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We release Code World Model (CWM), a 32-billion-parameter open-weights LLM, to advance research
on code generation with world models. To improve code understanding beyond what can be learned
from training on static code alone, we mid-train CWM on a large amount of observation-action
trajectories from Python interpreter and agentic Docker environments, and perform extensive multi-
task reasoning RL in verifiable coding, math, and multi-turn software engineering environments. With
CWM, we provide a strong testbed for researchers to explore the opportunities world modeling affords
for improving code generation with reasoning and planning in computational environments. We
present first steps of how world models can benefit agentic coding, enable step-by-step simulation of
Python code execution, and show early results of how reasoning can benefit from the latter. CWM is
a dense, decoder-only LLM trained with a context size of up to 131 k tokens. Independent of its world
modeling capabilities, CWM offers strong performance on general coding and math tasks: it reaches
pass@1 scores of 65.8% on SWE-bench Verified (with test-time scaling), 68.6% on LiveCodeBench,
96.6% on Math-500, and 76.0% on AIME 2024. To support further research on code world modeling,
we release model checkpoints after mid-training, SFT, and RL.

Date: September 24, 2025
Inference Code: github.com/facebookresearch/cwm
ModelWeights: ai.meta.com/resources/models-and-libraries/cwm-downloads,
huggingface.co/facebook/cwm, ../cwm-sft, ../cwm-pretrain

1 Introduction
Software development is one of the domains where Large Language Models (LLMs) have already had a
significant real-world impact (Cui et al., 2024; Bick et al., 2024). They have quickly been adopted into the
workflows of software engineers worldwide, and their capabilities are advancing fast: from only supporting
programmers with small snippets of code to fixing issues or writing code bases autonomously (Yeverechyahu
et al., 2024; Handa et al., 2025). However, reliably generating high-quality code remains a challenge even for
the current generation of LLMs, with benchmarks consistently revealing shortcomings upon release (Hendrycks
et al., 2021a; Chen et al., 2021; Aider Team, 2025; Jimenez et al., 2024).

We believe that advancing code generation with LLMs may require new training and modeling paradigms.
Typically, code is treated the same as any other text data during pre-training: the model learns to predict
code line by line, from left to right and top to bottom. We think this is not sufficient – to master coding, one
must understand not just what code looks like but what it does when executed. Such skill is instrumental to
the everyday work of software engineers: at a local level, they understand how the execution of a line of code
changes the state of the local variables, and, at a global level, they can make predictions about how changes
to a codebase affect program outputs. Yet, teaching LLMs such code world modeling capabilities is typically
not considered before post-training.

We release Code World Model (CWM), a new LLM for code generation and reasoning that has been trained
on large amounts of code world modeling data. Concretely, CWM is mid-trained on two different kinds
of observation-action trajectories that capture important aspects of software development: Python code
execution traces and agentic interactions with Docker environments. Mid-training on such data at scale should
help improve coding performance by grounding our model’s predictions in the underlying dynamical systems
and provide a superior starting point for RL.

For the Python execution data, actions are Python statements and observations contain the contents of the
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Figure 1 Overview of the CWM training stages and the model checkpoints that we release. We generally report
performance of the final CWM (instruct, RL trained) model, except where otherwise stated.

local variables. By training CWM on a trajectory of observation-action pairs conditioned on the code only
as context, we directly teach the model how the execution of a line of Python affects the state of the local
variables. Our premise here is that teaching CWM the semantics and not just syntax of programs should
help with writing code as well as with reasoning tasks like verification, testing, and debugging.

We also train CWM on a large-scale collection of synthetically generated agentic interactions with computa-
tional environments. These trajectories are generated with our so-called ForagerAgent, which “forages” for
data covering agentic software engineering scenarios such as implementing missing functionality or fixing
bugs from error messages. Actions here are shell-like commands or code edits generated by the agent, and
observations are responses from the running environment. While it is not uncommon for recent models to
include similar data, this is mostly done at smaller scale during post-training (Yang et al., 2025b). Data
from ForagerAgent, on the other hand, is large scale and included already during mid-training, helping shape
internal representations ahead of post-training.

CWM uses a dense, decoder-only Transformer architecture (Vaswani et al., 2017; Radford et al., 2018) with
32B parameters, interleaved sliding window attention supporting up to 131 k tokens context size, and is
trained over pre-, mid-, and post-training phases (see Figure 1). With quantization, inference with CWM can
be performed on a single 80GB NVIDIA H100. Beyond world modeling capabilities, CWM achieves strong
performance on general and agentic coding and reasoning tasks relative to other open-weights models of
comparable size: it reaches pass@1 scores of 65.8% on SWE-bench Verified (with test-time scaling; see Figure 2),
68.6% on LiveCodeBench-v5, 96.6% on Math-500, 76.0% on AIME 2024, and 94.3% on CruxEval Output.

First and foremost, the release of CWM is meant to enable novel research on improving code generation
with world modeling. We are excited by this vision and our report provides early supportive evidence: we
give examples of how world models can benefit agentic coding, enable step-by-step simulation of Python
code execution, and show early results of how reasoning can benefit from the latter. However, we believe the
best is yet to come and hope to join forces with the open source research community to explore how world
models can be used to leverage reasoning and planning to improve code generation. To this end, we release
both the final weights and intermediate checkpoints under a noncommercial research license. Given CWM’s
competitive performance, we conducted a preparedness assessment which concluded that CWM is unlikely to
increase catastrophic risks beyond those present in the current model ecosystem.1

2 Codeworldmodel datasets

CWM is trained on a large variety of datasets across pre-, mid-, and post-training phases. We focus strongly
on code and code world modeling data across all stages of training. We highlight two large-scale data collection
efforts that empower CWM’s world modeling capabilities: Python execution traces and ForagerAgent. We
refer to §4 for more traditional ingredients in our datamixes.

2.1 Executable repository images: building repositories at scale

A core prerequisite for capturing Python execution traces and agentic trajectories in real-world software engi-
neering tasks is executing code in repositories at scale. For isolation and repeatability, we build these repositories

1See ai.meta.com/research/publications/cwm-preparedness and §8 for details.
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Figure 2 On SWE-bench Verified, CWM outperforms open-weight models with similar parameter counts and is even
competitive with much larger or closed-weight LLMs. The base score for CWM is computed with a single attempt
per instance (no retries, majority voting, or parallel candidates), averaged over multiple runs to reduce variance. For
“Test Time Scaling”, we generate multiple candidates in parallel and then submit one patch based on ranking. The
“Test Time Scaling” score for GPT-oss models is high reasoning budget, while the lower score is low. (*: GPT-5 and
GPT-oss use a custom subset of 477 problems, while CWM is evaluated on the full set of 500 problems.)

as Docker containers, referred to as executable repository images. These images contain a preconfigured envi-
ronment capable of running repository code and tests without additional setup. As manually building arbitrary
GitHub repositories cannot scale to our desired dataset size, we apply both LLM- and CI-assisted methods.

For the former, an LLM-backed agent, denoted as RepoAgent, was tasked with setting up the development
environment of a target repository, finding test files, and ensuring that a significant number of them could
run and pass. To support its efforts, we provide RepoAgent with human-readable documentation extracted
from the target repository. Although this further improves RepoAgent’s success rates, human-targeted
documentation can suffer from inaccuracies due to lack of verifiability and insufficient maintenance incentives.
In contrast, machine-targeted instructions must remain accurate for successful builds, with platforms like
GitHub immediately signaling failures.

Therefore, we also developed the Activ (Act in virtual) pipeline to repurpose GitHub Actions CI execution
for building executable repository images. This pipeline runs the workflows locally via the act (Lee, 2019)
library. Since many GitHub Actions workflows are not designed for third-party execution and not limited to
CI builds, we modify the target repository’s source code and trigger an early exit after the completion of a
single successful build. As all GitHub Actions workflow jobs run simultaneously in individual containers and
the build state is transient, we add or modify the repository’s pytest configuration files, to inject a fixture that
is automatically run at test-execution time. This fixture captures the build state of the container running unit
tests. We then commit and push the resulting image from each repository, as further detailed in §D. Running
both RepoAgent and Activ methods in parallel, we created over 35 k unique executable repository images.

2.2 Python tracing: neural code interpretation data

The first type of CWM data we present is memory tracing of Python programs. This involves gathering
executable functions or executable repository images, and running them using different IO pairs or CI tests,
while capturing the state of the memory, chiefly the local variables, after each line is executed. This process

3



…

<|trace_context_start|> 

  def count(s, t):
      n = 0
      for c in s:
          n += int(c == t)
      return n

  count("strawberry", "r")  # << START_OF_TRACE

<|frame_sep|> 

<|call_sep|> {"s": "'strawberry'", "t": "'r'"} <|action_sep|> def count(s, t):

<|frame_sep|> 

<|line_sep|> {"s": "..", "t": ".."} <|action_sep|>     n = 0

<|frame_sep|> 

<|line_sep|> {"s": "..", "t": "..", "n": "0"} <|action_sep|>     for c in s:

<|frame_sep|> 

<|frame_sep|> 

<|line_sep|> {"s": "..", "t": "..", "n": "..", "c": "'s'"} <|action_sep|>         n += int(c == t)

<|return_sep|> <|action_sep|> return n <|arg_sep|> "3"

<|frame_sep|> 

Figure 3 CWM format for Python traces. Given a source code context and a marker of the trace starting point, CWM
predicts a series of stack frames representing the Program states and the actions (executed code).

enables us to align code and execution trace to simulate observation-action data within the computational
environment. Prior work empirically shows this approach is beneficial in improving general code generation
and understanding capabilities (Armengol-Estapé et al., 2025; Zhang et al.). Neural code interpretation
further has the potential to go beyond traditional interpreters, with applications such as tracing through
unexecutable code or combining it with reasoning capabilities. Next, we describe the different sources from
which we gather execution trace data.

Function-level tracing. We collect a dataset of Python functions from online sources and automatically generate
input-output pairs with a combination of fuzzing and prompting Llama3-70B-Instruct. Our tracing process
captures the state of the Python program (interpreter stack frames) at different intermediate execution points,
corresponding to events of the Python interpreter (e.g., executed lines, return statements, exceptions). The
final dataset contains over 120M traced Python functions.

We post-process the raw traces to construct observation-action pairs. The observation contains local variables
and stack frame metadata immediately prior to executing a line of code, the action is the specific Python line
being executed, and the subsequent observation captures the resulting local variable states and additional
event metadata such as return statements; we disregard global variables and external side effects. The variable
values that do not change with respect to the previous step are summarized with an ellipsis. We prefix the
trace data with the source code context.

Figure 3 illustrates the CWM format for Python traces. Given a Python code context and a marker of
the tracing initial point, the model follows with a series of Python stack frame predictions (in the form of
a JSON-formatted dictionary with the local variables) and the corresponding actions (i.e., the part of the
code that is being executed). The frame, action, and argument separators, as well as the trace context start
indicator, are represented using custom tokens. We refer the reader to §B for trace prediction examples and
§H for a specification of this trace representation format. We re-use both the tracing app and trace formatting
for all other execution trace data described in the remainder of this section.

CodeContests solutions tracing. We also generate tracing data for solutions to competitive programming
problems. Concretely, we use Llama-3.1-70B-Instruct to generate Python solutions to training set problems in
CodeContests (Li et al., 2022), reusing the framework of Gehring et al. (2025). Generations are filtered to
ensure a balance of incorrect and correct submissions, leading to an overall count of 262 k. We trace these
solutions with inputs from the provided unit tests and filter out long traces with more than 10 k line events or
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large traces taking up more than 1MB disk space, leaving us with 33 k effective code snippets and 70 k traces.

Repository-level tracing. We also performed Python execution tracing for the unit tests of more than 21 k
available and traceable repository images. For a subset of these repositories, we use the repository’s git log
to randomly select additional commits prior to our built commit. Since the build environment is configured
for the current commit’s dependencies, older commits may fail to execute. We attempted tracing for up
to 40 historical commits per repository but capped successful traces at 4 commits per repository to avoid
over-representation of any single repository. This process resulted in around 70 k execution-traced commits.

We post-process raw traces in two steps. First, we “episodify” our traces, extracting function-level traces from
raw pytest traces with configurable stack depth and stochastic step-in probability. When stochastic step-in
occurs, function calls are probabilistically included in their parent trace rather than a separate episode to
simulate variable execution depth. In a second step, we then gather and compress the source code context
from the target repository that is necessary for predicting the observation-action trajectory. To the resulting
context-trace pair, we then apply the same CWM formatting as before.

Natural language tracing. Lastly, we generate a dataset of step-by-step descriptions of Python code execution in
natural language rather than our strict JSON-like format from before. Natural language explanations of code
execution are closer in domain to other LLM tasks, which we hope will simplify knowledge transfer to other
context such as reasoning in code generation. This less-structured format also has other advantages, such as
allowing for injection of semantic context (e.g., “this operation preserves the structure property of the max
heap”) or for compressing traces by dynamically skipping less interesting parts of the trajectory (e.g., repeated
logic within a for loop). We generate this data by prompting Qwen3-32B-FP8 (without thinking) (Yang et al.,
2025a) to re-write execution traces from our function-level and CodeContests trace datasets. After removing
cases where the final output prediction from Qwen diverges from the ground truth trace, we obtain 75M
trajectories from standalone Python functions and 110 k from CodeContests data.

2.3 ForagerAgent: agentic midtraining data generation

We mid-train CWM on a large-scale dataset of interactions between an LLM-based software engineering agent
and a computational environment. This data is generated with our so-called ForagerAgent, which collects multi-
step trajectories by prompting an LLM with a software engineering task to solve in the context of a particular
code repository. Exposing CWM to such data at large scale early on should improve subsequent post-training
in similar environments, as model predictions should already be grounded in environment dynamics.

The actions available to the agent are derived from the standard SWE-Agent (Yang et al., 2024) toolset: (i)
create a file, (ii) edit a file, (iii) run a bash command, and (iv) view or navigate inside a file. The trajectory
is concluded once the LLM, either Llama3-70B-Instruct (Dubey et al., 2024) or Qwen3-235B-A22B (w/o
thinking) (Yang et al., 2025a), believes the task has been solved or the number of tokens, turns, or API
costs exceed a hard limit. Like the repository-level tracing data, ForagerAgent relies on our set of executable
repository images (see §2.1) to seed problem generation. To avoid contamination, we filter out all repositories
(and their forks) that are used in SWE-bench. The tasks presented to the model can be categorized into two
groups: synthetic tasks and real-world tasks, which we call mutate-fix and issue-fix.

Mutate-fix tasks. For mutate-fix tasks, we start with a working codebase and then synthetically introduce a
bug for the agent to fix. We begin by identifying functions (and methods – omitted for brevity below) that
can be verified using the repository test suite. As a first step, we filter these functions to the subset for which
all unit tests pass successfully. We then consider the following set of mutations to synthetically introduce a
bug into these functions:

• Functions: remove either a portion of the function or the entire function.

• Arguments: remove arguments from the function definition or randomly re-order function call arguments.

• Variables: sample a pair of variables in the function and swap all their occurrences.

• Statements: remove an import or return statement.

• Operators: replace operators (binary, unary, or boolean) in statements in the function.
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Table 1 Statistics of ForagerAgent trajectories. We gather 3M trajectories from 10.2 k images and 3.15 k underlying
repositories. The trajectories are split 55–45 between issue- and mutate-fix tasks.

Repos Images Trajectories Issues-Fix Mutate-Fix

3.15k 10.2k 3M 55%
Functions Arguments Variables Statements Operators

7% 9% 6% 11% 12%

We filter out mutations that cannot be applied for a given function by parsing the corresponding abstract
syntax tree (AST). Lastly, we verify that applying the candidate mutation does in fact cause the associated
unit tests to fail. We can now use the mutation as a starting point for agentic data collection: we instruct the
agent to inspect the mutated function, run its unit tests, and resolve the failing tests by fixing the bug.

Issue-fix tasks. For issue-fix tasks, we prompt the model to fix real issues in our set of repositories, using both
issue and pull request data from GitHub. We check out commits preceding bug-fixing PRs and task the agent
with resolving failing unit tests, providing the corresponding GitHub issue descriptions for context. We ensure
unit tests are failing before the PRs and that their resolution is necessary and sufficient for addressing the issues.

Post-processing. To avoid overfitting to repetitive interactions, we apply a near-deduplication of trajectories
foraged from the same source repository: we first represent a trajectory by the concatenation of its actions,
then encode the trajectory using MinHash, and lastly drop trajectories such that the pairwise Jaccard similarity
for all encoded trajectories we keep is less than 0.5. Because our goal with the ForagerAgent data is to learn
a comprehensive world model of agentic interactions with code environments, we do not filter trajectories
based on whether they succeed at bug or issue resolution. Following the same motivation, we further train
the model to predict both agent and environment turns, although we stochastically mask loss for 50% of
observations as they exhibit limited diversity. Overall, we are left with 3M trajectories obtained from 10.2 k
images, and we refer to Table 1 for more detailed statistics.

3 Examples of codeworldmodeling

Before introducing the CWM architecture and benchmark results more formally, in this section, we share a
few example generations from the final model that illustrate our excitement for code world modeling.

For competitive programming, Figure 4 shows an example where CWM first creates an initial solution after
reasoning about the problem statement, then constructs input-output pairs to assess the correctness of its
solution, before finally comparing its own prediction against the actual results of program execution. Although
we did not train CWM for it directly, this is exactly the kind of reasoning about environment dynamics
that we believe code world models can enable. We are excited about future work that explicitly integrates
reasoning about environment feedback to improve agentic code generation.

While CWM is trained to simulate the execution of Python code line-by-line, we believe the formal integration
of trace prediction into natural language reasoning is interesting future work. Figure 5 presents an early
prototype of this, showing CWM already generalizes to such behavior under light prompting. We believe that
execution trace prediction enables grounded reasoning about code generation and execution, without requiring
access to live execution environments. This can take explicit forms, such as in our prototype, but we also
envision more implicit forms of regularizing reasoning through world modeling. We further plan to extend
CWM’s trace prediction to create a “neural debugger” whose capabilities go beyond traditional debugging,
such as jumping to future lines of code in constant time, predicting inputs to reach arbitrary states, or learning
abstract representations of program states that support program verification, debugging, or generation.

Relatedly, we are excited about more direct uses of Python execution trace prediction to improve code gener-
ation. Under appropriate prompting, CWM can be used to predict execution traces for functions that are not
given directly in the context but are instead constrained only through natural language or formal asserts. After
trace prediction, the model then constructs the function body from the generated actions, which are the executed
Python statements. We show early examples of this in Figures B.26 and B.27. This method of reasoning-via-
tracing for program generation is reminiscent of work by Hoare (1971); Dijkstra (1976) on using logical reasoning
about program execution to guide development rather than only using it to confirm correctness post-hoc.
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Okay, I need to solve this problem where I have to check if a given string is evenly separated. The definition says that between every pair of the same characters, there must be an even
number of characters. So, for example, in "abba", each 'a' is at positions 0 and 3. The distance between them is 3-0 = 3, but the number of characters in between is 3-0-1 = 2, which is
even. So that works. But in "aabba", the first two 'a's are at positions 0 and 1. The number of characters between them is 0, which is even. Let me double check. But the example says
it's not correct. Hmm, wait maybe I'm misunderstanding the problem...

<tool: create>
/code/solution.cpp
#include <bits/stdc++.h>
using namespace std;

bool is_evenly_separated(const string& s) {
unordered_map<char, int> prev_index;
...

</tool>

File created successfully at: /code/solution.cpp (35 lines).

...Looking back, the code reads a string, passes it to the function. Let me create some test cases.

Test 1: 'abba' -> expected YES -> the code should return YES.

Test 2: 'aabba' -> expected NO -> because when it processes the third character, it's the third occurrence of 'a'.

Wait for 'aabba':

Indices 0:a (occurs once)

index1:a now (occurs twice. check 0 and 1 -> difference is 1 -> ???

But difference is -1 -> mod 2 is -1 % 2 = 1 (assuming C++ makes it positive 1). The code checks if even, no. So the code proceeds.

Then loop reaches index 4 (a's third occurrence), which code detects count for a which is already 2 -> returns NO.

So code should output NO here.

Other test: 'aaa' (NO when processing third a).

test4: 'abcd' -> YES (each character appears once or twice in non-same parity) -> code OK.

ttest5: 'aabb' -> the two a's (index 0 and1 -> difference 1, ok). Two b's (index 2,3 difference -> 1 is ok). Code returns YES.

Now let's compile and run the code.

<tool: bash>
g++ -std=c++17 -O2 solution.cpp -o solution;
echo -e "abba\n" | ./solution
echo -e "aabba\n" | ./solution
echo -e "aaa\n" | ./solution
echo -e "abcd\n" | ./solution
echo -e "aabb\n" | ./solution
</tool>

YES
NO
NO
YES
YES

All the test cases match the expected results. The code works correctly for these samples and edge cases. For very large inputs, the code has O(n) time and O(1) space (since there are
26 possible characters, hash maps would use at most 26 entries). Therefore, the solution is efficient and should pass all test cases, including those up to 1e6 characters long.

