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World models learn general knowledge from videos and simulate experience for training be-
haviors in imagination, offering a path towards intelligent agents. However, previous world
models have been unable to accurately predict object interactions in complex environments.
We introduce Dreamer 4, a scalable agent that learns to solve control tasks by reinforcement
learning inside of a fast and accurate world model. In the complex video game Minecraft,
the world model accurately predicts object interactions and game mechanics, outperforming
previous world models by a large margin. The world model achieves real-time interactive
inference on a single GPU through a shortcut forcing objective and an efficient transformer
architecture. Moreover, the world model learns general action conditioning from only a small
amount of data, allowing it to extract the majority of its knowledge from diverse unlabeled
videos. We propose the challenge of obtaining diamonds in Minecraft from only offline data,
aligning with practical applications such as robotics where learning from environment inter-
action can be unsafe and slow. This task requires choosing sequences of over 20,000 mouse
and keyboard actions from raw pixels. By learning behaviors in imagination, Dreamer 4 is
the first agent to obtain diamonds in Minecraft purely from offline data, without environment
interaction. Our work provides a scalable recipe for imagination training, marking a step
towards intelligent agents.

Imagination Training Inside the World Model

Agent task: Gather wood

Time ———»

Figure 1: Dreamer 4 learns to solve complex control tasks by reinforcement learning inside of its
world model. We decode the imagined training sequences for visualization, showing that the world
model has learned to simulate a wide range of game mechanics from low-level mouse and keyboard
actions, including breaking blocks, using tools, and interacting with crafting tables.
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1. Introduction

To solve complex tasks in embodied environments, intelligent agents need to deeply understand the
world and choose successful actions. World models offer a promising approach towards this goal by
learning to predict the future outcomes of potential actions from the perspective of an agent, such
as a robot or a video game player. This way, world models equip agents with a deep understanding
of the world and the ability to choose actions by planning or reinforcement learning in imagination.
Moreover, world models can in principle learn from fixed datasets, allowing to train agents purely
in imagination without the need for online interaction. Optimizing behaviors offline is valuable for
many practical applications, such as robots in the physical world, where online interaction with a
partially trained agent is often unsafe.

World model agents, such as Dreamer 3, are among the best-performing and most robust rein-
forcement learning algorithms for games and robotics to date!=®. While these models are fast and
accurate for their narrow environments, their architecture lacks the ability to fit complex real world
distributions. Controllable video models, such as Genie 3, have been trained on diverse real video
and games and have accomplished diverse scene generation and simple interactions’~'2. These
models are based on scalable architectures, such as diffusion transformers'®14. However, they still
struggle to learn the precise physics of object interactions and game mechanics, limiting their use-
fulness for training successful agents. Moreover, they often require many GPUs to simulate a single
scene in real time, further reducing their practicality for imagination training.

We introduce Dreamer 4, a scalable agent that solves control tasks by imagination training inside of
a fast and accurate world model. Dreamer 4 is the first agent to obtain diamonds in the challeng-
ing video game Minecraft purely from a standard offline dataset, without environment interaction.
Dreamer 4 leverages a novel shortcut forcing objective and an efficient transformer architecture to ac-
curately learn complex object interactions while enabling real-time human interaction and efficient
imagination training. We show that the world model accurately predicts a wide range of seman-
tic interactions in Minecraft, outperforming previous world models by a large margin. Moreover,
Dreamer 4 can be trained on large amounts of unlabeled videos and requires only a small amount of
videos paired with actions. This opens up the possibility of learning general world knowledge from
diverse web videos in the future, for which action labels are not available.

Our contributions are summarized as follows:
* We introduce Dreamer 4, a scalable agent that learns to solve challenging control tasks by imag-
ination training inside of a world model.

* Dreamer 4 is the first agent to collect diamonds in Minecraft from only offline data, substantially
improving over OpenAl’s VPT offline agent !> despite using 100x less data.

* We introduce a high-capacity world model that achieves real-time inference on a single GPU
through a shortcut forcing objective and an efficient transformer architecture.

* We show that the world model accurately predicts a wide range of object interactions and game
mechanics in Minecraft, substantially outperforming previous world models.

* We show that the world model can learn from unlabeled videos and requires only a small amount
of aligned data to learn action conditioning with strong generalization.

* An extensive ablation study measures the improvements of the objective and architecture.



2. Background

Flow matching  Our world model is based on the paradigm of diffusion models'®17, where the
network fp is trained to restore the a data point x; given a corrupted version x,. The signal level
Tt € [0,1] determines the mixture of noise and data and is randomized during training, where
t = 0 corresponds to pure noise and t = 1 means clean data. We build on the flow matching
formulation '®1° because of its simplicity, where the network predicts the velocity vector v = x1 — xg
that points towards the clean data:

x:=(1=-1)x0+Tx1 xo ~ N(0,1) x1~D T ~ p(T)
(D
L(6) = llfo(xe, ) = (x1 = x0) >

The signal level is typically sampled from a uniform distribution or a logit-normal distribution?°. At
inference time, the sampling process starts with a pure noise vector xo and iteratively transforms it
into a clean data point x; over K sampling steps with step size d = 1/K:

X‘L’+d = XT + fe(x‘l" T) d XO ~ N(O: I]) (2)

Shortcut models  Shortcut models?! condition the neural network not only on the signal level
but also on the requested step size d. This allows them to choose the step size at inference time and
generate data points using only a few sampling steps and forward passes of the neural network. For
the finest step size dyn, shortcut models are trained using the flow matching loss. For larger step
sizes dmin < d < 1, shortcut models are trained using a bootstrap loss that distills two smaller steps,
where sg(-) stops the gradient:

xo ~ N(O,I) x1~9D T,d ~ p(t,d)

b’ = fo(xe,T,d/2) b" = fo(x',T+d/2,d/2) x' =x;+b'd/2 3)

X1 — X0 ifd = dmin
L(0) = Xz, T,d) — U 2 v =
( ) ”fG( ) target” target {Sg(b' + b”)/2 else
The step size is sampled uniformly as a power of two, based on the maximum number of sampling
steps Kmax, Which defines the finest step size dpyin = 1/Kmax- The signal level is sampled uniformly
over the grid that is reached by the current step size:

d~1/U({1,2,4,8,...,Kmnax}) t~U({0,1/d,...,1-1/d}) 4)

At inference time, one can condition the model on a step size d = 1/K to target K sampling steps,
without suffering from discretization error because the model has learned to predict the end point
of each step. In practice, shortcut models generate high-quality samples with 2 or 4 sampling steps,
compared to 64 or more steps for typical diffusion models.

