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ABSTRACT

Large Language Models (LLMs) face significant computational challenges when
processing long contexts due to the quadratic complexity of self-attention. While
soft context compression methods, which map input text to smaller latent rep-
resentations, have shown promise, their real-world adoption is limited. Exist-
ing techniques typically compress the context as a single unit, which leads to
quadratic compression complexity and an inability to reuse computations across
queries with overlapping contexts. In this work, we introduce CompLLM, a soft
compression technique designed for practical deployment. Instead of processing
the context holistically, CompLLM divides it into segments and compresses each
one independently. This simple design choice yields three critical properties: effi-
ciency, as the compression step scales linearly with the context length; scalability,
enabling models trained on short sequences (e.g., 1k tokens) to generalize to con-
texts of 100k tokens; and reusability, allowing compressed segments to be cached
and reused across different queries. Our experiments show that with a 2x com-
pression rate, at high context lengths CompLLM speeds up Time To First Token
(TTFT) by up to 4x and reduces the KV cache size by 50%. Furthermore, Com-
pLLM achieves performance comparable to that obtained with the uncompressed
context, and even surpasses it on very long sequences, demonstrating its effective-
ness and practical utility.
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Figure 1: At high context lengths, CompLLM leads to considerable speedup and improved results,
without requiring any modification or tuning of the LLM, by efficiently reducing the number of
embeddings fed to the LLM. The plot shows the Time To First Token (TTFT) with CompLLM and
without it (i.e. with a standard pipeline) as a function of context length.

1 INTRODUCTION

Among the many use cases of LLMs, one of the most popular is long context Q&A: given a textual
context of arbitrary length, the LLM should answer questions about it. Applications include cod-
ing assistants reading large codebases (Team), [2024), web agents reasoning on HTML pages (Zeng
et al.,2024), users querying an LLM about a set of documents (Liu et al.,|2024a), or RAG systems
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where LLMs are fed retrieved documents (Lewis et al., 2020a)). Due to the quadratic complexity
of the transformer (Vaswani et al., [2017)), processing long contexts can be unfeasibly expensive: it
is therefore important to reduce computational complexity, especially as contexts grows longer and
longer.

To reduce computational complexity, a field of NLP literature focuses on compressing long contexts
into smaller representations that can be passed to the LLM, while aiming to obtain similar outputs.
These works can be split into two categories: the first category aims to compress the context into
shorter text (also called hard compression), often by pruning low-entropy or non-informative tokens
or sentences (Jiang et al., 2023} Xu et al.} |2024); while the second category compresses the prompt
into a high-dimensional latent space (also called soft compression), either in the form of embeddings
(Li & Liang, 2021a; [Wang et al., 2024a) or in the form of KV cache (Petrov et al., |2025a; Mu
et al.| 2023a)). While hard compression allows for higher interpretability, given that the compressed
representation is human readable, soft compression produces continuous representations, allowing
end-to-end training and providing higher flexibility. Furthermore, soft compression representations
do not need to belong to the domain of natural text, enabling higher compression rates than token
pruning (Corallo & Papottil |2024) and leads to higher quality outputs, often on par with the non-
compressed pipeline (Ge et al., [ 2024b)).

These soft compression methods have been able to achieve increasingly better performances, allow-
ing for increasingly higher compression rates with little drop in accuracy. But despite these advances
in the literature, adoption of soft compression methods in real-world applications is still scarce. In
this paper we present CompLLM, a new soft compression technique which, instead of aiming for
high compression rates, focuses on satisfying a set of properties that are necessary for widespread
real-world adoption.

Existing soft compression methods compress the context as a whole, meaning that every input token
affects the entire compressed representation; on the other hand, we propose to split the context in
segment (i.e. short sentences) which are compressed independently. This simple design choice
naturally leads to three important properties of CompLLM:

1. efficiency: while in existing methods a token attends every previous one in the attention
layers used for compression (due to the context being compressed as a whole), which leads
to quadratic complexity, in CompLLM each token only attends to previous tokens within
its segment. This makes the computational complexity of the compression step linear w.r.t.
the number of segments, and hence the length of the context.

2. scalability: CompLLM can be trained on shorter contexts than those used at test time,
given that CompLLM effectively only sees small chunks (segments) of context at a time.
In practice, we show that despite our model being trained on sequences no longer than 2K
tokens, it can compress contexts of hundreds of thousands of tokens while retaining (or
even improving) results derived from the uncompressed prompt.

3. reusability: CompLLM’s compressed representations can be reused across queries. Imag-
ine a user asking an LLM to compare documents A and B, and in a second query asking it
to compare documents A and C: because the compressed representation of A is indepen-
dent from that of B, such representation can be reused for the second query. This can be
very useful for any system where contexts are often reused, like (i) applications where the
context comes from a predetermined set of documents, as in RAG systems, and (ii) appli-
cations where the majority of the context does not change, like coding assistants for a large
codebase.

To evaluate the efficacy of CompLLM, we provide evaluations on multiple LLMs and datasets.
Our results highlight a number of interesting empirical qualities of our CompLLM, which uses a
compression rate of 2:

1. CompLLM speeds up Time To First Token (TTFT) by up to 4x for long contexts;

2. CompLLM reduces the size of the KV cache by 2x;

3. CompLLM achieves results competitive to a standard LLM pipeline (i.e. without compres-
sion) for short context lengths, while leading to improvements in output quality at long
context lengths. We hypothesize that this happens because having fewer tokens reduces
attention dilution;



2 RELATED WORK

Among the multiple works that approached the task of reducing the inference cost for LLMs through
compression, it is possible to identify two categories: hard compression, i.e. methods that com-
press the prompt into shorter prompts in natural language, and soft compression, which compresses
prompts into various forms of latent representations.