The approach checks for each character occurrence and ensures that each pair of occurrences meet the parity requirement. Also, it immediately terminates upon finding a third occurrence
or a pair with same parity indices, which is crucial for efficient processing.

I'm confident that there are no bugs, and the solution meets the problem's requirements.

The approach involves checking each character's occurrences to ensure that no character appears more than twice, and any pair of occurrences of a character must be an odd number of
positions apart (i.e., their indices have different parities).

```cpp
#include <bits/stdc++.h>
using namespace std;

bool is_evenly_separated(const string& s) {...

Figure 4 Example of CWM solving a competitive programming problem in agentic fashion. The reasoning steps are
shortened and some details are omitted due to space constraints. (Tool calls in purple, environment feedback in orange,
and reasoning in blue.)
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Given a python code function and an assert statement containing a specific input, provide the assertion with the exact literal output that the function returns with that input. Do not
include any mathematical expressions or function calls -- only the final literal value. Your response should be solely the assertion, enclosed within [ANSWER] and [/ANSWER] tags.
You are a computational world model and can predict the program execution.
Your execution trace prediction format MUST follow this structure:
1. The execution trace prediction starts with the <|trace_context_start|> token and ends with a final <|frame_sep|> token.
2. For each code execution step:
- Begin with <|frame_sep|> followed by the event token which can be <|call_sep|>, <|line_sep|>, <|return_sep|> or <|exception_sep|>.
- After <|call_sep|> or <|line_sep|> put the local variable states as dictionary in JSON format followed by the <|action_sep|> token and the current source code line.
- After <|return_sep|>, <|exception_sep|> directly put the <|action_sep|> token and the current source code line followed by an <|arg_sep|> token and the return or exception arguments.
3. Provide the full assertion with the correct output that you obtained after <|return_sep|> in [ANSWER] and [/ANSWER] tags
Here is an example of how you would predict the output of the program using your trace prediction capability:

Python function:
def f(a,b):

y = a
for i in range(b):

y += y * i
return y

assert f(1,3) == ??
<think>
your internal reasoning
</think>
Let's verify this by putting the code into a trace context and call the function in the main() function and then trace the execution of the main function.
We indicate the entry point of the execution trace with a # << START_OF_TRACE marker.
def f(a,b):

y = a
for i in range(b):

y += y * i
return y

def main(): # << START_OF_TRACE
return f(1,3)

<|frame_sep|><|call_sep|>{}<|action_sep|>def main(): # << START_OF_TRACE
<|frame_sep|><|line_sep|>{}<|action_sep|> return f(1,3)
<|frame_sep|><|call_sep|>{"a": "1", "b": "3"}<|action_sep|>def f(a,b):
<|frame_sep|><|line_sep|>{"a": "..", "b": ".."}<|action_sep|> y = a
<|frame_sep|><|line_sep|>{"a": "..", "b": "..", "y": "1"}<|action_sep|> for i in range(b):
<|frame_sep|><|line_sep|>{"a": "..", "b": "..", "y": "..", "i": "0"}<|action_sep|> y += y * i
<|frame_sep|><|line_sep|>{"a": "..", "b": "..", "y": "..", "i": ".."}<|action_sep|> for i in range(b):
<|frame_sep|><|line_sep|>{"a": "..", "b": "..", "y": "..", "i": "1"}<|action_sep|> y += y * i
<|frame_sep|><|line_sep|>{"a": "..", "b": "..", "y": "2", "i": ".."}<|action_sep|> for i in range(b):
<|frame_sep|><|line_sep|>{"a": "..", "b": "..", "y": "..", "i": "2"}<|action_sep|> y += y * i
<|frame_sep|><|line_sep|>{"a": "..", "b": "..", "y": "6", "i": ".."}<|action_sep|> for i in range(b):
<|frame_sep|><|line_sep|>{"a": "..", "b": "..", "y": "..", "i": ".."}<|action_sep|> return y
<|frame_sep|><|return_sep|><|action_sep|> return y
<|arg_sep|>"6"<|frame_sep|><|return_sep|><|action_sep|> return f(1,3)
<|arg_sep|>"6"<|frame_sep|>
Now let us analyze the trace. The return argument of the function call f(1,3) in the main() function is "6" in JSON format, so the return value is 6.
[ANSWER]
assert f(1,3) == 6
[/ANSWER]

Python function:
def f(d, k):

new_d = {}
for key, val in d.items():

if key < k:
new_d[key] = val

return new_d
assert f({1: 2, 2: 4, 3: 3}, 3) == ??

Let's analyze the function call f({1: 2, 2: 4, 3: 3}, 3).
The function f takes a dictionary d and a key k. It creates a new dictionary new_d and iterates over the items in d. For each key-value pair, if the key is less thank, it adds that
key-value pair to new_d.
In this case, the dictionary is {1: 2, 2: 4, 3: 3} and the key is 3. We need to check each key in the dictionary to see if it's less than 3.
- Key 1: 1 < 3 is True, so we add 1: 2 to new_d.
- Key 2: 2 < 3 is True, so we add 2: 4 to new_d.
- Key 3: 3 < 3 is False, so we skip 3: 3.
So, the resulting dictionary new_d should be {1: 2, 2: 4}.
</think>

Let's verify this by putting the code into a trace context and call the function in the main() function and then trace the execution of the main function.
We indicate the entry point of the execution trace with a # << START_OF_TRACE marker.
def f(d, k):

new_d = {}
for key, val in d.items():

if key < k:
new_d[key] = val

return new_d
def main(): # << START_OF_TRACE

return f({1: 2, 2: 4, 3: 3}, 3)
<|frame_sep|><|call_sep|>{}<|action_sep|>def main(): # << START_OF_TRACE
<|frame_sep|><|line_sep|>{}<|action_sep|> return f({1: 2, 2: 4, 3: 3}, 3)
<|frame_sep|><|call_sep|>{"d": "{1: 2, 2: 4, 3: 3}", "k": "3"}<|action_sep|>def f(d, k):
<|frame_sep|><|line_sep|>{"d": "..", "k": ".."}<|action_sep|> new_d = {}
<|frame_sep|><|line_sep|>{"d": "..", "k": "..", "new_d": "{}"}<|action_sep|> for key, val in d.items():
<|frame_sep|><|line_sep|>{"d": "..", "k": "..", "new_d": "..", "key": "1", "val": "2"}<|action_sep|> if key < k:
<|frame_sep|><|line_sep|>{"d": "..", "k": "..", "new_d": "..", "key": "..", "val": ".."}<|action_sep|> new_d[key] = val
<|frame_sep|><|line_sep|>{"d": "..", "k": "..", "new_d": "{1: 2}", "key": "..", "val": ".."}<|action_sep|> for key, val in d.items():
<|frame_sep|><|line_sep|>{"d": "..", "k": "..", "new_d": "..", "key": "2", "val": "4"}<|action_sep|> if key < k:
<|frame_sep|><|line_sep|>{"d": "..", "k": "..", "new_d": "..", "key": "..", "val": ".."}<|action_sep|> new_d[key] = val
<|frame_sep|><|line_sep|>{"d": "..", "k": "..", "new_d": "{1: 2, 2: 4}", "key": "..", "val": ".."}<|action_sep|> for key, val in d.items():
<|frame_sep|><|line_sep|>{"d": "..", "k": "..", "new_d": "..", "key": "3", "val": "3"}<|action_sep|> if key < k:
<|frame_sep|><|line_sep|>{"d": "..", "k": "..", "new_d": "..", "key": "..", "val": ".."}<|action_sep|> for key, val in d.items():
<|frame_sep|><|line_sep|>{"d": "..", "k": "..", "new_d": "..", "key": "..", "val": ".."}<|action_sep|> return new_d
<|frame_sep|><|return_sep|><|action_sep|> return new_d
<|arg_sep|>"{1: 2, 2: 4}"<|frame_sep|><|return_sep|><|action_sep|> return f({1: 2, 2: 4, 3: 3}, 3)
<|arg_sep|>"{1: 2, 2: 4}"<|frame_sep|>
Now let us analyze the trace. The return argument of the function call f({1: 2, 2: 4, 3: 3}, 3) in the main() function is "{1: 2, 2: 4}" in JSON format, so the return value is {1: 2, 2:
4}.
[ANSWER]
assert f({1: 2, 2: 4, 3: 3}, 3) == {1: 2, 2: 4}
[/ANSWER]

Figure 5 Example with execution trace prediction and reasoning. In this example, we add an execution trace example
to the prompt. After reasoning in natural language about the code, the model uses its execution trace prediction
capability to confirm the correct return value {1: 2, 2: 4}. We encode all special tokens (e.g. <|frame_sep|>) as
such.
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We refer to §B for additional example trajectories from CWM, including self-correcting SWE behavior, a
comparison of the advantages and disadvantages of strict trace prediction compared to natural language
(and why we think their combination is worth exploring), further demonstrations of how we can adapt trace
prediction to elicit code generation, and an example of using CWM to predict program termination.

4 CWM: architecture, pre-training, and scaling laws

We next share details on the CWM architecture, final pre-training recipe, and scaling law experiments.
Specific details about our efficient training infrastructure can be found in §6.

4.1 Architecture and hyper-parameters

Model architecture. CWM is a 32-billion-parameter dense decoder-only model. We choose a dense architecture
over sparse alternatives for ease-of-use in downstream open source research. CWM uses an alternating pattern
of local and global attention blocks interleaved in a 3 : 1 ratio (see Figure 6a) with sliding window sizes of
8192 and 131 072 tokens respectively. Transformer blocks use Grouped-Query-Attention (Ainslie et al., 2023)
with 48 query heads and 8 key-value heads. We use SwiGLU activation functions (Shazeer, 2020), RMSNorm
(Zhang and Sennrich, 2019) with pre-normalization, Rotary Positional Embedding (RoPE) (Su et al., 2021),
and we train with full document-causal masking. To support long-context modeling, we follow Roziere et al.
(2023); Xiong et al. (2023) and apply Scaled RoPE with θ = 1M and scale factor 16 from mid-training
onwards. We give a full overview of CWM parameters and architecture choices in Table 2.

Training hyper-parameters. We train the model with the AdamW optimizer (Loshchilov and Hutter, 2019)
with β1 = 0.9, β2 = 0.95, weight decay of 0.1, and gradient clipping at norm 1.0. After 2000 steps of linear
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Table 2 Key hyper-parameters of the 32 B CWM.

Parameter Value

Number of parameters 32B
Layers 64
Hidden dimension 6144
Intermediate dimension 21 504
Number of attention heads / dimension 48 / 128
Number of key-value heads 8
Local window size 8192 tokens
Max global context 131 072 tokens
Activation function SwiGLU
Normalization RMSNorm (pre-norm)
Positional Encoding Scaled RoPE (θ = 106, scale factor = 16)
Vocabulary size 128 256 tokens

warmup, we use a cosine decay learning rate schedule with peak learning rate 8× 10−4 and decaying by a
factor of 100× over the training horizon. The cosine decay schedule is calculated for a total training duration
of 13T tokens, with the last 5T tokens of the scheduler used during mid-training. Key hyper-parameters
were determined using scaling laws, which we detail in §4.3.

Tokenizer. CWM uses the Llama 3 tokenizer (Dubey et al., 2024) which is a fast Byte-Pair Encoding tokenizer
implemented with TikToken.2 The vocabulary contains 128 000 regular tokens as well as 256 reserved tokens.
We keep the control tokens from Llama 3 and leverage unused reserved tokens to support our tracing and
reasoning use cases.

4.2 Two-stage pre-training

CWM pre-training consists of two stages sharing learning-rate scheduler and optimizer states but differing in
datamix and maximum document lengths:

1. General pre-training: We begin with an initial pre-training phase on 8T tokens from a diverse range of
mostly English sources, with an emphasis on coding data (making up about 30% of the mix) as well as
STEM and general knowledge. We pre-train our model with a global batch size of 8.4M tokens and a
context length of 8192 tokens.3

2. Code world model mid-training: We then mid-train the model for an additional 5T tokens. We here
depart from our more generalist pre-training datamix and introduce a number of datasets in support of
our code world modeling objectives. We mid-train with a global batch size of 33M tokens and maximum
context length of 131 k tokens.4

Mid-training is the key stage for teaching code world modeling capabilities. Next, we discuss the changes we
make to the pre-training recipe during mid-training to optimize CWM performance.

Mid-training datamix. For mid-training, we introduce the ForagerAgent and Python execution tracing data, our
main CWM datasets introduced in §2, into the datamix. We additionally include code- and reasoning-related
data such as datasets derived from GitHub pull requests similar to SWE-RL (Wei et al., 2025), data from
compiler intermediate representations (Cummins et al., 2024), Triton PyTorch kernels similar to Paliskara
and Saroufim (2025), and formal mathematics in Lean covering statement and proof translation, as well as
world modeling (see §I).

2See https://github.com/openai/tiktoken.
3Note that our “local” attention blocks are therefore effectively global during pre-training.
4We have observed lackluster performance when training on long-context data at smaller batch sizes. We speculate that

increasing the batch size (in tokens) is beneficial for training on long-context data, as the decrease in the number of documents
contained in each batch increases the variance in our gradient estimate.
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CWM-specific data makes up 30% of the overall mid-training datamix. We further increase the fraction
of general code data to 40% and keep 30% for rehearsal of the initial pre-training datamix, as this proved
essential in retaining performance on standard evaluations. Within the rehearsal fraction, we now upweight
higher quality datasets such as those containing math or long context data, while making sure to avoid
over-epoching. We summarize the types of data used across CWM training stages in Figure 6b.

Mid-training datamix ablations. For many of the datasets introduced during mid-training we can afford to train
for multiple epochs. To determine the desired number of epochs per dataset, we perform a series of scaling law
experiments (Kaplan et al., 2020) that simulate different levels of epoching (Dubey et al., 2024). In agreement
with the literature on this (Muennighoff et al., 2023), we generally find that multi-epoch training improves
downstream task performance, albeit at diminishing returns, before eventually leading to overfitting. By
selecting target epochs such that metrics indicate little to no diminishing returns, we arrive at between 1 and
4 target epochs per dataset. The final proportion of a dataset in the mid-training mix is then calculated such
that the desired number of epochs is reached at the end of mid-training. When estimating the number of steps
per epoch, we account for both token packing (wrapping) for pre-training data and truncation for chat data.

Long-context mid-training. A significant amount of the mid-training data is long-context, with about 30%
of documents exceeding 65 k tokens. This motivates our decision to increase the maximum sequence length
to 131 k tokens for all of mid-training. Consequently, we do not need a dedicated long-context finetuning
phase common in many other recipes (Yang et al., 2025a; Agarwal et al., 2025; Dubey et al., 2024). While our
local-global pattern reduces the cost of long-context attention (see §4.1), we still found that data-parallel
workers with short-context documents would often wait for ranks with long-context data during distributed
training. To improve iteration speeds, we “bucketize” all documents by sequence length, ensuring all workers
draw documents from the same bucket at a given step. We choose the bucket boundaries as (0, 16385],
(16385, 65537], and (65537,∞) tokens and take care that the marginal probability of sampling a dataset is
unchanged from bucketization. Note that, to achieve further speedups, we limit the maximum global attention
size to 32 768 in the medium bucket.

4.3 Scaling laws

Scaling laws for LLMs that predict model performance as a function of compute, data, and model size have
been studied extensively (Kaplan et al., 2020; Hoffmann et al., 2022; Bi et al., 2024). These empirical laws
enable the estimation of the expected loss for a given compute budget, the identification of the optimal scaling
strategy between model and data size, and an informed selection of training hyper-parameters. Following Bi
et al. (2024), we develop scaling laws for optimal hyper-parameter prediction for the pre-training of CWM.

We adopt the compute budget formula C = M ·D, where M is the model size represented as the number of
non-embedding FLOP per token and D is the data scale corresponding to the total number of training tokens.
For a decoder-only Transformer, the number of FLOP per token is approximated by

M = 6Nne︸ ︷︷ ︸
linear term

+ 6dLS︸ ︷︷ ︸
attention term

, (1)

where Nne is the number of parameters excluding embeddings, d is the model hidden dimension, S is the
sequence length, and L is the number of layers. This formula explicitly accounts for the computational cost of
self-attention, which constitutes a significant portion of the total compute, especially for smaller models and
longer contexts where attention overhead is relatively more pronounced, as discussed in Bi et al. (2024). We
refer to §E for further detail.

Recent LLMs are trained beyond data-optimal regimes (Dubey et al., 2024) to optimize inference costs and
produce smaller yet capable models. Gadre et al. (2024) show that models scale predictably for a fixed
model-to-data ratio and advocate for scaling laws that mirror the setting of the final pretraining run. Therefore,
we maintain a fixed model-to-data ratio of D/M = 40 across compute budgets, matching the target ratio of
our 32B parameter model pre-trained on 8T tokens. This ratio is roughly 8 times more data than would be
compute optimal according to the Chinchilla paper (Hoffmann et al., 2022).

We conduct a quasi-random search over batch size and learning rate across eight increasing compute scales,
ranging from 2× 1018 to 2× 1020 FLOP. For each scale, we keep the configurations within 1% of the best
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validation loss and fit the batch size BS and learning rate LR with respect to the compute budget C.
Consistent with prior work, BS grows and LR declines gradually with C, while near-optimal hyper-parameters
span a broad range. However, likely due to our different pre-training data, our equations for learning rate and
batch size diverge from Bi et al. (2024):

LR(C) = 19.29 · C−0.177,

BS(C) = 30.17 · C0.231.
(2)

See §E for additional details.

5 Post-training: SFT, RL algorithms and environments

Our post-training phase improves CWM’s ability to solve complex programming-related problems with
reasoning, building on the internal code world model learned during earlier training stages. Concretely,
we first perform supervised finetuning (SFT) to improve both reasoning and general instruction-following
capabilities. We then carry out large-scale multi-task multi-turn reinforcement learning on coding contests,
math questions, and software engineering environments. We describe the SFT stage, our RL algorithms, data
and environments, and detail our joint RL training recipe. As we do not intend to develop a general-purpose
chatbot we therefore deliberately omit an RLHF stage.

5.1 SFT

We perform SFT for 100B tokens, distributed across 50 k steps with a global batch size of 2M tokens and 32 k
token sequence lengths. We share optimization hyperparameters with pre-training but change the learning
rate schedule to 1 k steps of linear warmup followed by a constant learning rate of 1× 10−5. In preliminary
experiments, keeping a constant learning rate achieved similar evaluation metrics to annealing with cosine
schedules while enabling high learning rate training during RL. We further observed a performance decrease
when SFT-ing at longer sequence lengths. We suspect this is due to the configuration of our dataloader which
always sequence-packs inputs (per data-parallel rank and local batch) from a single dataset. For very small
datasets and large context sizes, this reduces the amount of unique steps such datasets can be observed, which
may negatively affect performance.

Datamix. We train on a diverse mix of internal and open-access data during SFT, including standard
instruction-following datasets. About 30% of the datamix is rehearsal from mid-training (which itself includes
30% pre-training data). This is to avoid overfitting to the SFT distribution ahead of RL and retain CWM
capabilities taught in mid-training. Our datamix also contains agentic SWE RL trajectories (see §5.3.1), some of
which have been rejection-sampled from earlier iterations of the CWM itself. We have generally found it useful
to iteratively improve the starting point for RL by including trajectories from earlier iterations in the next SFT.
Similarly, we include external datasets with reasoning traces, as we have found the performance benefit from
them carries through to our final post-RL model. Specifically, we use the OpenMathReasoning (Moshkov et al.,
2025) and OpenCodeReasoning (Ahmad et al., 2025) datasets that rely on DeepSeek-R1 (Guo et al., 2025).

Reasoning tokens. For SFT training on reasoning data, we introduce <|reasoning_thinking_start|> and
<|reasoning_thinking_end|> tokens that surround any reasoning text. Because we mask the loss on all
<|reasoning_thinking_start|> tokens, the model does not learn to generate them. This enables both
reasoning and non-reasoning behavior for the CWM-SFT model: non-reasoning mode is active by default and
reasoning mode can be activated by injecting <|reasoning_thinking_start|> into the beginning of assistant
responses. Note that we discontinue the use of these reasoning tokens during RL as explained in §5.3.

5.2 RL algorithm

We use a variant of Group Relative Policy Optimization (GRPO) to train CWM (Shao et al., 2024). GRPO
is a policy gradient method that uses the PPO loss (Schulman et al., 2017) in combination with Monte Carlo
value estimation instead of a value model, as used in PPO. Many works have proposed improvements to and
fixes of GRPO (Yu et al., 2025; Liu et al., 2025; Hu et al., 2025; Mistral-AI et al., 2025). We incorporate
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a number of these and include further changes to support multi-turn RL and efficient asynchronous RL. A
formal description of our RL algorithm can be found in §C.

Differences fromGRPO. We deviate from the original GRPO algorithm in the following ways:

• Multi-turn: GRPO was originally developed for single turn (prompt → response) environments. Instead,
we use a multi-turn variant where the sequence contains both model- and environment-generated tokens
after the prompt, resulting in the need for masking via Mi,t. Furthermore, whereas GRPO used the
reward ri, we use the return Ri (sum of rewards) in the advantage calculation.

• Asynchronous: Whereas GRPO uses a synchronous setup, where nodes switch between generating batches
of completions and training on them, we use asynchronous RL, resulting in much higher throughput.

• No σ normalization: GRPO calculates the advantage as the centered and scaled terminal reward
Âi = (ri−µ)/σ, where µ and σ are mean and standard deviation of rewards in the batch. This introduces
a difficulty bias (Liu et al., 2025), which we avoid by using the more conventional Âi = (Ri − µ).

• No length normalization: As noted by Liu et al. (2025), dividing the loss by the trajectory length as
done in GRPO leads to a length bias, whereby the agent is incentivized to increase the length on hard
problems so as to lower the average loss. To avoid this bias, we divide by the maximum number of
tokens in a trajectory, which matches the maximum context size of our model N = 131072.

• Batching strategy: We batch by a maximum token limit instead of the common approach that keeps
a fixed number of trajectories per batch. This change aims at improving efficiency and to stabilize
training by lowering the variance in batch size between different optimization steps – this is important in
combination with our removal of length normalization. As a result, different trajectories that belong to
the same group might contribute to separate optimization steps. The proportion of groups that get split
can be decreased by increasing the maximum token limit or the number of gradient accumulation steps,
but in practice we observe this not to be an issue even when more than half of the groups are split.

• Clip-higher: Following (Yu et al., 2025), we use a higher upper clip value, εhigh = 0.25 and εlow = 0.2 to
prevent entropy collapse.

• No KL: Using clip-higher to prevent entropy collapse, we found it unnecessary to use KL regularization5.

• Skip zero-advantage trajectories: The effective batch size is the number of tokens that do not have zero
advantage and contribute to the gradient. We reduce variance in the effective batch size by skipping all
zero-advantage trajectories.

• Skip stale trajectories: To limit the degree of off-policyness, we skip trajectories whose most recent tokens
were generated from a policy more than 100 training steps behind the current policy.

• Weighted mean return: We found that longer trajectories are more likely to fail (Hassid et al., 2025),
leading to the majority of tokens having a negative advantage. To avoid biasing the token-averaged
return, we compute µ as a length-weighted average.

• Gibberish detection: While gibberish typically leads to lower rewards and naturally decreases at the
beginning of RL, it can increase later when some successful gibberish trajectories get reinforced, especially
for agentic SWE RL. So we explicitly reject any trajectory containing any token yt that is both rare and
generated with low probability: id(yt) > 100, 000 and logprob(yt) < − log(128, 256)− 2 where 128, 256
is the vocabulary size and the thresholds are tuned for high precision. Gibbrish typically consists of
a window of tokens generated at low probability. BPE tokens are sorted by merge order where large
id corresponds to rare tokens. Generating such tokens suggests that the model is generating at high
entropy and over-weighing rare tokens. This method stopped any increasing gibberish generation and
performed better than detectors based on logprob and position alone.

5We recommend using the k2 estimator (Schulman, 2020) whose gradient is an unbiased estimator of the forward KL(πθ, πold),
rather than the k3 estimator used by GRPO whose gradient is an unbiased estimator of the reverse KL(πold, πθ).
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Figure7 SWE RL design. An agent solves software engineering tasks end-to-end through long-horizon agent-environment
interactions via reasoning and tool use (up to 128 turns and 131 k context size). SWE RL employs a minimal toolset:
bash as the core, with edit, create, and submit as lightweight bash plugins. The reward combines hidden test outcomes
with patch similarity, where the similarity reward is applied when tests fail to provide auxiliary learning signals.

5.3 RL environments & data

We consider four types of RL tasks: Agentic software engineering (SWE) (§5.3.1), Coding (§5.3.2), Agentic
coding (§5.3.3), and Mathematics (§5.3.4). Each RL task is defined by a dataset (containing prompts, a
verification suite like unit tests, and additional metadata) and an environment that the agent interacts with.
We integrate these tasks into a joint RL training phase which we detail in §5.4. We further refer to §6.2 for
implementation details regarding our environments and RL training infrastructure.

Our environments constitute partially observable Markov decision processes: a language model is employed
as an agent, producing actions based on the preceding sequence of action-observation pairs and an initial
prompt. All environments for training CWM utilize software-based verification of outcomes, producing a
single terminal reward signal per rollout. In the remainder of this section, we describe the specification of
environment, i.e., prompt and observation design, reward function, and the corresponding datasets.

During reasoning RL, we discontinue the use of SFT reasoning tokens and replace them with clear-text <think>
</think> tags. Early RL experiments on top of the SFT model showed long initial reasoning traces and slow
improvements. We attribute this to our SFT reasoning data, which enhances reasoning performance but limits
exploration during RL training. Switching out reasoning tags resulted in shorter responses, higher starting
entropies, and significantly improved final performance. This suggests our approach leads to a best-of-both
worlds scenario: the model’s familiarity with reasoning responses from SFT enables rapid improvements early
on in RL, while the introduction of the new tokens allows the model to develop its own reasoning that is
guided – but not restricted – by the SFT data.

5.3.1 Agentic SWE

Design. Agentic SWE RL substantially improves our model’s software reasoning and engineering capability
(e.g., on SWE-bench Verified (Jimenez et al., 2024)) by enhancing the model’s agentic reasoning and tool-use
skills (see §K for the capability evolution during RL training). Its philosophy is to remain simple yet general:
an LLM agent tackles a task end-to-end through reasoning and tool execution, without relying on task-specific
post-processing. The same design is applied to the agentic coding environment (see §5.3.3). Each SWE RL
trajectory has a single human user turn (besides the system prompt) containing the issue description and
multiple turns of agent-environment interactions. During training, we allow long-horizon interaction, with a
maximum of 128 turns over a context window of 131 k tokens.

As shown in Figure 7, the agent is equipped with four tools to solve a given task (e.g., software issue), where
we embrace a minimal tool design centered on bash and editing, inspired by Sonnet 3.5 (Anthropic, 2025):

• bash: executing commands in a stateful shell session,

• edit: modifying an existing file using the search/replace format used by Agentless (Xia et al., 2024)
and Aider (Aider Team, 2025),

• create: creating a new file in the sandbox, and

• submit: marking something (e.g., a file path) as the final submission according to the task requirement.
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Solve the following issue by implementing the necessary code changes and submitting a patch file:

<issue_description> {issue} </issue_description>

The [result] argument of <tool: submit> should be the path to a patch file that resolves the issue … Once you've submitted at least once and 
are confident in your solution, provide a final response summarizing your work …

Your primary objective is to ensure patch correctness above all else - thoroughly explore the codebase, think hard, and leverage significant 
execution to verify correctness by writing comprehensive tests to validate your solution and running existing tests to prevent regressions. 
Only submit when you are genuinely confident in your patch's correctness …

… <think> … <think> … <tool: bash> ls … … <tool: edit> …<think> … <think> … …<tool: bash> pytest … … …

<think> … </think> <tool: bash> git diff … > submission.patch </tool> (No output)

<think> … </think> <tool: submit> submission.patch </tool> The following patch content is marked as your final submission …

<think> … Now, I'll provide a summary ... </think> ## Issue summary …   ## Reproduction …   ## Code changes …

Figure 8 SWE RL interaction example. The agent interacts extensively with the repository sandbox through reasoning,
exploration, editing, and test execution, submitting a final patch using git diff along with a summary.

The runtime implementation of the tools follows SWE-agent (Yang et al., 2024) and OpenHands (Wang et al.,
2025), where bash is a stateful shell session running in a persistent server process, and serves as the main
component, while other customized tools are treated as plugins that can be “de-sugared” into simple bash
commands. For example, the edit and create tools are two standalone Python scripts, and the submit tool,
when used for file paths, reduces to cat <path> to retrieve the file content.

The user prompt includes custom instructions for resolving software issues. For example, the prompt shown in
Figure 8 asks the agent to “...thoroughly explore the codebase, think hard, and leverage significant execution to
verify correctness by writing comprehensive tests to validate your solution...”, which it follows in its subsequent
actions. Notable differences from prior designs are that (1) our agent must generate the complete end-to-end
patch directly via git diff rather than relying on task-specific post-processing, and (2) it must also produce
a summary explaining how it resolves the issue, to improve clarity and usability. We also retain all reasoning
turns for logical coherence.

Reward. We adopt a hybrid reward for SWE RL. When all the hidden tests pass, the reward is 1. If not, we
adopt the patch similarity reward used in the SWE-RL paper (Wei et al., 2025). Unlike the SWE-RL paper,
which uses a continuous reward value, we apply a discrete and threshold-based design to improve the training
stability by avoiding rewarding low-similarity patches. In detail, when the computed similarity is above the
threshold of 0.5, the reward is 0, otherwise, the reward is −1. This reward shaping showed benefits in early
ablation, because a higher patch similarity incentivizes the model to localize the actual bugs more precisely
and to produce a closer fix to the oracle patch. This also helps the model to gain more learning signals from
difficult issues for which it cannot produce any test-passing patch.

Data self-bootstrapping. In SWE RL, CWM is required to solve software issues as a reasoning agent (i.e.,
through both reasoning and tool use). However, such data does not exist in the public and the format is
completely new to the model before RL and different to our ForagerAgent data, so early iterations of our
model struggled to interact with the software environment across long horizons without making format errors.
To address this, we perform an iterative self-bootstrapping process to collect high-quality agentic reasoning
traces and supply them back to the joint SFT stage so that CWM can have a better prior distribution before
RL. This process not only helps with format adherence but also significantly improves our model’s software
engineering capability both before and after RL.

As shown in Figure 9, we start from a pre-RL CWM checkpoint (not the final CWM SFT) that has not
been SFT-ed on any SWE trajectories in the reasoning agent format. Over three main iterations, we perform
RL and use the RL-ed model (i.e., the SWE expert in the figure) to do rejection sampling. We then select
high-quality traces from the rejection samples using custom heuristics (e.g., long trajectories that pass all
hidden tests without any tool use errors). Next, we perform SFT with this data on top of the original model.
This filtering helps reduce biases that RL fails to eliminate, such as the tendency to make editing mistakes.
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<think> The instantiation logic is in … The key function here is ... But wait, where 
is `_partial_` popped from the config?... Let me outline the steps: …  Hold on, in 
the current code, `_recursive_` and `_convert_` are popped … Looking at the code 
...

if OmegaConf.is_dict(node):
    convert = node[_Keys.CONVERT] ...

Hang on, but in the code flow, `_call_target` is called when the node has a 
`_target_` ... So the steps are: ... </think>

<tool: bash>
grep -n "_Keys(" hydra/_internal/instantiate/_instantiate2.py
</tool> Tool call

CWM (pre-RL) SWE expert

SWE RL

Rejection
sampling

High-quality reasoning agent traces

(Joint) SFT
Reasoning

Figure 9 SWE RL self-bootstrapping. Starting from a pre-RL checkpoint, we iteratively perform RL, rejection-sample
high-quality reasoning traces, and feed them back into SFT. This process improves data quality and format adherence
across iterations, raising success rates, and providing stronger initialization for joint RL.

Then, iteratively, we start RL with the new SFT-ed model and collect higher-quality traces for the next
round. Eventually, we include the final set of the traces into the joint SFT mix to prepare for the final joint
RL. This results in the final CWM SFT model. For each iteration, we redo SFT on the original midtraining
checkpoint and discard old trajectories. Importantly, we find that the bootstrapped data greatly improve the
performance of the SFT checkpoint on SWE-bench Verified. Without SWE RL traces, the SFT model hardly
resolves any issues due to format errors. With more iterations of bootstrapping, the data quality improves
significantly, and the success rate increases from 30%, to 37%, and to 43% pass@1 over SWE-bench Verified.
During earlier iterations, we record the offline pass rate for each instance and use it as the GRPO baseline in
later iterations. This lets us set the group size to 1 and speed up each epoch. We find this technique leads to
faster SWE RL training. In the final joint RL, we still perform online estimation of the GRPO baseline for
consistency with other environments and for a higher performance ceiling.

Data sourcing and filtering. We reuse the executable repository images from our mid-training data generation
efforts (§2.1). Since issue solving requires additional metadata (e.g., issue text, base commit hashes, and
diff patches), we join these repositories with publicly available issue and pull request metadata to create
repository-issue pairs. The git log history enables us to create one-to-many repository-issue pairs. We also
include publicly available training data such as SWE-Gym (Pan et al., 2025) and R2E-Gym (Jain et al.,
2025b), further filtered by us for quality (e.g., removing non-verifiable instances whose tests cannot pass). All
training data are decontaminated against SWE-bench Verified at repository-level granularity, see §F.

We estimate the difficulty of each instance using the pass@1 score from CWM SFT, calculated over at least
32 samples. Instances with a pass@1 above 95% are filtered out as easy, while those with a non-zero pass@1
are included in the primary dataset. Instances with a 0% pass@1 are placed in a secondary dataset that is
sampled less frequently at the beginning. To make these hard problems solvable, we augment their prompts
by adding the hidden test as a hint. This augmentation increases the pass@1 rate from 0% to approximately
30%. Later in training, we remove hints from hard instances so the model learns to solve them from scratch.
Finally, this process yields 12.6 k unique training instances: 6.9 k in the primary set and 5.7 k in the secondary.

5.3.2 Coding

Design. RL for competitive programming aims to teach the model to write correct programs for challenging
tasks and to reason about code and algorithms. Our competitive programming environment presents the
problem to the agent in the first turn and optionally allows follow-up attempts, during which the environment
provides execution feedback. It supports multiple programming languages and provides detailed feedback on
syntax errors, timeouts, and incorrect test outputs. The environment terminates either when the maximum
number of turns is reached or when the agent produces a correct solution. In the joint RL run, we limit the
number of attempts to one but allow up to 64K tokens in responses to enable extensive reasoning.

We adapt a lightweight prompt template which is shown in Figure 10. The system prompt asks for reasoning
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You are a helpful AI assistant. You always reason before responding, using the following format:

<think>
[your internal reasoning]
</think>
[your external response]

{optional tool calling instructions} 

System

{math problem}

Wrap your final answer in 
$\boxed{}$.

User

<think>
Assistant

Provide a {language} solution for the following competitive 
programming question: {code problem}.
Your code should be enclosed in triple backticks like so: 
```{language} YOUR CODE HERE ```. Use the backticks for 
your code only.

