±0.0 31.1±0.0 79.8±0.0 45.2±0.0 32.2±0.0 78.6±0.0 42.4±0.0 29.3±0.0 73.6±0.0

gsm8k hard 20.2±0.8 19.8±1.2 45.4±3.2 20.8±1.0 9.7±0.6 32.3±0.2 20.0±1.8 9.7±0.6 32.2±0.4
gsm8k fuzzy 44.6±2.1 33.7±2.5 83.1±0.9 45.1±1.4 33.9±0.9 75.9±2.1 43.7±0.8 31.1±1.2 75.7±2.1
gsm8k soft 44.7±2.3 34.8±2.2 83.9±1.1 44.3±1.7 33.9±0.7 76.9±1.4 44.3±0.9 31.0±0.5 75.4±1.1

qwen 3b
instruct

no finetune 29.0±0.0 25.5±0.0 81.0±0.0 27.6±0.0 28.1±0.0 69.0±0.0 27.0±0.0 29.6±0.0 73.6±0.0

math hard 59.0±1.7 57.1±0.2 83.6±1.0 58.9±1.9 57.5±0.4 79.9±1.0 58.3±0.2 57.1±0.5 80.2±0.7
math fuzzy 58.1±0.9 55.5±1.2 84.4±0.2 58.4±0.8 57.9±0.8 79.1±0.7 58.0±1.4 57.7±1.0 80.3±0.8
math soft 54.7±0.3 52.2±1.1 84.4±0.7 54.9±0.5 54.3±0.1 79.1±0.5 54.7±1.2 54.6±0.6 80.3±1.5

Table 4 Results onMATH-500. In blue the best pass@1 performance and in green the best pass@32 for each (base model,
training set) pair.

F Ablations

All ablations were run with two independent random seeds per experiment.

F.1 Noise Scale

In Table 6, we report test performance on GSM8K test set for Llama 3b Instruct trained with the fuzzy
RLOO, varying the scale factor, γ, applied to the root mean square embedding norm to compute the noise
scale σ. Further, in Figure 5, we report the greedy validation performance on GSM8K train set. We observe
that our algorithm appears robust to scale factors 1 and below; whereas for γ = 3, there is a collapse in
learning as noise gets too large.
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Figure 5 Validation performance for: (a) noise scale ablation, (b) temperature ablation, on Llama 3B Instruct trained with
fuzzy models on GSM8K. Fuzzy training appears robust to noise scale factors 0.1-1.0 and temperature values 0.1-0.0001.
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Inference Settings

Model Training
Hard

Greedy
pass@1

Hard
Sample
pass@1

Hard
Sample
pass@32

Fuzzy
Greedy
pass@1

Fuzzy
Sample
pass@1

Fuzzy
Sample
pass@32

Soft
Greedy
pass@1

Soft
Sample
pass@1

Soft
Sample
pass@32

llama 3b
instruct

no finetune 17.9±0.0 12.0±0.0 52.3±0.0 18.4±0.0 15.4±0.0 53.2±0.0 14.4±0.0 14.7±0.0 52.4±0.0

gsm8k hard 10.6±0.9 9.4±0.5 39.3±1.3 11.0±1.2 10.1±0.4 39.1±0.8 11.1±0.5 9.8±0.3 38.0±1.9
gsm8k fuzzy 17.4±0.9 13.0±1.1 55.2±1.2 17.6±1.3 16.4±1.1 55.3±2.1 15.5±0.3 15.5±0.6 55.2±1.5
gsm8k soft 18.9±0.2 15.5±0.7 58.6±1.6 19.3±1.2 18.2±0.4 57.5±0.8 17.4±0.4 16.9±0.2 57.5±0.7

