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Abstract 
Responsible AI demands systems whose behavioral tendencies can be effectively 

measured, audited, and adjusted to prevent inadvertently nudging users toward risky 

decisions or embedding hidden biases in risk aversion. As language models (LMs) are 

increasingly incorporated into AI-driven decision support systems, understanding 

their risk behaviors is crucial for their responsible deployment. This study 

investigates the manipulability of risk aversion (MoRA) in LMs, examining their 

ability to replicate human risk preferences across diverse economic scenarios, with a 

focus on gender-specific attitudes, uncertainty, role-based decision-making, and the 

manipulability of risk aversion. The results indicate that while LMs such as DeepSeek 

Reasoner and Gemini-2.0-flash-lite exhibit some alignment with human behaviors, 

notable discrepancies highlight the need to refine bio-centric measures of 

manipulability. These findings suggest directions for refining AI design to better align 

human and AI risk preferences and enhance ethical decision-making. The study calls 

for further advancements in model design to ensure that AI systems more accurately 

replicate human risk preferences, thereby improving their effectiveness in risk 

management contexts. This approach could enhance the applicability of AI assistants 

in managing risk. 

Keywords: language models; risk aversion; AI assistants; personalization. 

JEL Codes: C91; D87; C45; O33. 

 

1. Introduction 

 

 

 

 
1 Department of Economics, Allameh Tabataba’i University, Tehran, Iran. 
2 Faculty of Management and Accounting, Allameh Tabataba'i University, Tehran, Iran 
3 Department of Economics, Allameh Tabataba’i University, Tehran, Iran. 
4 Faculty of Management and Accounting, Allameh Tabataba'i University, Tehran, Iran 



 

2 
 

The origins of risk aversion have been extensively examined in the literature, with 

varying perspectives on its determinants. Some studies emphasize noncognitive 

factors in shaping risk attitudes (e.g., Becker et al., 2020), while others highlight the 

role of cognitive decline in fostering increased risk aversion (e.g., Bonsang & Dohmen, 

2015). In light of these debates, the growing integration of artificial intelligence (AI) 

into decision-making processes raises new concerns. AI systems, on one hand, can 

serve as scalable proxies for human behavior, amplifying the consistency and reach 

of individual decision patterns. On the other hand, these systems risk perpetuating 

(Paté‐Cornell, 2024), or even exacerbating, existing human biases. A further challenge 

lies in the possibility that heightened dependence on AI assistance may inadvertently 

impair human cognitive faculties (Bonsang & Dohmen, 2015), creating a feedback 

loop that reinforces specific risk attitudes in both humans and AI systems. These 

dynamics underscore the need for policy interventions, particularly the development 

of mechanisms for calibrated “attitude injection” when deploying AI assistants for 

specific tasks. A critical aspect of this concern is the manipulability of risk attitudes. 

This study evaluates language models (LMs) across diverse contexts, comparing their 

imputed risk behaviors with human benchmarks. We argue that new KPIs are 

essential for measuring human similarity and manipulability in risk attitudes. These 

metrics, we suggest, should play a pivotal role in guiding the design of policies and 

the responsible deployment of LMs. The remainder of the paper first explores the 

origins of risk attitudes, then investigates the role of AI as a "copier," contrasting this 

with its potential as "responsible AI." We emphasize the importance of policy 

framework designs regarding risk attitudes and the capacity of AI to be steered 

toward a specific risk preference. 

Risk aversion is a fundamental determinant of economic decisions, influencing 

everything from consumption smoothing to portfolio choices and investments in 

human capital. Its heterogeneity contributes to disparities in income, resilience, and 

economic growth. This heterogeneity can be traced to two distinct sources of 

variation in risk attitudes: noncognitive and cognitive factors. These distinctions not 

only highlight the complex nature of risk aversion in humans but also establish a 

crucial benchmark for comparing risk behaviors in artificial intelligence systems, 

such as LMs, which may lack the evolutionary and cognitive foundations that shape 

human risk preferences. 

Building on the distinction between noncognitive and cognitive factors in shaping risk 

attitudes, the noncognitive origins of risk aversion are particularly significant. Becker 

et al. (2020) suggest that global variation in economic preferences, including risk 

aversion, can be traced back to the ancient migration of humans out of Africa. The 

separation of subpopulations into isolated groups during these migrations led to 



 

3 
 

diverse historical experiences and genetic differences, shaped by drift and selective 

pressures.  

Chan and Luo (2025) offer a related perspective, emphasizing that human risk 

preferences are rooted in historical subsistence strategies, particularly pastoralism. 

In societies dependent on pastoralism, frequent environmental shocks fostered 

adaptive practices like mobility and herd diversification, which cultivated a cultural 

inclination toward risk-taking. Their study, using evolutionary modeling, the 

Ethnographic Atlas, and the Global Preference Survey (GPS), provides causal evidence 

that historical reliance on pastoralism strongly predicts higher contemporary risk 

tolerance. These findings underscore the lasting impact of long-term subsistence 

strategies on modern risk-taking behavior across cultures. 