2.1 HARD COMPRESSION

These methods aim to synthesize prompts into shorter ones in natural language, either through means
of token pruning (Jiang et al.| [2023; [Pan et al.| [2024) (Chung et al., |2024), sentence pruning (Xu
et al.; 2024), or paraphrasing the prompt (or context) (Al et al.| 2024} |Yang et al.| |2023). While
some of these methods are question-agnostic, a large number of question-aware methods have been
developed, either for sentence or document pruning (Hwang et al.l 2025} [Liskavets et al.| 2025}
Zhao et al., |2025bj [Fei et al.l 2025) or for token pruning (Zhao et al., 2025a; Tang et al., [2025;
Jiang et al.|2024)). These methods have the advantage of being interpretable, and usable with closed
LLMs through API, as it is possible to compress the prompt locally and send only the synthesized
prompt to the LLM. However, these usually result in lower compression rates, and incur into higher
accuracy drops, compared to their counterparts that compress prompts in latent space (Liu et al.
2024b;; |Chen et al.| 2025)).

2.2  SOFT COMPRESSION

Soft compression is achieved in two different ways: (A) by compressing text into latent embeddings
(N1 D-dimensional embeddings, where NV is the sequence length of the compressed representation)
(Ge et al.} [2024b), and (B) methods that compress the input into a key-value (KV) cache (L1 et al.,
2025])), which has dimension Ny x L X D x 2, where Nj is the sequence length of the generated KV
cache, L is the number of layers in the LLM, D is the dimension of the latent embeddings, and 2 is
due to each token requiring one embedding for the key and one for the value.

Compressing into KV cache can generally lead to shorter sequence lengths: this led to the devel-
opment of multiple works along these lines (Chari et al.} |2025 Kim et al., [2024; [Liu et al., [2024bj
Petrov et al., 2025b), with |L1 et al.| (2025) pushing the compression to the limit with hundreds of
tokens compressed into a KV-cache of sequence length 1, and |Corallo & Papotti| (2024) aim to get
higher accuracy by building question-aware KV-cache representations. It must be noted that, in the
KV cache, each key-value embedding depends on all its preceding tokens: this makes KV cache a
holistic latent representation by design, i.e. the representation of different sentences in the context
can’t be independent from each other, leading to non-reusability, and non-linear scalability (time
complexity of O(N?)).

Among the most similar works to ours, several papers compress prompts into latent embeddings:
(L1 & Liang},|2021b) spearheaded the task by generating a set of latent embeddings for each of a few
tasks, like summarization of translation; similarly, (Mu et al., 2023b) proposed to directly compress
prompts into latent embeddings. (Ge et al.,2024b) proposed a model to compress any context into a
fixed sequence of latent concept embeddings, into what they call memory slots, without fine-tuning
the LLM used for generation: this has inspired a number of subsequent papers, like (Wang et al.,
2024b), which uses a perceiver-like architecture (Jaegle et al.,[2021) to compress the context, (Cao
et al.} 2024) which creates a query-dependent compression, (Huang et al., [2024)) which recursively
compresses context of increasingly larger lengths, (Cheng et al.l [2024)) which pushes compression
to the extreme into a single latent embedding. Despite the large number of work in this area, all
of these compress the context as a block, which despite allowing higher accuracy and compression
rates, does not allow the properties efficiency, scalability, and reusability (see Section [I).

3 METHOD

3.1 ComPLLM

In this work we propose CompLLM (Compression for LLMs), which reduces computational com-
plexity by reducing the number of embeddings fed to the LLM. In a standard setting, an LLM can
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Figure 2: Conceptualization of Token Embeddings (TEs) (Top) and Concept Embeddings (CEs)
(Bottom), and how they can both lead to the same output, using the sentence “golden dogs are
called” as an example. TEs are contained in the LLM’s embeddings table and limited to roughly
200k (e.g. 262k for Gemma3 models and 151k for Qwen3 models). CEs lie in the same features
space as TEs, but are not limited in number, and can be fed directly to the LLM without tuning it.
The sentence golden dogs are called can be represented with 4 TEs, or in a more compact way using
2 CEs, while leading to the same output. A CompLLM’s objective is to extract CEs given TEs, in
order to reduce the computational burden on the LLM.

be fed one of roughly 200k Token Embeddings (TEs), i.e. the vectors contained in the embeddings
table: for example, Gemma3 (Team et al., |2025) has 262k TEs, while Qwen3 (Yang et al., [2025)
has 151k tokens. We instead rely on the existence of other embeddings, which we call Concept
Embeddings (CEs, conceptualized in Figure[2), which exist in the same latent space of TEs and can
be directly fed to the LLM, despite being completely unseen at training time. CEs allow to encode
a similar amount of information as TEs, leading to similar outputs, while reducing the sequence
length, which reduces latency and memory usage of the LLM’s forward pass.

While TEs are readily available in the embeddings tables, CEs require a specialized model to be
computed, which needs to be able to extract CEs efficiently. To this end, given a text of length N
tokens, we split it into segments of maximum length S tokens, obtaining % segments. Each segment
is passed to the CompLLM independently, so that the attention operation is quadratic within each
segment, but scales linearly over the whole context. The complexity within each segment is O(S?),
therefore for & segments overall complexity is O(%S%) = O(NS). In practice, we set S = 20,
meaning that for a compression rate of C' = 2 we compress each segment of 20 TEs into 10 CEs.
CompLLM’s architecture therefore needs to be able to take as an input S (or fewer) embeddings
and output % embeddings: note that multiple architectures can satisfy this basic constraint (like
encoder-only LLMs, decoder-only LLMs, MLPs, etc. ).