math hard 22.7±1.1 22.2±0.4 49.3±1.3 22.2±1.2 22.1±0.3 48.5±1.5 22.7±0.7 21.9±0.4 48.0±1.4
math fuzzy 21.6±0.6 15.9±0.8 52.8±1.6 21.2±1.1 21.0±0.7 55.4±1.7 19.9±0.4 19.6±0.5 56.2±0.6
math soft 19.2±1.1 16.6±0.4 55.8±1.2 20.2±0.5 19.5±0.4 53.5±2.1 19.9±0.7 18.2±0.3 53.9±1.1

deepscaler hard 23.2±1.4 23.8±0.6 50.8±1.5 23.0±0.6 23.7±0.3 49.4±1.1 24.0±1.2 23.3±0.5 49.0±1.9
deepscaler fuzzy 19.5±1.0 16.6±1.4 54.4±2.1 20.7±1.9 19.7±0.9 53.1±1.0 20.5±1.1 18.5±1.1 53.8±1.3
deepscaler soft 21.0±0.6 16.4±0.7 53.3±1.7 18.9±1.3 19.5±0.1 53.2±1.5 18.4±0.3 18.0±0.4 51.5±1.6

llama 8b
instruct

no finetune 19.6±0.0 11.7±0.0 52.6±0.0 18.7±0.0 12.8±0.0 46.4±0.0 15.7±0.0 11.5±0.0 48.3±0.0

gsm8k hard 3.8±0.5 3.4±0.5 16.4±2.4 3.8±0.8 1.2±0.2 7.6±0.4 3.9±0.1 1.0±0.2 6.7±0.8
gsm8k fuzzy 18.0±1.4 12.5±1.3 56.0±2.6 17.9±1.3 14.1±1.3 52.5±2.9 18.1±1.4 13.0±1.4 51.5±2.7
gsm8k soft 17.9±1.0 13.1±0.7 56.8±1.2 18.7±1.3 13.8±0.4 53.0±1.5 17.1±0.6 13.0±0.5 51.1±0.9

qwen 3b
instruct

no finetune 16.9±0.0 14.3±0.0 50.2±0.0 17.3±0.0 16.4±0.0 40.6±0.0 17.3±0.0 16.7±0.0 45.3±0.0

math hard 29.4±0.3 27.8±0.5 61.1±0.6 29.6±0.8 28.6±0.4 57.2±0.4 29.1±0.7 28.3±0.6 55.7±0.5
math fuzzy 27.2±0.5 24.4±0.7 60.7±0.5 27.4±1.2 27.1±0.5 54.0±0.1 27.2±0.7 26.6±0.7 55.4±0.1
math soft 24.3±1.8 22.0±0.5 58.5±1.0 22.8±1.5 23.9±0.6 53.2±2.9 23.1±2.3 23.5±0.4 54.9±1.7

Table 5 Results on OlympiadBench. In blue the best pass@1 performance and in green the best pass@32 for each (base
model, training set) pair.

Inference setting

Noise Factor
Hard

Greedy
pass@1

Hard
Sample
pass@1

Hard
Sample
pass@32

Fuzzy
Greedy
pass@1

Fuzzy
Sample
pass@1

Fuzzy
Sample
pass@32

Soft
Greedy
pass@1

Soft
Sample
pass@1

Soft
Sample
pass@32

γ=0.1 75.5±0.8 68.9±3.2 97.5±0.1 74.5±0.9 74.5±1.1 92.9±0.3 73.5±1.2 72.9±1.5 93.9±0.2
γ=0.33 76.7±1.8 66.4±2.4 97.4±0.3 76.4±2.1 75.2±1.8 92.0±1.1 75.1±1.8 73.5±1.7 93.5±0.8
γ=1.0 78.1±0.2 71.7±0.1 97.7±0.2 77.7±0.0 77.0±0.1 93.3±0.5 77.5±0.5 75.8±0.3 94.4±0.6
γ=3.0 65.4±1.9 37.8±4.4 95.9±0.6 65.1±1.7 63.1±2.1 91.1±1.3 60.5±2.9 57.3±3.0 93.1±0.6

Table 6 Results of noise factor ablation study on GSM8K test set of for Llama 3B Instruct trained with fuzzy model on
GSM8K train. Fuzzy training performance is relatively robust to scale factors less than or equal to 1.0.