Diffusion forcing  For sequential data, diffusion forcing '* assigns a different signal level to each
time step of the data sequence, producing a corrupted sequence. This allows applying loss terms to
all time steps in the sequence, where each time step serves both as denoising task and as history
context for later time steps. At inference time, diffusion forcing supports flexible noise patterns,
such as generating the next frame given clean or lightly noised history.
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Figure 2: World model design. Dreamer 4 consists of a causal tokenizer and an interactive dynam-
ics model, which both use the same block-causal transformer architecture. The tokenizer encodes
partially masked image patches and latent tokens, squeezes the latents through a low-dimensional
projection with tanh activation, and decodes the patches. It uses causal attention to achieve tempo-
ral compression while allowing frames to be decoded one by one. The dynamics model operates on
the interleaved sequence of actions, shortcut noise levels and step sizes, and tokenizer representa-
tions. It denoises representations via a shortcut forcing objective. After pretraining, the world model
is finetuned into an agent by inserting task tokens into the dynamics transformer and predicting ac-
tions, rewards, and values from them.

3. World Model Agent

We present Dreamer 4, a scalable agent that learns to  Algorithm 1 Dreamer 4

solve complex control tasks by reinforcement learn- .
ing inside of a fast and accurate world model. The Phase 1: World Model Pretraining

agent consists of a tokenizer and a dynamics model, e Train tokenizer on videos using (5).
as shown in Figure 2. The tokenizer compresses video e Train world model on tokenized videos
frames into continuous representations and the dy- and optionally actions using (7).
namics model predicts the representations given in-

terleaved actions, both using the same efficient trans- ~ Phase 2: Agent Finetuning

former architecture. The tokenizer is trained using ¢ Finetune world model with task inputs
masked autoencoding and the dynamics is trained us- for policy and reward heads using (7)
ing a shortcut forcing objective to enable interactive and (9).

generations with a small number of forward passes
and prevent accumulating errors over time. As out-
lined in Algorithm 1, we first pretrain the tokenizer
and world model on videos and actions, then finetune
the policy and reward model into the world model by
interleaving task embeddings, and finally post-train
the policy through imagination training. To train a
single dynamics transformer with multiple modalities
and output heads, we normalize all loss terms by run-
ning estimates of their root-mean-square (RMS).

Phase 3: Imagination Training

e Optimize policy head using (11) and
value head using (10) on trajectories
generated by the world model and the
policy head.




3.1. Causal Tokenizer

The tokenizer compresses raw video into a sequence of continuous representations for the dynamics
model to consume and generate. It consists of an encoder and a decoder with a bottleneck in
between. Both components are causal in time, enabling temporal compression while maintaining
the ability to decode frame by frame for interactive inference.

Architecture = We use the efficient transformer architecture described later. Each time step consists
of patch tokens of the current image and learned latent tokens. After applying the encoder, the
representations are read out of the latent tokens using a linear projection to a smaller channel
dimension followed by a tanh activation. For the decoder, this representation is projected back up
to the model dimension and concatenated with learned tokens to read out the patches. To flexibly
integrate multiple input modalities if available, the encoder allows the latent tokens to attend to all
modalities, while each modality only attends within itself. Correspondingly, each decoder modality
attends within itself and to the latents, while the latents only attend within themselves.

Masked autoencoding We train the tokenizer using a straightforward reconstruction objective,
consisting of mean squared error and LPIPS2? loss. To simplify weighing the two loss terms, we
employ loss normalization as explained later.

L(0) = Lyse(0) + 0.2 Lipips(0) (5)

We drop out input patches to the encoder to improve its representations using masked autoencod-
ing2324. The dropout probability is randomized across images as p ~ U(0,0.9). Patches of each
image are replaced with a learned embedding with this probability, so that the tokenizer is some-
times trained on the p = 0 case used during inference. We found MAE training to improve the spatial

consistency of videos generated by the dynamics model.

3.2. Interactive Dynamics

The dynamics model operates on the interleaved sequence of actions and representations produced
by the frozen tokenizer. It is trained using a shortcut forcing objective to enable fast interactive
inference with K = 4 forward passes per generated frame.

Architecture  The dynamics model uses our efficient transformer architecture on interleaved blocks
of observations and actions. The representations are linearly projected into S, spatial tokens and
concatenated with S, learned register tokens?> and a single token for the shortcut signal level and
step size. Since the signal level and step size are discrete, we encode each with a discrete embedding
lookup and concatenate their channels. Actions can contain multiple components, such as mouse
and keyboard. We encode each action component separately into S, tokens and sum the results
together with a learned embedding. Continuous actions components are linearly projected and cat-
egorical or binary components use an embedding lookup. When training unlabeled videos, only the
learned embedding is used.

Shortcut forcing  For efficient training and inference, we train the dynamics model using a short-
cut forcing objective, which builds on diffusion forcing'* and shortcut models?!, reviewed in Sec-
tion 2. We formulate the objective in data space to prevent accumulating errors caused by high-
frequency network outputs and introduce a simple loss weight to focus the model capacity on the
loss terms with the most learning signal. The dynamics model takes the interleaved sequence of



actions a = {a,}, discrete signal levels T = {r,} and step sizes d = {d,}, and corrupted representa-
tions Z = {zt(”)} as input and predicts the clean representations z; = {z}}. Note that t € [1,T] is the
sequence timestep while 1, € [0, 1] is the signal level at that step.

20 ~ N(0, 1) 21~ D T,d ~ p(t,d) 7,d € [0,1]7
(6)

Z1 = fo(3,71,d, a) z2=(1-1)z0+T2

Shortcut models parameterize the network to predict velocities v = x; — X, called v-prediction?°.
This approach excels when generating the output jointly as one block, such as for image or video
generation models. However, v-prediction trains the network to produce high-frequency outputs.
When iteratively generating long videos frame by frame, this can cause subtle errors that accumulate
over time. Instead, we found that parameterizing the network to predict clean representations,
called x-prediction, enables high-quality rollouts of arbitrary length. Computing the flow loss term
in x-space is straightforward®. To compute the bootstrap loss term, we convert the network output
into v-space and scale the resulting loss back into x-space*:

b =(fo(i1,§,0)—2)/(1-1) 2 =F+b
b = (fo(z,T+4,5.0) =2)/(1~(t+9))

s 2 . _
£(9)= 121 Z;H2A ) , if d = dmin
(I-1)%1(21 - 2)/(1 — 1) —sg(b1 + b2)/2[|5 else

Nl

(7)

Low signal levels contain less learning signal, because the flow matching term degenerates to pre-
dicting the dataset mean, while the bootstrap term is generally easier to optimize because it has
deterministic targets compared to the noisy flow matching term. To focus the model capacity on
signal levels with the most learning signal, we propose a ramp loss weight that linearly increases
with the signal level 7, where t = 0 corresponds to full noise and t = 1 to clean data:

w(t) =0.97+0.1 (8)

At inference time, the dynamics model supports different noise patterns. We sample autoregressively
in time and generate the representations of each frame using the shortcut model with K = 4 sample
steps with corresponding step size d = 1/4. We slightly corrupt the past inputs to the dynamics
model to signal level 7. = 0.1 to make the model robust to small imperfections in its generations.