As an architecture for our CompLLM, we take inspiration from |Ge et al.| (2024a), by attaching a
LoRA (Hu et al. 2022)) to the same LLM used for generation; on top of it, we append a single
11near layer. Specifically, when feeding this CompLLM with a sequence of length S, we Sppend
o embeddlngs corresponding to EOS tokens, whose corresponding outputs are used as the = CEs,
as shown in the bottom left of Figure [3] This simple architecture has the advantage of reusmg
the parameters of the LLM, which are left untouched by the LoRA, hence reducing memory usage
needed to store weights; this also allows to use the LLM in the standard fashion, in cases where
CompLLM might not be needed. Finally, we emphasize that benchmarking different architectures
as a choice for compressor is outside of the scope of this manuscript, whereas our goal is instead to
showcase that CompLLM is a feasible and useful alternative to the standard LLM pipeline.

3.2 TRAINING

Among the possible applications of CompLLMs, the most helpful one is long-context question an-
swering, which is the focus of our training and evaluation experiments. To this end, we design
our pipeline to reflect the real-world scenario, where compression is used on the long context (and
can optionally be computed offline), whereas the question (much shorter than the context, and pro-
vided online) is not compressed. Building on these considerations, we now describe how we train
CompLLM to handle long-context question answering effectively.
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Figure 3: Training protocol of CompLLM for context-based Q&A. The CompLLM (made of the
same LLM used for generation + a LoRA and a linear layer) can extract multiple CEs in a single
forward pass, and can take as input any number of segments with any number of TEs and output any
number of CEs (i.e. the number of CEs is proportional to the number of TEs). The loss is computed
only on the output corresponding to the answer’s embeddings, whereas the outputs corresponding
to the other embeddings is ignored. Note that the model can decide on its own what information
the CEs actually encode: for example, the first CE (e.g. CEO) could encode information from only
the first TE, or the first 3 TEs; similarly, some low-information TE might have very little effect on
the CEs. The answer y can be computed online (during training) or offline, using the LLM; here we
show it as if it was pre-computed for simplicity.

Consider an instruction-tuned LLM prrm(y | ¢, ) where ¢ represents context, = the instruction
and y the generated response. Our goal, conceptualized in Figure 3] is to fine-tune a compressor
PompLLM (CompLLM) that maps ¢ to a compressed context ¢ = CompLLM(c), where ¢ is made
of TEs and ¢ is made of CEs. The base LLM is queried with either ¢ or ¢. Instead of matching output
distributions, we distill by matching hidden activations on the answer segment, which provides a
denser and richer signal than output distributions.

Let A denote the indices of the answer tokens (the last |A| tokens), and let H? € RI41*? be the

teacher hidden states at layer ¢ € {1,..., L} restricted to A; flf) are the corresponding student
states obtained when conditioning on ¢. We minimize a Smooth-L; loss per layer, normalized by
the scale of each layer’s teacher activation:

® _ @) 0
£ (c,z) = |Ad§€AJ§18moothng(Hf],H ). (1)
1 2
) - <P,
o (c,z) = Std(H )), SmoothL1g(u,v) = { 3(u=v) /ﬂ Ju U‘_ P (2)
lu—v| — £, otherwise,

with =1 in our experiments (i.e. PyTorch’s defaultPaszke et al. (2019)). The normalization allows
to compensate for large cross-layer activation-norm variability, following (Shen et al., 2025)).

The training objective is the expectation over context—instruction pairs:

L
Ecomp(pCompLLM7CX) = E(c,m)NCX lz [:](dz/er( )] : 3)
(=1

This loss aligns the internal representations for the answer tokens produced with the Concept Em-
beddings from ¢ to those produced with the Token Embeddings from ¢, encouraging the compressed
context to preserve information essential for generation. No ground-truth labels are required; y (and
thus A) is obtained from the LLM during training.
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Figure 4: Inference speed with and without CompLLM, for contexts of different lengths (x axis), for
different number of generated tokens (in each plot), for a CompLLM with compression rate C' = 2.
The times for the green line are equivalent to those from red + orange line (generation with online
CompLLM compression is equal to offline generation plus compression time). We used Gemma3-
4B on a B200 GPU using BFloat16 and PyTorch compile function. The leftmost plot shows the
time taken to generate 1 token, commonly known as Time To First Token (TTFT): the latency ratio
between with and without CompLLM asymptotically approaches 4x (C2), and the compression time
asymptotically becomes negligible (as it scales linearly, not quadratically like the other 3 curves).
Note that the TTFT is virtually the same as the cache prefill time. The rightmost plot shows the
time taken to generate 10k tokens, where next foken prediction time overcomes KV cache prefill
time, asymptotically bringing the ratio to 2x (C)).

We emphasize that both at training and test time, we use CompLLM to compress the contexts, but
leave the question uncompressed. This matches the use case that CompLLM would face in a real-
world scenario: compressing the context is useful because (A) contexts are long and (B) for many
applications context can be compressed offline; on the other hand questions are generally short and
provided online. This means that in practice, the LLM receives as input CEs from the context and
TEs from the question, as shown in Figure

3.3 COMPUTATIONAL COMPLEXITY ANALYSIS

The computational cost of LLM inference can be divided into two components. The first is the KV
cache prefill cost, incurred when computing the first forward pass over the input tokens, and is equiv-
alent to the Time To First Token (TTFT). This cost scales quadratically (O(N?)) with the prompt
length IV for standard attention-based LLMs (Vaswani et al.,|2017). The second component is the
next token prediction cost, which, considering the KV cache to be already prefilled, corresponds to
producing new tokens in an autoregressive manner. Each generated token attends to all previously
processed tokens, leading to a per-token complexity of O(N), which to generate T" tokens becomes
O(NT)['} Consequently, total inference complexity depends on both the initial context length and
the number of generated tokens.