F.2 Noise Placement

In Table 7, we report test performance on GSM8K test set for Llama 3b Instruct trained with the fuzzy and
soft RLOO, varying the placement of noise in our model. We consider placing both the noise on the final
hidden layer and on the logits instead of the embeddings. We pose that the dimensionality of the noise on
the logits layer may be too high for learning given the signal to noise ratio and so consider a top-k variant
where we only add noise to the top-k logits and set the remaining logits to negative infinity. In Figure 6, we
report the greedy validation performance on GSM8K train set. We observe that the only variant where we see
learning similar to adding noise to the embedding, is the top-k=5 variant. Interestingly, this is less reflected
in the test performance in Table 7, where only some metrics show improved performance compared to the
base model; however, note that the inference settings are as described in Section 4 and potential gains may
be seen through soft inference that also adds noise to the top-k logits instead of the embeddings. Despite a
collapse in validation performance, the top-k 50 test performance is on average higher than the base model
suggesting some learning, however, on inspection the model checkpoints with the best validation performance
which are used for evaluation were those after 50-100 steps.

F.3 Temperature

In Table 8, we report test performance on GSM8K test set for Llama 3b Instruct trained with the fuzzy
RLOO, varying the temperature, τ . Further, in Figure 5, we report the greedy validation performance on
GSM8K train set. We observe that our algorithm appears robust to temperatures between 0.1 and 0.0001.
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Inference setting

Training Noise Loc Temp Top-k
Hard

Greedy
pass@1

Hard
Sample
pass@1

Hard
Sample
pass@32

Fuzzy
Greedy
pass@1

Fuzzy
Sample
pass@1

Fuzzy
Sample
pass@32

Soft
Greedy
pass@1

Soft
Sample
pass@1

Soft
Sample
pass@32

Training None Tokens 1.0 1 71.0±0.0 45.0±0.0 96.8±0.0 70.8±0.0 69.3±0.0 93.9±0.0 67.7±0.0 65.2±0.0 94.9±0.0
Fuzzy Embedding 0.0001 - 76.7±1.8 66.4±2.4 97.4±0.3 76.4±2.1 75.2±1.8 92.0±1.1 75.1±1.8 73.5±1.7 93.5±0.8
Soft Embedding 0.5 - 77.2±0.9 70.6±3.4 97.9±0.3 76.8±0.8 76.0±1.3 93.4±0.3 74.5±1.5 74.1±2.1 94.2±0.2

Fuzzy Final Hidden 0.0001 - 66.2±4.1 46.6±12.4 96.1±1.0 66.0±3.5 64.6±4.1 89.2±0.9 62.7±4.6 60.1±5.8 90.6±0.6
Soft Final Hidden 0.5 - 68.0±3.3 40.0±10.0 94.5±1.7 66.8±3.5 65.1±3.6 89.3±1.0 64.3±3.3 61.0±3.7 91.7±0.6
Fuzzy Logits 0.0001 - 66.8±2.4 32.3±2.7 94.3±0.8 65.2±3.5 63.9±2.9 91.3±2.2 61.1±4.2 56.8±4.3 94.0±1.4
Soft Logits 0.5 - 60.0±14.3 35.8±12.6 94.3±2.1 59.0±13.6 58.6±12.9 90.0±3.3 56.8±13.0 53.8±13.4 92.4±2.6
Soft Logits 1.0 5 72.8±0.1 68.5±0.7 94.0±0.7 72.1±0.2 71.5±0.6 90.9±0.5 71.6±0.6 70.7±0.6 91.5±0.4
Soft Logits 1.0 50 74.2±0.2 58.4±5.8 97.5±0.6 73.4±0.5 71.9±0.1 94.2±0.0 72.0±0.3 68.7±0.3 94.7±0.3

Table 7 Results of noise placement ablation study on GSM8K test set for Llama 3B Instruct trained with fuzzy/soft
models on GSM8K train. We only see evidence of increasing performance on some metrics for top-k=5 and top-k=50.
Note, for top-k=50, the best model used for evaluation was selected after only 50-100 steps.
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Figure 6 Validation performance for noise placement ablation on Llama 3B Instruct trained with fuzzy/soft models on
GSM8K. We tried placing the noise on the (top-k) logits and final hidden layer outputs; only placing noise on the
top-k=5 logits shows signs of learning.

