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Abstract

Large Language Model (LLM) pretraining, finetuning, and evaluation rely on
input-space reconstruction and generative capabilities. Yet, it has been observed
in vision that embedding-space training objectives, e.g., with Joint Embedding
Predictive Architectures (JEPAs), are far superior to their input-space counterpart.
That mismatch in how training is achieved between language and vision opens
up a natural question: can language training methods learn a few tricks from
the vision ones? The lack of JEPA-style LLM is a testimony of the challenge in
designing such objectives for language. In this work, we propose a first step in
that direction where we develop LLM-JEPA, a JEPA based solution for LLMs
applicable both to finetuning and pretraining. Thus far, LLM-JEPA is able to
outperform the standard LLM training objectives by a significant margin across
models, all while being robust to overfiting. Those findings are observed across
numerous datasets (NL-RX, GSM8K, Spider, RottenTomatoes) and various models
from the Llama3, OpenELM, Gemma2 and Olmo families. Code: https://
github.com/rbalestr-lab/llm-jepa.
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Figure 1: LLM-JEPA produces strong fine-tuned models across datasets and models.

1 Introduction
The research landscape around representation learning has been increasingly divided into two camps:
(i) generative or reconstruction-based methods [6, 8, 12, 19], and (ii) reconstruction-free Joint
Embedding Predictive Architectures (JEPAs) [2, 3, 4]. While the former is self-explanatory, the latter
learns a representation by ensuring that different views, e.g., pictures of a same building at different
time of day, can be predicted from each other, all while preventing a collapse of the embeddings.
By moving away from input-space objectives, JEPAs training benefits from less biases [22], at the
cost of potential dimensional collapse of their representation [17, 18]. That divide has been well
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Natural Language to Regular Expression

Natural Language to SQL

Figure 2: Left: JEPA applied to NLP tasks that has Text and Code, where Text and Code are naturally two
views of the same thing. Right: (top): An illustration of the NL-RX-SYNTH dataset, where each sample consists
of a description of the regular expression in natural language (Text) and the regular expression itself (Code).
(bottom): The Spider dataset, where Text is the database ID and description of the SQL query and Code is
the SQL query itself.

studied in vision, where it was found that JEPAs offer multiple provable benefits when it comes to
knowledge discovery for perception tasks. In the realm of Natural Language Processing however,
reconstruction-based methods remain predominant. In fact, today’s Large Language Models are
mostly judged from their ability to generate samples and answers in input space in text form–making
it challenging to leverage JEPA objectives.

Yet, LLMs’ task also involve perception and reasoning where JEPA is known to be preferable. It
thus seems crucial to adapt JEPA solutions to LLMs in the hope to showcase the same benefits as
witnessed in vision. This first step is exactly what we present in this study. We propose to improve
the representation quality of LLMs by leveraging a novel objective combining both the original
reconstruction based loss–with an additional JEPA objective. To do so, we focus first on tasks and
datasets that are inherently suited for JEPA objectives: the ones providing multiple views of the same
underlying knowledge. One typical example is a git issue and the corresponding code diff (fig. 2)
[16]. The two samples are two views–one being plain English and one being in code–of the same
underlying functionality. Let’s use that particular example to highlight our core contribution:

Viewing the (text,code) pairs as views of the same underlying knowledge enables JEPA objectives
to be utilized with LLMs, complementing the standard text → code generative task.

We strongly emphasize that being able to obtain non-trivial views, such as described above, is crucial
to the success of JEPA objectives. While we restrict ourselves to datasets offering those non-trivial
views, developing a mechanism akin to data-augmentation in vision would enable JEPA objectives to
be used on any dataset. Nonetheless, we believe that our proposed solution–coined LLM-JEPA–and
empirical study will serve as a first step towards more JEPA-centric LLM pretraining and finetuning.
We summarize our contributions below:

• Novel JEPA-based training objective: We present the first JEPA-based training objective for
LLMs operating in embedding space and with different views–perfectly following vision-based
JEPAs without sacrificing the generative capabilities of LLMs

• Improved SOTA: We empirically validate our formulation in various finetuning settings, where
we obtain improvements over standard LLM finetuning solutions. We also explore pretraining
scenarios showing encouraging results of LLM-JEPA

• Extensive empirical validation: on various model family (llama, gemma, apple/openelm, al-
lenai/olmo), dataset (NL-RX, GSM8K, Spider, RottenTomatoes), and size.