3.3. Imagination Training

To solve control tasks, we first adapt the pretrained world model to predict actions and rewards from
the dataset conditioned on one of multiple tasks. For this, we insert agent tokens as an additional
modality into the world model transformer and interleave it with the image representations, actions,
and register tokens. The agent tokens receive task embeddings as input and we use them to predict
the policy and reward model using MLP heads. While the agent tokens attend to themselves and
all other modalities, no other modalities can attend back to the agent tokens. This is crucial for
avoiding causal confusion of the world model—its future predictions can only be directly influenced

*The network output is converted as 0; = (X1 — x;)/(1 — 7). The MSE in x-space and v-space is related by ||%; — x1||§ =

(1 = ©)?||9% — v¢||2, motivating a (1 — t)? multiplier to bring the bootstrap loss into a range similar to the x-space flow
loss.



by actions, not by the current task. To improve beyond strategies displayed in the dataset, we then
finetune the policy through imagination training by reinforcement learning on rollouts generated
by the world model, using an additional value head.

Behavior cloning and reward model After pretraining the world model on action-conditioned
video prediction, the second training phase involves learning a task-conditioned policy and reward
model. Given a dataset of videos x = {x,} that are encoded into representations z = {z,}, actions
a = {a.}, tasks q = {q:}, and scalar rewards r = {r;}, we train the policy and reward heads on the
task output embeddings h, using multi-token prediction (MTP)?’ of length L = 8:

L L
L£0) == npo(an [ k) = ) I po(resn | o) 9)

n=0 n=0

To preserve existing capabilities, we reuse the pretraining setting with this additional loss function,
so the representations are noisy and we continue to apply the video prediction loss. We parameterize
the policy and reward heads using small MLPs with one output layer per MTP distance. Following
Dreamer 3, the reward head is parameterized as a symexp twohot output® to robustly learn stochas-
tic rewards across varying orders of magnitude. The policy head is parameterized as categorical or
vectorized binary distribution, depending on the action space of the dataset.

Reinforcement learning To improve the policy beyond behaviors displayed in the dataset, we
continue training it with reinforcement learning on imagined rollouts to maximize the learned re-
ward model. Unlike online reinforcement learning that requires interaction with the environment,
our policy learns purely inside the world model, enabling it to improve offline. We initialize a value
head and a frozen copy of the policy head that serves as a behavioral prior. We only update the pol-
icy and value heads and keep the transformer frozen.” Imagined rollouts start from contexts of the
dataset that was used during the earlier training phases. Unlike previous generations of Dreamer, we
start only one rollout from each context, prioritizing data diversity and reducing memory consump-
tion. The rollouts are generated by unrolling the transformer with itself, sampling representations
z = {z:} from the flow head and actions a = {a,} from the policy head. We annotate the resulting
trajectories with rewards r = {r;} using the reward head and values v = {v;} using the value head.

The value head is trained to predict the discounted sum of future rewards, allowing the policy to
maximize rewards beyond the imagination horizon. It uses a symexp twohot output to robustly
learn across different scales of values'. We train the value head using temporal difference learning
(TD-learning) ?® to predict A-returns computed from the predicted rewards and values along the
sequence, where y = 0.997 is a discount factor and ¢, indicates non-terminal states:

T
£(6) = - Z Inpo(R! |s)  RE=re+ye((1-A)ve+ARL,)  Rp=vr (10)
t=1

Unlike previous generations of Dreamer, the policy head learns using PMPO?°, a robust reinforce-
ment learning objective that uses the sign of the advantages A, = R} —v, and ignores their magnitude.
This property alleviates the need for normalizing returns or advantages and ensures equal focus on
all tasks despite potentially differing return scales. PMPO balances the focus on positive and negative
feedback by separately averaging a simple maximum likelihood loss over the states with positive and
negative advantages, respectively. We assign all imagined states s; across batch and time dimensions

TFinetuning the full transformer provides small additional benefits at higher computational cost. For that, the dynamics,
policy prior, and reward losses need to be applied during imagination training to preserve their functions.



to the positive set D* = {s; | A; > 0} or the negative set D~ = {s; | A, < 0} and apply the following
policy loss:

l1-«a a B l

LO) = 57 2 Inelails) =i D) Inaa [0 + Zl KL[g(a; | i) || Tprior]

| l €D~ ie D (11)

We set « = 0.5 to balance the positive and negative sets equally and use a weaker scale of B = 0.3
for the behavioral prior. Unlike the original PMPO objective, we use a reverse direction for the prior
KL to better constrain the policy to the space of reasonable behaviors. We find the scaling between
the three objective terms to be highly robust in practice as they are all measured in nats>°.

3.4. Efficient Transformer

Scaling up world models to diverse data distributions while maintaining fast inference requires an ef-
ficient high capacity architecture. In this section, we introduce our efficient transformer architecture
that is used for both the tokenizer and the dynamics model. The architecture is a 2D transformer>!
with time and space dimensions. To support interactive generation, the attention is masked to be
causal in time, so that all tokens within a time step can attend to each other and to the past. We
start from a standard transformer with pre-layer RMSNorm 32, RoPE33, and SwiGLU>*. We employ
QKNorm>° and attention logit soft capping3®°” to increase training stability.

Efficiency Inference speed of block-causal transformer architectures is limited both by the FLOPs
of the MLPs and the memory bandwidth needed to access the KV cache of a long context to attend
into. We employ a sequence of improvements to speed up inference, some of which also accelerate
training. First, we break up the cost of dense attention over all video tokens by using separate
space-only and time-only attention layers®®. Second, we find that only a relatively small number of
temporal layers are needed and only use temporal attention once every 4 layers, in line with recent
findings®?. Third, we apply GQA* to all attention layers in the dynamics, where multiple query
heads attend to the same key-value heads to reduce the KV cache size further.

Sequence length Increasing spatial tokens directly improves visual quality, whereas increasing
temporal tokens allows training longer context lengths for more temporally consistent generation. To
support efficient training, we alternate training on many short batches and occasional long batches,
and finetune the model on only long batches afterwards. Alternating batch lengths produces inter-
mediate training metrics and generations that are more indicative of final model performance than
training only on short batches. The batch lengths need to be longer than the context length of the
model to prevent the transformer from overfitting to always seeing a start frame at the beginning of
its context, enabling length generalization to arbitrary generation lengths.
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Figure 3: Agent performance in Minecraft without environment interaction. All methods have ac-
cess to the same contractor dataset!'® with image inputs and low-level mouse and keyboard actions.
We report the success rates of important items obtained during 60-minute episodes that start in
random worlds and from empty inventory, computed over 1000 episodes. Leveraging imagination
training, Dreamer 4 is the first agent to obtain diamonds in Minecraft purely from offline experience.
Dreamer 4 substantially outperforms OpenAl’'s VPT offline agent !> while using 100x less data. It
also outperforms our VLA agent*1*4?| which leverages the general knowledge of the Gemma 3 vision-
language model *3, nearly tripling its success rate for crafting iron pickaxes.

