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Abstract

Modern Large Language Models (LLMs) are commonly trained through a multi-stage pipeline encompassing pretraining and
supervised finetuning. While recent studies have extensively investigated the benefits of continual pretraining on high-quality
data, these efforts have focused primarily on English. In this work, we explore the effectiveness of various data mixtures
in a continual pretraining setting to enhance performance on Italian-language tasks. Leveraging Minerva-7B, a fully open-
source LLM pretrained on a corpus composed of 50% Italian, we define and evaluate three distinct data recipes—comprising
mathematical, encyclopedic, and copyrighted content-spanning both Italian and English. We also investigate the effect of
extending the model’s context window during continual pretraining on its ability to handle long-context tasks. To support
our evaluation, we introduce INDAQA, a new benchmark for narrative question answering in Italian. Our results reveal
that both data composition and increased context length substantially improve performance, offering valuable insights into

continual pretraining strategies for less represented languages within an open scientific framework.
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1. Introduction

Modern Large Language Models (LLMs) are typically
trained through a multi-stage process comprising pre-
training, supervised fine-tuning (SFT), and preference
alignment. During pretraining, models are trained in an
autoregressive manner to learn language in an unsuper-
vised way, without requiring human-labeled data [1, 2].
This phase allows models to acquire linguistic knowl-
edge from large-scale, unstructured corpora. Recent ap-
proaches [3, 4, 5, 6] structure the pretraining process into
two steps. In the first, models are exposed to trillions of
raw web-sourced tokens, with only a small portion of
high-quality content. In the second, training continues on
a curated set of high-quality language or domain-specific
texts, aiming to mitigate the impact of low-quality web
content and extend the model’s exposure to up-to-date
and informative content.

After the intensive pretraining phase—where LLMs are
trained solely on unlabeled data—models undergo super-
vised fine-tuning to adapt to real-world use cases. SFT
can target either task-specific applications (e.g., question
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answering or summarization) or, more frequently, aim at
training general-purpose conversational models. This is
achieved by finetuning LLMs on hundreds of thousands
of conversations covering diverse domains. Through this
process, models learn to follow instructions to perform
a wide range of tasks [7, 8, 9] and generate coherent
responses in dialogue-like interactions.

While the overall LLM training pipeline has become
increasingly standardized, the role of curated data after
initial pretraining remains an active area of investigation
for further improving model capabilities. However, the
effects of continual training on curated data mixtures re-
main poorly understood, particularly for less represented
languages such as Italian. To the best of our knowledge,
OLMo et al. [3] is the only work specifically addressing
the impact of data composition in an open-source setting;
however, it is limited to the English language.

In this work, we address this gap by systematically in-
vestigating how incorporating high-quality data mixtures
during continual pretraining affects model performance
on English- and Italian-language tasks. A particular fo-
cus is placed on cultural knowledge evaluation, where
curated data is expected to play a crucial role in enrich-
ing the model’s ability to answer questions about Italian
cultural content. To this end, we build on the Minerva-7B
base model [10], a fully open-source LLM pretrained on
a balanced corpus of Italian and English data (50% each),
which provides a suitable foundation for evaluating bilin-
gual continual pretraining strategies.

Specifically, we define three distinct high-quality data
recipes for continual pretraining, varying in data dimen-
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sions and source types, using both Italian and English
texts. These include content rich in mathematical rea-
soning, encyclopedic knowledge, and copyrighted books.
Through ablation studies, we examine the individual con-
tribution of specific data sources—such as copyrighted
material and mathematical content—on downstream per-
formance across English and Italian benchmarks.

Additionally, we explore the effect of extending the
model’s maximum context length during continual pre-
training, aiming to assess its impact on long-context un-
derstanding. After pretraining, we instruction-tune the
various model variants using a bilingual (English and
Italian) instruction-following dataset to evaluate their
performance in conversational settings.

Finally, to properly evaluate the influence of longer
context and data composition, we introduce INDAQA, a
novel Italian benchmark for narrative question answering
(Section 6.1). Using INDAQA, we demonstrate the bene-
fits of longer context windows and specific high-quality
data sources for complex language understanding tasks.

2. Related Work

Continual Training. Following the initial pretraining
phase over trillions of tokens, it is now common practice
to introduce high-quality data in a subsequent training
stage to further enhance LLM performance and steer the
model’s distribution toward more controlled domains.
Recent research has increasingly focused on continual
pretraining as a practical and impactful approach. For
instance, OLMo et al. [3] and Grattafiori et al. [4] intro-
duce a mid-training stage that incorporates high-quality
datasets into the pretraining process, e.g. GSM8K train-
ing set for mathematical reasoning. This stage is treated
as a continuation of the initial training, employing an
annealing learning rate that decays linearly to zero. This
approach has been shown to improve downstream per-
formance in tasks requiring structured reasoning and
encyclopedic knowledge recall.

Continual training is also frequently employed to adapt
released open-weight LLMs to specific languages or do-
mains, thereby improving performance on targeted tasks.
Basile et al. [11] and others demonstrate that adapting
pretrained multilingual models to Italian using curated
high-quality data leads to significant improvements in
Italian-language benchmarks. Despite these advances,
there is still a lack of systematic studies that ablate and
isolate the specific contributions of different data mixing
strategies in the continual pretraining stage—particularly
for less represented languages like Italian. In our work,
we assess the impact of controlled data used in the
continual-pretraining stage, looking at their impact on
English and Italian performance.

Context Length Manipulation. Large Language
Models are typically pretrained with a fixed maximum
context length, which limits the number of tokens they
can process in a single sequence. Recent work by Xiong
et al. [12] demonstrates how expanding the context
length of Llama-2 models—from 4,096 to 32,728 tokens—
can improve performance on long-context tasks. A crit-
ical aspect of long-context training is the choice of po-
sitional encoding. Most modern LLMs employ Rotary
Positional Embeddings (RoPE) [13], which encode token
positions by rotating the query and key vectors in atten-
tion layers. This approach maintains relative positional
information and can be adapted for longer sequences.
Recent studies show that modifying the RoPE base fre-
quency during continual pretraining enables models to
handle longer contexts and even extrapolate beyond the
trained sequence lengths [14, 15]. Building on these find-
ings, several recent LLMs have been released with ex-
tended context capabilities. For example, Grattafiori et al.
[4] increases the context length of Llama-3 models from
8,192 to 128,000 tokens in the final stages of pretraining.
Similarly, the Qwen model family [16] mostly supports
contexts up to 32,000 tokens. However, despite these
advancements, to the best of our knowledge, this paper
is the first that systematically investigates the impact of
context length manipulation on Italian-language tasks.