2 JEPA-LLM: Improving LLMs’ Reasoning and Generative Capabilities

The first section 2.1 provides minimal background around next-token prediction LLM objectives,
used as part of the proposed LLM-JEPA loss (section 2.2). Empirical validation will then be provided
in section 2.3 demonstrating clear finetuning and pretraining benefits.
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2.1 Primer on Large Language Models

Contemporary LLMs are mostly built from the same core principles: stacking numerous layers of
nonlinear operations and skip-connections–known as Transformers. While subtleties may differ, e.g.,
about positional embeddings, initialization, normalization, the main driver of performance remains
the availability of high quality dataset during the pretraining stage. The training objective in itself
has also been standardize throughout methods: autoregressive token-space reconstruction. Let’s first
denote by LLLM the typical LLM objective used for the specific task and dataset at hand. In most
cases, this will be a cross-entropy loss between the predicted tokens and the ground-truth token to
reconstruction. We note that our LLM-JEPA construction is agnostic of LLLM hence making our
method general to numerous scenarios.

LLLM(Text1:L−1,TextL) = XEnt (Classifier (Enc(Text1:L−1)) ,TextL) , (1)

where Classifier predicts the logits of the next token TextL given the past tokens Text1:L−1. Com-
putation of eq. (1) is done at once over L through causal autoregression. Different stages and tasks
may vary the input and output of the loss.

2.2 The LLM-JEPA Objective

Throughout this section, we will use Text and Code as concrete examples of having different views
of the same underlying knowledge. It should be clear to the reader that our proposed LLM-JEPA
objective handles different types of views similarly.

The construction of our LLM-JEPA objective relies on two principles. First, we must preserve the
generative capabilities of LLMs and we therefore start with the LLLM from eq. (1). Second, we aim
to improve the abstraction capabilities of LLMs using the joint embedding prediction task. On top of
LLLM, we then propose to add the well-established JEPA objective leading to the complete loss L
defined as

LLLM−JEPA =

L∑
ℓ=2

LLLM(Text1:ℓ−1,Textℓ)︸ ︷︷ ︸
generative capabilities (LLM)

+λ× d(Pred(Enc(Text)),Enc(Code))︸ ︷︷ ︸
abstraction capabilities (JEPA)

, (2)

where λ ≥ 0 is an hyperparameter balancing the contribution of the two terms, Pred and Enc are the
predictor and encoder networks respectively, and d is a metric of choice, e.g., the ℓ2 distance. Let’s
now precisely describe each of those components.

The encoder. We use the hidden_state of the last token from the last layer as the embedding of an
input sequence–as commonly done for LLM probing. Practically, we can not produce Enc(Text) and
Enc(Code) through a single forward pass. For example, passing the concatenation of [Text,Code]
would require meddling with the self attention to avoid cross-view interaction which would be
efficient but specific to each LLM architecture. Instead, we propose to get the encoding through
two additional forward passes: one for Text, and one for Code. This incurs additional costs during
training–but not during inference–see section 3 for further discussions.
The metric. When it comes comparing embeddings, it is now widely accepted in vision to leverage
the cosine similarity. We thus propose to do the same for LLM-JEPA.
The predictor. We leverage the auto-regressive nature of LLM and their internal self-attention
to define a tied-weights predictor. By introducing a special token [PRED] at the end of a given
input, we allow for further nonlinear processing of the input hereby producing Pred(·) at the final
embedding of the last layer. By reusing the internal weights of the LLM for the prediction task,
we greatly reduce the training overhead and architectural design choices. Practically, we append
k ∈ {0, . . . ,K} predictor tokens to an input prompt and use the embedding of the last predictor
token to be Pred(Enc(·)). When k = 0, the predictor is trivial, i.e., Pred(x) = x.