User

Figure 10 Prompt template for math (left path) and competitive programming (right path) RL tasks.

delimited by <think>...</think> in clear-text. The user prompt specifies the programming language and
instructs the agent to put the code solution inside a markdown block.

Reward. We assign a reward of −1 for incorrect trajectories and 1 for correct ones. A trajectory is correct if it
meets all of the following criteria:

• Contains exactly one </think> tag, signaling successful reasoning completion.

• Contains exactly one markdown block in the model’s generated answer.

• The code solution passes all unit tests within the specified time and memory limits. We execute the
unit tests in parallel using an internal code execution service on remote machines.

Data sourcing and filtering. We source coding problems from various programming contest websites. A problem
typically consists of a problem description, limitations on the input and output domains, memory and time
limits, and input-output examples. In addition, each problem comes with a set of tests that we use to verify
the correctness of candidate solutions: a solution is considered correct only if it produces the expected output
for any given test input.

We decontaminate the coding problems against test benchmarks and de-duplicate them to ensure that each
training problem is unique. In both cases, we use MinHash-based similarity detection6, applying word- or
character-based matching depending on the length of each document. This process ensures the integrity of
our evaluations, which is especially important for code generation and mathematical problems, where data
contamination can significantly affect performance metrics.

We use Llama-3.3-70B-Instruct to identify and remove poorly posed problems, such as those containing
gibberish, missing or truncated problem statements, or lacking input/output descriptions. We do not apply
any difficulty-based filtering. After decontamination (see §F), the final code RL dataset has 81 k prompts.

5.3.3 Agentic coding

The agentic coding environment combines the reasoning and tool use features of the SWE RL environment
(§5.3.1) with the competitive programming setup described in §5.3.2. The user prompt is customized for
solving competitive programming tasks and explicitly asks the agent to write and run tests to check and
improve the solution, as illustrated in Figure 11. Different from SWE RL, there is no submit tool in this

6https://github.com/serega/gaoya
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… work on the following competitive programming question and provide a {lang} solution: <question> {question} </question>

Your final response should (1) summarize your approach … and (2) wrap your final code solution in a markdown code block, like:

[summary here]

```{lang_tag}
[your final solution here]
```

… follow these steps: 1) Reason about the problem and write an initial solution using <tool: create>. 2) Write tests for your solution using 
<tool: create> or <tool: edit> ... 3) Compile your code (if applicable) and run the tests using <tool: bash>. 4) If any tests fail, analyze why the 
solution is incorrect. Use <tool: edit> to fix the issues … 5) Iterate over the above steps until you are confident that your solution is correct … 
6) Provide a final response that satisfies the required response format …

…<think> … <think> … <tool: create> … … <think> … <think> … …<tool: bash> python … … <tool: edit> … …

<think>... let’s summarize the… </think> **Summary and Approach** The problem requires … **Final Solution** ```python … ```

Figure 11 Example interaction for the agentic coding RL environment. The agent uses reasoning and tools to solve
competitive programming problems. Before generating a final solution, the agent summarizes the interaction.

environment. Instead, the agent needs to provide the solution in its final response, which is then extracted
for evaluation. We consider two programming languages, Python and C++, where the images used for
agentic interaction are python:3.11-slim for Python and python:3.11-bookworm (with gcc 12 support) for
C++. The final solution is then evaluated using the same execution infrastructure as for the competitive
programming environment.

5.3.4 Mathematics

Design. Although not the main focus on this research work, we consider mathematical reasoning as another
RL task to further strengthen and generalize CWM’s reasoning capabilities. We restrict these problems to
questions that have definitive and easy to verify answers. Both the questions and answers are formulated in
LATEX, similar to much of the math content found on the web.

We also include a tool-enabled version of the math environment, adhering to the format described in §H. Here,
the agent may invoke the Python interpreter with custom code. Standard output and error contents will form
the next observation and the agent is prompted to continue solving the task. We impose a limit of 4 tool calls
per episode and a 10 s timeout per call.

The prompt template shares its system prompt with the coding environment but differs in the user prompt.
As shown in Figure 10, the user prompt instructs the agent to place the final answer inside a LATEX box.

Reward. Every trajectory is classified as either correct (reward = 1) or incorrect (reward = −1). Correctness
is defined as:

• Exactly one </think> tag, signaling successful reasoning completion.

• Exactly one $\boxed{}$ for the predicted answer.

• Our verifier emits True for the comparison between the predicted answer and the ground-truth answer.

Since there is no general normal form for mathematical expressions, the verifier checks whether the predicted
answer is equivalent to the ground truth answer using a variety of heuristics detailed in §G.

Data sourcing and filtering. We gather math questions and answers from publicly available sources. To remove
duplicates, we use the MinHash LSH algorithm to identify similar problems and verify that they have the
same answer using our verifier. We also filter out problems that were solved correctly in all attempts (32 out
of 32) by our SFT model in non-reasoning mode. This helps avoid wasting compute on easy problems and
reduces the risk of reinforcing incorrect reasoning followed by a correctly memorized answer. The prompt set
used for RL training contains a total of 278 k problem-answer pairs.
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Worker nodes

Traj 1 Traj 2 … Traj 8

Code
Math
Agentic SWE

Worker batches

Data transfer queue

Model transfer queue

Agentic codingRehearsal & Local queue of worker batches

Trainer batch of trajectory contexts
131k tokens with paddings
Online or rehearsal

PAD

Update & transfer model weights

R

Execution & verification
 locally            remotely

Figure 12 Async RL systems overview. Worker nodes generate trajectory batches from multiple RL environments and
send them to trainer nodes via a transfer queue. Trainer nodes form training batches either from worker-provided data
or the rehearsal mix, packing trajectories up to the maximum context length for a single gradient update. Environment
execution and verification can occur locally on worker nodes or remotely on another cluster or in the cloud.

5.4 Joint RL

Finally, we train CWM using all of the above-mentioned RL tasks. As shown in Figure 12, joint RL uses
our asynchronous RL infrastructure: worker nodes generate G trajectories per prompt from multiple RL
environments and send them to trainer nodes through the data transfer queue. The trainer nodes then
form training batches either from these worker-provided batches or directly from the SFT datamix (§5.1) for
rehearsal. We refer to §6.2 for further detail on engineering aspects of our asynchronous RL infrastructure.