Evaluation of LLMs in Italian. Several recent efforts
aim to close the evaluation gap between English and
Italian for generative LLMs. One of the first initiatives,
Ita-Bench [17], combines translated benchmarks with
natively authored Italian tasks, focusing on instruction-
following and question answering. Along the same lines,
Magnini et al. [18] reframes native Italian resources into
both multiple-choice and open-ended formats, study-
ing the role of prompting strategies. More recently,
ITALIC [19] introduces a multiple-choice question an-
swering dataset entirely written in Italian, covering lin-
guistic, cultural, and domain-specific knowledge. In par-
allel, Puccetti et al. [20] adapts Invalsi assessments to
probe LLMs’ multi-domain abilities.

Complementing these Italian-specific efforts, mul-
tilingual benchmarks have also emerged. Global-
MMLU [21] extends MMLU to multiple languages via
professional translation and cultural adaptation, while
MultiLOKO [22] provides culturally grounded questions
authored directly in each target language, including Ital-
ian. While these benchmarks cover a variety of linguistic
and cultural aspects, they primarily focus on short-form
tasks. Yet, many real-world scenarios, such as narra-
tive comprehension and document-level reasoning, re-
quire models to process and integrate information across
longer contexts. However, evaluation resources in Italian
remain limited in this dimension. To fill this gap, we intro-
duce INDAQA (Section 6.1), the first narrative question



answering benchmark designed to evaluate long-context
comprehension in Italian.

3. Methodology

This work investigates the impact of continual training
and the influence of different data sources on downstream
performance, with particular attention to copyrighted
material. Additionally, we aim to address a gap in the
literature regarding the effect of context length expansion
on performance in Italian.

We focus on three key dimensions:

« Data recipes: we introduce three distinct recipes
designed to evaluate the role of data composition
during continual training.

+ Context length: we describe how we adapt mod-
els to long-context scenarios, using a selected data
mixture from the previous step.

+ Instruction following: we examine the
instruction-following capabilities developed on
top of each training recipe.

3.1. Data Recipes for Wide Linguistic
Coverage

To evaluate the impact of various data sources on the con-
tinual training of an open-source LLM, namely Minerva-
7B base model, we define several data recipes, each rep-
resenting a distinct mixture of training corpora. Table 1
presents the data composition for one such configuration,
which we refer to as Recipe-1'. This recipe incorporates
a diverse set of sources. For Italian, we include: the Ital-
ian Wikipedia (Hugging Face version, 2023 dump, Italian
split)’ encyclopedic collection of text, RedPajama [23], a
web-based collection, and Ita-Bench [17], a suite of Italian
and English benchmarks for generative models (Italian
training split). Regarding English, the dataset comprises:
Wikipedia (English split), Ita-Bench (English training
split), Fineweb-edu [24], a web-based collection, Project
Gutenberg,” which comprises public-domain books, and
FLAN [25, 26, 27, 28, 29], which contains different in-
structions for mathematical and logical reasoning.
Building on Recipe-1, we design two additional data
mixtures, Recipe-2 and Recipe-3, to evaluate the im-
pact of mathematical reasoning data and the inclusion of
a large volume of copyrighted books. Table 2 shows
the data composition for these two recipes. Starting
from the foundation of Recipe-1, we replace the standard
Wikipedia dump with a curated and cleaned version col-
lected by us, updated to May 2024. We also expanded the

Recipe-1 corresponds to the continual pretraining data used in the
first version of the released Minerva-7B.

Zhttps://huggingface.co/datasets/wikimedia/wikipedia

Shttps://huggingface.co/datasets/manu/project_gutenberg

Data Source Tokens Times Final Tokens
Italian

Benchmarks 6.9M 21 144M

Wikipedia 814M 3 2.4B

RedPajama 5.8B 11.6B
English

Benchmarks 55M 5 275M

Wikipedia 2.4B 3 7.3B

Fineweb-edu 6B 2 12B

Gutenberg 1B 1 1B

FLAN 9.5B 1 9.5B
Code

The Stack 3.3B 1 3.3B

Recipe-1 - - 47.9B

Table 1

Breakdown of the data components of Recipe-1. Times refer
to the number of times each data source is sampled.

dataset with additional sources. For Italian, we included
the Wikisource* collection of articles, Gazzetta Ufficiale,’
which contains legislative and administrative acts of the
ITtalian State, and Project Gutenberg. For English, we
incorporated subsets of the Dolmino-mix dataset, used
in the continual training of OLMo-2 [3], specifically the
MATH and StackExchange (SE) components.

The key distinction between Recipe-2 and Recipe-3
is that Recipe-3 incorporates the Books3 dataset [30],
which allows the impact of including closed-copyrighted
book content to be quantified. Further details on our data
preprocessing steps can be found in Appendix B.

3.2. Long-context Adaptation

Recent studies demonstrate that continual pre-training
can substantially extend the context length of LLMs [12,
31]. Based on previous work and motivated by the lack of
a proper assessment of context expansion in Italian, we
carry out the context length expansion on Recipe-3, our
continually pre-trained model described in Section 3.1.
Following the methodology of Xiong et al. [12], we extend
the maximum context length from 4,096 tokens (the origi-
nal limit of Minerva-7B) to 16,384 tokens. This expansion
requires adjusting the Rotary Position Embedding (RoPE)
base frequency 6 from 10,000 to 500,000 to accommo-
date the increased sequence length. To establish baseline
comparisons, we adjust the RoPE base frequency in our
continually-trained models obtained through the recipes
of Section 3.1 in order to adapt them to longer contexts.