Relation to Previous Work. Because loss functions such as LLLM (input space reconstruction since
tokens are lossless compression of the original prompts) have been shown to be sub-optimal in
vision, a few LLM variations have started to employ embedding space regularizers and training
objectives [5, 29]. Current solution however rely on intricate structural constraints of the embedding
space, e.g., hierarchical organization and cluster, and thus fall out of the JEPA scope. We also
note that our interpretation of views when it comes to LLM datasets, e.g., (text issue, code diff), is
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Table 1: Pretraining accuracy on dataset NL-RX-SYNTH by Next Token Prediction (LLLM) loss vs. LLLM−JEPA

loss (our method). We inherit the best configuration from fine-tuning. Each case runs five times. Average
accuracy and standard deviation are reported. We also report p-value of paired, single-tailed t-Test.

Model Method Accuracy (%) ↑ p-value ↓ Config

Llama-3.2-1B-Instruct
LLLM 54.38± 1.70

2.94e− 4
lr = 8e− 5

LLLM−JEPA (ours) 60.59± 1.01 λ = 2, k = 3, same lr

something that has been leveraged as part of the LLM finetuning solutions–by learning to generate
one from the other–without a JEPA-style loss. This includes natural language to regular expression
translation [23, 30, 32], natural language to SQL parsing [11, 15, 20, 28, 31] and the more recent
issue descriptions to code diffs [7, 14, 27, 33]. More intricate examples involve text-based problem
solving and their counterpart program induction [1, 9, 13, 21].

2.3 Empirical Validation: LLM-JEPAs Outperforms LLMs

The JEPA loss is not implicitly minimized by LLLM. The very first observation we want to make,
provided in fig. 4 lies in observing that minimizing LLLM does not implicitly minimize LJEPA–
indicating that it is required to add that term during training.

LLM-JEPA Improves Finetuning. We run experiments across multiple pretrained LLMs (Llama-3.2-
1B-Instruct [10], gemma-2-2b-it [26], OpenELM-1_1B-Instruct [24], and OLMo-2-0425-1B-Instruct
[25]) with various datasets (NL-RX-SYNTH, NL-RX-TURK [23], GSM8K [9], Spider [31]). For a
given (model,dataset) case, search for the best learning rate lr ∈ {1e−5, 2e−5, 4e−5, 8e−5} based
on the best possible accuracy of LLLM after 4 epochs. Then we tune the hyperparameter specific to
LLLM−JEPA, k and λ in a two dimensional grid defined by (k, λ) ∈ {0, 1, 2, 3, 4} × {0.5, 1, 2, 4}
(fig. 3 and table 5). For both NL-RX-SYNTH and NL-RX-TURK, accuracy is exact match of the generated
regular expression; for GSM8K, accuracy is exact match of the final result; and for Spider, accuracy
is exact match of the execution result of the generated query. We provide results demonstrating how
LLM-JEPA improves performances (fig. 1 left) across models (table 8), datasets (table 9), training
time (fig. 1 right and fig. 5), and sizes (table 11). Examples of inputs and targets along with models’
predictions and error analysis are provided in tables 6 and 7. The improved performance of LLM-
JEPA holds across LoRA ranks as shown in table 3. We also provide evidence that LLM-JEPA induces
an approximately linear transformation from Enc(Text) to Enc(Code) (figs. 6 and 7 and table 10).