In the context of CompLLMs, the KV cache prefill cost scales down quadratically with C: from
O(N?) it drops to O(g—i) The next token prediction cost instead scales down linearly by C, from

O(NT) to O(&T), because the number of tokens that each new token should attend to is divided by
C'. Furthermore, CompLLMs also incur in one additional cost, namely the compression time: how-

ever, due to its linear complexity of O(NS) (see Section[3.1), compression time becomes negligible
for large N, given that KV cache prefill has quadratic complexity and O(N.S) + O(](}'—j) = O(g—;)
This is empirically shown in Figure [ Moreover, compression can be computed offline in many
real-world cases (e.g. in a RAG pipeline the documents are likely to be available beforehand). We
ground these concepts into empirical results in Figure @} where the plot shows the latency of next
token prediction at different context lengths, with different number of generated tokens, with and
without CompLLM.

'To be more precise, the per-token complexity for next token prediction is O(N + T, hence O(T(N +T))
for T tokens, as each new token needs to attend not only the ones from the prompt, but also the newly-generated
ones. Given that in long-context Q&A we have that N >> T, we simplify notation by using O(XN) instead of
ON+T)



Context Len. Question Len. Answer Len.

Dataset Type Split #samples avg min max avg min max avg min max
train 327k 7434 242 1395 11.0 3 41 63 1 36
NarrativeQA OE  valid. 35k 7193 248 1293 10.8 4 31 6.1 1 50
test 10.6k 7342 249 1349 109 4 34 6.2 1 42
SQuAD OE test 10.6k 1679 30 788 12.8 4 40 438 1 50
train 87.9k 341.7 4 1436 98.0 66 414 1 1 1
RACE MC  valid. 49k 3375 60 1063 97.7 68 161 1 1 1
test 49k 3394 23 1048 98.1 70 188 1 1 1
QuAlIL MC  test 0.6k 420.2 376 501 86.5 71 116 1 1 1

Table 2: Detailed statistics for each dataset split, including context, question, and answer lengths.
OFE means Open-Ended questions (e.g. what is the name of the main character?), while MC stands
for Multiple Choice questions (with 4 possible answers each). Lengths are in number of tokens,
computed with the Qwen3 tokenizer.

From a computational complexity perspective, there are 3 types of situations:

1. for large N and small T" the KV cache prefill cost is the bottleneck, meaning CompLLM
can decrease inference time by C?;

2. for large N, as T' grows larger, the computational gains from CompLLM approach C, as
the next token prediction cost begins to overcome the KV cache prefill cost.

3. for very small N, CompLLM will actually slow down generation, as for small NV the com-
pression time is non-negligible. Note however that for small N CompLLM can be seam-
lessly unplugged from the pipeline, as the LLM’s weights are untouched by CompLLM.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We use an Adam optimizer with a learning rate of 0.0001, and we train with a batch size of 4 until
convergence. Unless otherwise specified, we use a compression rate of C' = 2. We split the text into
sentences/segments using the NLTK Punkt tokenizer (Kiss & Strunk, 2006), a classical algorithm,
and split again any long sentence to ensure they are shorter than S = 20 tokens. We compute results
with two recent instruction-tuned LLMs, Gemma3-4B (Team et al., [2025) and Qwen3-4B (Yang
et al., [2025).

4.2 DATASETS

To validate CompLLM’s capabilities, we conduct experiments on long-context Q&A datasets.
Specifically, we use two open-ended Q&A datasets, namely NarrativeQA (s Kocisky et al., 2018))
and SQuAD (Rajpurkar et al.l [2016)), and two multiple choice Q&A datasets, namely RACE (Lai
et al.l [2017) and QuAIL (Rogers et al., 2020). We use one dataset of each kind (NarrativeQA
and RACE) for training, and test on all four datasets, to also assess the generalization capabilities
of our CompLLM. For open-ended Q&A, we compute evaluation with the LLM-as-a-judge ap-
proach; for multiple choice Q&A, we evaluate with regex matching, and prompt the LLM to end
its chain-of-thought output with the answer is (X) |7} where X is one of A, B, C or D. Statistics for
each dataset are shown in Table 2] and examples of the datasets are shown in Section [A.T] Based
on the numbers in Table 2| we can infer that the contexts in the training set contain altogether
32.7Tk x 743.4 + 87.9k x 341.7 = 54M tokens. The number of tokens of the generated answers
(used for distillation) are on average 149 for Gemma3-4B and 273 for Qwen3-4B, hence 18M and
33M respectively.

Furthermore, we evaluate on the suite of RAG datasets from LOFT (Lee et al.,2024), where, similar
to the open-ended Q&A datasets described above, the goal is to answer an open-ended question

2As showcased in Section we use the following prompt for multiple choice Q&A: The following is a
multiple choice question (with answers), about the above text. Think step by step and then make sure to end
your answer with “the answer is (X)” where X is the correct letter choice.
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Figure 5: Results with and without compression across multiple context lengths for four datasets,
with Gemma-3-4B (top row) and Qwen3-4B (bottom row). X axis indicates the context length,
showing both the number of concatenated contexts/documents and number of tokens. To obtain
longer contexts, multiple contexts are concatenated, and the correlated questions (one per context)
are asked independently from each other: this means that the distribution of the relevant contexts
is uniform within the concatenated context - there is exactly one question about the first document,
one question about the second document et cetera.

given a long context. LOFT defines each dataset as a collection of 100 questions about a context
with length of 128k tokens, using the datasets of HotpotQA (Yang et al., |2018)), Musique (Trivedi
et al., 2022), NQ (Kwiatkowski et al.,|2019; [Thakur et al., [2021)), Qampari (Amouyal et al.,|2023)),
and Quest (Malaviya et al.| 2023).