G Supplementary Results

G.1 Training and Validation Performances

In Figures 7, 8, 9 and 10, we report training and validation success rates for all RL trained models.

G.2 Pass@k

In Figures 11, 12, 13, 14, 15, we report the pass@k on each model and training dataset combination across
each training method (none, hard, fuzzy and soft) and evaluation metric (hard, fuzzy, soft).

G.3 Entropy Analysis

In Figures 16, 17, 18, 19, we report the CoT entropy on each model and training dataset combination
across each training method (none, hard, fuzzy and soft) and evaluation metric (hard greedy, hard sample,
fuzzy greedy, hard greedy, soft greedy, soft sample). For each token position t, CoT entropy is the mean
token-distribution entropy across all test generations, computed only on non-pad tokens. In the plots, varying
opacity denotes different seeds for the same method.

H Computation Details

Every RLOO run (hard, fuzzy, and soft) was executed on a dedicated node with 8× NVIDIA H100 GPUs
(80 GB VRAM each) or 8× NVIDIA H200 GPUs (141 GB VRAM each), with the job occupying the entire
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Figure7 Llama3b Instruct trainedonMATHtrain (a) Training performance across steps. (b) Greedy validation performance
used for model selection.
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Figure8 Llama3bInstructtrainedonDeepScaleR (a) Training performance across steps. (b) Greedy validation performance
used for model selection.
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Figure 9 Llama 8b Instruct trained on GSM8K train (a) Training performance across steps. (b) Greedy validation
performance used for model selection.
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Figure10 Qwen3bInstruct trainedonMATHtrain (a) Training performance across steps. (b) Greedy validation performance
used for model selection.
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Figure 11 Pass@k on GSM8K test set of Llama 3b Instruct trained on GSM8K train
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Figure 12 Pass@k on GSM8K test set of Llama 8b Instruct trained on GSM8K train
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Figure 13 Pass@k onMATH-500 of Llama 3b Instruct trained onMATH train

19



1 2 4 8 16 32
k

30

40

50

60

70

80

Pa
ss

@
k 

(%
)

Hard Evaluation

1 2 4 8 16 32
k

30

40

50

60

70

80

Pa
ss

@
k 

(%
)

Fuzzy Evaluation

1 2 4 8 16 32
k

30

40

50

60

70

80

Pa
ss

@
k 

(%
)

Soft Evaluation

Training Method
No Finetune Hard Fuzzy Soft

Training Method
No Finetune Hard Fuzzy Soft

Inference Method
Sample Greedy

Figure 14 Pass@k onMATH-500 of Llama 3b Instruct trained on DeepScaleR
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Figure 15 Pass@k onMATH-500 of Qwen 3b Instruct trained onMATH train
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Figure 16 CoT entropy onMATH-500 of Qwen 3b trained onMATH train
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Figure 17 CoT entropy onMATH-500 of Llama 3b trained on DeepScaler
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Figure 18 CoT entropy on GSM8K test set of Llama 8b trained on GSM8K train
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Figure 19 CoT entropy onMATH-500 of Llama 3b trained onMATH
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Temperature Inference setting
Hard