LLM-JEPA Improves Pretraining. We pretrain Llama-3.2-1B-Instruct from randomly initialized
weights on NL-RX-SYNTH dataset, a prediction is valid as long as it starts with the ground truth.
We obtain that LLM-JEPA also improves the quality of the learned representation, as shown in
table 1. We also conduct another pretraining experiment on cestwc/paraphrase containing groups
of 5 paraphrases. We employ the paraphrases within a same group for the JEPA loss. Once the
model is pretrained (4 epochs), we do finetuning evaluation on rotten_tomatoes (1 epoch). We
demonstrate how JEPA pretraining improves the downstream performance post-finetuning in table 4.
Note that finetuning does not employ the JEPA loss–hence showing the benefit of JEPA at pretraining
stage. Lastly, we provide in table 2 generated samples demonstrating that JEPA pretraining does
maintain the generative capabilities of the model when prompted with the first few tokens in the
cestwc/paraphrase dataset.

3 Conclusion and Future Work
We introduced an alternative training objective for LLMs leveraging JEPAs. Our formulation is
an exact replicate of the JEPA objective extensively used in vision–but that hadn’t been adapted to
language yet. Crucially, our proposed LLM-JEPA maintains the generative capabilities of LLMs
while improving their abstract prompt representation as empirically validated across datasets and
models. While our experiments mostly focus on finetuning, preliminary pretraining experiment are
promising which we plan to scale and more thoroughly test in future work. Regarding the limitations
of LLM-JEPA, the main current bottleneck is the 3-fold compute cost during training required to
obtain the representations of the views. We plan to explore possible mitigation that would mask the
self-attention matrix and allow for our LLM-JEPA loss to be evaluated within a single forward pass
through the LLM.
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Table 2: Generated samples by model pretrained by paraphrase dataset. The pretrained model is not good at
terminating sentence. prompt and generation

Ground Truth vs. Generation

Ground Truth A garden of flowers and a bench stating "City of London."
Generation A garden of flowers and a vase with a flower in it.............

Ground Truth A person that is riding on a horse in a grass field.
Generation A person that is riding in a field.................

Ground Truth A man is riding a horse in a field.
Generation A man is riding a horse in a field................

Ground Truth There are two birds standing on top of a building
Generation There are two birds standing on a rock.................

Ground Truth Two hawks sit on top of a roof spire.
Generation Two hawks sit on top of a wooden bench................

Ground Truth .A young woman serving herself at a cookout.
Generation .A young woman serving herself in a kitchen.................

Ground Truth 2 bowls of fruit sit on a table.
Generation 2 bowls of fruit sit on a table.................

Ground Truth A wooden bench written ’CITY OF LONDON’ at the park
Generation A wooden bench written ’CITY and a tree.................

Table 3: Fine-tuning accuracy on dataset NL-RX-SYNTH, LoRA vs. full fine-tuning, both by LLLM loss and
LLLM−JEPA loss (our method). Configuration is lr = 2e− 5, λ = 1, k = 1. Each cell runs five times. Average
accuracy and standard deviation are reported. At every LoRA rank, LLLM−JEPA (ours) has better accuracy. At
LoRA rank 512 (22.59% trainable parameters), LLLM−JEPA (ours) achieves same accuracy as full fine-tuning,
but LLLM still has a significant gap from full fine-tuning.

LoRA Rank Method Accuracy (%) ↑

32
LLLM 6.09± 0.55

LLLM−JEPA (ours) 7.45± 1.87

64
LLLM 21.09± 1.90

LLLM−JEPA (ours) 32.46± 1.26

128
LLLM 34.21± 2.82

LLLM−JEPA (ours) 48.45± 3.66

256
LLLM 45.57± 4.52

LLLM−JEPA (ours) 60.80± 2.31

512
LLLM 50.18± 5.15

LLLM−JEPA (ours) 72.41± 2.94

Full
LLLM 57.29± 5.32

LLLM−JEPA (ours) 70.42± 2.36

A Appendix

A.1 Faster LoRA Convergence

Table 3 demonstrates that LoRA fine-tuning with LLLM−JEPA loss not only achieves substantially
higher accuracy than using LLLM alone, but also converges more quickly. Notably, at a LoRA rank
of 512, our method already reaches accuracy comparable to full fine-tuning, whereas LoRA with only
LLLM still exhibits a clear performance gap.