*https://huggingface.co/datasets/wikimedia/wikisource
Shttps://huggingface.co/datasets/mii-llm/gazzetta-ufficiale


https://huggingface.co/datasets/wikimedia/wikipedia
https://huggingface.co/datasets/manu/project_gutenberg
https://huggingface.co/datasets/wikimedia/wikisource
https://huggingface.co/datasets/mii-llm/gazzetta-ufficiale

Data Source  Tokens Times Final Tokens Dataset Language(s)  # Instructions
Italian TOLU-v3 EN 940000
LIMA IT/EN 2000
Benchmarks 6.9M 7 50M WildChat-IT IT 5000
Wikisource 53M 5 266M TowerBlocks-v0.2 IT/EN 7276
RedPajama 208 2 408 GPT-40-ITA-Instruct IT 15000
Gazzetta 853M 1 853M Aya IT 700
Gutenberg 100M 5 500M
Wikipedia 1.2B 5 6.1B Table 3
- Overview of the SFT datasets used for instruction tuning.
English
Benchmarks 55M 5 275M
FLAN 12B 1 12B
Wikipedia 718 ! 718 4.1. Continual training
Dolminomath 11.7B 1 11.7B
Dolminosg 1.5B 1 1.5B We trained the Minerva-7B base model using three differ-
Books3 24B 1 24B ent data recipes, as detailed in Section 3.1. For each recipe,
Code we performed continual pretraining using a newly initial-
ized optimizer—namely AdamW [32]. Across all recipes,
The Stack 2.5B 1 2.5B we used a batch size of 1024 and a maximum context
Recipe-2 _ _ 92B len.gtlh of 4096 tokens, Cf)nsistent with the origi.nal pre-
Recipe-3 B B 116B tralmng5setup. The learning rate was set to a maximum of
1 x 1077, with a warmup period of 200 steps for Recipe-1
Table 2 and 600 steps for Recipe-2 and Recipe-3, reflecting the

Breakdown of the data components of Recipe-2 and Recipe-3.
Recipe-3 builds on Recipe-2, adding Books3. Times refer to
the number of times each data source is sampled.

3.3. Instruction Following

After continual pre-training, each recipe is converted
into an instruct model through an SFT stage on the di-
alogue mixture summarised in Table 3. We base the
mixture on TULU-v3 [9], a popular open-source 940K-
conversation corpus covering 85 task families (reasoning,
code, function-calling, safety, tool use, etc.) mined from
public APIs and manually filtered for policy compliance,
which provides the broad, structured competence ex-
pected of modern assistants. To inject high-signal, stylis-
tically polished examples we add the 1000-turn LIMA
dataset [8] and its Italian counterpart LIMA-IT, produced
by us by translating every prompt/response pair with
GPT-40-mini under a fidelity-preserving prompt; this
gives the model a high-quality set of concise, helpful
dialogue in both languages. We expand our selection
with additional Italian-centric datasets: i) WildChat-IT,
consisting of 5K informal prompts; ii) TowerBlocks-v0.2,
containing 7K bilingual it-en public-service Q&A pairs;
iii) GPT-40-ITA-Instruct, with 15K high-quality synthetic
chain-of-thought examples; and iv) Aya, which includes
700 role-play and reasoning turns, specifically targeting
colloquial language, public administration knowledge,
and culturally grounded reasoning.

larger token volumes in the latter two.

For the extended context training variant of Recipe-
3, which we name Recipe-316k, we aimed to maintain
consistent training dynamics by keeping the number
of gradient updates fixed across both the standard and
long-context regimes. Specifically, when increasing the
context length from 4,096 to 16,384 tokens (a 4x increase),
we proportionally reduced the batch size by a factor of
4. This ensured that each gradient update processed
approximately the same total number of tokens, allowing
for a controlled comparison between standard continual
training and long-context adaptation.

We ran our continual training experiments through
the LLM-Foundry® library. Each run used 64 custom
NVIDIA-A100 with 64GB of VRAM, scattered on 16 nodes.
All the experiments were executed on the Leonardo su-
percomputer7 .

4.2. Instruction finetuning

Supervised fine-tuning was carried out with the
LLAMA-Factory® toolkit, which supports several con-
versation templates and provides utilities for efficient
data parallelization. We fine-tuned the full Minerva-7B
weights (no LoRA/adapters) in bfloat 16 mixed preci-
sion. Training lasted two epochs with a peak learning
rate of 1 x 107° scheduled by cosine decay after a 10%
warm-up, and AdamW as the optimizer. We used an

®https://github.com/mosaicml/llm-foundry
"https://www.hpc.cineca.it/systems/hardware/leonardo/
8https://github.com/hiyouga/Llama-Factory
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effective batch of 64 sequences (= 128k tokens). All
models were trained with a 4096-token context window,
except the long-context variant of Recipe-3, which re-
tained its 16384-token window. End-to-end, each recipe
consumed about 210 GPU-hours (240 for the long-context
run). Detailed timing and CO; estimates are shown in
Appendix A.

5. Evaluation

5.1. Language Modeling by Genre

To evaluate the impact of the different data recipes, we
analyze perplexity scores of trained LLMs on held-out
data from various genres. Specifically, we test the models
on three distinct genres: Books, Wikipedia, and News.

The Books set consists of 51 held-out books selected
from Books3 [30], covering 25 different genres, in En-
glish languages. The Wikipedia set includes 50 Italian
pages from a 2025 snapshot’, excluded from the training
data used in all recipes. The News set consists of 200
Italian newspaper articles we independently collected
from 2025 publications, ensuring they were never seen
during any training step. Table 4 reports the language
modeling performance, measured by perplexity, across
these domains for each trained model.

Regarding Books, incorporating Books3 into the train-
ing mix significantly lowers perplexity, as seen in the
improved performance of Recipe-3. This indicates that in-
cluding in-domain book content enhances generalization
to literary-style text. Additionally, testing Recipe-316x
using 16k context on Books drops the perplexity to 8.98,
further improving modeling on extended sequences.

For the Wikipedia genre, all three recipes outperform
the original pretrained model, demonstrating improved
ability to model high-quality encyclopedic text. Notably,
Recipe-2 and Recipe-3 achieve the lowest perplexity, sug-
gesting benefits from training on more recent and cleaner
Wikipedia texts.

In contrast, for the News genre, perplexity differences
among the recipes are minimal (+0.20), indicating a lim-
ited impact of the training data variations on this domain.
Interestingly, the base model achieves the lowest perplex-

ity.

Bottom line: The modeling of literary-style texts and
Wikipedia articles is influenced by the choice of contin-
ual pretraining strategies, whereas News articles show no
differences.

“We process the May 1st, 2025 Wikipedia dump by first discarding
pages with fewer than 500 tokens, and then sampling uniformly at
random from the resulting set.