Data and RL environment mix. Worker nodes produce trajectories from three main data sources: software
engineering, competitive programming, and mathematics. They use the four RL environments we describe in
the previous sections, which we refer to as agentic SWE (§5.3.1), code (§5.3.2), agentic coding (§5.3.3), and
math (§5.3.4). Each data source may contain multiple datasets from different origins; however, all datasets
within the same data source share a consistent format and problem domain. We sample 40% of tasks from
software engineering, 40% from competitive programming, and 20% from mathematics. Rehearsal batches
constitute 1/3 of the training data and are integrated with a standard negative log likelihood loss, scaled by a
factor of 0.1 to match the gradient magnitudes obtained with GRPO (§5.2).

Three-stage training. We split our joint RL training into three distinct stages. Between stages, we adapt the
task distribution and employ custom reward shaping techniques.

• Stage 1 – Reasoning format bootstrapping: In the initial training stage, we soft-control the length of
generations in math and coding tasks with an action length reward schedule. For the 40% of tasks
related to competitive programming, we evenly sample from four environments: code Python, code
C++, agentic coding Python, and agentic coding C++ (10% each). For a subset of SWE tasks identified
as challenging, we include a hint in the prompts and downsample their occurence (4% of overall tasks;
§5.3.1).

• Stage 2 – Increasing task diversity and data resampling: After 14 125 gradient steps, we increase the
proportion of competitive programming tasks in the datamix to 50% and reduce the fraction of SWE
tasks to 30%. We also include additional environment variations for each task. Specifically, we add Rust,
Go, Java, and JavaScript versions of the code environment, which, together with Python and C++, now
constitute 25% of the datamix. The other half of the competitive programming tasks use the agentic
coding environment, to which we do not add new languages. For the SWE data, we disable plugins with
a 50% chance, such that file edits require standard terminal commands. We further remove hints from
the challenging SWE subset and oversample it in a 4 : 1 ratio when plugins are used, and reverse this
ratio when plugins are disabled. Competitive programming and SWE datasources are filtered to include
instances with a solve rate in [0.1, 0.7] only in order to to maximize the learning signal. For math tasks,
we enable Python tool calling for 2% of the total datamix.

At 16 500 steps, we apply filtering based on solve rate with the [0.1, 0.7] interval to our math dataset
as well. For SWE data, we create fine-grained subsets for each 0.1 solve-rate interval from (0.0, 0.7],
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Figure 13 Length reward scheduling for RL training. The decaying threshold δ starts at 8 k at the start of training and
linearly increases to its 64 k limit over 10 000 steps.

such as (0.1, 0.2] and (0.6, 0.7], and sample harder examples more frequently using weights inversely
proportional to the interval’s midpoint.

Hyperparameters. After an initial linear warmup over 100 steps, we employ a learning rates of 2.5 × 10−7

throughout training. The maximum batch size for each gradient step is 8.4M tokens during the first stage
and 16.8M tokens for the second stage. Gradients are clipped to norm 0.1. We use G = 8 rollouts per data
point, and new model weights are broadcast to workers after 4 gradient steps. We list further GRPO-specific
hyperparameters in §5.2.

Length reward scheduling. In both the code and mathematics environments, we allow context lengths of
up to 64 k. We observe that, at the start of RL training, the model rapidly increases its response length,
leading to inefficient token usage. To address this, we penalize the reward for correct but overlong solutions
similar to DAPO (Yu et al., 2025), but gradually phase out this penalty over training. Specifically, we linearly
interpolate the reward between 1 and −1 for correct answers with a length that exceeds a soft maximum (8 k
at the beginning of training) but is lower than the hard maximum of 64 k. This provides a dense reward signal
to the model that incentivizes it to reduce its response length, while still providing a positive signal when the
answer is correct. During training, we gradually increase the soft maximum in a continuous manner until it is
equal to the hard maximum after 10 k training steps. See Figure 13 for an illustration of this process.

6 Code and infrastructure

This section discusses details of our training pipeline, including efficiency-related features leveraged for CWM
training and the asynchronous RL architecture.

6.1 Techniques for efficient training

CWM is trained on H100s using a combination of Fully-Sharded Data Parallelism (FSDP) and Tensor Paral-
lelism (TP), see Table 3. We adopt FlashAttention-3 (Dao et al., 2022; Dao, 2024) to improve training speed
and reduce memory overhead. Additionally, we incorporate several optimizations towards efficient training.

fp8matrix multiplication. All linear layers in transformer blocks used float8 low-precision mode, similar to
Micikevicius et al. (2022), achieving twice the nominal FLOPs of bfloat16 on Hopper GPUs. (For RL training,
fp8 precision hurt performance and hence we used bfloat16 for linear layers in transformer blocks.) We used
dynamic “row-wise” scaling, also called “outer-vector”, that is, operands were scaled along their reduction di-
mension. We used the e4m3 variant exclusively, and we disabled fast-accumulation throughout. The two matrix
multiplication operations for the gradient computation in the backwards pass use special setups: w.grad is com-
puted in bfloat16 (which increased accuracy and precluded the need to transpose its operands to satisfy float8
layout constraints, which make kernel fusion difficult); in.grad uses “tensor-wise” scaling for its weight operand,
i.e., a single scaling factor for the whole tensor, which again makes transposition more efficient. In practice, we
try to issue “unscaled” matrix multiplication kernels, introducing scaling in the kernel epilogue worsens perfor-
mance, and perform the scaling as a manual post-processing step, which can be fused into subsequent kernels.
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Table 3 Summary of the training setup for the different CWM training stages on H100 GPUs.

Phase Seq. Length Batch size # GPUs Shards
DP TP

Pre-training 8 k 8.4M 2048 1024 2
Mid-training 131 k 33.6M 2048 256 8

Supervised Fine-tuning 32 k 2.1M 256 32 8
Reinforcement Learning 131 k 8.4M/16.8M 2560/4608 64 8

Reducing communication overhead for tensor parallelism. We reduced the communication overhead of tensor
parallelism (which we implement as sequence parallelism) by more-effectively overlapping it with computation
via decomposition and micropipelining, using PyTorch’s Asynchronous Tensor Parallel (Async-TP) feature7,
derived from xFormers (Lefaudeux et al., 2022) and originally inspired by Wang et al. (2022a). We implemented
this optimization by-hand for the matrix multiplication needed to compute w.grad during the backward pass
(sharded along the reduction dimension), as there is no defacto support in PyTorch.

fp8with tensor parallelism. When TP is enabled, we adapted our fp8 recipe to further improve performance.
We use “sub-row-wise” scaling where appropriate to align quantization boundaries with TP shards, which both
avoids communication and improves accuracy. We perform all-gathers in fp8, which improves throughput and
also enables fusing quantization into previous kernels (e.g., LayerNorm). During the backward pass, however,
we sometimes all-gather the same data twice (once in fp8 and once in bf16, since it will be consumed by two
separate matmuls, one for each dtype). Because of Async-TP, however, this adds zero overhead and enables
fusing quantization into previous kernels.

Reducingmemory consumption. We use PyTorch’s AutoAC8 for activation checkpointing, which is integrated
in the “partitioner” layer of the torch.compile stack, and uses an integer-linear program solver to optimize
the memory-versus-recomputation tradeoff given a user-provided budget. We also leverage PyTorch’s vocab-
and loss-parallel helpers to reduce memory consumption.

6.2 RL systems

We train our models using our own asynchronous distributed RL framework. The key distinction from the
standard llm training lies in the data collection process: in RL, training data is gathered through rollouts
where the agent interacts with an environment.

Rollouts. As shown in Figure 14, a rollout consists of a sequence of iterative agent-environment interactions.
Each environment implements two methods:

• start: start a new episode by producing an initial state and an observation (prompt) based on a sample
from the dataset. The state encapsulates the contents of the hidden environment along with any specific
resources corresponding to the current episode.

• step: takes an action (sequence of tokens) leading to a state transition. The new observation includes
all information visible to the agent and necessary during training or inference, such as the latest action,
observation, and reward.

All interactions between the agent and the environment are token-based. In addition, the environment can
suggest context switches to erase past history or restart from scratch, allowing multi-context trajectories. Our
environments adhere to a common trajectory format, which prescribes that a trajectory consists of a sequence
of messages, whose format is detailed in §H.

Training. GPUs are divided into a set of workers that continuously perform rollouts and trainers that update
the current policy. Workers send batches of trajectories to the trainers as soon as they are completed and

7See Async tensor parallelism in PyTorch with TorchTitan.
8Enabled by setting torch._functorch.config.activation_memory_budget < 1.
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Figure 14 Overview of how agents interact with RL environments to produce trajectories.

trainers send updated model weights to the workers periodically. After a model update is received and applied
on a worker, the worker continues generation of partially completed trajectories using the old KV-cache.
This approach ensures continuously high GPU utilization (see Figure 15) and has been used in our previous
work (Synnaeve et al., 2019; Gehring et al., 2025; Tang et al., 2025; Cohen et al., 2025) and notable RL
frameworks such as PipelineRL (Piche et al., 2025).

Inference. We use our own throughput-optimized inference backend FastGen (Carbonneaux, 2025). FastGen
supports batched inference, CUDA graphs, paged attention (Kwon et al., 2023), chunked prefills, host-side KV-
cache, tensor parallelism, and CPU/GPU profiling. In batched inference, one generates tokens for each sequence
in a batch in parallel, continuing without synchronizing CUDA streams until a block of tokens (e.g., 32) is
completed. After each block, completed sequences are truncated at stop tokens and returned, and new sequences
are added to the batch so as to keep the batch size constant. For more details, see Carbonneaux (2025).

Parallelism. We support various kinds of parallelism on both trainer and worker nodes. Trainers operate
largely as in pretraining (see §4.2), supporting FSDP and TP. Worker nodes are grouped with TP to perform
batched inference. Whereas all trainer GPUs are synchronized, the worker groups/model replicas operate
asynchronously from each other and from the trainers.

Model transfer. For efficient model transfers, we use our custom PyTorch distributed backend, moodist9 (Mella,
2025). It implements efficient queues that transfer data directly between GPU and CPU memory via InfiniBand
both within the same compute node and between different nodes. This facilitates transferring model weights
directly from the trainer’s GPU memory to the worker’s CPU memory. With FSDP, each trainer has a shard
of the model weights. These shards must be concatenated and sent to the workers. Model transfer consists of
three stages:

1. Each trainer sends their local shard from GPU memory to the CPU memory of a single worker.

2. The workers perform a distributed concatenation similar to an all-gather, such that each worker ends up
with all model weights.

3. Each worker then individually applies the new weights.

The trainers are only involved in the first stage, which minimizes the amount of time model transfer takes on
the trainers. On the workers, the first and second stages both occur entirely in CPU memory, which allows
them to overlap with generations. The third stage is simply a CPU to GPU memory copy, so it is reasonably
fast. When TP is enabled, this process occurs individually for each data-parallel group.

Execution infrastructure. Our training pipeline leverages an internal code execution service to safely execute
tens of thousands of code snippets per second, in parallel across multiple programming languages and
asynchronously in isolated containerized environments. This code execution service is integrated into our
training loop to provide execution results including stdout, stderr, exit codes, and environment state as
feedback to the LLM.

Containerized execution for agentic RL. We use a custom tool-based execution environment for agentic re-
inforcement learning, enabling agents to interact with containerized environments through structured tool
calls for agentic tasks. It features a core tool execution framework based on flexible container backends (e.g.,

9See https://github.com/facebookresearch/moodist.
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Figure 15 In CWM-RL, model weights can be updated at any time on the worker side: between trajectories, within a
trajectory between steps, or even during token generation. Compared to traditional RL, this removes all synchronization
overhead, maximizing worker throughput while minimizing idle time. In exchange for never blocking inference, we
accept that trajectories will potentially use mixed weights, though frequent model updates ensure that generations
remain reasonably on-policy. Different workers may not update their weights at the same time: the system waits for
each worker to signal readiness before sending new weights to avoid memory overload.

Docker execution services or Modal (Modal Team)), implementation of remote execution servers and clients
as an interface to a persistent shell session, plugins that can be defined as standalone Python scripts invoked
through bash, along with evaluation infrastructure for reward calculation or benchmarking.

7 Experimental results

We begin this section by analyzing the impact of incorporating CWM data during mid-training for a small-
scale ablation. Next, we evaluate CWM and compare its performance against relevant baselines, focusing
on coding and mathematical reasoning tasks. We consider agentic evaluation for coding tasks, together
with additional computation-oriented evaluations covering (i) output prediction with execution traces and
reasoning, (ii) full execution trace prediction, (iii) program termination prediction, and (iv) prediction and
generation of algorithmic complexity. Finally, we evaluate CWM considering established benchmarks for
competitive programming, mathematical reasoning, non-reasoning evaluation, and long-context. Unless
otherwise mentioned, we use a temperature of 1.0 and top-p value of 0.95 for all evaluations.

7.1 The impact of CWMdata

To evaluate the effect of incorporating CWM data during mid-training, we perform ablations with 8B
parameter models trained for 7T tokens. We first pre-trained one model for 6T tokens and then studied
different mid-training datamixes for the remaining 1T tokens, ablating the two CWM datasets, ForagerAgent
and Python execution trace data, as well as our Github PR trajectory data.10 After mid-training, all variants
underwent a fine-tuning phase comparable to our main setup for CWM described in §5.1 but excluding
the RL phase. We report results on CruxEval-O, CruxEval-I, NLLs over SWE-bench Verified (SBV) oracle
patches, and NLLs over agentic SBV trajectories (truncated to 32 k sequence length) for the models out of
mid-training and pass@1 SBV numbers for the models after SFT.

The results in Table 4 show that the best performance across our set of metrics is achieved when using
all datasets together. This effect carries over to our SBV evaluation of the SFT model, demonstrating
how mid-training data choices can positively affect final model performance. Looking at the impact of
individual datasets, we find the inclusion of the PR data helps oracle SBV NLLs and SBV pass@1 but not the

10One may wonder if using the non-agentic PR data alone is sufficient for reaching strong performance on SWE-bench Verified.
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Table 4 Our ablation study reveals a positive impact on performance from introducing GitHub PR trajectory, Python
execution tracing, and ForagerAgent data during mid-training. We report results for CruxEval-output, CruxEval-input,
NLLs on oracle SWE-bench Verified (SBV) trajectories, NLLs on agentic SBV trajectories, and SBV pass@1 scores.
All results are for 8B models, jointly pre-trained for 6T tokens followed by 1T tokens of mid-training ablation, with
SBV pass@1 reported after an additional SFT phase.

PRs Tracing Forager CruxEval-O↑ CruxEval-I↑ Oracle SBVNLL↓ Agentic SBVNLL (32k)↓ SBV↑
✗ ✗ ✗ 45.4 44.1 0.64 0.39 14.6
✓ ✗ ✗ 44.6 45.8 0.55 0.37 18.6
✓ ✓ ✗ 73.9 51.5 0.54 0.38 18.4
✓ ✓ ✓ 74.5 54.8 0.54 0.29 22.1

agentic SBV trajectory NLLs or CruxEval. Further incorporating execution trace data significantly improves
CruxEval-input and -output prediction but leaves all SBV-related metrics unaffected. Lastly, only the addition
of ForagerAgent data improves agentic SBV NLLs. The ForagerAgent data is further able to improve SBV
pass@1 scores by another 3.7% .

7.2 Agentic evaluation

SWE-bench Verified. Figures 2 and 16 show results for SWE-bench Verified. CWM achieves pass@1 resolve
rates of 65.8% with test-time-scaling and 53.9% without test-time scaling (averaged over 4 runs). With
test-time scaling, CWM outperforms open-weight models at similar size and is competitive to larger and
proprietary models. The base score without test-time scaling also surpasses open-weight models with similar
parameter counts and remains respectable even when comparing to much larger models such as GPT-oss-
120B (Agarwal et al., 2025), Qwen3-Coder (Yang et al., 2025a), and Kimi K2 (Kimi Team et al., 2025).

For Test-Time-Scaling (TTS) on SWE-bench Verified, we first generate k candidate solutions as well as 40
novel unit tests in parallel agentic loops for each instance. Like Agentless (Xia et al., 2024), we ask the model
to generate tests that verify patch correctness and reproduce the original bug, enabling us to filter out tests
that fail to reproduce errors. Following SWE-RL (Wei et al., 2025), we keep the top-5 majority tests for each
instance. Since candidate solutions are often similar in the number of existing tests they pass, we prioritize
the strongest candidates by keeping only those patches that pass the highest number of existing tests. We
then execute the remaining patches on the filtered set of novel tests and select the patch with the highest pass
rate for submission. In case of ties, we prioritize the majority patch, and if the tie remains, we choose the
patch whose trajectory has fewer tokens. We refer to this approach as best@k.

In Figure 16, we report results for best@k for k = 16, which achieves a 65.8% resolve rate. As a simple
alternative to best@k, we found that majority voting (Wang et al., 2022b) of candidate patches, based on exact
string matching and without any test generation or execution, leads to a pass rate of 58.4%. In Figure 17a,
we report best@k and pass@k across different values of k. As expected, pass@k improves monotonically with
larger k, ultimately reaching a success rate of 80.4% at k = 40. For best@k, performance improves sharply
from k = 2 before plateauing around k = 16. For majority-voting, performance improves gradually from k = 2
and plateaus at k = 24.

Alternative harnesses for SWE-bench Verified. To better understand the robustness of CWM to the choice of
evaluation harness and tool-calling implementations, we perform experiments with third-party approaches,
namely Mini-SWE-Agent (Yang et al., 2024) and OpenHands (Wang et al., 2025). For both, we shortened
and adapt the system prompt to better align with the SWE RL prompt (see Figure 11) and make sure to
keep reasoning output as part of the message history. We configure both harnesses to use OpenAI function
calling, which sends messages along with structured tool descriptions. When prompting the model, we format
and append the available tools to the system prompt. When the model decides to call a tool, the call is
parsed and returned in a tool_calls field in our response. This makes sure that tools are rendered with a
syntax template suitable for prompting CWM. For Mini-SWE-Agent, we follow the official budget of 250
turns. For OpenHands, we report results for 40, 128, and 500 turns. Additionally, we report results for our
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limited subset of 477 out of 500 problems.
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Figure 17 (a) Test time scaling (TTS) with both our best@k method majority voting can significantly increase pass@1
rates for CWM on SWE-bench Verified. (b) Accuracy of CWM on Aider Polyglot by programming language using
the whole file edit format.
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Table 5 SWE-bench Verified resolve rates for alter-
native agentic harnesses are lower than the 53.9%
pass@1 achieved with our approach, but performance
remains reasonable across the board.

Harness Configuration Resolve Rate (%)

Mini-SWE-Agent 250 turns 37.6
OpenHands 40 turns 36.0

128 turns 42.6
500 turns 40.8

Ours (bash-only) 128 turns 42.1
Ours 128 turns 53.9

Table 6 Results on Aider Polyglot for CWM and baselines
from the official leaderboard.

Model Format Pass 1@2 (%)

o3-pro (high) Diff 84.9
DeepSeek R1 (0528) Diff 71.4
Qwen3 235B A22B diff, no think Diff 59.6
Kimi K2 Diff 59.1
gpt-oss-120b (high) Diff 41.8
Qwen3-32B Diff 40.0
Gemini 2.0 Pro exp-02-05 Whole File 35.6
CWM Whole File 35.1
Grok 3 Mini Beta (low) Whole File 34.7
o1-mini-2024-09-12 Whole File 32.9
gpt-4.1-mini Diff 27.1
Codestral 25.01 Whole File 11.1

harness when limiting tool use to bash commands only. As Table 5 shows, although resolve rates degrade when
using different agents, tool implementations, or limiting tool choices, CWM provides robust and reasonable
performance across all setups.

Multi-lingual coding. The Aider Polyglot benchmark (Aider Team, 2025) measures coding ability across a diverse
set of programming languages using challenging exercises from Exercism.11 The primary metric is the pass
rate on the second attempt, allowing the model to iterate on test failures once. We make a few changes to the
harness to align it with the CWM training distribution, such as removing hard-coded assistant messages from
the history, concatenating adjacent messages of the same role, removing examples from the system prompt,
turning off auto-linting and stripping of reasoning traces, and reiterating in the prompt that exact matches
are needed. We evaluate with reasoning, at temperature 0.4, and without test-time-scaling. Although Aider
Polyglot may not fully qualify as a truly agentic benchmark – given its lack of dynamic tool use beyond code
execution and limited interaction – we include it here in light of the self-correction capabilities that it allows for.

As shown in Table 6, CWM achieves 35.1% accuracy, comparable to other models in its class such as
Qwen3-32B (40.0%) and other models using the “whole file” edit format such as Gemini 2.0 Pro (35.6%).
We also observe good generalization performance across the six languages tested in the benchmark, as shown
in Figure 17b. Many top-performing models, such as o3-pro (84.9%) (OpenAI, 2025b), DeepSeek R1 (71.4%),
and Qwen3 235B (59.6%), achieve substantially higher scores using the “diff” edit format. However, CWM
was not optimized for this format and does not reach competitive performance with it.