8



Table 4: Pretraining + fine-tuning Llama-3.2-1B-Instruct accuracy on pretraining dataset paraphrase
and fine-tuning dataset rotten_tomatoes and yelp by Next Token Prediction (LLLM) loss vs. LLLM−JEPA

loss (our method). Note that LLLM−JEPA is applied only at pretraining. We tune lrpre and lrft by LLLM, and
stick to them in LLM-JEPA pretraining. We run pretraining 5 times, and for each pretrained model, we run
fine-tuning 5 times. Average accuracy and standard deviation are reported. We also report p-value of paired,
single-tailed t-Test.

FT Dataset Method Accuracy (%) ↑ p-value ↓ Config

rotten_tomatoes
LLLM 56.57± 1.66

7.38e− 4
lrpre = 8e− 5, lrft = 4e− 5

LLLM−JEPA (ours) 57.76± 1.33 λ = 0.5, k = 2, same lrpre, lrft

yelp
LLLM 26.46± 0.92

1.00e− 3
lrpre = 8e− 5, lrft = 8e− 5

LLLM−JEPA (ours) 27.15± 0.93 λ = 0.5, k = 2, same lrpre, lrft

Table 5: Fine-tuning accuracy on dataset NL-RX-SYNTH with LLLM−JEPA loss (ours) over various γ/λ.
Configuration is lr = 2e− 5, λ = 1, k = 0. We maintain max(γ, λ) = 1.0 to use a fixed lr. Each cell runs
five times. Average accuracy and standard deviation are reported. When γ = 0.0, it generate only empty output.

γ/λ Config Accuracy (%) ↑

0.0 γ = 0.0, λ = 1.0 0.00± 0.00
0.001 γ = 0.01, λ = 1.0 1.38± 0.06
0.1 γ = 0.1, λ = 1.0 45.80± 5.04
1.0 γ = 1.0, λ = 1.0 70.42± 2.36
10.0 γ = 1.0, λ = 0.1 67.52± 1.45
100.0 γ = 1.0, λ = 0.01 66.83± 3.89
∞ γ = 1.0, λ = 0.0 57.29± 5.32

A.2 Ablation Study on the Role of LLLM

One limitation of eq. (2) is that the contribution of LLLM cannot be effectively reduced to 0. To
address this, we introduce an additional hyperparameter γ to explicitly control its relative strength:

LLLM−JEPA = γ ×
L∑

ℓ=2

LLLM(Text1:ℓ−1,Textℓ)︸ ︷︷ ︸
generative capabilities

+λ× d(Pred(Enc(Text)),Enc(Code))︸ ︷︷ ︸
abstraction capabilities

, (3)

We vary the ratio γ/λ within [0, 1] while enforcing max(γ, λ) = 1 to maintain a constant learning
rate. Table 5 shows that LLLM remains essential for generative performance: when γ = 0, the
fine-tuned model produces only empty outputs. This indicates that the JEPA component primarily
serves as a regularization term, complementing the generative loss.

A.3 Hyperparameter Tuning for LLM-JEPA

Despite its strong accuracy gains, LLM-JEPA introduces two additional hyperparameters. As shown
in fig. 3, the optimal configuration may occur at any point in the grid (λ, k) ∈ {0.5, 1.0, 2.0, 4.0} ×
{0, 1, 2, 3, 4}, which imposes a significant cost for hyperparameter tuning. While we have not
identified an efficient method to explore this space, we empirically observe that adjacent grid points
often yield similar accuracy, suggesting the potential for a more efficient tuning algorithm.

A.4 Additional Generation Examples

Table 7 presents additional examples generated by fine-tuning Llama-3.2-1B-Instruct on the
NL-RX-SYNTH dataset using LLLM and LLLM−JEPA, respectively.