Model Books |  Wikipedia | News |

Pretraining 1].05i0.55 7.54j:0_35 10.05i0.22

Recipe-1 11.084055 7.2040.37 10.2240.22

Recipe-2 12124062 6.7840.41 10.4540.23

Recipe-3 9.57 +0.48 6.7240.41 10.4540.23

Recipe—316|< 9-56;‘:0.48 6.75:]:0,41 10.42:{:0(23
Table 4

Perplexity scores of our proposed training recipes on heldout,
comprising texts from the following genres: Books, Wikipedia
and News. The input text is truncated to 4K tokens.

5.2. Multi-Choice Question Answering

To properly assess how different continual pretrain-
ing recipes influence LLM capabilities, we evaluate
our trained models on a range of Italian-language
benchmarks. In this Section, we focus exclusively
on the continually-trained models, before applying
any instruction tuning. This approach isolates the ef-
fects of continual pretraining and avoids biases intro-
duced by SFT data. We conduct evaluations using the
LM-Evaluation-Harness [33] library, leveraging the
multi-choice format: a model’s next-token prediction is
used to assess its QA ability.

We evaluate the models using ITA-Bench [17], select-
ing a diverse set of tasks from the benchmark: AMI
(Misogyny Detection), GhigliottinAI (GH; a culturally
grounded game), NERMUD (Named Entity Recognition),
Prelearn (PL; Prerequisite Learning), ARC (Scientific Rea-
soning), BoolQ (BQ; Boolean Questions), GSM8K (Math-
ematics), HellaSwag (HS; Textual Entailment), MMLU
(Multi-domain QA), PIQA (Physical Interaction QA), and
SCIQ (Science Questions). For AMI, GhigliottinAl, and
NERMUD, we use ITA-Bench’s cloze-style evaluation
format.

Table 5 shows that all recipes of continual pretraining
consistently improve over the pretrained model, with
an average gain of approximately +5.0 points. This re-
sult reinforces the importance of continual pretraining
on high-quality (e.g., Wikipedia, Fineweb-edu) and syn-
thetic datasets (e.g., FLAN, Dolmino-MATH subset). No-
tably, MMLU exhibits substantial improvements across
all recipes (= +15 points), highlighting strong gener-
alization on multi-domain QA tasks. The best average
performance is achieved by Recipe-2 and the long-context
variant of Recipe-3. Recipe-1 underperforms, particularly
on math-related benchmarks such as ARC and GSM8K,
indicating the critical role of domain-specific data (e.g.,
Dolmino-MATH) in boosting model capabilities.

Bottom line: Continual pretraining consistently boosts
downstream performance; mathematical data improves
STEM QA, while copyrighted books have minimal impact.



Recipe AMI GH NERMUD PL ARC¢ BQ GSM8K HS MMLU  PIQA SClQ AVG
0-shot  5-shot 0-shot 5-shot 5-shot 0-shot 0-shot 0-shot 5-shot  0-shot  0-shot -
Pretraining 45.23 45.75 59.99 54.88 39.49 59.65 52.31 60.41 25.45 70.2 90.36 ‘ 54.88
Recipe-1 49.55 44.85 41.77 59.38 42.49 82.66 51.25 62.50 40.79 68.48 90.76 57.68
Recipe-2 54.56 46.84 51.24 54.87 43.37 80.76 54.28 60.70 41.23 68.42 90.25 59.85
Recipe-3 52.65 40.87 45.26 61.75 43.37 80.76 54.36 61.42 41.56 68.42 90.86 58.24
Recipe-3;6x 51.43 40.14 62.29 57.12 41.52 82.20 54.81 60.96 41.63 68.18 92.28 59.57
Table 5

Evaluation of our proposed continual training recipes on ITA-Bench. Specifically, we report 0- and 5-shot accuracy scores on

each task on ITA-Bench.

5.3. Mathematical Evaluation

To assess the impact of different continual-pretraining
recipes on math capabilities, we rely on two widely
used English mathematical benchmarks: GSM8k [34] and
MATH [35]. The former contains grade school math word
problems, while the latter comprises challenging compe-
tition mathematics problems. We evaluate our models
using the LM-Evaluation-Harness [33], using its im-
plementations of both benchmarks. For GSM8k, we adopt
an 8-shot Chain-of-Thought prompting setup, while for
MATH, we follow the Minerva-MATH [36] protocol, us-
ing 4-shot Chain-of-Thought prompting. Both bench-
marks use the generate_until setup, with model out-
puts evaluated via post-processing for accuracy. We com-
pare our recipes to different open-source Italian (occiglot-
7b-it-en-instruct'’, ANITA-8B [37]) and multilingual
(Llama-3.1-8B [4], Mistral-7B [38], Qwen3-8B [39]) mod-
els, all in the same parameter range.

Table 6 presents the results of tested models, with our
four continually pre-trained Minerva models evaluated
both before and after instruction tuning. On GSM8Kk,
Recipe-2 achieves the highest accuracy in both settings,
followed by Recipe-3, while Recipe-1 consistently un-
derperforms. Instruction tuning yields consistent im-
provements across all recipes, reinforcing the overall
ranking and demonstrating its positive effect. These
findings suggest that incorporating mathematical data,
such as Dolmino-MATH, during continual pre-training
plays a significant role in enhancing mathematical rea-
soning. For the MATH dataset, Recipes 2 and 3 outper-
form Recipe-1 in the base (pre-instruction tuning) setting,
particularly benefiting from long-context capabilities. In-
terestingly, after instruction tuning, the performance gap
narrows, with Recipe-1 becoming more competitive.

When comparing Minerva models to state-of-the-art
systems on GSM8Kk, they lag behind closed-data models
in both Italian and English. On the MATH dataset, Min-
erva is comparable to Occiglot and Mistral, two closed-
data models, but still lags behind top-performing English-
centric systems. This highlights the perfomance gap that
Italian open-data LLMs must bridge.