4.3 MAIN RESULTS

We compare CompLLM to a standard LLM baseline, i.e. with no compression, to show that Com-
pLLM is able to produce comparable results with the advantage of reducing computational needs.
We showcase results on context-based open ended Q&A, and context-based multiple choice Q&A.

We compute results across the four datasets’ (NarrativeQA, SQuAD, RACE, QuAIL) test sets, after
training CompLLM on two of their train sets (NarrativeQA and RACE). To understand how well
CompLLM works with contexts of different length, we compute results both in a standard fash-
ion (evaluating independently each context/question/answer triplet) and simulating longer contexts
through concatenation, following LOFT’s paradigm. Specifically, we concatenate N, contexts to-
gether, and evaluate the questions-answers independently over this longer context. We increase the
value of N, from 1 (i.e. one context at a time) up to maximum 128k effective embeddings, i.e. the
number of embeddings that are fed to the LLM; note that in practice CompLLM can lead to longer
contexts fed to the LLM when limiting on the number of effective embeddings fed to the LLM.

Results are reported in Figure[3} it can be seen how using CompLLM leads to comparable or slightly
lower results at lower context lengths, while achieving on average better results at higher context
lengths. It should be noted that not only CompLLM achieves better results at high context lengths
(i.e. over 50k tokens), it also does so while asymptotically reducing latency for cache prefill by 4x
(see Section [3.3)), reducing latency for next token prediction by 2x and reducing the KV cache by
2x. A thorough analysis on the computational complexity is available in Section 3.3}

4.4 RESULTS ON LOFT

The Long-Context Frontiers benchmark (LOFT) (Lee et al., 2024) is a recent benchmarks designed
to assess LLMs’ performance on long context tasks across a variety of datasets, described in Sec-
tion 2] Similarly to our experiments above, LOFT uses a set of context-based questions and an-
swers, and concatenates the contexts; furthermore, LOFT adds distractors contexts to reach a length
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Figure 6: Results with Gemma3-4B with no compression, with CompLLM, and with LLMLingua-2.

of 128k tokens. Results with and without CompLLM are reported in Table [I, We emphasize that
this benchmark was designed to compare the long-context capabilities of the frontiers models of
Gemini 1.5 Pro (Team| |[2024), GPT-40 (OpenAl et al., [2024])), and Claude 3 Opus (Anthropic}|2024),
hence these are tasks that prove very challenging for smaller models: nonetheless, CompLLM is
able to always match or improve the results reached by the baseline, while providing a significant
performance enhancement, as more thoroughly described in Section

4.5 COMPARISON WITH EXISTING TECHNIQUES

The vast majority of compression methods compress the context as a whole, making the compressed
representations intrinsically non reusable, and leading to quadratic complexity, (see Section[2), mak-
ing them unsuitable for long context compression and incomparable with CompLLM. As an outlier,
LLMLingua-2 (Pan et al.l 2024) uses a BERT-like encoder (Devlin et al.,[2019), which compresses
sentences independently from each other. This effectively makes LLMLingua-2 scale linearly with
the context length, making it a fit choice for long context compression, and allowing reusability of
compressed representations. Given this observation, we compute experiments to compare results
between Gemma3-4B without any compression, with CompLLM, or with LLMLingua-2. For both
CompLLM and LLMLingua-2 we used a compression rate of 2. This leads the asymptotical latency
of the pipeline with LLMLingua-2 to be equivalent to that of CompLLM. Results are reported in
Figure [6] and show that CompLLM achieves higher results than LLMLingua-2 at context lengths
below 50k tokens, while being competitive at very long context lengths.

4.6 LIMITATIONS

CompLLM ensures that the CEs encode the semantic content of a text, not its structure: hence
CompLLM by design would not work well for tasks like “count how many times the letter R appears
in the text” or “find the typos in this document”, as words like “with” and “wiht” (note the typo) are
likely encoded with a similar CE. We note however that (1) these tasks are unfeasible for virtually
any LL.M-based compression method, (2) these tasks can still be tackled within our pipeline, because
CompLLM can be seamlessly unplugged (the LLM is frozen) and (3) these non-semantic use-cases
represent a small minority of the total use cases of LLMs in the real world.

4.7 FUTURE WORK

The inception of CompLLM opens up a very wide range of possible future works, outside the scope
of this paper, which can lead to increasing the compression rate, achieving better results, speeding
up inference, and broadening the scope of CompLLM. Among these, the most noteworthy are:

1. experimenting with dynamic compression rates, i.e. the compression rate should depend on
the input: complex sentences would benefit from lower compression rates, whereas simple
repetitive sentences can be compressed into fewer embeddings.

2. understanding how far can the compression rate be pushed, and how this depends on other
factors such as the model size, its features dimension, or similar factors. For example, it
is possible that larger models can accommodate higher compression rates, as their embed-
dings lie in a higher dimensional space.



3. testing different architectures for CompLLM, such as encoder-only models or fully-tuned
LLMs (instead of LoRA applied to an LLM).

4. leveraging plain text (instead of context-question pairs) to train CompLLM, to unlock much
larger training sets.

5. given the ever-growing use of LLMs as coding assistants, and the need for coding assis-
tants to ingest large codebases, it would be interesting to train CompLLM also on coding
datasets: it is noteworthy that CompLLM perfectly suits the coding use cases, as when a
file is modified there is no need to re-compress the entire codebase, but only the modified
segments.