A.5 Overfitting Behavior in LoRA Fine-Tuning

We also conducted experiments to examine whether LoRA fine-tuning with LLLM-JEPA exhibits
similar resistance to overfitting. As shown in fig. 5, accuracy under LLLM-JEPA generally continues
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(a) Llama on GSM8K, lr = 2e− 5 (b) Llama on Spider, lr = 1e− 5

(c) Gemma on SYNTH, lr = 1e− 5 (d) OpenELM on SYNTH, lr = 8e− 5

(e) OLMo on SYNTH, lr = 8e− 5 (f) Llama on SYNTH, Pretrain, lr = 8e− 5

Figure 3: In general we didn’t find any pattern on where the best accuracy could appear. It could be at either
high-end or low-end of either λ or k. Furthermore, there can be dips and spikes in random locations. Nonetheless,
adjacent cells have close accuracy most of times, and sweeping (k, λ) ∈ {0, 1, 2, 3, 4}×{0.5, 1, 2, 4} normally
yield satisfiable results. Each cell is an average of five runs, epoch = 4.

Table 6: Regular expressions generated by Llama-3.2-1B-Instruct after fine-tuning with LLLM loss and
LLLM−JEPA loss (ours). Color code: wrong , extra , missing

Ground Truth LLLM LLLM−JEPA (ours)

lines not having the string ’dog’ followed by a number, 3 or more times
((dog.*[0-9].*)3,) ((dog.*[0-9].*)3,) ((dog.*[0-9].*){3,})

lines containing ending with a vowel, zero or more times
.*(.*)(([AEIOUaeiou])*).* (.*)(([AEIOUaeiou])*) * ( .* ) (.*) { ([AEIOUaeiou])* }

lines with a number or a character before a vowel
(([0-9])|(.)).*([AEIOUaeiou]).* (([0-9])|(.)).*([AEIOUaeiou]).* .* (([0-9])|(.)).*([AEIOUaeiou]).*

lines with words with the string ’dog’, a letter, and a number
((([0-9])&(dog))|([A-Za-z]))* ((([0-9])&(dog))|([A-Za-z]))* (( [0-9])&(dog))|( ( [A-Za-z]) * )

Figure 4: Losses in fine-tuning with LLLM loss (LLLM) and LLLM−JEPA loss (LLLM−JEPA, our method). We
measure both the cross-entropy loss for next token prediction (LossLLM , LLLM in chart) and JEPA prediction
loss (D(·, ·), pred in chart), although the latter does not contribute in the baseline case. The accuracy is 51.95%
for LLLM and 71.10% for LLLM−JEPA. Since LLLM and LLLM−JEPA share similar LLLM loss, the LLLM loss
cannot explain the gap between the accuracy. pred stays a constant in LLLM, while is minimized in LLLM−JEPA,
hence pred should be the main reason behind the accuracy gap.

to improve with additional epochs, whereas fine-tuning with LLLM shows clear signs of overfitting.
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Table 7: More regular expressions generated by Llama-3.2-1B-Instruct after fine-tuning with LLLM loss
and LLLM−JEPA loss (ours). Color code: wrong , extra , missing

Ground Truth LLLM LLLM−JEPA (ours)

lines ending with a vowel or starting with a character
([AEIOUaeiou].*[A-Za-z].*)+ ([AEIOUaeiou].*[A-Za-z].*)+ ([AEIOUaeiou].*[A-Za-z].*)+

ines containing either a lower-case letter, a vowel, or a letter
((.*)([AEIOUaeiou]))|((.)(.*)) (.*) ( ([AEIOUaeiou]) |((.)(.*)) ) (.*) ( ([AEIOUaeiou]) |((.)(.*)) )

lines starting with the string ’dog’ before a vowel
(([A-Za-z])7,).*(dog).* (([A-Za-z])7,).*(dog).* .* (([A-Za-z])7,).*(dog).*