Ohttps://huggingface.co/occiglot/occiglot-7b-it-en-instruct

Model MATH | GSM8k
Minerva Base Models
Recipe-1 2.48 14.70
Recipe-2 9.57 34.42
Recipe-3 8.96 26.45
Recipe-3,¢¢ 10.26 32.29
Minerva Instruct Models
Recipe-1 10.14 24.63
Recipe-2 12.84 42.45
Recipe-3 13.00 37.98
Recipe-3; . 12.82 40.25
Italian-specific Models
Occiglot-7b 10.86 49.88
ANITA-8B 17.56 60.65
English-first Models
Llama-3.1-8B 41.94 80.66
Mistral-7B-v0.3 13.92 53.22
Qwen3-8B 65.00 87.86

Table 6

Mathematical evaluation results on different Minerva con-
tinual pre-training recipes (before and after instruction fine-
tuning) and State-of-the-Art models on Minerva-MATH (4-
shot) with sub-categories, and GSM8k (8-shot).

Bottom line: Continual pretraining on mathematical
data consistently improves accuracy on math problems.
Instruction tuning on TULU-v3 helps mitigate the short-
comings of Recipe-1 on the MATH benchmark.

5.4. Cultural Evaluation

We assess the impact of our recipes used during continual
pre-training by leveraging the Italian part of the Multi-
loko [22] dataset (250 instances), which provides ques-
tions on cultural content along with multiple acceptable
answers. We then compare our continually pre-trained
and instruction finetuned Minerva models to other Italian
and English models, as in the previous section.

According to the results in Table 7, Recipe-1 is the
best performing model, both in Zero- and Few-Shot set-
tings, surpassing both the Italian-specific and the English-
centric counterparts.



MultiLoKo ITALIC-GEN
Model ‘ 0-shot ‘ 5-shot ‘ 0-shot ‘ 5-shot
| EM  F1 | EM  F1 | METEOR
Minerva Models
Recipe-1 0.17 0.27 0.18 0.29 0.24 0.27
Recipe-2 0.07 0.16 0.12 0.22 0.20 0.23
Recipe-3 0.13 0.23 0.13 0.23 0.21 0.22
Recipe-3;6x 0.11 0.20 0.13 0.24 0.22 0.23
Italian-specific Models
occiglot-7b 0.14 0.21 0.10 0.15 0.22 0.20
ANITA-8B 0.14 0.18 0.13 0.17 0.21 0.15
English-first Models
Llama-3.1-8B 0.15 0.20 0.11 0.15 0.21 0.20
Mistral-7B-v0.3 0.06 0.14 0.08 0.16 0.15 0.19
Qwen3-8B 0.09 0.14 0.08 0.13 0.16 0.19
Table 7

Cultural alignment results on Multiloko Italian and ITALIC-
GEN datasets. We report 0- and 5-shot EM and F1 Scores for
Multiloko, while METEOR metric is used for ITALIC-GEN.

Recipe-2 and Recipe-3, which are trained on a large
amount of mathematics, code, and English-copyrighted
books, do not show the same cultural alignment in the
MultiLoKo Italian set. This observation demonstrates
that synthetic, mathematical, and English literary data
can be detrimental for Italian cultural alignment.

Recently, Seveso et al. [19] have shown that Italian-
first models perform consistently lower than English-first
ones on the ITALIC dataset. We hypothesize that the
multiple choice format could be particularly problem-
atic and might obscure the cultural knowledge recall of
language models. Therefore, we examine whether these
results hold when reframing ITALIC in an open-ended
setting, which better reflects potential use cases for gen-
erative models. Details on how we reframed the dataset,
ITALIC-GEN, are in Appendix D.

We use METEOR [40] to evaluate the performance,
as only one reference answer per question is available,
and standard string matching metrics, such as EM, may
struggle when model outputs and references differ signif-
icantly in phrasing and/or length. The results in Table 7
confirm the trend seen in MultiLoKo, which again demon-
strates the cultural alignment capacity of Minerva models.
Our results further suggest that incorporating structured
mathematical data during pretraining can constrain a
model’s acquisition of cultural knowledge.

Bottom line:  Multiple-choice QA may not be well suited
for evaluating cultural competence, as it limits expressive
freedom and fails to capture the nuanced reasoning required
for culturally-grounded responses. Notably, Italian-native
models emerge to be the most aligned with Italian culture,
highlighting the importance of language-specific pretrain-
ing.

6. Long-context Evaluation on
Narrative Text

To evaluate the long-context capabilities of our model,
we focus on narrative question answering, a task that
requires the processing and understanding of exten-
sive narrative text in order to answer questions. Narra-
tiveQA [41], a widespread benchmark for this task, was
constructed in English, which limits its use for the eval-
uation of long-context performance in other languages.
To address this limitation, we introduce INDAQA (Sec-
tion 6.1), a novel benchmark for Italian narrative question
answering, and, to the best of our knowledge, the first
narrative question answering dataset in Italian. We de-
scribe the evaluation setup for base and instruction-tuned
models on both NarrativeQA and INDAQA in Section 6.2
and report the results in Section 6.3.

6.1. INDAQA - Italian Narrative DAtaset
for Question Answering

We start building the dataset from the Italian split of
Echoes from Alexandria [42], collecting 365 (book, sum-
mary) pairs with full texts from Wikisource and sum-
maries from Wikipedia. After manually verifying align-
ment and removing plot-unrelated content from sum-
maries, we prompt an LLM'' to generate 20 question-
answer pairs per book using the following guidelines: (i)
questions must be unique, (ii) questions must be clear,
unambiguous, and answerable from the summary alone,
and (iii) each question requires having two short, poten-
tially different, reference answers.

After gathering a large number of samples, we filter
them through three sequential steps. First, we dedu-
plicate questions, but rather than discarding duplicates
entirely, we retain all unique answers as additional ref-
erences for the remaining samples. We also preserve
different reformulations of identical questions, as Narra-
tiveQA contains similar variations. Second, we remove
unanswerable questions, i.e., samples containing invalid
responses such as "Information not present in the sum-
mary." Finally, we filter out meta-questions that focus on
structural rather than plot elements (e.g., "What happens
in chapter 37" or "What is the title of the book?"). The last
two filtering steps are carried out through a set of manu-
ally derived RegEx patterns. Examples of samples that
were filtered out are showcased in Table 11 (Appendix).

We reduce the average answer length so as to be bet-
ter aligned with NarrativeQA by employing an LLM to
shorten the replies. We perform this step only for the
samples having no reference answers with less than 5
tokens. The final statistics on the QA length are pre-
sented in Table 8. We manually validate generation and

"We use Gemini-2.0-Flash and Gemini-2.0-Flash-Lite.