Terminal-Bench. Another multi-turn agentic coding benchmark that is gaining in popularity is Terminal-
Bench (The Terminal-Bench Team, 2025). In Terminal-Bench, the agent is asked to solve various complex
tasks by operating directly in a tmux session. Again, we align the prompts and response parsing of the
Terminus-112 agent provided by the benchmark with our RL training phase: we modify the system prompt to
use the tools that CWM was trained with (see Figure 8) and parse the model output back into the format
that Terminus-1 expects. We also include reasoning tokens from prior turns into the agent’s history. In this
setup, CWM achieves a 26.25% accuracy with the Terminus 1 agent following the default budget of 50 turns.
Table 7 shows this places CWM below o4-mini but above Gemini 2.5 Pro on the Terminal-Bench leaderboard.

7.3 Execution trace prediction

Next, we analyze the ability of CWM to perform trace prediction, analyze its prediction, and explore this
ability to predict program termination.

CruxEval-O as execution trace prediction. The following experiment evaluates CWM’s ability to predict
Python execution traces using the format introduced in §2.2. We prompt the model with functions and

11See https://exercism.org/.
12See https://www.tbench.ai/terminus.
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Table 7 Results on Terminal-Bench for CWM and base-
lines from the official leaderboard.

Model Agent Accuracy (%)

OpenAI-Multiple OB-1 59.0
GPT-5 OB-1 49.0
GPT-5 Terminus 1 30.0
o4-mini Goose 27.5
CWM Terminus 1 26.3
Gemini 2.5 Pro Terminus 1 25.3
o4-mini Terminus 1 18.5
Grok 3 Beta Terminus 1 17.5
Gemini 2.5 Flash Terminus 1 16.8
Qwen3-32B TerminalAgent 15.5

Table 8 Execution trace prediction is competitive with
reasoning for CruxEval-output pass@1 scores. For CWM,
we use temperature 0.6, top-p 0.95, and 10 generations,
while for CWM SFT we use greedy decoding.

Budget Mode CWMSFT CWM

small Language w/o CoT 67.8 66.6
Trace Step 59.1 58.1

large Language w/ CoT 83.3 94.3
Trace Full 87.3 87.7

input arguments from the CruxEval test set, ask it to predict the function execution trace line-by-line, and
then compare its output prediction to the ground truth. To elicit trace prediction, we construct prompts
following our custom trace format, with the input containing the function as the code context, the call
arguments as the state, and the line containing the function definition as the first action. In addition to this
“full” execution trace prediction scenario, we also study a single-“step” scenario, for which we ask the model
to directly predict the return value of the function. This is achieved by replacing the <|line_sep|> token
with <|return_sep|>. We illustrate both formats in Figure B.22. We compare the “step” scenario to classic
CruxEval-output prediction, which few-shot prompts the model to directly predict outputs given function
definitions and inputs. Consequently, we compare the “full” trace prediction mode to CruxEval-output with
reasoning, which allows CWM to use reasoning as introduced in §5.3 before predicting the function output.

Our results in Table 8 show that large compute budgets, either allowing for execution trace prediction or
reasoning, produce better results. CWM achieves a best score of 94.0% in natural language reasoning mode,
while full trace prediction achieves 88%. Note that language reasoning traces are significantly more verbose,
using 1164 tokens on average compared to 497 tokens for full trace prediction. We also report results for
CWM after SFT, which achieves its best result of 87.3% using full execution trace prediction. Single-step
trace prediction is not competitive with classic few-shot prompting for either CWM model.

Execution trace prediction analysis. Follow previous paragraph, we present a detailed evaluation of the quality
of the execution traces predicted by CWM for validation sets of CruxEval and our function-level data.
Concretely, we measure the fraction of generated traces that follow our format (Valid Trace Format) and the
observation (action) exact match accuracy (Observation (Action) Exact Match), which measures the number
of observations (actions) exactly matching ground truth relative to the total number of observations (actions)
per execution trace. Our trace format specifies the state as a JSON dump of a dictionary containing the local
variables. We report the fraction of state predictions matching this format (Valid JSON Format). Additionally,
Key (+Value) Match measures the average fraction of matching keys (and values) per state prediction.

The results in Table 9 show that CWM adheres to the correct trace and observation format for all data
sources, achieving more than 99% format matching across the board. CWM is able to accurately predict the
execution trace as well as intermediate observations and actions, which is reflected in scores larger than 96%
for Observation/Action Exact Match and larger than 97% in Key (+Value) Match.

7.4 Program termination prediction

The question of whether a program terminates is a reasoning problem which goes beyond what can be shown
by considering individual finite traces as in CWM training: non-termination cannot be observed by executing
a trace in finite time, and termination on all inputs cannot be feasibly observed by enumerating traces.
Figure B.28 in the Appendix illustrates termination reasoning, whereby CWM considers several concrete
inputs before generalizing to the conclusion of terminating on all inputs.
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Table 9 Detailed analysis of execution trace prediction with CWM and greedy decoding. We present a breakdown of
the accuracy of the individual components of trace prediction for validation set inputs from CruxEval as well as our
function-level data. The CruxEval pass@1 score here differs from the one in Table 8 (87.7%) due to greedy decoding.
Overall, we find solid accuracy across state and action prediction.

CruxEval Function-level

Output pass@1 88.0 94.4

Trace Valid Trace Format 99.6 100.0
State Exact Match 96.9 96.4
Action Exact Match 96.5 98.0

States Valid JSON Format 100.0 100.0
Key Match 99.1 99.0
Key+Value Match 98.1 97.9

Statistics Avg State Length (Token) 11.7 18.8
Avg Action Length (Token) 11.2 10.0

Table 10 HaltEval-prelim pass@1 scores for different LLMs in different prompting settings. For reasoning we use
temperature 0.6, top-p of 0.95, and 10 generations, while for direct and CoT predictions we use greedy decoding.

Constant CWM Qwen3-32B Llama-3-70B

T Direct CoT Reasoning Direct CoT Reasoning Direct CoT

pass@1 0.5 0.37 0.55 0.94 0.49 0.68 0.94 0.43 0.48

We propose HaltEval-prelim, a novel benchmark obtained by automatically translating C programs with
termination annotations into Python using LLaMA-3-70B via few-shot prompting. The C programs are sourced
from the International Competition on Software Verification (SVCOMP) and the Termination Problems
Database (TPDB).13 Each original problem comes with termination/non-termination annotations, which we
manually verify are preserved during the Python translation phase and otherwise discard. We obtained a
balanced dataset consisting of 115 terminating (T) and 115 non-terminating (NT) Python programs.

We query LLMs to judge whether a program terminates (answer #T) or diverges (answer f(n) where n leads
to divergence, followed by the comment #NT). We reward a divergence claim if f(n) times out after 5 seconds.
If, however, the model predicts #NT, and the ground truth is #T, it is not rewarded, even if execution exceeds
the timeout. For instance, if f ’s ground truth is #T and f(42) runs for 7.5 million years and then terminates,
our scoring (pass@1) will not reward a #NT claim for f(42) even though it trips timeout. Our use of timeout
as a proxy for divergence is similar to Alon and David (2022) in judging correct non-termination claims, but
different in that timeout is not used as a ground truth for termination claims. This results in an eval that is
conservative in the sense that it awards scores that could be higher than that given by a perfect oracle, but
never lower. It would be worth exploring replacing the ground truths and input validation by logical proofs of
termination and non-termination (Cook et al., 2011; Gupta et al., 2008).

Table 10 reports results for CWM, Qwen3-32B, and Llama3-70B with direct prediction, prompted chain-of-
thought (CoT), and reasoning (for CWM and Qwen3-32B only). “Reasoning” here means use of the <think>
... </think> format from RL. We report CoT prompting numbers to represent an attempt to approximate
reasoning that is compatible with Llama3-70B. As a reference, we also provide the scores of a constant classifier
tagging all programs as terminating, which would obtain a pass@ of 0.5. When comparing CWM and Qwen3,
results suggest Qwen3 reaches better direct and CoT performance, however under the reasoning setup, both
models significantly improved, reaching comparable performance of ∼0.94 pass@1.

We initially designed HaltEval-prelim under the assumption that termination would be difficult to assess, given
its undecidability. The strong results achieved by both CWM and Qwen3-32B with reasoning were therefore un-

13See https://sv-comp.sosy-lab.org/ and https://termination-portal.org/wiki/TPDB.
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Table 11 BigOBench results comparing CWM against Qwen3-32B (with reasoning), Qwen3-coder-30B, and Gemma-3-
27B on complexity prediction and complexity generation, for both time and space complexity. CWM outperforms our
set of baseline models for all metrics on time complexity prediction and generation. For space complexity generation,
CWM performs best on code-only pass@1 and ranks second on the remaining metrics. We refer to the main text for
details on the task and metrics.

CWM Qwen3-32B Qwen3-coder-30B Gemma-3-27B

Prediction
Time Complexity - all@1 41.3 39.0 36.6 37.7
Space Complexity - all@1 12.3 15.1 9.1 13.1

Generation
Time Complexity

Code Only - pass@1 76.1 70.0 43.8 34.4
Code & Complexity - pass@1 31.3 29.1 20.3 13.3
Code & Complexity - best@1 48.6 43.5 27.2 15.2
Code & Complexity - all@1 7.6 6.5 5.5 2.1

Space Complexity
Code Only - pass@1 73.2 65.9 45.1 36.4
Code & Complexity - pass@1 24.1 25.5 17.7 14.6
Code & Complexity - best@1 36.6 39.6 26.3 20.6
Code & Complexity - all@1 3.2 5.1 2.4 1.5

expected. Still, these findings should be interpreted cautiously: the benchmark is based on small, self-contained
programs and does not reflect the challenges of real-world software, where bugs must be detected in large and
complex codebases. Hence, success on this preliminary dataset may not translate directly to practice. Moreover,
termination in real systems is highly imbalanced – typically with hundreds or thousands of terminating loops
for every non-terminating one – unlike the balanced distribution in our dataset (Vanegue et al., 2025).

7.5 Algorithmic complexity prediction

We evaluate CWM on two tasks from BigO(Bench) (Chambon et al., 2025): complexity prediction,
determining the Big-O time/space complexity of existing code, and complexity generation, solving coding
problems while adhering to specified complexity constraints. We report all@1 scores, which require correct
LLM output simultaneously across all possible complexity classes for a given problem. For complexity
generation, we also report the pass@1 score with and without the complexity requirement (the solution still
needs to be correct), and a best@1 score that corresponds to pass@1 on the lowest complexity class of each
problem, dismissing suboptimal classes.

Results for CWM, Qwen3-32B, Qwen3-coder-30B, and Gemma-3-27B are all presented in Table 11. To ensure
the comparison with external models remains as fair as possible, we choose to re-evaluate them alongside
CWM in the same evaluation setting. For both tasks, we use BigO(Bench)’s official setup, after performing
a prompt ablation that did not seem to further boost performance. On time complexity prediction, CWM
achieves the best all@1 score of all compared models but fares worse for space complexity. In particular,
looking at the official benchmark leaderboard,14 CWM ranks second overall on time complexity prediction
(all@1) across all reported models of all sizes. For time complexity generation, CWM achieves the best overall
pass@1, best@1, and all@1 scores for our set of models, and also ranks second in general looking at the official
benchmark scores. For space complexity generation, our model ranks first for pass@1 on code only, and
second behind Qwen3-32B in terms of the remaining metrics. We note that CWM stands out in particular in
time complexity reasoning, systematically outperforming other models across all metrics on both prediction
and generation variants. Moreover, when complexity requirements are set aside, the model’s performance
on code-only pass@1 degrades far less than for other models, indicating CWM is able to maintain focus on
fundamental task requirements while effectively handling additional constraints.

14See https://facebookresearch.github.io/BigOBench/leaderboard.html at the time of writing.
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Table 12 Agentic, code, and mathematical reasoning benchmarks. We compare CWM to baselines with roughly the
same number of parameters.(†: LCB results for gpt-oss-20B (high) suffered from repeated time-outs due to repetitive
reasoning, despite our prompt-tuning efforts – which boosted gpt-oss (low/medium) scores by about 10%.)

Magistral-small-1.2-24B Qwen3 -32B gpt-oss-20B (low /med / high) CWM

LCBv5 70.0 65.7 54.2 / 66.9 / –† 68.6
LCBv6 61.6 61.9 47.3 / 62.0 / –† 63.5
Math-500 - 97.2 – 96.6
AIME24 86.1 81.4 42.1 / 80.0 / 92.1 76.0
AIME25 77.3 72.9 37.1 / 72.1 / 91.7 68.2

7.6 Code andmathematical reasoning

We present results on LiveCodeBench (LCB, Jain et al. (2025a)), concretely the LCBv5 and LCBv6 date
ranges 01.10.2024-01.02.202515 and 01.08.2024-01.05.2025, in Table 12.16 We here compare CWM to
relevant baseline models with similar parameter counts. Again, we observe highly competitive performance on
par with Magistral-small-1.2 (Rastogi et al., 2025), Qwen3-32B, and gpt-oss-20B (Agarwal et al., 2025).

Table 12 also contains pass@1 results for CWM on Math-500 (Lightman et al., 2023), AIME24 (OpenAI,
2024), and AIME25 – all averaged over n = 20 samples. CWM performs slightly worse across the board, with
notable gap compared to gpt-oss-20B (high) on AIME.

In Figure 18a, we additionally report test-time scaling results using majority voting and short-3@k for CWM
on AIME. Short-m@k (Hassid et al., 2025) begins sampling k answers in parallel but stops sampling once
the first m generations are complete, and then selects the most common answer among the three. CWM
performance on AIME24 increases by up to 11% at k = 10 with majority voting. Short-3@k achieves
performance comparable to majority voting, while significantly reducing computational cost for a given k.

7.7 Non-reasoning evaluations

Although our main focus with CWM is code world modeling, we also provide evaluation results of CWM on
a set of standard tasks covering code, math, and general knowledge without reasoning mode enabled. We here
compare to models with similar parameter counts, such as Qwen3-32B or Gemma-3-27B, as baselines, and
we use greedy generation instead of sampling at non-zero temperature. The results in Table 13 show that
CWM typically performs better than Gemma-3-27B, similar to Qwen2.5-32B, but worse than Qwen3-32B. An
interesting exception to this is CruxEval-O (Gu et al., 2024), where the introduction of the tracing data (see
§2.2) likely helps CWM gain an advantage. Note that we achieve even better results on CruxEval-Output
when using reasoning (see §7.3).

Next, we consider two long-context evaluation benchmarks: LoCoDiff (Mentat AI Team, 2025) and RULER
(Hsieh et al., 2024). In LoCoDiff, models are provided with the commit history of a specific file and asked to
construct its final version. To succeed, models must follow the files’ evolution – from the initial commit, through
diffs on multiple branches, to the resolution of merge conflicts. Performance is evaluated by the proportion of
files for which the model reproduces the target version exactly. We compare CWM to DeepSeek-R1 0528,
Claude Sonnet 4 (Anthropic, 2025), Gemini 2.5 Pro 06-05 (Comanici et al., 2025), Kimi K2, GPT-5, and
gpt-oss-120B. Qwen3-32B is not on the leaderboard and has a shorter native context length.

For LoCoDiff, the results in Figure 18b show that, while all models suffer a degradation in performance as the
sequence length increases, CWM provides better performance than DeepSeek-R1 0528 and gpt-oss-120B and
is competitive with large scale commercial models (e.g., GPT-5 and Gemini 2.5 Pro) on both short and long
sequences, with a significant gap to Claude Sonnet 4 only. We present results for RULER in §J.

15For LCBv5, we report results starting from October to be consistent with the numbers reported by Qwen3.
16Results for Magistral were taken from the official reported numbers for 1.2 version, where no explicit dates were mentioned.
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Table 13 Performance of CWM and CWMMid, (CWM after mid-training), on a set of general, math, and coding tasks
without any reasoning compared to a set of recent baseline models with similar parameter counts.

CWM CWMMid Qwen3-32B Qwen2.5-32B Gemma-3-27B Llama-3-70B Llama-4-Scout

MMLU 77.7 73.6 83.6 83.3 78.7 79.3 78.3
MMLU-Pro 60.2 52.3 65.5 55.1 52.9 53.8 56.1
GPQA 40.6 31.7 49.5 48.0 26.3 – 40.4
GSM8k 93.3 84.7 93.4 92.9 81.2 83.7 85.4
HumanEval-Plus 75.0 68.3 72.1 66.3 55.8 – 59.9
MBPP 73.4 67.8 78.2 73.6 68.4 66.2 68.6
CRUX-O 83.4 78.9 72.5 67.8 60.0 – 61.9
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Figure 18 (a) Test-time scaling on AIME24 with majority voting and short-3@k. See main text for details.(b) LoCoDiff
results for CWM and baselines considering different sequence lengths buckets.

8 Transparency, Risks & Limitations

8.1 Transparency on external models and data

As mentioned previously in the relevant sections, we use data from external LLMs in four contexts: (i)
ForagerAgent, (ii) trace-to-natural language conversion, (iii) function tracing, and (iv) the SFT phase. For
the ForagerAgent, we employ Llama3-70B-Instruct (Dubey et al., 2024) and Qwen3-235B-A22B (without
thinking) (Yang et al., 2025a) as base models to interact with the computational environment. For converting
raw Python traces into natural language, we use Qwen3-32B-FP8 (without thinking) (Yang et al., 2025a). For
function tracing, we use Llama3-70B-Instruct to generate Python function inputs and to generate solutions
for CodeContests data. Finally, during SFT, we incorporate trajectories from DeepSeek-R1 (Guo et al., 2025)
through the OpenMathReasoning (Moshkov et al., 2025) and OpenCodeReasoning (Ahmad et al., 2025)
datasets. We used mitigated versions of the OpenCodeReasoning and OpenMathReasoning datasets, where
mitigations included algorithmic bias filtering and cybersecurity protections. We applied similar mitigations
when using Qwen3-32B-FP8 to generate data for training. No external LLM tokens were used beyond those
explicitly mentioned in these four contexts.

8.2 CodeWorldModel Preparedness Report

Despite its relatively small size of 32B parameters, CWM outperforms open-weight models at similar size and
is competitive to larger and proprietary models on verified software engineering benchmarks. To anticipate
risks from this release, including potentially novel risks, we conducted an automated assessment of CWM
capabilities relevant to the domains identified in our Frontier AI Framework17 that could present potentially

17See https://ai.meta.com/static-resource/meta-frontier-ai-framework.
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catastrophic risks, namely Cyber and Chemical & Biological risks. As part of ongoing work to improve the
robustness of our evaluations and the reliability of our models, we also include a preliminary propensity
evaluation, with plans to expand this area in future assessments.

We performed this assessment by testing the relative performance of CWM against a set popular and capable
open-source models that represent a baseline of capabilities available in the open ecosystem: Qwen3-Coder-480B-
A35B-Instruct (Yang et al., 2025a), Llama 4 Maverick (Meta AI, 2025), and gpt-oss-120B (OpenAI, 2025a).

Based on the results of these assessments, we believe that the open-source release of CWM is unlikely to
meaningfully increase risks related to Cybersecurity or Chemical & Biological threats beyond the current
ecosystem baseline. Additionally, our preliminary evaluations suggest that CWM shows undesirable propensi-
ties at rates comparable to most open-source models though some models achieve substantially lower rates,
i.e., gpt-oss-120B.

These results indicate that CWM is within the “moderate” risk threshold for the catastrophic domains defined
in Meta’s Frontier AI Framework.17 We share the details in the Code World Model Preparedness Report.18

8.3 Limitations & future research

We explicitly release CWM as a research model under a noncommercial research license for the community to
explore the opportunities afforded by world modeling and reasoning in computational environments. As such,
our models come with a number of limitations which we outline below to help the research community make
the most of CWM, while being aware of its shortcomings and avoiding accidental misuse.

As these are research-only models, they are not suitable for production use cases. Although we have performed
some limited evaluations, we have not conducted a full range of possible evaluations for these models. The
performance of CWM in production and real-world scenarios has not been evaluated by Meta. These models
have not been fully evaluated or trained for user-facing interactions and they are not intended for such use.
Researchers are recommended to exercise caution when deploying or using these models.

Similarly, CWM should not be used as a general-purpose assistant or chat model. While it was exposed to
some level of instruction-following data during SFT, CWM has not undergone any thorough optimization
for general chat-bot use, such as RLHF (Ouyang et al., 2022). General chat use is not an intended use of
CWM and generations may diverge from expectations and/or be inappropriate or inaccurate. Further, CWM
training focuses strongly on code generation and reasoning with code. Thus, our models may be lacking in
other domains such as factual knowledge or classic natural language tasks.

CWM is not trained for use as a general-purpose assistant or chat model and has not been aligned on, or fully
evaluated for, content risks. We make available system level protections – like Llama Guard, Prompt Guard,
and Code Shield – as a solution to help manage content generation in research environments.19 However,
these system level protections alone are unlikely to be sufficient to enable production uses of CWM and
further evaluations and fine-tuning may be required. CWM is intended to be used in English only. It is not
multilingual and performance in other languages has not been evaluated or optimized.