lines not containing a letter and the string ’dog’
((([A-Z])+)|([a-z]))(.*) ((([A-Z])+)|([a-z]))(.*) + ((([A-Z])+)|([a-z]))(.*)

lines with a character before a vowel and the string ’dog’, zero or more times
.*(.)&([0-9])&(dog).* .*(.)&([0-9])&(dog).* .* .*(.)&([0-9])&(dog).* .*.*

lines with a vowel at least once before not a character
(([A-Za-z])+).*(~([0-9])).* (([A-Za-z])+).*(~([0-9])).* .* (([A-Za-z])+).*(~([0-9])).*

Table 8: Fine-tuning accuracy on dataset NL-RX-SYNTH by Next Token Prediction (LLLM) loss vs. LLLM−JEPA

loss (our method). Each cell is the best possible accuracy over a set of configurations. Each configuration runs
five times. Average accuracy and standard deviation are reported. We also report p-value of paired, single-tailed
t-Test.

Model Method Accuracy (%) ↑ p-value ↓ Config

gemma-2-2b-it
LLLM 33.65± 3.24

5.5e− 3
lr = 1e− 5

LLLM−JEPA (ours) 43.12± 2.61 λ = 2, k = 4, same lr

OpenELM-1_1B-Instruct
LLLM 12.07± 1.81

5.1e− 4
lr = 8e− 5

LLLM−JEPA (ours) 25.40± 2.40 λ = 4, k = 3, same lr

OLMo-2-0425-1B-Instruct
LLLM 87.09± 0.36

2.5e− 3
lr = 8e− 5

LLLM−JEPA (ours) 87.52± 0.29 λ = 2, k = 0, same lr

Notably, the standard deviation is much higher than in full fine-tuning, likely reflecting the lower
capacity of LoRA fine-tuning. An interesting pattern emerges: for LLLM-JEPA, larger standard
deviations often coincide with dips in accuracy, whereas for LLLM they tend to accompany accuracy
spikes. This suggests that such fluctuations may be unreliable indicators of generalization quality.
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Figure 5: LLM-JEPA resists overfitting in LoRA fine-tuning. Fine-tuning with LLLM−JEPA loss (our method)
resists overfitting. When fine-tuning with LLLM loss start to overfit, LLLM−JEPA kept improving. However the
trend is not as stable as in full fine-tuning, possibly due to limited capacity of LoRA fine-tuning.
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Table 9: Fine-tuning accuracy by model Llama-3.2-1B-Instruct, LLLM loss vs. LLLM−JEPA loss (our
method). Each cell is the best possible accuracy over a set of configurations. Each configuration runs five times.
Average accuracy and standard deviation are reported. We also report p-value of paired, single-tailed t-Test.

Dataset Method Accuracy (%) ↑ p-value ↓ Config

NL-RX-SYNTH
LLLM 57.29± 5.32

1.0e− 3
lr = 2e− 5

LLLM−JEPA (ours) 71.46± 1.34 λ = 1, k = 1, same lr

NL-RX-TURK
LLLM 22.49± 1.91

2.4e− 4
lr = 2e− 5

LLLM−JEPA (ours) 30.94± 1.13 λ = 1, k = 1, same lr

GSM8K
LLLM 32.36± 0.58

9.6e− 5
lr = 2e− 5

LLLM−JEPA (ours) 36.36± 0.20 λ = 0.5, k = 4, same lr

Spider
LLLM 47.52± 2.44

4.0e− 3
lr = 4e− 5

LLLM−JEPA (ours) 50.55± 2.08 λ = 1, k = 3, same lr

Table 10: LLM-JEPA is almost a linear transformation from Enc(Text) to Enc(Code).