Metric Avg. Length (Tokens)  # Samples
NarrativeQA
Question 8.60 & 3.30 10,557
1st Answer 4.55 4+ 3.91 10,557
2nd Answer 3.89 + 3.30 10,557
INDAQA
Question 7.06 +2.14 13,757
1st Answer 2.88 +1.27 13,757
2nd Answer 5.16 & 2.70 13,669
3rd Answer 9.27 + 3.41 4,180
4th Answer 7.40 £+ 2.26 514
5th Answer 9.61 £+ 2.66 251
Table 8

Statistics on the length of the QA samples. The average length
of the first and second answers are respectively less and on
par with NarrativeQA average on the test set. Due to the
described deduplication steps, some QA samples have up to
5 reference answers, while a small portion (88) have only 1
reference answer.

filtering steps on 17 documents (646 QA samples, 5% of
the dataset) spanning diverse summary lengths (18-1200
tokens). Each sample is annotated for acceptability using
the same criteria used for generation, yielding a 2.32%
error rate after filtering.

Our final dataset, INDAQA, consists of texts with an
average length shorter than NarrativeQA (27k vs 47k to-
kens) due to the prevalence of short stories and theatrical
plays.'* The size of the two datasets is comparable (365 vs
355 documents) with slightly more average QA samples
in INDAQA (37.83 vs 29.74). We also report the type of
questions in the dataset by analyzing the first few tokens
of the questions in Table 10 (Appendix). More details can
be found in Appendix C.

6.2. Long-context Evaluation Setup

Base-model evaluation To evaluate the effectiveness
of our long-context continual training approach, we com-
pare Recipe-3;¢x against Recipe-1, Recipe-2 and Recipe-3.
Except for Recipe-3i¢k, we adapt each model to process
longer sequences by tuning the RoPE base frequency to
6 = 100,000. We assess each model’s ability to utilize
extended local context using an adapted version of Narra-
tiveQA and INDAQA. Specifically, we truncate each text
at varying target context lengths (4,096, 8,192, 16,384 and
32,768 tokens), and we record the minimum perplexity
achieved by each model across the ground-truth answers
when given the truncated text and respective questions.
We assume that models effectively processing long con-
texts will show lower perplexity on correct answers than
those struggling with extended documents.

12Tn our experiments, the input text is always truncated at 16k tokens.

= Recipe 1 = Recipe 2 ® Recipe 3 ® Recipe 3 16K
200 .

5K 191K 740K

Perplexity

Context Length

(a) NarrativeQA

= Recipe 1 = Recipe 2 ® Recipe 3 ® Recipe 3 16K
465 905 1375

Perplexity

Context Length

(b) INDAQA

Figure 1: Evaluation of our long-context model (Recipe-316k)
against the other recipes on (a) NarrativeQA and (b) INDAQA
in terms of the average perplexity of correct answers to a
question at varying context lengths.

Instruction-tuning evaluation We evaluate the
instruction-tuned versions of the Minerva continual pre-
trained models alongside various systems, as in previous
sections. Benchmarking is conducted on both Narra-
tiveQA and INDAQA to assess real-world performance
in English and Italian narrative question answering. We
report METEOR [40] scores to measure answer quality
against the reference responses. We truncate the book
texts to 16,384 and 32,768 tokens to match our target
context lengths, following the approach used in Long-
Bench [43]. While some questions may require context
that is excluded by this truncation, all models are affected
equally, ensuring a fair comparison between them.

6.3. Results

In Figure 1 we present the results of our base-model eval-
uation. Our long-context adaptation of Recipe-3 clearly
enables the model to achieve a lower perplexity on the an-
swers of NarrativeQA and INDAQA at all context lengths
tested, indicating an effective adaptation to long data. It is
especially interesting to note the results at 32,768 tokens:
adapting models continually trained with shorter context
lengths through RoPE frequency tuning is not enough to
avoid huge spikes in perplexity, while Recipe-31¢k is able
to effectively model text at double its continual training
context window.



Model Ctxlen M@16K M@32K

Minerva models

Recipe-1 4K 13.7 3.2
Recipe-2 4K 10.1 2.2
Recipe-3 4K 129 2.4
Recipe-316k 16K 214 20.5
<
g Italian-specific Models
8 occiglot-7b 32K 16.4 15.9
S ANITA8B 8K 3.2 3.1
English-first Models
Llama-3.1-8B 128K 24.0 28.7
Mistral-7B-v0.3 32K 21.7 25.6
Minerva models
Recipe-1 4K 17.3 11.1
Recipe-2 4K 12.2 7.3
Recipe-3 4K 13.5 8.3
Recipe-316k 16K 25.9 26.0
§ Italian-specific Models
é occiglot-7b 32K 19.9 19.9
= ANITA-8B 8K 7.5 7.0
English-first Models
Llama-3.1-8B 128K 24.9 29.3
Mistral-7B-v0.3 32K 22,5 27.7
Table 9

Continual pre-training recipe evaluation on NarrativeQA and
INDAQA after instruction fine-tuning. M@16k and M@32k
denote METEOR scores with 16,384 and 32,768 token book
contexts. Bold scores indicate best overall performance; un-
derlined scores indicate best Italian-specific model.

Table 9 presents the results of the evaluation of our
instruction-tuned models. As expected, Recipe-3i¢k
achieves higher results on all settings, surpassing Recipe-
1 on all experiments with books truncated to 16k tokens
by 7.7 points on NarrativeQA and 8.6 on INDAQA. The
difference is even larger when we extend the truncation
of books to 32K tokens, with Recipe-36x achieving 17.3
and 14.9 more METEOR points in NarrativeQA and IN-
DAQA, respectively.

Minerva models perform comparably to other models
of the same size, both Italian-specific (occiglot-7b-it-en-
instruct”’, ANITA-8B [37]) and multilingual (Llama-3.1-
8B [4], Mistral-7B [38]). On NarrativeQA, the Recipe-31¢k
variant achieves a METEOR score of 21.4 and 20.5 at a
context length of 16K and 32K respectively, ranking be-
hind Llama-3.1 and Mistral-v0.3. In contrast, the Minerva
model continually pre-trained with Recipe-3;¢x outper-
forms all tested models on INDAQA at 16K tokens of
context, achieving the highest METEOR score of 25.9. At

Bhttps://huggingface.co/occiglot/occiglot-7b-it-en-instruct

32K tokens of context, it ranks second only to Llama-3.1
and Mistral-v0.3, scoring 3.3 and 1.7 points lower respec-
tively on the METEOR metric. This performance gap is
expected, given that Recipe-3;¢x’s continual training was
conducted at half the context length (16K tokens).