4. Experiments

We perform a wide range of experiments to evaluate and explore the capabilities of Dreamer 4.
The majority of our experiments focus on Minecraft, a complex video game that features infinite
open worlds including monsters and hundreds of items that can be mined or crafted, with raw pixel
observations and low-level mouse and keyboard actions. We primarily use the VPT dataset'® that
contains 2541 hours of contractor gameplay with 360p video and mouse and keyboard actions at
20 FPS. The experiments are designed to answer the following questions:

* Does Dreamer 4 learn to solve challenging control tasks purely by imagination training inside the
world model, without online environment interaction? (Section 4.1)

* How well does Dreamer 4 learn to predict accurate object interactions and game mechanics in
Minecraft compared to previous world models? (Section 4.2)

* How much action data does Dreamer 4 need for learning action conditioning, and how far does
the learned action grounding generalize? (Section 4.3)

* To what extent does each component of its objective and architecture contribute to the perfor-
mance of Dreamer 4? (Section 4.4)

We train models with 2B parameters—400M for the tokenizer and 1.6B for the dynamics model—on
256 to 1024 TPU-v5p with batch size 1 per device and FSDP sharding**4°. To improve generations
without context, we treat 30% of the videos in the batch as separate images, effectively training the
dynamics model to generate start frames. For Minecraft, we use 256 spatial tokens with 192 frames
context length and 256 batch length. For the real world datasets, we use 512 spatial tokens with 96
frames context length and 128 batch length.
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Figure 4: Agent ablations on the offline diamond challenge. We report success rates and time
needed to reach an item for four milestone items. Dreamer 4 outperforms methods based on behav-
ioral cloning in both metrics, demonstrating that imagination training improves both the robustness
and efficiency of the policy. Moreover, using the world model representations for behavioral cloning
outperforms using Gemma 3 or training from scratch.

4.1. Offline Diamond Challenge

We evaluate Dreamer 4 on the Minecraft diamond challenge, a long-horizon control task that re-
quires solving several sub tasks, such as gathering materials and crafting tools in a complex proce-
durally generated 3D world from raw pixels and mouse and keyboard actions. Human players with
Minecraft experience take 20 minutes to collect a diamond on average, corresponding to sequences
of 24,000 mouse and keyboard actions.

Offline setting  While previous agents have achieved diamonds in Minecraft through online inter-
action with the environment !>, deploying partially-trained policies is often infeasible for practical
applications, such as physical robots, because ensuring safety, resetting the scene, and providing
rewards in real time is difficult. Instead, we focus on the challenge of learning purely offline from
a fixed experience dataset. We only use the VPT contractor dataset'>—which contains 2.5K hours
of videos, actions, and event annotations—without allowing the agent to interact with the environ-
ment for learning, and compare to baselines in this offline setting. We follow the VPT evaluation
protocol of raw pixel inputs and low-level mouse and keyboard actions, requiring crafting through
the in-game user interface. Episodes last 60 minutes, starting from an empty inventory in randomly
generated Minecraft worlds.

Implementation Dreamer 4 learns a single transformer that predicts inputs, actions, rewards,
and values. To build a steerable agent, we opt for a multi-task setting and condition the actions, re-
wards, and values on task embeddings. We annotate the tasks and their sparse binary rewards using
the existing events in the VPT dataset. Table 4 lists the 20 tasks and Table 6 shows the linear prompt
sequence that guides the agent to reach diamonds during evaluation in the environment. To amplify
the signal in the dataset during behavior cloning, reward modeling, and reinforcement learning, we
use data mixture of 50% uniform sequences and 50% relevant sequences that accomplish one of
the tasks. The behavioral cloning loss is applied only on the relevant fraction, while the dynamics
loss is applied only on the uniform sequences to avoid optimistic generations. We use one-hot task
indicators but text embeddings could easily be used. We represent keyboard actions as 23 binary
distributions and mouse actions as a categorical with 121 classes using foveated discretization '°.
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Figure 5: Human interaction. A human player counterfactually interacts with the world model in
real time via mouse and keyboard to perform the same task from the same initial image. Dreamer 4 is
the first world model to accurately predict the object interactions and game mechanics of placing the
blocks in the correct shape. In contrast, previous Minecraft world models degrade visually, change
the held item, and hallucinate structures that the player never built. The Dreamer 4 world model
allows the player to accomplish the task (£4) while Oasis and Lucid do not (X).

We compare the following agents:

VPT (finetuned) The strongest Minecraft agent for mouse and keyboard control in the liter-
ature'®. The VPT paper presents two unconditioned behavioral cloning policies in the offline
setting, both trained on 270K hours of synthetically annotated YouTube gameplay videos, and
one further finetuned on a filtered subset of “early game” data. We use the finetuned policy
because it significantly outperforms the pretraining policy.

BC (notask) Behavioral cloning from scratch using multi-token prediction (MTP), without task
conditioning. While VPT uses the contractor data to train an action labeler and trains the policy
on annotated YouTube videos, our BC agent trains directly and only on the relevant subset of the
contractor actions. This agent is not task conditioned, making it directly comparable to VPT.

BC Behavioral cloning from scratch on the filtered contractor dataset with task conditioning.
This agent is trained on the same filtered contractor dataset as BC (notask) but the additional
task input makes it steerable. When evaluating in the environment, the prompt sequence guides
the agent through intermediate tasks towards mining diamonds.

VLA (Gemma 3) Following the VLA recipe**?, we train a behavioral cloning policy by fine-
tuning the vision-language model Gemma 3“4 on the relevant sequences using MTP. Gemma 3
has been pretrained using substantially more compute and data than our other models, including
native pretraining on images for visual perception, making it a strong baseline.

WM+BC The behavioral cloning policy of Dreamer 4, before applying imagination training.
This policy is initialized from the world model pretrained on the full contractor dataset. It then
undergoes agent finetuning using behavioral cloning, reward modeling, and dynamics losses.