minX ||Enc(Text) ·X − Enc(Code)||2 Avg. Top 100 Singular

Base model 3953.11 310.73
LLLM 3035.01 341.80

LLM-JEPA (Ours) k = 1 4.47 94.84
LLM-JEPA (Ours) k = 0 4.04 16.82

A.6 Structured Representations Induced by LLM-JEPA

We also examine the representation space to better understand how LLM-JEPA regularizes learned fea-
tures. Specifically, we plot t-SNE embeddings for both Text and Code across three settings: the base
model, a model fine-tuned with LLLM, and a model fine-tuned with LLLM-JEPA. As shown in fig. 6,
clear structure emerges after fine-tuning with LLLM-JEPA. We hypothesize that LLLM-JEPA enforces
structure in the representation space by constraining the mapping from Enc(Text) to Enc(Code)
within a narrow subspace. If this is the case, the SVD decomposition of Enc(Text)− Enc(Code)
should yield significantly smaller singular values, which is confirmed in fig. 7. Furthermore, we
hypothesize that the mapping is approximately linear. To test this, we compute the least-squares
regression error, and table 10 supports this hypothesis. Together, these results suggest that LLM-JEPA
promotes a near-linear transformation between Text and Code representations, which may underlie
its accuracy improvements.

A.7 Performance Across Model Sizes

We also evaluate LLM-JEPA across different model sizes. As shown in table 11, we observe
statistically significant improvements at all scales. Since there is no official 8B version of Llama-
3.2, we instead use Llama-3.1-8B-Instruct, where performance collapsed due to the model’s
difficulty in properly terminating regular expressions. To address this, we additionally evaluate using
a startswith criterion—that is, a prediction is considered correct if the generated regular expression
begins with the ground-truth expression, removing the need for exact termination. Under this metric,
we again observe statistically significant accuracy improvements.
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Code

(a) Base model: No fine-tuning

Text
Code

(b) Baseline: Fine-tuned by NTP loss

Text
Code

(c) LLM-JEPA (Ours) k = 0

Text
Code

(d) LLM-JEPA (Ours) k = 1

Figure 6: t-SNE plot of Text and Code representations in (a) Base mode without fine-tuning, (b) Baseline that
is fine-tuned with NTP loss, (c) LLM-JEPA (ours) with k = 0, and (d) LLM-JEPA (ours) with k = 1. Clearly
LLM-JEPA (ours) induced nice structure on the representations while fine-tuning with NTP loss disrupted the
structure in the base model.

Table 11: Fine-tuning accuracy on NL-RX-SYNTH by Next Token Prediction (LLLM) loss vs. LLLM−JEPA loss
(our method). Each case runs five times. Average accuracy and standard deviation are reported. We also report
p-value of paired, single-tailed t-Test. Note that Llama does not have official 3.2-8B, and we have to use 3.1-8B,
which has a lower accuracy. Still LLM-JEPA sees significant improvement. We also evaluated on OLMo-2-7B.

Model Method Accuracy (%) ↑ p-value ↓ Config

Llama-3.2-1B-Instruct
LLLM 57.29± 5.32

1.0e− 3
lr = 2e− 5

LLLM−JEPA (ours) 71.46± 1.34 λ = 1, k = 1, same lr

Llama-3.2-3B-Instruct
LLLM 74.55± 3.58

0.0352
lr = 2e− 5

LLLM−JEPA (ours) 77.16± 3.66 λ = 2, k = 0, same lr

Llama-3.1-8B-Instruct
LLLM 35.77± 6.60

0.0131
lr = 2e− 5

LLLM−JEPA (ours) 63.57± 16.81 λ = 2.0, k = 0, same lr

OLMo-2-1124-7B-Instruct
LLLM 87.26± 0.27

0.0345
lr = 2e− 5

LLLM−JEPA (ours) 87.75± 0.33 λ = 20, k = 2, same lr
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Figure 7: The top 100 singular values of Enc(Text)−Enc(Code). The curves of LLM-JEPA (ours) are a few
magnitudes lower than that of base model and regular fine-tuning, meaning the mapping from Text to Code are
confined within a narrow subspace, fostering the nice structure we see in Figure 6
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