Bottom line:  Extending context length to 16K tokens via
continual pre-training improves modeling capabilities over
training-free methods and enhances robustness at 32K to-
kens. Recipe-3;6x achieves strong narrative QA performance
in both English and Italian, outperforming Italian-specific
models and matching English-first LLMs.

7. Conclusion

This work explores the impact of data mixing strategies
and long-context expansion on Italian language modeling.
We conduct continual pretraining using three distinct
data recipes and apply a unified instruction-following
fine-tuning approach to all resulting models. Our evalu-
ation assesses language modeling capabilities on genre-
specific data, highlighting that copyrighted books in-
cluded in the training recipes reduce perplexity on lit-
erary texts. We benchmark the proposed continual pre-
training recipes across several multi-domain tasks, with
a focus on mathematical reasoning, demonstrating that
genre-specific data, such as mathematical texts and high-
quality web content contribute to overall performance
improvements, whereas copyrighted books do not consis-
tently offer the same benefit. We also investigate cultural
alignment, finding that English datasets, such as math-
ematical texts and English-copyrighted books, can neg-
atively impact performance on culturally-aware Italian-
specific tasks. Additionally, our ITALIC-GEN adaptation
offers a complementary perspective on cultural evalua-
tion, uncovering encouraging results for Italian LLMs.
Lastly, we evaluate long-context capabilities through nar-
rative question answering in both English and Italian.
Due to the absence of an Italian benchmark, we intro-
duced INDAQA, a new dataset for Italian narrative QA,
and show that extending the context length of a model
consistently improves its downstream performance on
narrative QA.
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A. Timing and CO; Emissions
Estimates

To quantify both the computational effort and environ-
mental footprint of our training end experiments we com-
pute energy and CO, estimates assuming: Average GPU
power draw: 300 W under full load. Data-center PUE
(power usage effectiveness): 1.2. Grid emission factor:
0.28 kg CO,/kWh (typical for the European grid).

Total energy consumed per GPU-hour is

EkWh/GPUh =0.3kW x 1.2 =10.36 kWh/GPUh,
and CO; emitted per GPU-hour is

kg
Mco,/apun = 0.36 kWh x 0.28 <=

~ 0.10 kg CO2/GPUh.

We estimate that the continual training of four recipes,
Recipe 1 (3.5 days) and Recipes 2, 3, and 3¢ (7 days
each), on 64 GPUs corresponds to a total GPU-time of
~ 37632 GPUh.

Using an emission factor of 0.10 kg CO2/GPUh, this
yields about 3.8 t CO».

With respect to the instruction tuning process, consider-
ing the same number of GPUs,the standard 4 096-token
variant required approximately 3000 GPU-hours, emit-
ting roughly 3 t CO,. The long-context 16 384-token
variant ran for about double the time (6000 GPU-hours),
producing approximately 6 tons of COs.

B. Data Processing

This Section outlines the data processing steps applied
to the various datasets used in the three main recipes
described in Section 3.1.

Benchmarks. We utilized the translated bench-
marks from ITA-Bench [17], specifically leverag-
ing the training sets (when available) from both
the original and translated versions. We format-
ted these through defined prompts consistent with
LM-Evaluation-Harness [33].

Wikisource. We downloaded the Hugging Face ver-
sion of the Wikisource dataset, available at: https://
huggingface.co/datasets/wikimedia/wikisource.
Gazzetta Ufficiale. We downloaded the Hug-
ging Face version of the Gazzetta Ufficiale dataset,
available at: https://huggingface.co/datasets/mii-1lm/
gazzetta-ufficiale.

Wikipedia. For Recipe-1, we used the Hugging Face
version of the Wikipedia dataset, available at: https://
huggingface.co/datasets/wikimedia/wikipedia. While for
Repice 2 and 3 we used an updated version collected and
processed by us with pages created up to 2024.

RedPajama. We retrieved the RedPajama dataset
from Hugging Face: https://huggingface.co/datasets/
togethercomputer/RedPajama-Data-V2. We performed
deduplication using the provided metadata and extracted
the text from the ‘head’ partition of each dump. For
Recipe-1, we used the 2023-14 dump, while for Recipes 2
and 3 we additionally used dumps 2023-06, 2022-49, and
2022-40. We filtered out texts with fewer than 500 words.
Gutenberg. We collected texts from Project Gutenberg
via Hugging Face: https://huggingface.co/datasets/manu/
project_gutenberg.

Fineweb-Edu. We used the Fineweb-Edu dataset from
Hugging Face: https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu, specifically  the
sample-100BT branch. This is a random subset
of the full dataset. For Recipe-1, we selected pages with
a minimum quality score of 3.8; for Recipes 2 and 3, we
applied a threshold of 4.0.

Dolmino. The Dolmino data, specifically the math and
stackexchange subsets, were obtained from: https://
huggingface.co/datasets/allenai/dolmino-mix-1124.
FLAN. We downloaded the FLAN dataset from https:
//huggingface.co/datasets/allenai/dolma. We selected
only the examples using the following prompt formats:
fs_opt, £s_noopt, zs_opt, and zs_noopt.

The Stack. We collected data from the Stack
dataset at: https://huggingface.co/datasets/bigcode/
the-stack-v2-train-smol-ids. We included only
code samples from the refs/heads/master and
refs/heads/main branches, and further filtered to
include only repositories with at least 10 GitHub stars.
Books3. We used a previously obtained copy of the
Books3 dataset, which is no longer publicly available for
download.

C. INDAQA

In this Section, we present additional details on the
dataset we built, INDAQA. We retain samples asking
the same questions with different formulations, follow-
ing the approach in NarrativeQA. This design choice
preserves valuable linguistic variation that may prove
instrumental for future analyses examining the effects
of question reformulation on QA system performance.
While we maintain paraphrased questions, we eliminate
exact duplicates from the dataset, ensuring that each
unique reference answer is preserved only once.

We present some of the discarded questions in Table 11.
These samples were filtered using several RegEx. We
refined the RegEx patterns by manually validating their
impact on a subset of 17 documents (646 QA samples).