Imagination RL The full Dreamer 4 agent produced by finetuning the WM+BC agent through
reinforcement learning in imagination, which we refer to as imagination training. Despite per-
forming on-policy reinforcement learning inside of the world model, there is no actual environ-
ment interaction, making it an offline method.
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Model Parameters Resolution Context FPS Success
MineWorld 1.2B 384x224 0.8s 2 —
Lucid-vl 1.1B 640x360 1.0s 44 0/16
Oasis (small) 500M 640x360 1.6s 20 0/16
Oasis (large) — 360x360 1.6s ~5 5/16
Dreamer 4 2B 640x360 9.6s 21 14/16

Table 1: Comparison of Minecraft world models. Dreamer 4 is the first world model to accurately
simulate a wide range of object interactions and game mechanics in Minecraft. Moreover, Dreamer 4
pushes the limits of context length compared to previous models by 6x, while maintaining real-time
interactive inference. We measure the inference speed of each model on a single H100 GPU, and
translate the inference speed for the proprietary large Oasis model based on public information. The
Minecraft dataset is recorded at 20 FPS, matching the update rate of the game.

Agent performance Figure 3 compares the agent performance on the diamond task. We re-
port the success rates for several relevant items leading up to diamonds that are listed in Table 5.
VPT (finetuned) progresses up to sticks, which it achieves 53% of the time. It also collects a small
amount of stone, iron ore, and iron ingots through edge cases, such as exploding Creeper mobs and
loot chests. Using the contractor actions directly instead of annotating YouTube videos, our modern
BC baseline achieves higher performance than VPT (finetuned). VLA (Gemma 3) shows that ini-
tializing the policy from a pretrained models offers significant benefits, progressing up to the iron
pickaxe with a success rate of 11%. Dreamer 4 achieves high success rates of over 90% up to the
stone pickaxe, a success rate of 29% for the iron pickaxe, and obtains diamonds in 0.7% of episodes.
Imagination training shows stronger improvements over the behavior cloning agents the more chal-
lenging the milestone is. Figure 4 compares additional agents on the diamond task, showing that
the world model representations outperform the general representations of Gemma 3 for behavioral
cloning. This indicates that video prediction implicitly learns an understanding of the world that
is also useful for decision making. Finally, imagination training consistently improves not only the
success rates but also makes the policy more efficient so that it reaches the milestones faster.

4.2. Human Interaction

To evaluate its ability to predict complex interactions, we train Dreamer 4 on the Minecraft VPT
dataset !> and compare its generations to previous world models on this dataset. For this evaluation,
a human player tries to accomplish tasks by playing inside of the world model, as shown in Figure 5.
The human player receives the task description and the world model is initialized to a start frame
for the task. We select a diverse set of tasks that cover a broad range of object interactions and
game mechanics. The tasks include digging a pit, building a wall, chopping a tree, placing and
riding a boat, looking away and back at objects, interacting with crafting benches and furnaces,
and more. We compare Dreamer 4 to the world models Oasis*°, Lucid-v1%’, and MineWorld*®.
Note that we cannot directly compare to Genie 37, because it only supports camera actions and one
generic “interact” button, whereas Minecraft requires a more general mouse and keyboard action
space. Table 1 summarizes the compared models. Full results are given in Figures 12 to 14.

12



Figure 6: Robotics generations for counterfactual actions. Dreamer 4 learns an accurate real-time
simulator of the environment, allowing human operators to control the imagined robot to pick up
objects, flip over a bowl, press a ball onto a plate, move a towel, and throw a bowl.

Inference speed We measure the inference speed of each model on a single H100 GPU. Dreamer 4
and Lucid-v1 achieve real-time interactive inference by exceeding the 20 FPS of the Minecraft physics
engine* and the VPT dataset!°. Dreamer 4 has a substantially longer context of 9.6 seconds com-
pared to the 0.8-1.6 seconds of prior models. Oasis comes in two sizes, a 500M parameter version
with open weights and a larger model of unknown size that is playable on the project website.
The small model achieves 20 FPS on one H100. The large model is hosted on multiple H100s for
interaction online and we estimate its inference speed on a single H100 around 5 FPS based on
public information. MineWorld achieves 2 FPS with their parallel decoding approach and is even
slower without. Additionally, parallel decoding requires knowing actions in advance, which is also
required in the provided user interface. Thus, it does not support real-time interactions and we
cannot evaluate it on our tasks, which require many hundreds of actions.

Complex interactions Video generations of human players attempting all tasks inside of the
world models are shown in Figures 12 to 14. Lucid-vl does not allow completing the tasks, with
generations diverging or object interactions being ignored. The large Oasis model allows performing
5 out of 16, such as placing torches, filling a window with glass panes, and opening a door. However,
it fails at building tasks because after placing a few blocks, it quickly hallucinates large structures
into the world. This “autocompletion” failure mode reflects a lack of understanding of the game
mechanics. We did not evaluate MineWorld because of its lack of interactive inference. Dreamer 4
achieves 14 out of 16 tasks, accurately generating complex interactions and game mechanics such as
switching items, placing and breaking blocks, fighting monsters, placing and riding boats, entering
portals, and more. Its temporal consistency is limited to a context of 9.6 seconds, albeit substantially
longer than previous models. While it correctly generates the interfaces for inventory, crafting, and
furnaces and predicts most mouse movement, inventory items are sometimes unclear or change over
time, leaving room for future improvements.

As a step towards testing the applicability of Dreamer 4 to real world video, we also train the world
model on a robotics dataset*?. In Figure 6, we observe accurate physics and counterfactual interac-
tions with real world objects, overcoming the causal confusion of existing video models. Additional
details are included in the supplementary material.

*https://minecraft.fandom.com/wiki/Tick
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Figure 7: Action generalization. (left) Dreamer 4 learns accurate action conditioning from 2500
hours of video with only 100 hours of paired actions. It achieves over 80% of the action-conditioned
generation accuracy, normalized within the range of training without any actions and using all
actions. (right) When learned with only actions of the Minecraft Overworld, the action conditioning
generalizes to the Nether and End dimensions of the game that are only seen in unlabeled videos.
These environments are distinct from the Overworld in their textures, blocks, and items. The results
indicate that Dreamer 4 learns action conditioning from small amounts of action data that generalize
broadly, paving the way toward learning simulators from diverse unlabeled web videos.

4.3. Action Generalization

One promise of world models is to leverage diverse unlabeled videos to teach agents about the world.
For example, a world model could learn general physics and object interactions from web videos
where actions are not available. In this section, we investigate the amount of paired videos with
actions that are needed for grounding an embodiment into the Dreamer 4 world model. Intuitively,
the world model has to learn a broader distribution of possible outcomes when actions are missing,
and can narrow the distribution down when actions are provided. Moreover, we investigate how well
the action conditioning generalizes, not just within the same distribution, but also out of distribution
to parts of the world specifically held out. To measure the accuracy of the action conditioning, we
compare action-conditioned multi-step generations to ground truth videos on the holdout set. We
report PSNR and SSIM for 16-step generations given 320 frames of context.