5 CONCLUSION

In this paper we introduced CompLLM, a technique that allows LLMs to generate up to 4 times
faster answers, while simultaneously reducing the memory footprint of the KV cache by 2x and pro-
ducing outputs of similar or better quality, specifically designed for long-context Q&A. We showed
that CompLLM works by extracting new embeddings which can be directly fed to the LLM without
fine-tuning it. CompLLM compresses segments of text individually, not only leading to linear com-
putational complexity with the length of the text, but also allowing it to compress documents offline,
as their compressed representations can be utilized regardless of other documents in the context and
regardless of the question. Notably, CompLLM works across a variety of LLMs and datasets, and
is completely orthogonal to many common inference-time techniques, like chain of thought (Wei
et al.,|2022), RAG (Lewis et al.,[2020b), beam search (Freitag & Al-Onaizan,|[2017)), paged attention
(Kwon et al.||2023), et cetera. Finally, we highlight a number of possible future directions, and en-
vision for CompLLM to be directly integrated into major LLMs, which would lead to lower latency,
FLOPs, and energy consumption.
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A APPENDIX

In this appendix we show qualitative examples of generation with and without the CompLLM
(Section [A.T)), for the open-ended Q&A datasets of NarrativeQA Section and SQuAD Sec-
tion [A.1.2] and for the multiple-choice Q&A datasets of RACE Section [A.1.3| and QuAIL Sec-
tion[A.1.4] For multiple-choice datasets, we prepend to the question the following text, as shown
in the examples below: The following is a multiple choice question (with answers), about the above
text. Think step by step and then make sure to end your answer with "the answer is (X)” where X
is the correct letter choice.. For open-ended datasets, no extra prompt is used other than the context
and question (i.e. we do not prompt the models to reason step by step or any other type of elaborate
prompts). All the following examples belong to the test sets of the respective datasets.

A.1 EXAMPLES OF GENERATED ANSWERS

A.1.1 EXAMPLE FROM NARRATIVEQA

Context: Natalie Cook (Cameron Diaz), Dylan Sanders (Drew Barrymore) and Alex Munday (Lucy
Liu) are the ”Angels”, three intelligent, talented, tough, attractive women who work as private in-
vestigators together for an unseen millionaire named Charlie (voiced by John Forsythe). Charlie
uses a speaker in his offices to communicate with the Angels, and his assistant Bosley (Bill Mur-
ray) works with them directly when needed. Charlie assigns the Angels to find Eric Knox (Sam
Rockwell), a software genius who created a revolutionary voice-recognition system and heads his
own company, Knox Enterprises. Knox is believed to have been kidnapped by Roger Corwin (Tim

17


https://arxiv.org/abs/2505.09388
https://openreview.net/forum?id=gI11vXg1W4
https://aclanthology.org/2025.acl-long.952/
https://aclanthology.org/2025.acl-long.952/
https://ojs.aaai.org/index.php/AAAI/article/view/34800
https://ojs.aaai.org/index.php/AAAI/article/view/34800

Curry), who runs a communications-satellite company called Redstar. The Angels infiltrate a party
held by Corwin and spot the Creepy Thin Man (Crispin Glover) who was seen on the surveillance
videos during Knox’s kidnapping. They chase and fight the Creepy Thin Man, but he runs away.
When they follow him, they discover Knox. After the Angels reunite Knox with his business partner
Vivian Wood (Kelly Lynch), Charlie explains that they must determine whether the Creepy Thin
Man has stolen Knox’s voice-recognition software. The Angels infiltrate Redstar headquarters, fool
the security system, and plant a device in the central computer that will enable them to explore it re-
motely. They retire for the night after giving Bosley the laptop computer that communicates with the
Redstar computer. Dylan takes up Knox’s offer to spend the night with him, end up in making love
but he betrays her later that night, explaining that he faked the kidnapping with help from Vivian and
the Creepy Thin Man. He has kidnapped Bosley, and, with access to Redstar’s central computer, he
intends to use his voice software with the Redstar satellite network to find and kill Charlie, who he
believes had killed his father in the Vietnam War. Knox shoots at Dylan, seemingly killing her, but
she escapes unharmed. Natalie and Alex are also attacked, and Corwin is murdered by the Creepy
Thin Man. When the Angels regroup together, all uninjured, Charlie’s offices are blown up. A radio
receiver survives in the rubble, and Natalie deduces Bosley’s location as he speaks to the Angels us-
ing a radio transmitter implanted in his teeth, explaining how to spot his location where he is being
held captive. With help from Dylan’s current boyfriend The Chad (Tom Green), the Angels ap-
proach the abandoned lighthouse where Knox is holding Bosley prisoner. The Angels rescue Bosley
and defeat Vivian, the Creepy Thin Man, and some henchmen before Knox blows up the lighthouse,
but Knox uses his software and the Redstar satellite network to locate Charlie when he telephones
Bosley. When Knox programs a helicopter with a missile towards Charlie’s house, Bosley helps
the Angels board the helicopter, and Alex reprograms the missile to have it shoot backwards, which
blows up the helicopter and kills Knox while all of the Angels land safely together on the beach.
Seeing the opportunity to finally meet Charlie in person, they enter the beach house that Knox had
targeted the missile at, but Charlie has already left. He remotely congratulates the Angels on a job
well done through another speaker, and treats them and Bosley to a vacation. Charlie tells them that
Knox’s father was undercover; however, he was discovered and he was killed by someone else but
not Charlie. When he speaks to the Angels unseen again by telephone on the beach, they ask if they
could ever meet him in person. Dylan then suspects that she might be seeing him nearby talking into
a cell phone, but she doesn’t tell the group.

Question: How does Charlie communicate with the ”Angels”?

Ground truth answer: Charlie uses speakers in his offices.