Finally, we also show the prompts used to generate
these samples in Tables 12. To ensure uniqueness, all
QA pairs for each book were generated in a single in-
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Question type Transl. Count %

Cosa What 4309 31.5
Chi Who 3517 25.7
Quale/i Which 2496 18.2
Come/In che modo  How 1496 10.9
Dove Where 1105 8.1
Perché Why 413 3.0
Quanto/a/i/e How much 146 1.1
Quando When 29 0.2
MISCELLANEA OTHER 185 1.4

Table 10

Statistics on the type of questions in INDAQA. The majority of
questions asks about events (What) and characters (Who). Due
to the short summary length, models struggled to generate
Why and Where question.

ference step and were later deduplicated. This process
was repeated three times with different answer length
requirements.

Length Distribution of INDAQA compared to NarrativeQA Datasets

i NQA Dataset
l NQA average: 47k tokens

504 B INDAQA Dataset
---- INDAQA average: 27k tokens
---- Truncation point: 16k tokens
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Figure 2: Histogram showing the differences between our

dataset, INDAQA, and the test set of NarrativeQA (NQA).

D. ITALIC-GEN

This Section provides additional details on the adaptation
of the ITALIC dataset [19] from a multiple-choice format
to a free-form generative QA setting. Such adaptations
must extend beyond simply extracting correct answers
from the provided options, requiring systematic analysis
of the underlying sample characteristics and question
types.

The original ITALIC dataset contains 10,000 instances
divided into two primary categories: Language Capabil-
ity and Culture and Commonsense. Due to the hetero-
geneous nature of the underlying data sources, not all
samples adhere to the standard question format. Specifi-
cally:

1. Many instances follow a sentence completion style,
where the correct completion has to be selected
from the multiple options.

2. Additionally, certain samples depend on contex-
tual information that is embedded within the an-
swer choices themselves, making the removal
of options infeasible without compromising the
question quality.

3. Finally, some questions, while not strictly requir-
ing all four options to be answerable, become in-
sufficiently specific without the provided choices,
potentially leading to ambiguous interpretations.

Moreover, the last two cases mostly require the model to
reproduce verbatim one of the choices, which is signifi-
cantly different from the open-ended QA task.

After automatic and manual inspection, we found that
the majority of samples in the Language Capability cate-
gory suffer from these structural limitations, with many
instances exhibiting multiple concurrent issues, resulting
in the need for heavy modifications to be adopted. While
such characteristics are appropriate for multiple-choice
QA frameworks, they present significant challenges for
generative QA tasks. Consequently, we excluded all Lan-
guage Capability samples from our experiments, result-
ing in ITALIC-GEN containing exclusively instances from
the Culture and Commonsense category.

We set up a pipeline to check and modify the remain-
ing samples to ensure compatibility with the generative
QA setting. First, we employ Gemini-2.0-Flash to re-
format statements not ending with a question mark (?)
into proper interrogative form, standardizing the format
across all instances (issue number 1). We also require
the LLM to ensure proper coordination between question
and answer. Manual verification of the results identified
three instances that required correction where automatic
reformatting failed to produce valid questions.

Then, we filter the samples that would become unan-
swerable without access to the multiple-choice options
(issue number 2) by first using a set of RegEx (both on
questions and correct choices), and then employing the
LLM to classify samples based on the context provided
in the question alone. We applied this validation pro-
cess to the whole dataset, both original and reformatted
samples. During the initial inspection of the samples, we
noted that the third issue predominantly affects samples
in the Language Capability category. Since ITALIC-GEN
exclusively comprises Culture and Commonsense sam-
ples, we did not implement additional filtering based on
this criterion. We do acknowledge that some instances
in ITALIC-GEN may present significant challenges for
current generative QA systems.



Error type Question Answers

Unanswerable | corteggiatori sono rivali tra loro? 1) Non é specificato. 2) Il testo non lo dice.

Unanswerable  Cosa prova il Conte nei confronti del letterato? 1) Disprezzo. 2) Il testo non specifica i sentimenti.

Meta Cosa descrive ciascun capitolo? 1) Cronache. 2) Riassunti di cronache.

Meta Qual ¢ il titolo del testo? 1) Il titolo non & specificato. 2) Non c’¢ alcun titolo.
Table 11

Types of samples in INDAQA filtered by our pipeline. We remove the samples even if one of the reference answers is acceptable.

System Prompt

Sei un esperto di letteratura.
Il tuo compito & quello di generare domande e risposte sulla trama di un testo letterario.

User Prompt

TESTO: {summary}

Genera 20 domande diverse relative alla trama del testo.

Per ogni domanda, genera due possibili risposte, entrambe corrette e complete.

Le domande devono essere chiare e non ambigue; se il testo €& breve, genera comunque 20
domande.

Entrambe le risposte devono essere brevi (max 5 parole), complete e rispecchiare fedelmente
il testo originale.

Le risposte possono anche essere quasi identiche.

Segui il formato, non aggiungere altro:

Domanda: <domanda>

Risposta A: <risposta>

Risposta B: <risposta>

Table 12
Prompts used to generate the QA samples for the INDAQA dataset. We used Gemini-2.0-Flash and Gemini-2.0-Flash-Lite as
our Generators.

Issue Question Choices
1 "The Young Pope" e il titolo della 1) Kim Rossi Stuart 2) Christian De Sica 3) Roberto Benigni 4) Paolo Sor-
serie ideata e diretta da: rentino
2 Con l’espressione "Schiaffo di 1) Lo schiaffo che Anagni diede a papa Bonifacio VIII 2) L’offesa che Bonifacio
Anagni” si & soliti indicare: VIl reco ad Anagni 3) L’oltraggio che subi papa Bonifacio VIII ad Anagni
4) -
2 Quale frase contiene un comple- 1) La ballerina aspettava con ansia il giorno del suo debutto 2) Sono andato
mento di compagnia? al lago con mia sorella per prendere il sole 3) Il medico garantisce che
con questa crema passera il rossore 4) Con questa velocita non riuscirai mai a
finire il lavoro per domani
3 La frase "Sono felice" contiene: 1) un complemento oggetto 2) un complemento indiretto 3) un predicato
nominale D) un predicato verbale

Table 13
Instances of ITALIC that cannot be used in a generative QA setting. While we can keep the first two instances, after proper
modifications, the last two neessarily require the options as context.
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