Amount of actions  To understand the amount of video with actions needed to learn action con-
ditioning, we train Dreamer 4 on all 2541 hours of videos in the VPT dataset, but only provide
actions for a small subset of the videos. When actions are unavailable, the dynamics model is con-
ditioned on a learned embedding, as described in Section 3.2. We train Dreamer 4 models with 0,
10, 100, 1000, and 2541 hours of actions. The available actions are the first in sequential order of
the dataset, corresponding to fewer unique worlds and players than random shuffling would yield.
Figure 7 show the quality of the action conditioning compared to training with no actions at all to
training with all actions. With only 10 hours of actions, Dreamer 4 achieves 53% PSNR and 75%
SSIM compared to a model trained with all actions. With 100 hours of actions, the performance
increases further to 85% PSNR and 100% SSIM. This result demonstrates that world models absorb
the majority of their knowledge from unlabeled videos, and require only a small amount of actions.

Action extrapolation In principle, world models may not only learn action ground from a few
actions but also generalize their action conditioning to completely new scenarios. In the future, this
could allow world models to absorb general knowledge from diverse web videos to simulate agents
in diverse environments. We perform, to the best of our knowledge, the first controlled evaluation
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Train step Inference Quality
Model seconds FPS (1) FVD ()
Diffusion Forcing Transformer 9.8 0.8 306
+ Fewer sampling steps (K = 4) 9.8 9.1 875
+ Shortcut model 9.8 9.1 329
+ X-Prediction 9.8 9.1 326
+ X-Loss 9.8 9.1 151
+ Ramp weight 9.8 9.1 102
+ Alternating batch lengths 1.5 9.1 80
+ Long context every 4 layers 0.6 18.9 70
+ GOQA 0.5 23.2 71
+ Time factorized long context 0.4 30.1 91
+ Register tokens 0.5 28.9 91
+ More spatial tokens (N, = 128) 0.8 25.7 66
+ More spatial tokens (N, = 256) 1.7 21.4 57

Table 2: Cascade of model design choices. Dreamer 4 is based on a shortcut forcing objective and
an efficient transformer architecture, combining a range of known techniques to achieve accurate
and fast interleaved generation. Starting from a naive diffusion forcing transformer with N, = 64
spatial tokens and K = 64 sampling steps, we apply the objective and architecture modifications,
and increase the number of spatial tokens once feasible. Inference speed measured on a single H100
GPU. The resulting world model achieves high model capacity and inference efficiency.

of this hypothesis. For this, we carefully split the VPT dataset into one portion that only contains
videos of the Overworld and another portion that only contains the other two game dimensions, the
Nether and End. Where the Overworld contains forests, deserts, oceans, and more, the Nether and
End feature substantially different and unique visuals. The Nether is an underworld filled with lava
and red blocks and the End is filled with yellow blocks and black towers unseen in the Overworld.
We train Dreamer 4 on videos of both datasets but only provide actions for the Overworld. We then
perform an action-conditioned evaluation of the resulting model on the Nether and End, for which it
has never seen any actions. In a prior experiment, we observed that training only on the Overworld
portion without any Nether videos results in poor generation scores for Nether start frames. Figure 7
reports the relative performance compared to training without any or with all actions. Surprisingly,
the world model achieves 76% of the PSNR and 80% of the SSIM of the model trained with all
actions. This demonstrates that the action conditioning of world models can generalize to scenarios
known only from unlabeled videos.

4.4. Model Design

World models require high model capacity to predict complex object interactions and fast inference
to support imagination training and human interaction for inspection. Moreover, interactive infer-
ence prompts different design choices compared to typical video models to enable fast generation
of individual frames and prevent accumulating errors. In this section, we ablate the objective and
architecture decisions of Dreamer 4 by applying a cascade of improvements to a naive diffusion forc-
ing transformer baseline. To evaluate each model, we train for 48 hours and then generate 1024
videos of 384 frames (20 seconds) each without any context, with interactive actions chosen by a
fixed behavioral cloning policy. We then split the resulting videos into 16 frame chunks to compute
the Frechét Video Distance (FVD)>° to the holdout dataset.
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Table 2 shows the progression of models and their gen- Generation quality for sampling steps
eration quality and speed. We start with a standard

1000 A

block-causal transformer with dense attention and diffu- ® Diffusion Forcing
sion forcing with velocity parameterization. We target 20 800 1 @ Shortcut Forcing
FPS interactive inference on a single H100 GPU, matching | g

the tick rate of Minecraft and the framerate of the VPT &

dataset. With 64 sampling steps per frame, the baseline 7 4001

falls short of real-time generations with only 0.8 FPS on 200 1

one H100 GPU, while 4 sampling steps achieve 9.1 FPS but 0L : . T T . .
result in poor quality. Shortcut models?! nearly recover 1 2 4 8 16 32 64
the original visual quality with only 4 sampling steps. Sampling steps

We then parameterize the model to make x-space predic-
tions, compute the loss in x-space, and apply the ramp loss
weight. These changes substantially improve generation
quality over traditional v-space prediction, especially for
long generations. We hypothesize that the prediction tar-
gets in x-space are more structured and thus reduce the
risk of high-frequency errors that accumulate over time.
Figure 8 compares the visual quality of shortcut forcing to
diffusion forcing—both using the x-space loss with ramp
weight—for a wider range of sampling steps.

Figure 8: Generation quality of short-
cut forcing compared to diffusion forc-
ing. Shortcut forcing with only 4 sam-
pling steps approaches the quality of dif-
fusion forcing with 64 steps, resulting in
16x faster generations.

Training on alternating batch lengths is similar to progressive training and speeds up learning while
allowing to generate long videos for inspection throughout training. Using temporal attention only
every 4 layers not only speeds up training and inference® but also improves generation quality,
possibly because of the inductive bias of spatial attention that focuses computation on the current
frame. GQA further accelerates generations without degrading performance. Switching the long
context layers from dense to time-only attention accelerates inference at a mild quality cost, and
prepares us to increase the overall number of tokens subsequently. While the register tokens do
not improve FVD measurably, we qualitatively notice that they improve temporal consistency. After
these changes, training and inference is fast enough to increase model capacity through more spatial
tokens, improving predictions of complex interactions. The complete model achieves an FVD of 57
compared to 306 for the naive diffusion forcing transformer baseline and 124 for the complete
architecture with v-space prediction and losses.