Generated answer without CompLLM: Charlie communicates with the “Angels” using a
**speaker in his offices™*, which allows him to speak directly to them. This speaker is a key ele-
ment of the story, as it is through this device that Charlie gives instructions, provides updates, and
interacts with the Angels throughout the film. Additionally, Charlie is **voiced by John Forsythe**
in the film, which means his voice is heard through the speaker, even though he is not physically
present on set. The Angels do not see Charlie, but they hear his voice and follow his guidance. So,
the answer is: **Charlie communicates with the Angels through a speaker in his office, which is
used to speak directly to them.**

Generated answer with CompLLM: Charlie communicates with the “Angels” through a
**speaker system** in his offices. This speaker allows him to speak directly to the Angels, even
though he is not physically present. The communication is done **unseen**, meaning the Angels
do not know he is speaking to them unless he chooses to reveal himself. In the film, Charlie is por-
trayed as an **unseen, omnipresent figure** who controls the Angels from afar. He uses the speaker
to give them instructions, relay information, and even offer them a vacation after the mission. His
communication is **audio-only**, and he remains hidden from the Angels’ view, which adds to the
mystery and tension of the story. So, to summarize: - **Method of Communication**: A **speaker
system** in Charlie’s office. - **Nature of Communication**: **Audio-only**, **unseen**, and
**remote**. - **Purpose**: To direct and guide the Angels in their missions.

A.1.2 EXAMPLE FROM SQUAD

Context: Harvard has been highly ranked by many university rankings. In particular, it has consis-
tently topped the Academic Ranking of World Universities (ARWU) since 2003, and the THE World
Reputation Rankings since 2011, when the first time such league tables were published. When the
QS and Times were published in partnership as the THE-QS World University Rankings during
2004-2009, Harvard had also been regarded the first in every year. The University’s undergraduate
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program has been continuously among the top two in the U.S. News & World Report. In 2014, Har-
vard topped the University Ranking by Academic Performance (URAP). It was ranked 8th on the
2013-2014 PayScale College Salary Report and 14th on the 2013 PayScale College Education Value
Rankings. From a poll done by The Princeton Review, Harvard is the second most commonly named
“dream college”, both for students and parents in 2013, and was the first nominated by parents in
2009. In 2011, the Mines ParisTech : Professional Ranking World Universities ranked Harvard 1st
university in the world in terms of number of alumni holding CEO position in Fortune Global 500
companies.

Question: According to the Princeton Review where has Harvard ranked as a "Dream College” in
2013

Ground truth answer: Second most commonly

Generated answer without CompLLM: According to the Princeton Review, in **2013**, Har-
vard ranked **second** as a “dream college” among those most commonly named by both students
and parents.

Generated answer with CompLLM: According to the Princeton Review, in **2013**  *¥*Har-
vard University** was ranked as the **second most commonly named “dream college”** by both
students and parents. This means Harvard came in **second** in that particular ranking.

A.1.3 EXAMPLE FROM RACE

Context: The Chinese tradition of giving gifts of money in red envelopes at Lunar New Year has
turned into big business for Web giants Alibaba and Tencent, which now both offer electronic “hong
bao”. At the end of each lunar year, it is common in China to give children hong bao — some money
in envelopes that are red, the colour of success. But now theold also take part in this activity. It
is now possible to exchange “red envelopes” with smartphone, which is popular in China and has
caused a battle for the _ market between the two companies providing the service, Tencent and
Alibaba. ”You don’t have to pay the same cost or wait as long as you would for a traditional bank
transfer . It’s more convenient, simple and fun,” Wang Le, a 28-year-old Beijinger, told AFP. ” With
electronic red envelopes, you're not limited by your identity or the time of year. It’s a new, fresh
way of playing the game.” The idea was introduced in 2014 by WeChat, a mobile messaging system
with over 400 million users and run[:**]by Tencent, China’s largest Internet service system. It was
successful at once. This year, Alipay Wallet , the payment system run by Alibaba, is ready to take on
the competition. It is allowing its 190 million users to send digital gifts, especially on the Twitter-like
Sina Weibo. For the past few weeks a digital battle has been terrible, with Tencent banning Alipay
from sending red envelopes on WeChat, saying they were at a risk. Recently, WeChat also blocked
Alibaba’s music app Xiami. To attract the public’s attention, the two companies have launched
lotteries through which they award red envelopes to users in an online game. It’s easy to send
and receive hong bao or take part in the lotteries: you simply need to register your bank details.
According to market research group iResearch, Alipay controls 82.6 percent of the Chinese mobile
phone payment market, compared to 10 percent for Tencent’s Tenpay.

Question: The following is a multiple choice question (with answers), about the above text. Think
step by step and then make sure to end your answer with “the answer is (X)” where X is the correct
letter choice. What’s the main business purpose for Tencent and Alibaba launch lotteries? Possible
answers are:

A: To catch the new fashion on the website.

B: To raise money from netizens.

C: To obtain a better reputation.

D: To gain many more new App users.

Ground truth answer: D

Generated answer without CompLLM: To determine the main business purpose for Tencent and
Alibaba launching lotteries, let’s analyze the text step by step: 1. **Context of the Lotteries**:
The text mentions that both companies have launched lotteries to “attract the public’s attention” and
“award red envelopes to users in an online game.” This indicates that the lotteries are a marketing
or promotional tool. 2. **Purpose of the Lotteries**: The lotteries are described as a way to
engage users and increase interaction with their platforms. The text also notes that the companies are
competing in the “red envelope market,” which is a significant part of their business. 3. **Business
Goals**: The primary goal of these lotteries is likely to increase user engagement, encourage the use
of their platforms, and gain a competitive edge in the market. This aligns with the idea of attracting
more users and keeping them active on the platforms. 4. **Evaluation of Answer Choices**: -
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**A: To catch the new fashion on the website** — While the lotteries are new and trendy, this is not
the main business purpose. - **B: To raise money from netizens** — The lotteries do not directly
raise money from users; they are more about engagement than fundraising. - **C: To obtain a better
reputation®* — This is not mentioned or implied in the text. - **D: To gain many more new App
users** — This is the most plausible answer. The lotteries are a way to attract users to their platforms
and increase their user base, which is a key business objective. The answer is (D).