Lastly, while we are excited about the opportunities that world modeling affords, these are only our first
steps in this direction. Our code world modeling dataset collection efforts focus on explicit Python execution,
and expanding this set to include other programming languages or symbolic execution is left for future
work. Robust ways to leverage world model knowledge to improve performance across a variety of tasks via
prompting or fine tuning is a ripe area for research. Similarly, planning with code world models, either using
formal inference frameworks or informally during reasoning, is an exciting direction for research and core to
our motivation for building CWM in the first place. In some sense, one might compare the current state of
CWMs to LLMs before CoT (Wei et al., 2023): the capabilities are there, we just need to find out how to
make the most of them.

18Code World Model Preparedness Report, available at https://ai.meta.com/research/publications/cwm-preparedness.
19See https://www.llama.com/llama-protections.
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9 Conclusion

Our vision is for Code World Models to bridge the gap between language-level reasoning and executable
semantics. We believe that coding and agentic use cases of LLMs will benefit from having a world model, a
learned transition function between states conditioned on actions. With the release of CWM, we present
the first steps of this vision. Our ablations already show that world modeling data, Python execution
traces, and executable Docker environments can be directly beneficial for downstream task performance.
More broadly though, CWM provides a strong test-bed for future research in zero-shot planning, grounded
chain-of-thought, and reinforcement learning with sparse, verifiable rewards. Similar to our early results with
execution trace prediction, we believe that the Python tracing world model enables research on reasoning
about code generation, execution, correctness, and verification. World models should improve reinforcement
learning because agents that are already familiar with the dynamics of the environment can focus on learning
which actions lead to rewards. More research is needed to consistently leverage the benefits of incorporating
world models into LLMs during pre-training across tasks. Ultimately, models that can reason about the
consequences of their actions should be much more efficient in their interactions with the environment which
should allow for scaling the complexity of the tasks they perform.
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B CWMExamples

Extending §3, we here present additional examples of using CWM for SWE reasoning, trace prediction, and a
combination of the two.

Reasoning agent. Figure B.19 shows an example of CWM solving an SWE-bench Verified problem in a
bash-only environment, which is more challenging than environments that provide dedicated tools for common
tasks such as file editing. In this example, the model makes incorrect edits in the initial turns but realizes its
error and restores the original file state using git checkout, followed by producing a correct edit with sed.

Figure B.20 demonstrates that CWM can leverage test execution to verify patch correctness before submission.
In this specific example, the agent makes sure that the changes it makes do not break any existing functionality.
Only after this verification, the agent submits the patch and generates a summary.

Lastly, Figure B.21 shows the default SWE RL setting where CWM is paired with the edit tool. In
this example, CWM performs extensive reasoning before making the edit. The edit tool then provides
agent-friendly feedback showing the surrounding code after the change.

Python execution trace prediction. Figures B.23 and B.24 showcase Python execution trace prediction at
inference time and compare it to reasoning about program execution in natural language. For Figure B.23, a
Python list is modified while iterating over it. In execution trace prediction mode, the model tracks all list
modifications and predicts the output correctly. With natural language reasoning, the model fails to predict the
correct return value – even though it appears to recognize the list modification during reasoning. Conversely,
Figure B.24 presents an example requiring the evaluation of a complex Python statement. Execution trace
prediction fails to correctly predict the outcome of the statement in a single prediction step, but natural
language reasoning breaks down the complex statement into simpler expressions and then combines those into
a correct result. We believe that combining the groundedness of trace prediction with the flexibility of natural
language reasoning makes for interesting future research.

Figure B.25 demonstrates how CWM’s execution trace prediction capabilities allow it to function as a neural
Python debugger. We think that equipping CWM with debugging capabilities that are not available with
traditional debuggers, such as skipping loops in constant time, jumping to arbitrary lines of code, or predicting
inputs to reach arbitrary states is highly interesting future work.
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Figure B.22 shows how we execution trace prediction for CruxEval output prediction in our experiments in
§7.3.

Figure B.26 demonstrates how CWM’s Python execution trace prediction capability can be used for code
generation. By specifying a set of asserts consistent with the desired behavior and simply pretending to
import the desired function, without actually giving a function definition, CWM starts to generate actions
consistent with the desired function. It is possible that the model acquired this capability of jointly tracing and
generating code because for some tracing data we do not include the source context of third-party libraries.

We expand on this in Figure B.27, the example of mixing tracing and code generation discussed earlier in
Section 3. Future work could build on CWM’s capabilities here and explore how execution trace prediction
can be used to improve code generation.

Program Termination. Figure B.28 llustrates termination reasoning, whereby CWM considers several concrete
inputs before generalizing to the conclusion of terminating on all inputs.

C RL algorithm

Given a prompt x, we perform G rollouts, producing a set of trajectories (i.e., token sequences) {y1, y2, ...yG}.
In general, rollouts are multi-turn, so the trajectories yi consist of a prompt x followed by a sequence of
actions and observations. We use the binary mask Mi,t to signal whether token yi,t was generated by the
agent (Mi,t = 1) or environment (initial prompt and later observations; Mi,t = 0).

The first input required by the PPO loss is an estimate of the advantage. We denote by Ri the total
return (i.e., sum of undiscounted rewards) of trajectory i. For a batch of G trajectories, we compute the
length-weighted mean return µ = 1

L

∑G
i=1 Ri × Li, where Li =

∑
t Mi,t and L =

∑
i Li is the total number of

agent-generated tokens. The advantage is then Âi = Ri − µ.

The PPO loss further requires the log probabilities of the trajectory under the behavior policy, often denoted
πold, in order to compute the importance ratio. One complicating factor here is that the workers continue
rollouts in parallel to model updates (see §6.2). At a given point in time, any number of the G rollouts in a
batch may be in progress. Hence, the true behavior policy distribution is difficult to describe mathematically.
Nevertheless, we use the notation log πold(yi,t|yi,<t) to denote the token log probability produced by our
inference backend at the moment token yi,t was sampled, and use this quantity for importance weighting as
described below.

Finally, the PPO loss requires the policy log probabilities, which are computed on the trainer nodes. When
a trainer receives a worker batch of G trajectories associated with a prompt x, it computes the advantages
and adds the trajectories to a queue. Then, to produce a batch B for training, trajectories are popped from
the queue until a limit of N tokens is reached. By keeping a fixed limit of N tokens we reduce the variance
in the batch size between different steps, and optimize the GPU utilization without over-allocating GPU
memory. The trajectories are packed into a flat batch, padded to N tokens, and forwarded to produce the log
probabilities of the tokens log π(yi,t|yi,<t). As a consequence, the trajectories associated with one prompt
may be spread out over multiple gradient updates.

Finally, the loss is calculated as

J (θ) =
1

N

∑
yi,Ai∈B

|yi|∑
t=1

Mi,t min
[
ρi,t(θ)Âi, clip (ρi,t(θ), 1− εlow, 1 + εhigh) Âi

]
,

where, as noted before, B is the trainer batch (not generally equal to the set of G trajectories per prompt),
Mi,t ∈ {0, 1} masks out environment-generated tokens, εlow and εhigh are the PPO clipping thresholds, and
N is the maximum number of tokens in a batch (which we set to 131 072, the maximum context size of our
model). The importance ratio ρi,t is computed from the log probabilities log πθ and log πold (computed on
the trainer and worker, respectively) as follows:

ρi,t(θ) = exp (log πθ(yi,t|yi,<t)− log πold(yi,t|yi,<t)).
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The issue persists due to an indentation error. I need to correct the indentation in the sky_coordinate.py file. However, since the 'edit' tool is not available, I'll try a different
approach.

Let me check the current state of the __getattr__ method in sky_coordinate.py.

<tool: bash>
sed -n 890,910p /testbed/astropy/coordinates/sky_coordinate.py
</tool>

<output>
return getattr(self._sky_coord_frame, attr)

# Try to interpret as a new frame for transforming.
frame_cls = frame_transform_graph.lookup_name(attr)
if frame_cls is not None and self.frame.is_transformable_to(frame_cls):

return self.transform_to(attr)

# Fail
return self.__getattribute__(attr)

f"'{self.__class__.__name__}' object has no attribute '{attr}'"
)

def __setattr__(self, attr, val):
# This is to make anything available through __getattr__ immutable
if "_sky_coord_frame" in self.__dict__:

if self._is_name(attr):
raise AttributeError(f"'{attr}' is immutable")

if not attr.startswith("_") and hasattr(self._sky_coord_frame, attr):
setattr(self._sky_coord_frame, attr, val)
return

</output>
<budget>
* Remaining turns: 82
* Remaining tokens: 85000
</budget>

The issue is that the line `return self.__getattribute__(attr)` is not properly replacing the original `raise AttributeError` line, and there's an extra line with
`f"'{self.__class__.__name__}' object has no attribute '{attr}'"` that's causing a syntax error.

I need to correctly replace the entire block. Let me try to fix this by restoring the original file and applying the change again carefully.

<tool: bash>
git checkout /testbed/astropy/coordinates/sky_coordinate.py
</tool>

<output>
Updated 1 path from the index
</output>
<budget>
* Remaining turns: 81
* Remaining tokens: 84837
</budget>

Now that the sky_coordinate.py file has been restored, I'll apply the correct change using sed, making sure to replace the entire raise AttributeError block with the correct line.

The original code at line 898 is:

# Fail
raise AttributeError(

f"'{self.__class__.__name__}' object has no attribute '{attr}'"
)

I need to replace this with:

# Fail
return self.__getattribute__(attr)

Let me use sed to do this correctly.

<tool: bash>
sed -i '898,900c\ # Fail\n return self.__getattribute__(attr)' /testbed/astropy/coordinates/sky_coordinate.py
</tool>

Figure B.19 Example intermediate turns in SWE RL (bash-only). The agent learns to correct indentation mistakes
from wrong edits by restoring the original file state using git checkout, followed by applying a correct edit using sed.
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The code ran without errors, and `model.dual_coef_` was printed, which should be an empty CSR matrix. However, the output is empty, which suggests that `model.dual_coef_` is indeed an
empty matrix.

Now, I need to verify that this fix doesn't break any other functionality. To do that, I'll run the tests for the SVM module in sklearn to ensure that all tests pass.

<tool: bash>
python -m pytest sklearn/svm/tests/
</tool>

============================= test session starts ==============================
platform linux -- Python 3.6.13, pytest-6.2.4, py-1.11.0, pluggy-0.13.1
rootdir: /testbed, configfile: setup.cfg
collected 135 items

sklearn/svm/tests/test_bounds.py ................... [ 14%]
sklearn/svm/tests/test_sparse.py ............................... [ 37%]
sklearn/svm/tests/test_svm.py .......................................... [ 68%]
........................................... [100%]

======================= 135 passed, 15 warnings in 4.31s =======================

All tests have passed, which suggests that the fix is correct and doesn't break any existing functionality. Now, I need to create a patch file that includes the changes made to
`sklearn/svm/base.py`.

<tool: bash>
git diff sklearn/svm/base.py > svm_patch.patch
</tool>

(No output)

The patch file has been created. Now, I'll submit it as the final solution.

<tool: submit>
./svm_patch.patch
</tool>

The following patch content is marked as your final submission:

<submission>
diff --git a/sklearn/svm/base.py b/sklearn/svm/base.py
index 64cebe837..67dd8e38f 100644
--- a/sklearn/svm/base.py
+++ b/sklearn/svm/base.py
@@ -287,8 +287,11 @@ class BaseLibSVM(BaseEstimator, metaclass=ABCMeta):

n_SV = self.support_vectors_.shape[0]

dual_coef_indices = np.tile(np.arange(n_SV), n_class)
- dual_coef_indptr = np.arange(0, dual_coef_indices.size + 1,
- dual_coef_indices.size / n_class)
+ if dual_coef_indices.size == 0:
+ dual_coef_indptr = np.array([0, 0], dtype=np.int32)
+ else:
+ dual_coef_indptr = np.arange(0, dual_coef_indices.size + 1,
+ dual_coef_indices.size / n_class)

self.dual_coef_ = sp.csr_matrix(
(dual_coef_data, dual_coef_indices, dual_coef_indptr),
(n_class, n_SV))

</submission>

Review the patch content and ensure it correctly resolves the issue. If necessary, you can continue refining the patch and submit an updated version.

The patch looks good. It adds a check for when `dual_coef_indices` is empty and handles it by setting `dual_coef_indptr` to `[0, 0]`, which should correctly create an empty CSR matrix
for `self.dual_coef_`. This should resolve the ZeroDivisionError issue when `support_vectors_` is empty.

I'm confident that this patch is correct and should fix the problem without introducing any regressions, as all tests passed after the fix.

## Issue Summary

The issue was a ZeroDivisionError in the `_sparse_fit` method of the SVM class when using sparse data and the `support_vectors_` attribute was empty. The error occurred because of a
division by zero when calculating the `dual_coef_indptr` for the CSR matrix of dual coefficients.

## Investigation and Reproduction...

Figure B.20 Example final turns in SWE RL, with details like budget notices omitted for brevity. The agent verifies
that the patch does not break existing functionality, submits the patch, and produces a summary.
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Okay, so the grep command shows that in django/db/models/fields/json.py, there are several instances of json.dumps being used. The ones in lines 84 and 95 are the ones in the
get_prep_value and validate methods, respectively. These are the ones that might need to be modified to include ensure_ascii=False to fix the Unicode display issue in the admin.

However, wait a minute. The get_prep_value method is used to prepare the value for the database, but the display_in the admin uses this method as well. If we modify get_prep_value to
include ensure_ascii=False, that could affect how the data is stored in the database, but JSON fields should handle Unicode correctly regardless. However, ... But let me think again.
The display_for_field function in django/contrib/admin/utils.py calls get_prep_value on the JSONField instance. If get_prep_value returns a string with ensure_ascii=False, then the
displayed JSON data will show Unicode characters correctly.

So, modifying the get_prep_value method to include ensure_ascii=False in the json.dumps call should fix the issue. Similarly, the validate method's json.dumps call might not need to
change, but to be consistent, maybe it's better to include ensure_ascii=False there as well, although it's less critical for display purposes. Additionally, the lines 122, 383, and 416
use json.dumps, but these seem to be for different purposes (compiling JSON paths, etc.). However, if these are part of the serialization process for JSONField values, they might also
need to include ensure_ascii=False to ensure consistent behavior. But without more context, it's harder to say. The main issue is the admin display, which is handled by get_prep_value.

Let me check the pull request again (https://github.com/adamchainz/django-mysql/pull/714) to see what changes were made. Since I can't access the link, I'll have to rely on the issue
description, which mentions that the pull request fixed the problem by modifying how JSON data is serialized. Assuming that the fix involves adding ensure_ascii=False to the json.dumps
calls in the JSONField class, I should modify the get_prep_value and possibly other relevant methods. Another thing to consider: the forms.JSONField in django/forms/fields.py might also
need similar changes, especially in how it prepares values for display. Let me check that file as well. Looking at django/forms/fields.py, the JSONField class has a prepare_value method:

def prepare_value(self, value):
if value is None:

return None
if isinstance(value, str):

return value
return self.encoder.dumps(value)

Here, self.encoder.dumps(value) is used. If the encoder is the default JSONEncoder, it would still use ASCII encoding. However, the encoder for JSONField can be customized, but the
default might not set ensure_ascii=False. To ensure that the form field displays Unicode characters correctly, maybe this should also be modified to include ensure_ascii=False, but
since the encoder is part of the field's configuration, it might be better to handle it there. Alternatively, maybe the display_for_field function in the admin should handle JSONField
values differently, but that might be more complex. Given the information, the most straightforward fix seems to be modifying the get_prep_value method in
django/db/models/fields/json.py to include ensure_ascii=False in the json.dumps call. This would affect how JSON data is displayed in the admin, as that's where get_prep_value is called.

Let me proceed with that change and see if it resolves the issue.

<tool: edit>
django/db/models/fields/json.py
<<<<<<< SEARCH

def get_prep_value(self, value):
if value is None:

return value
return json.dumps(value, cls=self.encoder)

=======
def get_prep_value(self, value):

if value is None:
return value

return json.dumps(value, cls=self.encoder, ensure_ascii=False)
>>>>>>> REPLACE
</tool>

File django/db/models/fields/json.py has been successfully updated at line 81 and now contains 521 lines. The surrounding lines after the edit are shown below:
73 try:
74 return json.loads(value, cls=self.decoder)
75 except json.JSONDecodeError:
76 return value
77
78 def get_internal_type(self):
79 return 'JSONField'
80
81 def get_prep_value(self, value):
82 if value is None:
83 return value
84 return json.dumps(value, cls=self.encoder, ensure_ascii=False)
85
86 def get_transform(self, name):
87 transform = super().get_transform(name)
88 if transform:
89 return transform
90 return KeyTransformFactory(name)
91
92 def validate(self, value, model_instance):

Review the changes and make sure they are as expected.

Figure B.21 Example of the CWM SWE RL agent engaging in long reasoning before modifying the file with the edit
tool. For conciseness, some details (e.g., budget notices) are omitted and reasoning paragraphs are merged.
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<|begin_of_text|><|trace_context_start|>
def f(n):

p = ''
if n%2 == 1:

p+='sn'
else:

return n*n
for x in range(1, n+1):

if x%2 == 0:
p+='to'

else:
p+='ts'

return p

def main(): # << START_OF_TRACE
return f(1)

<|frame_sep|><|call_sep|>{}
<|action_sep|>def main():
<|frame_sep|><|return_sep|>
----END OF PROMPT----
<|action_sep|> return f(1)
<|arg_sep|>"'snts'"<|frame_sep|>

(a) Single-step execution trace prediction.

<|begin_of_text|><|trace_context_start|>
def f(n):

p = ''
if n%2 == 1:

p+='sn'
else:

return n*n
for x in range(1, n+1):

if x%2 == 0:
p+='to'

else:
p+='ts'

return p

def main(): # << START_OF_TRACE
return f(1)

<|frame_sep|><|call_sep|>{}<|action_sep|>def main():
<|frame_sep|>
----END OF PROMPT----
<|line_sep|>{}<|action_sep|> return f(1)
<|frame_sep|><|call_sep|>{"n": "1"}<|action_sep|>def f(n):
<|frame_sep|><|line_sep|>{"n": ".."}<|action_sep|> p = ''
<|frame_sep|><|line_sep|>{"n": "..", "p": "''"}
<|action_sep|> if n%2 == 1:
<|frame_sep|><|line_sep|>{"n": "..", "p": ".."}
<|action_sep|> p+='sn'
<|frame_sep|><|line_sep|>{"n": "..", "p": "'sn'"}
<|action_sep|> for x in range(1, n+1):
<|frame_sep|><|line_sep|>{"n": "..", "p": "..", "x": "1"}
<|action_sep|> if x%2 == 0:
<|frame_sep|><|line_sep|>{"n": "..", "p": "..", "x": ".."}
<|action_sep|> p+='ts'
<|frame_sep|><|line_sep|>{"n": "..", "p": "'snts'", "x": ".."}
<|action_sep|> for x in range(1, n+1):
<|frame_sep|><|line_sep|>{"n": "..", "p": "..", "x": ".."}
<|action_sep|> return p
<|frame_sep|><|return_sep|><|action_sep|> return p<|arg_sep|>"'snts'"
<|frame_sep|><|return_sep|><|action_sep|> return f(1)
<|arg_sep|>"'snts'"<|frame_sep|>

(b) Full, line-by-line, execution trace prediction.