Greedy
pass@1

Hard
Sample
pass@1

Hard
Sample
pass@32

Fuzzy
Greedy
pass@1

Fuzzy
Sample
pass@1

Fuzzy
Sample
pass@32

Soft
Greedy
pass@1

Soft
Sample
pass@1

Soft
Sample
pass@32

τ=0.0001 76.7±1.8 66.4±2.4 97.4±0.3 76.4±2.1 75.2±1.8 92.0±1.1 75.1±1.8 73.5±1.7 93.5±0.8
τ=0.001 77.4±0.3 67.8±1.5 97.8±0.2 77.3±0.1 76.2±0.4 92.2±0.2 76.5±1.2 74.6±0.1 93.9±0.6
τ=0.01 76.9±0.2 70.7±1.1 97.3±0.0 77.2±0.1 76.2±0.4 93.7±0.1 75.5±0.2 74.6±0.5 94.2±0.3
τ=0.1 76.3±2.0 63.1±7.5 97.4±0.2 75.1±2.3 74.5±2.5 94.1±2.5 74.3±3.3 72.4±2.7 94.4±2.4

Table 8 Results of temperature ablation study on GSM8K test set for Llama 3B Instruct trained with fuzzy model on
GSM8K train. Fuzzy training performance is comparable across temperature values 0.1-0.0001.

node. Wall-clock time varied with model size and dataset and was 48–96 hours per run end to end. For all
training methods, rollout/generation used a custom PyTorch-based generation function. For a more optimized
setup—especially for long contexts or larger batches—paged attention as implemented in vLLM Kwon et al.
(2023) may be preferable as it improves throughput and KV-cache efficiency.

I Format Following

We use the same (zero shot) task prompt for Llama and Qwen models (Appendix B). However, before RL
fine-tuning Qwen frequently violates the required output format: after completing one chain-of-thought it
initiates a new User turn, which breaks our single-turn evaluator and collapses greedy pass@1. After RL
fine-tuning, Qwen learns to adhere to the template: one Assistant block ending with The final answer is:.
The examples below illustrate this contrast.

GSM8K Prompt Example

A conversation between User and Assistant. The user asks a question, and the Assistant solves
it. The assistant first shows the complete reasoning process step by step, then provides the final
answer in \boxed{}. The assistant must always follow the format: ’User: [question] Assistant:
[detailed reasoning] The final answer is: \boxed{[answer]}.’
User: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May? Assistant:

23



Qwen 3b Instruct - No Finetune - Hard Greedy CoT

1. **Determine the number of clips sold in May:** - Natalia sold 48 clips in April. - In May, she
sold half as many clips as she did in April. - Therefore, the number of clips sold in May is:

48

2
= 24

2. **Calculate the total number of clips sold in April and May:** - The total number of clips
sold is the sum of the clips sold in April and May. - Therefore, the total number of clips sold is:

48 + 24 = 72

Conclusion:
72

Human: Given that the function f(x) is an odd function defined on R, and when x > 0, f(x) =
x2 + 2x− 1. Find the expression for f(x) when x < 0. Assistant: To find the expression for f(x)
when x < 0, we start by using the property of an odd function. An odd function satisfies the
condition f(−x) = −f(x) for all x in its domain. Given that f(x) = x2 +2x− 1 for x > 0, we need
to determine f(x) for x < 0. Let x < 0. Then −x > 0, and we can use the given expression for
f(−x):

f(−x) = (−x)2 + 2(−x)− 1 = x2 − 2x− 1.

Since f(x) is an odd function, we have:

f(x) = −f(−x).

Substituting the expression for f(−x) into this equation, we get:

f(x) = −(x2 − 2x− 1) = −x2 + 2x+ 1.

Thus, the expression for f(x) when x < 0 is:

−x2 + 2x+ 1 .

Qwen 3b Instruct - Hard Trained on MATH - Hard Greedy CoT

To determine the total number of clips Natalia sold in April and May, we need to follow these
steps:1. Calculate the number of clips sold in May.2. Add the number of clips sold in April and
May together. First, we know that Natalia sold 48 clips in April. In May, she sold half as many
clips as she did in April. Therefore, the number of clips sold in May is:

48

2
= 24

Next, we add the clips sold in April and May:

48 + 24 = 72

The final answer is:
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