Generated answer with CompLLM: To determine the main business purpose for Tencent and
Alibaba launching lotteries, let’s analyze the text step by step: 1. **Context of the Lotteries**:
The text mentions that both companies launched lotteries to “attract the public’s attention.” This
is done through online games where users can participate and win red envelopes. 2. **Purpose
of the Lotteries**: The lotteries are described as a way to “attract the public’s attention” and “’to
compete in the market.” The goal is to engage users and increase their interaction with the platforms.
3. **Business Goals**: The text also mentions that both companies are competing in the “red
envelope” market, which is a significant part of the digital payment and social media ecosystem in
China. By launching lotteries, they aim to increase user engagement, promote their platforms, and
gain a larger share of the market. 4. **Evaluating the Options**: - **A: To catch the new fashion
on the website** — This is somewhat related, but not the main business purpose. - **B: To raise
money from netizens** — While lotteries may generate some revenue, the text does not emphasize
this as the main purpose. - **C: To obtain a better reputation®** — This is not directly mentioned in
the text. - **D: To gain many more new App users** — This is the most accurate interpretation. The
lotteries are a strategy to attract more users to their platforms, which aligns with their competitive
efforts in the red envelope market. Therefore, the main business purpose for Tencent and Alibaba to
launch lotteries is to **gain many more new App users**. the answer is (D)

A.1.4 EXAMPLE FROM QUAIL

Context: Seven-hour shifts are really easy to do, especially when you have spent the last year doing
only twelve-hour shifts. The jobs tonight were pretty easy - even easier for me as I was driving the
ambulance rather than treating the patients. We had a 16-year-old girl with a sore throat, a pair of
drunks, one of whom had a twisted ankle, a little old lady who’d fallen over indoors and had a nasty
scrape to her arm, and a young woman, twelve weeks pregnant, who had been assaulted at work
and struck in the stomach. The real standout job for me shows just how daft some people are. The
patient was a twelve-year-old boy. We got the job as ’child banging head on walls and floor’ and
when we turned up the child was indeed clutching his head and hitting it against a wall. The parents
and child spoke poor English, but we easily managed to learn that the child was suffering from an
earache, and that this was the cause of the head-hitting. "How long has he had the pain?’ asked
my crewmate for the night. ’Five years then, three hours now,” replied the father. We understood
what he meant - the child had an earache five years ago, but this current episode, and the reason why
we were called out, had lasted three hours. "Have you given him any painkillers?” ’No,” the father
looked confused. Do you have any painkillers?” my crewmate asked. ’Yes, but we haven’t given
him any,” said the father. So the family could see their child rolling around the floor, screaming in
pain and banging his head against the walls, and didn’t consider that a painkiller might have - oh, I
don’t know - helped with the pain. I can imagine the scene in the hospital when the nurses give the
child some pain relief - the parents looking at each other, slapping their foreheads and saying, 'Doh!
We could have done that!” There are a lot of daft people out there - and I get to meet most of them.

Question: The following is a multiple choice question (with answers), about the above text. Think
step by step and then make sure to end your answer with “’the answer is (X)” where X is the correct
letter choice. When did the narrator imagine the nurses were giving painkillers to the 12-year old
boy

Possible answers are:

A: after talking to the parents,

B: not enough information

C: while talking to the parents

D: before talking to the parents,

Ground truth answer: A

Generated answer without CompLLM: Let’s break this down step by step. The key part of the
text is this sentence: ;, I can imagine the scene in the hospital when the nurses give the child some
pain relief - the parents looking at each other, slapping their foreheads and saying, "Doh! We could
have done that!’” This sentence describes the narrator’s imagination of what would happen in the
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hospital after the nurses give the child painkillers. The parents would realize that they should have
given the child painkillers earlier. The question is asking **when** the narrator imagined the nurses
giving painkillers to the child. The text says that the parents did not give the child any painkillers,
and the narrator is imagining the scenario where the nurses **do** give the child painkillers. This
happens **after** the parents have already been talked to, because the parents were the ones who
said they didn’t give the child any painkillers. So the nurses giving the child painkillers is something
the narrator imagines **after** talking to the parents. Therefore, the correct answer is: **A: after
talking to the parents** the answer is (A)

Generated answer with CompLLM: Let’s break down the passage to determine when the narrator
imagined the nurses giving painkillers to the 12-year-old boy. The key part of the text is this: ¢ I
can imagine the scene in the hospital when the nurses give the child pain relief, the parents looking
at each other, slapping their foreheads and saying, "Doh. We could have done that!”” This sentence
indicates that the narrator is imagining the scenario in the hospital, where the nurses give the child
pain relief. The parents, after seeing this, realize they should have given the child painkillers earlier.
The question asks: **When did the narrator imagine the nurses were giving painkillers to the 12-
year-old boy?** The passage clearly states that the narrator is imagining the nurses giving the pain
relief **in the hospital**, which happens **after** the parents have already been talking to the
narrator and the narrator has learned about the child’s condition. Therefore, the nurses giving the
pain relief is imagined **after** the narrator has talked to the parents. The answer is (A): after
talking to the parents. the answer is (A)
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