Figure B.22 Python execution trace prediction for CruxEval output prediction in (a) single-step mode and (b) full,
line-by-line, mode. The predictions shown are generated by CWM.
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<|begin_of_text|><|trace_context_start|>
def f(nums):

a = 0
for i in range(len(nums)):

nums.insert(i, nums[a])
a += 1

return nums

def main(): # << START_OF_TRACE
return f([1, 3, -1, 1, -2, 6])

<|frame_sep|><|call_sep|>{}<|action_sep|>def main(): # << START_OF_TRACE
<|frame_sep|>
---END OF PROMPT---
<|line_sep|>{}<|action_sep|> return f([1, 3, -1, 1, -2, 6])
<|frame_sep|><|call_sep|>{"nums": "[1, 3, -1, 1, -2, 6]"}<|action_sep|>def f(nums):
<|frame_sep|><|line_sep|>{"nums": ".."}<|action_sep|> a = 0
<|frame_sep|><|line_sep|>{"nums": "..", "a": "0"}<|action_sep|> for i in range(len(nums)):
<|frame_sep|><|line_sep|>{"nums": "..", "a": "..", "i": "0"}<|action_sep|> nums.insert(i, nums[a])
<|frame_sep|><|line_sep|>{"nums": "[1, 1, 3, -1, 1, -2, 6]", "a": "..", "i": ".."}<|action_sep|> a += 1
<|frame_sep|><|line_sep|>{"nums": "..", "a": "1", "i": ".."}<|action_sep|> for i in range(len(nums)):
<|frame_sep|><|line_sep|>{"nums": "..", "a": "..", "i": "1"}<|action_sep|> nums.insert(i, nums[a])
<|frame_sep|><|line_sep|>{"nums": "[1, 1, 1, 3, -1, 1, -2, 6]", "a": "..", "i": ".."}<|action_sep|> a += 1
<|frame_sep|><|line_sep|>{"nums": "..", "a": "2", "i": ".."}<|action_sep|> for i in range(len(nums)):
<|frame_sep|><|line_sep|>{"nums": "..", "a": "..", "i": "2"}<|action_sep|> nums.insert(i, nums[a])
<|frame_sep|><|line_sep|>{"nums": "[1, 1, 1, 1, 3, -1, 1, -2, 6]", "a": "..", "i": ".."}<|action_sep|> a += 1
<|frame_sep|><|line_sep|>{"nums": "..", "a": "3", "i": ".."}<|action_sep|> for i in range(len(nums)):
<|frame_sep|><|line_sep|>{"nums": "..", "a": "..", "i": "3"}<|action_sep|> nums.insert(i, nums[a])
<|frame_sep|><|line_sep|>{"nums": "[1, 1, 1, 1, 1, 3, -1, 1, -2, 6]", "a": "..", "i": ".."}<|action_sep|> a += 1
<|frame_sep|><|line_sep|>{"nums": "..", "a": "4", "i": ".."}<|action_sep|> for i in range(len(nums)):
<|frame_sep|><|line_sep|>{"nums": "..", "a": "..", "i": "4"}<|action_sep|> nums.insert(i, nums[a])
<|frame_sep|><|line_sep|>{"nums": "[1, 1, 1, 1, 1, 1, 3, -1, 1, -2, 6]", "a": "..", "i": ".."}<|action_sep|> a += 1
<|frame_sep|><|line_sep|>{"nums": "..", "a": "5", "i": ".."}<|action_sep|> for i in range(len(nums)):
<|frame_sep|><|line_sep|>{"nums": "..", "a": "..", "i": "5"}<|action_sep|> nums.insert(i, nums[a])
<|frame_sep|><|line_sep|>{"nums": "[1, 1, 1, 1, 1, 1, 1, 3, -1, 1, -2, 6]", "a": "..", "i": ".."}<|action_sep|> a += 1
<|frame_sep|><|line_sep|>{"nums": "..", "a": "6", "i": ".."}<|action_sep|> for i in range(len(nums)):
<|frame_sep|><|line_sep|>{"nums": "..", "a": "..", "i": ".."}<|action_sep|> return nums
<|frame_sep|><|return_sep|><|action_sep|> return nums<|arg_sep|>"[1, 1, 1, 1, 1, 1, 1, 3, -1, 1, -2, 6]"
<|frame_sep|><|return_sep|><|action_sep|> return f([1, 3, -1, 1, -2, 6])<|arg_sep|>"[1, 1, 1, 1, 1, 1, 1, 3, -1, 1, -2, 6]"<|frame_sep|>

(a) CWM Execution Trace Prediction (correct prediction).

Given a python code function and an assert statement containing a specific input, provide the assertion with the exact literal output that the function returns with that input. Do not
include any mathematical expressions or function calls-only the final literal value. Your response should be solely the assertion, enclosed within [ANSWER] and [/ANSWER] tags.

[SKIPPED EXAMPLE FOR ILLUSTRATION PURPOSES]
Python function:
```
def f(nums):

a = 0
for i in range(len(nums)):

nums.insert(i, nums[a])
a += 1

return nums
assert f([1, 3, -1, 1, -2, 6]) == ??
```
----END OF PROMPT---
Okay, let's see. I need to figure out what the function f does when given the list [1, 3, -1, 1, -2, 6]. The function starts by initializing a variable a to 0. Then it loops over the

range of the length of nums. But wait, the length of nums is 6 initially. However, inside the loop, it's inserting elements into nums, which will change the length of the list
as the loop progresses. That might affect how many times the loop runs.

Let me break it down step by step. The initial list is [1, 3, -1, 1, -2, 6]. The variable a starts at 0. The loop runs for i in range(len(nums)), which is range(6) initially. So i will
take values 0 through 5.

First iteration (i=0):
- nums.insert(i, nums[a]) -> insert nums[0] (which is 1) at position 0. The list becomes [1, 1, 3, -1, 1, -2, 6]. Then a increments to 1.
Second iteration (i=1):
- Now, the list has 7 elements. But the loop was set up with range(6), so i is still 1. We insert nums[a] (nums[1] is 1) at position 1. The list becomes [1, 1, 1, 3, -1, 1, -2, 6]. a

becomes 2.
Third iteration (i=2):
- Insert nums[2] (which is 1) at position 2. The list is now [1, 1, 1, 1, 3, -1, 1, -2, 6]. a is 3.
Fourth iteration (i=3):
- Insert nums[3] (3) at position 3. The list becomes [1, 1, 1, 1, 3, 3, -1, 1, -2, 6]. a is 4.
Fifth iteration (i=4):
- Insert nums[4] (-1) at position 4. The list is [1, 1, 1, 1, 3, -1, 3, -1, 1, -2, 6]. a is 5.
Sixth iteration (i=5):
- Insert nums[5] (1) at position 5. The list becomes [1, 1, 1, 1, 3, 1, -1, 3, -1, 1, -2, 6]. a is 6.
After these six iterations, the loop ends because i has gone through 0 to 5. The final list is [1, 1, 1, 1, 3, 1, -1, 3, -1, 1, -2, 6]. Wait, but let me double-check each step to make

sure I didn't make a mistake.
Wait a minute, when we insert elements, the original elements shift to the right. Let me re-examine each step carefully.
Original list: [1, 3, -1, 1, -2, 6]
First iteration (i=0, a=0):
- Insert nums[0] (1) at position 0. The list becomes [1, 1, 3, -1, 1, -2, 6]. a becomes 1.
Second iteration (i=1, a=1):
- Insert nums[1] (1) at position 1. The list is now [1, 1, 1, 3, -1, 1, -2, 6]. a becomes 2.
Third iteration (i=2, a=2):
- Insert nums[2] (1) at position 2. The list becomes [1, 1, 1, 1, 3, -1, 1, -2, 6]. a becomes 3.
Fourth iteration (i=3, a=3):
- Insert nums[3] (3) at position 3. The list is [1, 1, 1, 1, 3, 3, -1, 1, -2, 6]. a becomes 4.
Fifth iteration (i=4, a=4):
- Insert nums[4] (-1) at position 4. The list becomes [1, 1, 1, 1, 3, -1, 3, -1, 1, -2, 6]. a becomes 5.
Sixth iteration (i=5, a=5):
- Insert nums[5] (1) at position 5. The list is [1, 1, 1, 1, 3, 1, -1, 3, -1, 1, -2, 6]. a becomes 6.
Yes, that seems correct. So the final list returned by the function is [1, 1, 1, 1, 3, 1, -1, 3, -1, 1, -2, 6].
</think>
[ANSWER]
assert f([1, 3, -1, 1, -2, 6]) == [1, 1, 1, 1, 3, 1, -1, 3, -1, 1, -2, 6]
[/ANSWER]

(b) CWM Reasoning Trace (wrong prediction).

Figure B.23 CWM execution trace prediction (correct) vs. natural language reasoning trace (wrong). In this CruxEval
example, a list is modified while iterating over it. In execution trace prediction mode the CWM model generates the
correct answer [1, 1, 1, 1, 1, 1, 1, 3, -1, 1, -2, 6]. During reasoning in natural language, even though the
CWM model recognizes the modification, it still predicts the wrong output.
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<|begin_of_text|><|trace_context_start|>
def f(sequence, value):

i = max(sequence.index(value) - len(sequence) // 3, 0)
result = ''
for j, v in enumerate(sequence[i:]):

if v == '+':
result += value

else:
result += sequence[i + j]

return result

def main(): # << START_OF_TRACE
return f('hosu', 'o')<|frame_sep|><|call_sep|>{}<|action_sep|>def main(): # << START_OF_TRACE

<|frame_sep|>
---END OF PROMPT---
<|line_sep|>{}<|action_sep|> return f('hosu', 'o')
<|frame_sep|><|call_sep|>{"sequence": "'hosu'", "value": "'o'"}<|action_sep|>def f(sequence, value):
<|frame_sep|><|line_sep|>{"sequence": "..", "value": ".."}<|action_sep|> i = max(sequence.index(value) - len(sequence) // 3, 0)
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "1"}<|action_sep|> result = ''
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "..", "result": "''"}<|action_sep|> for j, v in enumerate(sequence[i:]):
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "..", "result": "..", "j": "0", "v": "'o'"}<|action_sep|> if v == '+':
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "..", "result": "..", "j": "..", "v": ".."}<|action_sep|> result += sequence[i + j]
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "..", "result": "'o'", "j": "..", "v": ".."}<|action_sep|> for j, v in enumerate(sequence[i:]):
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "..", "result": "..", "j": "1", "v": "'s'"}<|action_sep|> if v == '+':
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "..", "result": "..", "j": "..", "v": ".."}<|action_sep|> result += sequence[i + j]
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "..", "result": "'os'", "j": "..", "v": ".."}<|action_sep|> for j, v in enumerate(sequence[i:]):
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "..", "result": "..", "j": "2", "v": "'u'"}<|action_sep|> if v == '+':
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "..", "result": "..", "j": "..", "v": ".."}<|action_sep|> result += sequence[i + j]
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "..", "result": "'osu'", "j": "..", "v": ".."}<|action_sep|> for j, v in enumerate(sequence[i:]):
<|frame_sep|><|line_sep|>{"sequence": "..", "value": "..", "i": "..", "result": "..", "j": "..", "v": ".."}<|action_sep|> return result
<|frame_sep|><|return_sep|><|action_sep|> return result<|arg_sep|>"'osu'"
<|frame_sep|><|return_sep|><|action_sep|> return f('hosu', 'o')<|arg_sep|>"'osu'"<|frame_sep|>

(a) CWM Execution Trace Prediction (wrong prediction).

Given a python code function and an assert statement containing a specific input, provide the assertion with the exact literal output that the function returns with
that input. Do not include any mathematical expressions or function calls-only the final literal value. Your response should be solely the assertion, enclosed
within [ANSWER] and [/ANSWER] tags.

[SKIPPED EXAMPLE FOR ILLUSTRATION PURPOSES]
Python function:
```
def f(sequence, value):

i = max(sequence.index(value) - len(sequence) // 3, 0)
result = ''
for j, v in enumerate(sequence[i:]):

if v == '+':
result += value

else:
result += sequence[i + j]

return result
assert f('hosu', 'o') == ??
```
----END OF PROMPT---
Okay, let's see. I need to figure out what the function f returns when called with the arguments 'hosu' and 'o'. Let me start by understanding the function step by step.

First, the function takes two parameters: sequence and value. In this case, sequence is the string 'hosu' and value is 'o'.

The first line inside the function is: i = max(sequence.index(value) - len(sequence) // 3, 0). Let's break this down.

sequence.index(value) finds the index of the first occurrence of 'o' in 'hosu'. The string 'hosu' is h-o-s-u, so the index of 'o' is 1.

len(sequence) is the length of 'hosu', which is 4. len(sequence) // 3 is 4 divided by 3, which equals 1 (since integer division truncates).

So, sequence.index(value) - len(sequence) // 3 is 1 - 1 = 0. Then, max(0, 0) is 0. Therefore, i is 0.

Next, the function initializes an empty string result = ''.

Then, there's a for loop: for j, v in enumerate(sequence[i:]). Since i is 0, sequence[i:] is the entire string 'hosu'. So, the loop will iterate over each character in
'hosu' along with their indices j.

Let's go through each iteration:

1. j = 0, v = 'h':
- v is not '+', so result += sequence[i + j] which is sequence[0 + 0] = 'h'. Now result is 'h'.

2. j = 1, v = 'o':
- v is not '+', so result += sequence[0 + 1] = 'o'. Now result is 'ho'.

3. j = 2, v = 's':
- v is not '+', so result += sequence[0 + 2] = 's'. Now result is 'hos'.

4. j = 3, v = 'u':
- v is not '+', so result += sequence[0 + 3] = 'u'. Now result is 'hosu'.

After the loop, the function returns result, which is 'hosu'.

Wait a minute, but the value parameter is 'o'. The code checks if v == '+', but in the sequence 'hosu', there are no '+' characters. So, the condition v == '+' is never
true. Therefore, the code never appends the value 'o' to the result. Instead, it appends the characters from the sequence starting at index i (which is 0) for
each character in the sequence. So, the result is just the original sequence 'hosu'.

Therefore, the function returns 'hosu' when called with f('hosu', 'o').
</think>
[ANSWER]
assert f('hosu', 'o') == 'hosu'
[/ANSWER]

(b) CWM Reasoning Trace (correct prediction).
Figure B.24 CWM execution trace prediction (wrong) vs. CWM natural language reasoning trace (correct). In
this CruxEval example, the CWM model with reasoning in natural language predicts the correct output ’hosu’. In
execution trace prediction mode, the CWM model predicts ’osu’, because it fails to predict the value of the variable i
in the first line correctly. It predicts 1, instead of the true value 0.
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===== CONTEXT =====

def count_letters(s, letter):
n = 0
for c in s:

n += int(c == letter)
return n

def format_answer(word, letter, count):
parts = [

"Found",
f"{count:04d}",
"occurrences of the letter",
letter,
"in",
word

]
return " ".join(parts)

def f(c): # << START_OF_TRACE
word = "strawberry"
num = count_letters(word, c)
ans = format_answer(word, c, num)
return ans

===== SESSION START =====

-> def f(c):
>> print
{'c': "'r'"}
>> next
-> word = "strawberry"
>> next
-> num = count_letters(word, "r")
>> step
-> def count_letters(s, letter):
>> next
-> n = 0
>> next
-> for c in s:
>> next
-> n += int(c == letter)
>> print
{'s': "'strawberry'", 'letter': "'r'", 'n': '0', 'c': "'s'"}
>> next
-> for c in s:
>> next
-> n += int(c == letter)
>> print
{'s': "'strawberry'", 'letter': "'r'", 'n': '0', 'c': "'t'"}
>> out
-> ans = format_answer(word, "r", num)
>> next
-> return ans
>> next
-> return ans
'Found 0003 occurrences of the letter r in strawberry'

Figure B.25 Interactive Python code debugging with CWM. As a show-case of CWM’s execution tracing capabilities
(§2.2), we present an interactive debugger to steer execution trace predictions. From a given code context, CWM
predicts the initial state of the trace (we selected this example based on the prediction of the c parameter). We
can then prompt the model to generate the program state at the next line, or to directly predict the return value
after a function is entered. In this example, we step into the count_letters function, step out of it after a few steps
(implemented via continuous predictions until the function returns), and finally use next to predict the return value of
format_answer without line-by-line unrolling. In-between, we print the local variables as generated by CWM.

<|begin_of_text|><|trace_context_start|>from mysterious_library import f
assert f(2, 2) == 4
assert f(3, 7) == 10
assert f(-1, -8) == -9
assert f(1, 1) == 2
f(5, 5) # << START_OF_TRACE
<|frame_sep|>
----END OF PROMPT---
<|call_sep|>{}<|action_sep|>f(5, 5) # << START_OF_TRACE
<|frame_sep|><|line_sep|>{}<|action_sep|>f(5, 5) # << START_OF_TRACE
<|frame_sep|><|call_sep|>{"a": "5", "b": "5"}<|action_sep|>def f(a, b):
<|frame_sep|><|line_sep|>{"a": "..", "b": ".."}<|action_sep|> return a + b
<|frame_sep|><|return_sep|><|action_sep|> return a + b
<|arg_sep|>"10"<|frame_sep|>

Figure B.26 CWM predicting the execution traces of an unseen function f, imported from a library not included in the
context. The expected semantics of f can be inferred from the assertions in the context. CWM correctly generates
the traces of a function that sums two numbers. It is possible that the model acquired this capability of jointly tracing
and generating code because for some tracing data we do not include the source context of third-party libraries.
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Given the following problem: Three little pigs from all over the world are meeting for a convention! Every minute, a triple of 3 new pigs arrives on the convention floor. After the n-th
minute, the convention ends.
The big bad wolf has learned about this convention, and he has an attack plan. At some minute in the convention, he will arrive and eat exactly x pigs. Then he will get away.
The wolf wants Gregor to help him figure out the number of possible attack plans that involve eating exactly x pigs for various values of x (1 <= x <= 3n). Two attack plans are
considered different, if they occur at different times or if the sets of little pigs to eat are different.
Note that all queries are independent, that is, the wolf does not eat the little pigs, he only makes plans!
Input
The first line of input contains two integers n and q (1 <= n <= 10^6, 1 <= q <= 2* 10^5), the number of minutes the convention lasts and the number of queries the wolf asks.
Each of the next q lines contains a single integer x_i (1 <= x_i <= b3n), the number of pigs the wolf will eat in the i-th query.
Output
You should print q lines, with line i representing the number of attack plans if the wolf wants to eat x_i pigs. Since each query answer can be large, output each answer modulo 10^9+7.
Examples
Input
2 3
1
5
6
Output
9
6
1
Input
...
Note
In the example test, n=2. Thus, there are 3 pigs at minute 1, and 6 pigs at minute 2. There are three queries: x=1, x=5, and x=6.
If the wolf wants to eat 1 pig, he can do so in 3+6=9 possible attack plans, depending on whether he arrives at minute 1 or 2.
If the wolf wants to eat 5 pigs, the wolf cannot arrive at minute 1, since there aren't enough pigs at that time. Therefore, the wolf has to arrive at minute 2, and there are 6 possible
attack plans.
If the wolf wants to eat 6 pigs, his only plan is to arrive at the end of the convention and devour everybody.
Remember to output your answers modulo 10^9+7!
Generate the code step by step. You MUST FIRST generate the execution traces for the code you want to generate given a specific input, and then if it's correct extract the code.
Your code in the final answer should be enclosed in triple backticks like so: python YOUR CODE HERE. Use the backticks for your code only.
<|eot_id|><|start_header_id|>assistant

Okay, let's see. The problem is about calculating the number of possible attack plans for the big bad wolf. The wolf can attack at any minute during the convention, and he eats exactly
x pigs. We need to find the number of ways he can do this for various values of x.

Let's jointly synthethize and trace the code for this using the first provided input/output example. First, I will emit the execution traces and check that it arrives to the expected
output.

Then, if the output is correct, extracting the code is straightforward, I don't need to think anymore and can proceed to the final answer.

But if the execution is incorrect, I need to think and then predict the corrected traces again.

Let's start jointly tracing and synthethizing. The input will be f(2, 3, [1, 5, 6]), and the output must be [9, 6, 1]; otherwise it will mean I predicted the wrong code and need to
start again. Let's see:

<|trace_context_start|>from solution import f

assert f(2, 3, [1, 5, 6]) == [9, 6, 1]
assert f(5, 4, [2, 4, 6, 8]) == [225, 2001, 6014, 6939]

f(2, 3, [1, 5, 6]) # << START_OF_TRACE
<|frame_sep|><|call_sep|>{}<|action_sep|>f(2, 3, [1, 5, 6]) # << START_OF_TRACE
<|frame_sep|><|line_sep|>{}<|action_sep|>f(2, 3, [1, 5, 6]) # << START_OF_TRACE
<|frame_sep|><|call_sep|>{"n": "2", "q": "3", "queries": "[1, 5, 6]"}<|action_sep|>def f(n, q, queries):
<|frame_sep|>
----END OF PROMPT---
<|line_sep|>{"n": "..", "q": "..", "queries": ".."}<|action_sep|> MOD = 10**9 + 7
<|frame_sep|><|line_sep|>{"n": "..", "q": "..", "queries": "..", "MOD": "1000000007"}<|action_sep|> max_x = 3 * n
...
<|frame_sep|><|return_sep|><|action_sep|> return ans
<|arg_sep|>"[9, 6, 1]"<|frame_sep|><|return_sep|><|action_sep|>f(2, 3, [1, 5, 6]) # << START_OF_TRACE
<|arg_sep|>"[9, 6, 1]"<|frame_sep|>

Okay, the execution trace is correct. Now, I can proceed to extract the code.

```python
def f(n, q, queries):

MOD = 10**9 + 7
max_x = 3 * n
fact = [1] * (max_x + 1)
for i in range(1, max_x + 1):

fact[i] = fact[i - 1] * i % MOD
inv_fact = [1] * (max_x + 1)
inv_fact[max_x] = pow(fact[max_x], MOD - 2, MOD)
for i in range(max_x - 1, -1, -1):

inv_fact[i] = inv_fact[i + 1] * (i + 1) % MOD
def comb(n, k):

if k < 0 or k > n:
return 0

return fact[n] * inv_fact[k] * inv_fact[n - k] % MOD
total = 0
for i in range(1, n + 1):

total += 3 * i
ans = []
for x in queries:

res = 0
for i in range(1, n + 1):

if 3 * i >= x:
res += comb(3 * i, x)

ans.append(res % MOD)
return ans

```

Figure B.27 CWM interspersing code generation and execution tracing. As indicated by “. . . ”, we have omitted parts
of CWM reasoning for clarity here.
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You will be given a function f and a call to that function in the form f(??). This function might either terminate for all inputs or diverge for some input. If it
terminates for all inputs, then answer "# T". Otherwise, if it diverges, provide an input such that executing f on the input leads to a diverging execution
(i.e., f does NOT halt with that input), followed by the comment "# NT". In case non-terminating inputs exist, there may be multiple possible answers, but you
should only output one. Express your final answer with either "# T", if the function terminates for all inputs, or as function call to f containing the input
that leads to the non-terminating execution followed by the comment "# NT".

```
def f(x):

def g(i):
if i <= 0:

return 0
return g(g(g(i-2) - 1)) + 1

def h(j):
if j <= 0:

return 0
return h(g(j)-1) - 1

h(x)
return None

f(??) # Terminates?
```
----END OF PROMPT---

Okay, I need to figure out if the function f(x) terminates for all inputs or if there's some input where it diverges. Let's start by understanding what the function
does.