Data (hours)

Agent Inputs Actions Offline Web Online
Dreamer3 | S0 abedectemting |~ 1%
VPT (RL) 128x128 keyboard, mouse 2.5K 270K 194K
VPT (BC) 128x128 keyboard, mouse 2.5K 270K —
Dreamer 4 360x640 keyboard, mouse 2.5K — —

Table 3: Comparison of experimental setups for different Minecraft agents. Dreamer 4 learns purely
from offline experience and requires 100x less data than previous keyboard and mouse agents. See
Figure 10 for examples of input images.
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5. Related Work

Minecraft agents  Obtaining diamonds in the video game Minecraft has been a focus of intelligent
agent research®'4 a long-horizon task that requires gathering resources and crafting tools through
thousands of low-level actions in complex procedurally generated 3D worlds. Different setups have
been used in the literature, with Table 3 summarizing the ones relevant to our work. VPT'® collects
2.5K hours of contractor gameplay and uses it to annotate 270K hours of web videos with synthetic
mouse and keyboard actions. Behavioral cloning on this large offline dataset and targeted finetuning
on “early-game” data yields a policy that occasionally obtains wooden pickaxes. Following up with
194K hours of online reinforcement learning results in a policy that obtains diamonds and diamond
pickaxes. Dreamer 3! learns to collect diamonds from scratch from 1.4K hours of online interaction,
without any human data. It uses the MineRL competition action space that includes abstract crafting
actions. Other works have explored novel algorithms for easier tasks®>>~%. In this paper, we train
an agent to achieve diamonds purely from the 2.5K hour contractor dataset, without any online
interaction. We use low-level mouse and keyboard actions and high-resolution image inputs.

World model agents Learning behaviors based on learned models of the environment has been
explored for a long time °?-!. Visual Foresight®?, the work by Ha and Schmidhuber °3, and PlaNet®*
achieved world models accurate enough for planning from pixels. With Dreamer, world models have
become the state-of-the-art approach for solving control problems with high-dimensional inputs, out-
performing model-free reinforcement learning in robustness, efficiency, and final performance 1666,
World models based on transformers or diffusion objectives have demonstrated high data efficiency
for discrete control®7-%9. However, these world models have been limited in model capacity, restrict-
ing their applicability to relatively simple simulated environments.

Scalable world models Larger world models have been shown to simulate more complex data
distributions’?. World models like Genie 3 generate highly diverse scenes and simulate camera
movement and simple interactions”-%1%12, PlayerOne® and PEVA!! condition on more detailed hu-
man movement. Oasis*®, Lucid%’, and MineWorld*® learn Minecraft simulators from mouse and
keyboard inputs. Whereas Oasis captures simple game mechanics and achieves real-time inference
on specialized hardware, Lucid’s predictions diverge quickly and MineWorld is slower than real time.
GameNGen! finetunes Stable Diffusion into a playable simulator of a level of the game Doom. DIA-
MOND*# learns a simulator of a level of the game CS GO, achieving short-term predictions. GAIA7?73
generates driving scenarios from real world data. However, these world models still struggle to pre-
dict complex object interactions precisely enough for imagination training.

Fast generation Enabling fast and accurate generations has been a long-standing challenge in
generating modeling. MaskGit generates discrete tokens in parallel to accelerate sampling over au-
toregressive models’#. Diffusion models are often distilled to enable sampling using fewer forward
passes’>7% which requires two training phases. Consistency models learn straight paths to en-
able fast image generation but require careful schedules’’~7°, with successful applications to video
generation®’. Shortcut models?! condition flows on both noise level and step size, producing fast
generative models in one training phase and without schedules. Mean Flow®! extends the idea of
conditioning on the step size to a continuous time formulation. Efficient and sparse architectures
are used for video generation because of the large number of tokens®®:8283, These models do not
support interactive inference and many of the techniques are complimentary to our work.
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6. Discussion

We present Dreamer 4, a scalable agent that learns to solve challenging control tasks by imagination
training inside of a fast and accurate world model. Dreamer 4 is the first agent to obtain diamonds
in Minecraft purely from offline data, without online interaction. This achievement demonstrates its
learning successful long-horizon strategies in complex environments. Learning purely from offline
datasets enables applications where online interaction is impractical or unsafe.

The world model of Dreamer 4 rests on a shortcut forcing objective and an efficient transformer
architecture to predict complex object interactions while supporting interactive inference in real
time on a single GPU. We demonstrate that it significantly outperforms previous world models on
Minecraft, where it accurately predicts a wide range of game mechanics from mouse and keyboard
inputs. However, the world model is far from a full clone of the game, especially due to short memory
and imprecise inventory predictions, leaving Minecraft as an ideal benchmark for future world model
and agent research. We also show that Dreamer 4 learns accurate action conditioning from only a
small amount of videos with actions, allowing it to absorb the majority of its knowledge from diverse
unlabeled videos.

Promising future directions include pretraining on general internet videos, integrating long-term
memory into the world model and agent, incorporating language understanding, leveraging small
amounts of corrective online data, and automatically discovering goals to break up long tasks.
Dreamer 4 offers a reliable and performant starting point for these explorations.
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A. Datasets

Minecraft VPT  We use the OpenAl VPT dataset of contractor gameplay ' and combine the avail-
able subsets 6-10, resulting in 2541 hours of gameplay. We split the dataset into 90% training
and 10% evaluation data, ensuring that the splits do not share any of the same underlying 5-min
recording chunks. We encode keyboard actions as a vector of binary variables and process the mouse
actions as in VPT by p-law encoding, discretizing into 11 bins per coordinate, and enumerating all
11 x 11 = 121 combinations to obtain a categorical variable. The image resolution is 360 x 640 and
the framerate is 20 FPS. We zero pad the frames to 384 x 640 and then patchify with patch size
16 x 16 into 960 tokens. We reshape the (N, = 512) x (D, = 16) bottleneck of the tokenizer to
(N, = 256) x 32 for the dynamics model. We train the dynamics model with N, = 256 spatial tokens,
context length C = 192, and batch lengths T; = 64 and T, = 256.

Minecraft Overworld and Nether split  To study out-of-distribution generalization of action con-
ditioning in Dreamer 4, we carefully split the Minecraft dataset into videos of the Overworld versus
the Nether dimension. We also include the End dimension into the Nether portion of the dataset.
Both the Nether and the End feature unique visuals, blocks, and terrain shapes compared to the
Overworld. The Overworld includes natural landscapes with forests, deserts, oceans, and more,
whereas the Nether is underworld-themed with red blocks and lava and the End is a space-themed
region. To separate the dataset, we want to ensure no leakage from players entering the Nether/End
dimensions and bringing blocks from there back to the Overworld. For this reason, we exclude the
VPT 6 and 7 subsets, which contain long free play. We then assigned each 5 min recording of the
remaining dataset to either the Overworld or the Nether/End portion based on item events that are
provided by the dataset. Whenever a Nether/End item was interacted with, we assign that video
to the Nether/End split. This ensures that the Overworld split contains no Nether/End episodes,
whereas the Nether/End split can sometimes contain some Overworld episodes, although this was
rare in practice. We manually investigated the Overworld split obtained by this strategy and found
no Nether/End trajectories in it.

SOAR Robotics  The SOAR dataset*’ contains teleoperated demonstrations and online trajectories
of a reinforcement learning policy, thus covering both successes and failures. We split the dataset
into 90% training and 10% evaluation data. The dataset contains a total of 180 hours of videos
with 7D relative end-effector actions. The image resolution is 256 x 256 and the framerate is 5 FPS.
We patchify with patch size 16 x 16 into 256 tokens. We train the dynamics model with N, = 512
spatial tokens, context length C = 96, and batch lengths T; = 32 and T, = 128.