The function f(x) defines two helper functions, g(i) and h(j). It then calls h(x) and returns None. So, the termination of f(x) depends entirely on the behavior of
h(x), which in turn depends on g(i).

Let me break down the helper functions:
First, g(i):
If i is less than or equal to 0, return 0.
Otherwise, return g(g(g(i-2) - 1)) + 1.
Hmm, that's a recursive function. Let's see what happens when we call g with some positive integer. For example, if i is 1:
g(1) would call g(g(g(-1) - 1)) + 1. Since g(-1) is 0, this becomes g(g(-1) -1) = g(0 -1) = g(-1) = 0. Then, adding 1 gives 1. Wait, so g(1) would return 1? Let me

check that again.
Wait, let's step through g(1):
g(1) calls g(g(g(1-2) - 1)) + 1
1-2 is -1, so g(-1) is 0. Then, 0 -1 is -1. So g(-1) is 0 again. Then, the innermost g is 0, so we have g(0) +1. Wait, no, let me re-express this.
Wait, the expression is g(g(g(i-2) - 1)) + 1. So for i=1:
i-2 = -1. So g(-1) is 0. Then, subtract 1: 0 -1 = -1. Then, call g(-1) again, which is 0. Then, call g(0) which is 0. Then add 1. Wait, no, maybe I'm getting the order

wrong.
Wait, the innermost call is g(i-2). So for i=1, i-2 is -1. So g(-1) returns 0. Then subtract 1: 0 -1 = -1. Then, call g(-1) again, which returns 0. Then, call g(0),

which returns 0. Then add 1. Wait, that seems off. Let me write it step by step:
g(1) = g(g(g(1-2) - 1)) + 1
= g(g(g(-1) - 1)) + 1
= g(g(0 - 1)) + 1 (since g(-1) is 0)
= g(g(-1)) + 1
= g(0) + 1 (since g(-1) is 0)
= 0 + 1
= 1
So g(1) returns 1. That's interesting. What about g(2)?
g(2) = g(g(g(0) - 1)) + 1
g(0) is 0, so 0 -1 = -1. Then g(-1) is 0. Then g(0) is 0. So 0 +1 = 1. So g(2) is 1.
Wait, that's the same as g(1). What about g(3)?
g(3) = g(g(g(1) - 1)) + 1
g(1) is 1, so 1 -1 = 0. Then g(0) is 0. Then g(0) is 0. So 0 +1 = 1. So g(3) is 1.
Hmm, so for i=1,2,3, g(i) returns 1. What about i=4?
g(4) = g(g(g(2) - 1)) + 1
g(2) is 1, so 1 -1 = 0. Then g(0) is 0. Then g(0) is 0. So 0 +1 = 1. So g(4) is 1.
Wait, so it seems like for any i > 0, g(i) returns 1. Is that possible? Let me check i=5.
g(5) = g(g(g(3) - 1)) + 1
g(3) is 1, so 1 -1 = 0. Then g(0) is 0. Then g(0) is 0. So 0 +1 = 1. Yep, same result.
So, in general, for any i > 0, g(i) will compute to 1. Because no matter what i is, when you subtract 2 enough times, you get to a point where the inner g call returns

0, leading to a chain that ends up with 0 +1 = 1.
Wait, but what if i is even or odd? Let's see. Let's take i=6:
g(6) = g(g(g(4) - 1)) + 1
g(4) is 1, so 1 -1 = 0. Then g(0) is 0. Then g(0) is 0. So 0 +1 = 1. Same result.
So regardless of the input i (as long as it's positive), g(i) returns 1. That's a key insight. So g(i) is a function that returns 0 if i <=0, and 1 otherwise.
Now, moving on to h(j):
h(j) is defined as:
If j <= 0, return 0.
Otherwise, return h(g(j) - 1) - 1.
But since g(j) is 1 for any j > 0, then g(j) -1 is 0. So for any j > 0, h(j) becomes h(0) -1. But h(0) is 0, so h(j) = 0 -1 = -1. Wait, but then h(j) for j > 0 would be

-1. But then, if we call h again with that value?
Wait, let's step through h(j) for j > 0. Let's take j=1:
h(1) = h(g(1) - 1) -1
g(1) is 1, so 1 -1 = 0. Then h(0) is 0. So 0 -1 = -1. So h(1) returns -1.
What about j=2?
h(2) = h(g(2) -1) -1
g(2) is 1, so 1 -1 = 0. h(0) is 0. 0 -1 = -1. So h(2) is -1.
Same for any j > 0. So h(j) for j > 0 is always -1. So when f(x) calls h(x), if x is positive, h(x) returns -1, and then f returns None. If x is 0 or negative, h(x)

returns 0, and then f returns None.
Wait, but this seems too straightforward. So in all cases, h(x) terminates. Because even if x is a very large number, h(x) just does a constant number of steps. For

example, h(1000) would compute g(1000) which is 1, subtract 1 to get 0, then call h(0) which is 0, subtract 1 to get -1. So it's a finite number of steps.
Therefore, h(x) always terminates, regardless of the input x.

Therefore, the function f(x) will always terminate, no matter what input x is given. So the answer should be "# T".
</think> <answer>
# T

Figure B.28 CWM predicting termination. The prompt features a terminating example in HaltEval-prelim. After
emitting a reasoning trace, which considers behavior on several specific inputs, CWM correctly predicts termination on
all inputs.
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The gradient of ρi,t(θ)Âi equals πθ

πold
∇ log πθÂi, which is the importance-weighted policy gradient estimator.

Thus, the PPO loss can be understood as a clipped version of this.

D Activ image-building pipeline

The Activ pipeline, shown in Figure D.29, automatically builds executable repository images at scale by
modifying their GitHub Actions workflows and running them locally using the act (Lee, 2019) library within a
virtual environment. Our approach builds on the insight that the execution environment of a GitHub Actions
workflow running CI tests is a fully built environment with dependencies, and can therefore be captured as a
standalone Docker image for later execution.

• In repository:

        - Modify Github Action workflows

 - Add / modify every conftest file in every test dir

• Copy / mount modified repository into Docker

• Call act to run Docker locally

• Docker commit & push container_id

Outer Docker / VMSetup on server

… … … … …

Running GitHub Action workflow job:

• execute each workflow step

• check: can I execute jest?

• workflow step kicks off pytest

Container capture (session fixture):

• ask who am I? 

        - write detected container_id to file

• save bash env to container’s file-system

Trace execution (optional function fixture):

• inject sys.settrace(tr_func) into test

Act Docker runner

Repository’s conftest.py

Runnable 

repositories

Tracing data

Clone repository

GitHub

Figure D.29 Activ image building pipeline for a single repository. After cloning from GitHub, the repository’s GitHub
Actions workflows and pytest conftest.py files (in Python repositories) are modified and copied into the outer Docker
(or virtual machine) for isolated CI execution via act. Modified workflow jobs are executed in parallel within individual
containers, until the container_id and built-environment state are captured from the target container that holds
repository dependencies. Framework executability detection precedes capture to ensure targeting the correct container:
for pytest repositories, this occurs implicitly when injected conftest.py code executes within a session-scoped fixture,
with an optional function-scoped fixture available for Python execution tracing. Non-Python repositories use modified
workflow steps to verify framework executability (such as Jest) before capture. Upon successful capture, an early exit
is triggered and the resulting container is committed and pushed for standalone execution.

As we require only a single successful build of the repository, the pipeline reduces complex cross-platform and
framework build matrices into a single entry (Saavedra et al., 2024), by selecting most-compatible Python
versions and Ubuntu variants. The pipeline also modifies each repository’s GitHub Actions workflows to
continue-on-error, ensuring pipeline completion when encountering noncritical failures. We also implement
multiple early exit strategies to terminate the pipeline as soon as a built-environment state has been captured,
progress has stalled, or a timeout is reached.

We modify each GitHub Actions workflow to probe for available test frameworks by checking if a list of
predefined frameworks are executable when the workflow is running. For each detected framework, the pipeline
captures the corresponding build environment and executes container ID capture logic that is equivalent to
the Python-specific pytest capture process, detailed below.

The pipeline modifies (or adds) conftest.py pytest configuration files to each test directory in Python
repositories. A session-scoped fixture is automatically injected during pytest execution to capture the build
state of containers running unit tests. This fixture detects the ID of the container running unit tests for the
docker commit of the repository’s current build state. The environment capture process further preserves
the container’s build state by writing-out bash environment variables and creating archives of the mounted
repository code and hosted toolcache dependencies to the container’s file-system for later restoration via a
Docker entrypoint script.

To achieve the scale required for our dataset, we run on an internal sandboxing platform to execute approxi-
mately 500 repositories in parallel within secure, isolated virtual environments.
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E Hyper-parameter scaling laws

E.1 Derivation of per-token compute formula

Consider a transformer model with hidden dimension d, sequence length S, batch size B, and L layers.

Linear layers. For a linear transformation of size N , the forward pass requires 2N floating point operations
(FLOP): one multiplication and one addition per weight–input pair. The backward pass is approximately
twice as expensive, since gradients must be computed with respect to both the weights and the inputs. Thus,
the total cost per linear layer is 6N FLOP.

Self-attention. In multi-head self-attention, the two dominant operations are QK⊤ and softmax(QK⊤)V .
The FLOP cost of the softmax itself is negligible compared to these matrix multiplications. The forward pass
of each multiplication costs 2BS2d FLOP, while the backward pass is about twice as expensive, contributing
4BS2d FLOP. Summing both gives 12BS2d FLOP. Because causal attention only computes half of the entries
of QK⊤, the cost reduces to 6BS2d. Dividing by the number of tokens BS gives the per-token cost 6Sd.
Since each of the L layers contains one self-attention block, the per-token cost for attention across all layers is
6SdL.

E.2 Quasi-random search for batch size and learning rate

To estimate the optimal batch size (BS) and learning rate (LR) range, and how it evolves with scale, we
performed a quasi-random search using Sobol sequences. At each scale, BS/LR candidates were generated by
sampling two-dimensional Sobol sequences and rescaling them according to ranges that increase for BS and
decrease for LR as the model scale increases.

In Figure E.30, the gray points correspond to all BS/LR candidates evaluated at each scale, while the blue
points indicate those within 1% of the best validation loss at that scale.

Figure E.30 Optimal range for batch size and learning rate across scales is quite large. However going beyond that
range leads to rapidly degrading performance.

F RL data decontamination

We use MinHash LSH to decontaminate all our prompts in our RL datasets against the following evaluation
benchmarks:

• Mathreasoning: AIME 2024/2025, HARP (Yue et al., 2024), GSM8K test (Cobbe et al., 2021), OmniMath
(test) (Gao et al., 2025), Math500 (Hendrycks et al., 2021b).
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• Codegeneration: HumanEval (Chen et al., 2021), MBPP (valid/test) (Austin et al., 2021), LiveCodeBench
(20240801-20250501) (Jain et al., 2025a).

• Scientific reasoning: GPQA (Main/Extended/Diamond) (Rein et al., 2023).

• Commonsense and general reasoning: ARC Challenge/Easy (valid/test) (Clark et al., 2018), Com-
monsenseQA (valid/test) (Talmor et al., 2019), DROP (Dua et al., 2019), PIQA (valid/test) (Bisk
et al., 2020), HellaSwag (valid/test) (Zellers et al., 2019), SimpleQA (Wei et al., 2024), OpenBookQA
main/additional (valid/test) (Mihaylov et al., 2018), WinoGrande 1.1 (dev/test) (Sakaguchi et al., 2020).

• Conversation and evaluation frameworks: ArenaHard (Li et al., 2024), MTBench (Zheng et al., 2023).

We decontaminate our dataset of Dockerized executable repositories against SWE-bench Verified (Jimenez
et al., 2024) by doing the following:

• Removed all Docker images built from repositories in SWE-bench Verified.

• Confirmed no remaining unexpected instance-level contamination by verifying that pairwise (dataset
instance to SWE-bench Verified instance) Jaccard similarities between diff patch line sets remained
below 0.2.

G Mathematical expression comparison for RL

Reinforcement learning on mathematical computation problems, both with numerical and symbolic answers,
requires comparing the predicted answer to the ground truth answer contained in the dataset. We do this
using the disjunction of two verifiers: a custom one described below and MathVerify (Kydlicek et al., 2025). If
any of them considers the expressions to be equivalent, the predicted answer is deemed correct.

The custom verifier grows a set of equivalent expressions for both the predicted answer and the ground truth
answer, and returns whether at the end, there is a nonempty intersection between those sets. Expressions
are added based on various normalizations and transformations: string normalizations and replacements,
normalization of unicode math symbols to Latex, normalization of Latex expressions, numerical computatation
with floating point numbers up to a certain precision, symbolic computations, simplifications and normalization
using SymPy (Meurer et al., 2017) and recursion in this manner for structured objects such as matrices and
real intervals.

H Prompting guide

Reserved tokens are used for general text and chat formatting, and are not intended to be encoded from user
input. They include text sequence start and end markers, padding, chat message header delimiters, and an
end of chat message token.

• <|begin_of_text|> (128000): global text sequence start marker.

• <|end_of_text|> (128001): global text sequence end marker.

• <|pad|> (128004): padding token.

• <|start_header_id|> (128006): start of chat message header.

• <|end_header_id|> (128007): end of chat message header.

• <|eot_id|> (128008): end of chat message.

Trace prediction tokens are designed for predicting program execution traces and may be enabled when
encoding user-controllable input to expose CWM’s trace prediction functionality. They include tokens for
frame delimiting, action separation, function return/call, next line, exception, and argument separation, as
well as a sentinel token for the start of the source code context for trace prediction (see below).

• <|frame_sep|> (128100): start of trace sentinel, end of execution step.

55



• <|action_sep|> (128101): start of source code line.

• <|return_sep|> (128102): execution step: return from function scope.

• <|call_sep|> (128103): execution step: enter function scope.

• <|line_sep|> (128104): execution step: next line.

• <|exception_sep|> (128105): execution step: exception.

• <|arg_sep|> (128106): separator for return and exception values.

• <|trace_context_start|> (128107): start of source code context for trace prediction.

Chat format. A chat is structured as a list of messages, each with the following format:

<|start_header_id|>$ROLE<|end_header_id|>

$CONTENT<|eot_id|>

The $ROLE can be system, user, assistant, or tool: $TOOL. $CONTENT is the message content. The model is
to be prompted with an assistant header and two following newline characters; the <|eot_id|> token marks
the end of its reply and is thus the stop token for inference. The conversation’s first token is expected to be
<|begin_of_text|>.

Reasoning. CWM is a hybrid reasoning and non-reasoning model; reasoning mode is enabled via prompting.
Reasoning mode is turned on by starting the system prompt with:

You are a helpful AI assistant. You always reason before responding, using the following format:

<think>
your internal reasoning
</think>
your external response

The model should be prompted with a leading <think>\n, i.e., a prompt should end with (showing newline
characters for clarity here):

<|start_header_id|>assistant<|end_header_id|>\n\n<think>\n

The reasoning section will be closed with </think>, and any text produced afterwards is the answer to the
preceding user input.

Tool Use. The model performs tool calls with the following format:

<tool: $TOOL>
$CONTENT
</tool>

Any available tools are to be announced in the system prompt. User code is responsible for detecting tool
calls in model output and responding with a message marked with the respective role.

An example tool output of the python tool could be:

<|start_header_id|>tool: python<|end_header_id|>

completed.
[stdout]$STDOUT_CONTENT[/stdout]
[stderr]$STDERR_CONTENT[/stderr]<|eot_id|>

Control is then handed back to the model for further processing.

An example of how tools can be specified in the system prompt:
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You have access to the following tools:

<tool: bash>
[command(s)]
</tool>
Executes bash command(s) [command(s)] in the current session. [command(s)] can be any non-interactive

bash command(s) either single or multi-line.

<tool: create>
[path]
[content]
</tool>
Creates a new file at [path] with [content], where [path] must not exist, but its parent directory

must exist.

Here, the model may invoke either the bash or the create tool.

Trace Prediction. CWM is able to predict the execution of Python programs on a step-by-step basis using
dedicated trace prediction tokens. The prompt requires a source code context, $CONTEXT, and a sentinel
<|frame_sep|> token to induce trace prediction, structured as:

<|begin_of_text|><|trace_context_start|>$CONTEXT<|frame_sep|>

In $CONTEXT, the entry point for trace prediction is marked with a << START_OF_TRACE comment. An execution
trace in CWM is a series of frames, with each frame consisting of an observation (local variables) and an
action (source code line). There are four different types of frames, formatted as follows:

<|call_sep|>$LOCALS<|action_sep|>$SOURCE<|frame_sep|>
<|line_sep|>$LOCALS<|action_sep|>$SOURCE<|frame_sep|>
<|return_sep|><|action_sep|>$SOURCE<|arg_sep|>$VALUE<|frame_sep|>
<|exception_sep|><|action_sep|>$SOURCE<|arg_sep|>$VALUE<|frame_sep|>

The model produces an <|end_of_text|> token to denote the end of the execution, which is reached when
exiting the scope of the trace’s entry point. Locals are formatted as JSON key-value pairs where values are
always rendered as JSON strings. and $VALUE for return and exception frames is also a JSON-encoded string
representation.

I Formal mathematics datamix

We use the following datasets of mathematics in the Lean 4 (Moura and Ullrich, 2021) theorem proving
language.

• LeanUniverse (Aram H. Markosyan, 2024), a dataset of (initial proof state, tactic, resulting proof
state) triples from Lean’s mathematical library (mathlib Community, 2020) and other open-source Lean
repositories, as a form of code world modeling in Lean.

• Goedel-Pset (Lin et al., 2025), formatted as a mathematical statement and proof formalization dataset,
where the task is to translate a mathematical problem and solution from natural language to Lean.

• Mathematical statement formalization datasets, where the task is to translate a mathematical statement
from natural language to a Lean theorem statement without proof: Compfiles (CompFiles authors,
2025), Lean Workbook (Ying et al., 2025), miniF2F (Zheng et al., 2022), ProofNet (Azerbayev et al.,
2023), Goedel-Pset.
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Table 14 RULER results at 32k and 128k sequence length. Results are reported for CWM, Qwen3-32B and Gemma-3-
27B.

Context Gemma-3-27B Qwen3-32B CWM

32k 91.1 94.4 84.3
128k 66.0 85.6 69.7

J RULER evaluation

We compare CWM against Gemma3-27B and Qwen3-32B post-trained models. Results can be seen on Table 14.
Results suggest that CWM outperforms Gemma3-27B under both 32k and 128k sequence length, but falls
short of Qwen3-32B. However, it is important to note that Qwen3-32B uses full attention across all layers,
resulting in significantly higher computational costs, particularly for longer sequences. Therefore, we believe
CWM represents a good trade-off between efficiency and model performance.

K Agent capabilities learnt during RL training

In the context of SWE agentic tasks, we highlight in Figure K.31 two notable capabilities learnt by the
SWE RL agent during the RL training stage.

First, Figure K.31a shows that the agent learns to test code more often over the course of RL training: while
at the beginning of RL training the agent runs tests on at least one turn of a rollout for 57% of trajectories,
after only 4,000 steps of RL training it runs tests on at least one turn of a rollout for 74% of trajectories.

Second, through RL training the agent learns to better localize files relevant to solving the issue. We formalize
it by defining the recall for a given task to be the percentage of files in the gold patch that were edited by the
agent during a rollout:

Recall =
|{files edited by the agent} ∩ {files edited in the gold patch}|

|{files edited in the gold patch}|
.

Figure K.31b shows that the agent’s average recall increases from 58% at the start of RL training to over 66%
after only 4,000 steps.
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(a) Percentage of trajectories where SWE RL performs
tests on at least one turn increases over the course of RL
training.
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(b) SWE RL learns to localize the relevant files over the
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Figure K.31 Agentic capabilities learnt during CWM RL training.
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