Epic Kitchens  The Epic Kitchens 100 dataset®* contains 100 hours of video from the first-person
perspective of humans across 45 kitchens. The test set contains different tasks performed in the
same kitchens. We use the dataset at 256 x 256 resolution and 10 FPS. We patchify with patch size
16 x 16 into 256 tokens. We train the dynamics model with N, = 512 spatial tokens, context length
C =96, and batch lengths T; =32 and T, = 128.
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B. Kitchen Generations

Figure 9: Kitchen video generations starting from holdout context.
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C. Minecraft Tasks

Index | Task

1 mine_log

2

3 mine_iron_ore
4 mine_coal

5 mine_diamond
6 craft_planks

7 craft_stick

8

15 open_furnace

17 place_furnace

Task

Count

mine_cobblestone

craft_crafting_table

9 craft_furnace

10 craft_iron_ingot

11 craft_wooden_pickaxe
12 craft_stone_pickaxe
13 craft_iron_pickaxe

14 open_crafting table

16 place_crafting_table

18 use_wooden_pickaxe
19 use_stone_pickaxe
20 use_iron_pickaxe

Table 4: Taskset for training the multi-task

agent.

Icon Item

mine_log
craft_planks
craft_crafting_table
place_crafting_table
craft _stick
craft_wooden_pickaxe
use_wooden_pickaxe
mine_cobblestone
craft_planks
craft_crafting_table
place_crafting_table
craft_stick
craft_stone_pickaxe
use_stone_pickaxe
mine_iron_ore
mine_cobblestone
craft_planks
craft_crafting_table
place_crafting_table
craft_furnace
craft_iron_ingot
craft_stick
craft_iron_pickaxe
use_iron_pickaxe
mine_diamond

8H»—t[\Jw»—-»—w—l-hOown—-»—l.th—t.[;oor—ln—n.pn—w—lgg

Log

Planks

Stick

Crafting table
Wooden pickaxe
Cobblestone
Stone pickaxe
Iron ore
Furnace

Iron ingot

AKX BYK BYE ANK X

Iron pickaxe
&b Diamond

Table 5: Milestone items used for measuring

progress during evaluation.

Table 6: Prompt sequence for evaluation.
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D. Offline Diamond Challenge

~ )
g g 2
5 g S v
g ol ¥ & 55 "
g & F O 0 O &
]
Item N N & = & .§ = N
Log 81.9 84.3 71.4 92.6 97.3 98.5 99.6 99.1
Planks 30.6 65.3 68.6 91.6 95.7 98.3 99.6 98.9
Crafting table 1.7 4.7 63.8 90.6 93.5 97.2 99.1 98.5
Stick 30.3 52.6 62.4 90.1 95.0 97.7 98.9 98.7
Wooden pickaxe 0.0 0.0 33.8 77.3 86.5 94.1 97.3 96.6
Cobblestone 4.8 6.9 32.0 77.4 83.9 91.6 97.2 95.9
Stone pickaxe 0.0 0.0 8.8 38.4 53.8 76.7 89.4 90.1
Iron ore 0.1 0.1 3.6 22.0 26.5 46.3 62.9 66.7
Furnace 0.0 0.0 4.0 28.0 16.2 42.4 51.1 58.1
Iron ingot 0.1 0.1 0.2 1.2 4.3 22.5 27.8 39.5
Iron pickaxe 0.0 0.0 0.0 0.1 0.6 11.2 16.9 29.0
Diamond 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7

Table 7: Success rates for each milestone item averaged over 1000 evaluation episodes. Scores
within 5% of the highest recorded score are highlighted in bold.

~ )
g 9 4 &
.5 g sﬂ o]
g o ¥ g és "
1 g F O 0 O o)
]
Item N N & = & ,§ = N
Log 9.1 6.3 11.9 5.4 1.8 2.2 1.2 0.9
Planks 25.2 14.2 12.2 5.9 4.3 3.4 2.1 2.0
Stick 32.0 24.0 13.3 6.7 6.4 5.0 3.1 2.9
Crafting table 41.4 27.5 17.1 8.0 9.5 7.2 4.6 4.4
Wooden pickaxe — — 18.8 11.6 11.4 9.8 5.7 5.0
Cobblestone — — 19.6 12.7 13.3 12.1 6.7 5.6
Stone pickaxe — — 23.5 15.7 15.8 14.5 8.9 6.7
Iron ore — — 28.9 17.5 20.9 23.5 14.3 9.9
Furnace — — 29.4 19.7 24.5 24.7 16.1 11.0
Iron ingot — — — 30.5 28.8 30.8 17.2 12.4
Iron pickaxe — — — — 29.1 31.1 17.0 13.3
Diamond — — — — — — — 20.7

Table 8: Time in minutes needed for reaching each milestone item, averaged over successful
episodes. We omit timings for items below a success rate of 0.5% to ensure statistical significance.

Scores within 5% of the fastest recorded score are highlighted in bold.
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E. Minecraft Inputs

v

(@) Dreamer 3 (64x64) (b) VPT (128x128) (c) Dreamer 4 (360x640)

Figure 10: Comparison of input images for different agents. Dreamer 4 learns directly from high-
resolution images reflecting the experience of human players.

F. Previous Dreamer Generations

Dreamer 3! learned to obtain diamonds in Minecraft from scratch by online interaction. Its in-
puts are low-resolution images and inventory states and the outputs are mouse, keyboard, and ab-
stract crafting actions. Dreamer 3 uses a recurrent state-space model (RSSM) ® as its world model,
which is based on a recurrent neural network and a variational objective. This approach results
in a lightweight world model with highly efficient inference but is difficult to scale to diverse data
distributions. In contrast, Dreamer 4 learns to obtain diamonds in Minecraft purely from offline
data. Its inputs are only high-resolution images and the outputs are low-level mouse and keyboard
actions. Dreamer 4 uses a scalable world model based on an efficient transformer architecture and a
shortcut forcing objective, allowing it to scale to diverse data distributions with many details. While
Dreamer 3 uses return normalization and an entropy regularizer, Dreamer 4 uses PMPO with a KL
to the behavioral cloning prior for imagination training, where no normalization is needed.

Dreamer 4

Dreamer 3

Time —8 —»

Figure 11: Comparison of multi-step video generations between Dreamer 3 and Dreamer 4.
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G. Human Interaction: Lucid-v1
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Figure 12: Lucid-vl
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H. Human Interaction: OASIS (large)
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Figure 13: Oasis (large)
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I. Human Interaction: Dreamer 4
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Figure 14: Dreamer 4
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