Additionally, Molins et al. (2022) provide a systematic review of the genetics of risk 

aversion, identifying consistent genetic factors that contribute to heterogeneity in 

risk and loss aversion. Following PRISMA guidelines, their analysis highlights the role 

of specific polymorphisms in shaping individual differences in risk preferences, 

further reinforcing the noncognitive, heritable components of this trait. 

Taken together, these studies position risk aversion as a multifaceted trait shaped by 

evolutionary, cognitive, and ecological forces, with lasting macroeconomic 

implications. These insights are critical for evaluating the risk-related behaviors of 

LMs, which, in the absence of analogous evolutionary and cognitive foundations, may 

diverge from human risk preferences. 

Shifting from innate and historical influences, cognitive factors also play a significant 

role in modulating risk attitude, evolving over an individual’s lifespan or in response 

to specific decision-making contexts. Bonsang and Dohmen (2015) find that a 

declining willingness to take risks with age is closely linked to cognitive aging, 

particularly reductions in memory, executive function, and numeracy, all of which 

increase risk aversion. Their data from European populations aged 50 and older show 

that accounting for these cognitive abilities reduces age-related differences in risk 

tolerance, highlighting the role of cognitive decline. This process, driven by biological 

aging rather than simply chronological age, suggests variability in risk attitudes 

across cohorts, influenced by historical health and education conditions. Additionally, 

Bonsang and Dohmen (2015) identify a cognitive channel in which declines in 

memory and numeracy among older European adults are associated with heightened 

risk aversion. 

Further advancing this understanding, Olschewski et al. (2023) explore how anti-

social motives contribute to increased risk aversion when individuals make decisions 

on behalf of others. They demonstrate that experiential learning plays a key role in 
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shaping risk attitudes, revealing a cognitive mechanism where social considerations 

and learning processes intersect to heighten caution in proxy decision-making. This 

finding underscores the importance of cognitive biases and motivational factors in 

modulating risk preferences, extending beyond mere computational ability. 

 

 AI as a Copier of Human Risk Behavior 

Recent studies have increasingly sought to compare risk-taking and decision-making 

under uncertainty in humans and LMs. Jia et al. (2024) introduce a behavioral 

economics framework to evaluate LMs across multiple dimensions, including risk 

preference, probability weighting, and loss aversion. Their findings indicate that LMs 

exhibit human-like behaviors, such as risk aversion, loss aversion, and a tendency to 

overweight small probabilities. Furthermore, embedding socio-demographic 

features into LMs leads to heterogeneous decision patterns, raising important 

concerns regarding fairness and bias in AI-driven decision support systems. Tests 

based on prospect theory (Payne, 2025) show that LMs are sensitive to linguistic 

framing, with risk-seeking behaviors becoming more pronounced under loss frames. 

However, these effects are not uniform across different domains—such as military 

versus civilian contexts—suggesting that LMs internalize language-driven human 

decision patterns, positioning them as computational mirrors of human evolutionary 

legacies. 

Despite their ability to replicate certain traits, such as openness, which influences risk 

propensity, LMs encounter challenges due to the unstable relationship between these 

traits and actual human behavior. These discrepancies lead to conflicts when LMs are 

applied in economic contexts (Bini et al., 2024). Additionally, socio-demographic 

biases and varying emotional sensitivities complicate their application in socio-

economic settings, as emotional cues influence AI risk-taking behavior differently 

than human responses (Jia et al., 2024; Zhao et al., 2024). Moreover, biases such as 

loss aversion, often embedded in training data, manifest in real-world applications, 

emphasizing the need for robust frameworks that align LM behavior with human 

decision-making (Han et al., 2025). In line with Chan and Luo (2025), understanding 

the economic and cultural roots of human risk-taking behavior is crucial for 

enhancing LM applications across diverse societies. Addressing these challenges will 

allow LMs to be better aligned for ethical deployment, bridging human evolutionary 

patterns with computational decision-making while mitigating undesirable biases. 
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Mimicry of Human Risk Behavior in Economic Decision-Making 

As LMs become more integral to economic decision-support systems, understanding 

their risk behavior in comparison to human behavior is critical. LMs increasingly 

display human-like personality traits, such as openness, which shape decision-

making under uncertainty, mirroring how human risk preferences evolved from 

subsistence strategies in pre-industrial societies (Hartley et al., 2025; Chan & Luo, 

2025). These LMs are capable of emulating complex human behaviors, such as loss 

aversion, aligning with cognitive patterns observed across a wide range of economic 

and cultural contexts (Jia et al., 2024; Han et al., 2025). 

This ability to replicate human risk preferences enhances LMs' potential for nuanced, 

contextually relevant applications in economic decision-making. By grounding AI 

behavior in the economic origins of human risk-taking, LMs can be better aligned for 

ethical deployment, utilizing frameworks that assess decision-making under 

uncertainty (Chan & Luo, 2025). This representativeness enables LMs to act as 

capable agents in diverse scenarios, reflecting authentic human-like responses while 

also highlighting areas where their behavior diverges from human tendencies. 

Representativeness 

However, while LMs can replicate human behaviors such as loss aversion within the 

framework of prospect theory, their decision-making is heavily influenced by 

linguistic framing, which complicates the accurate transformation of human behavior 

into computational models (Payne et al., 2025). AI-generated data, such as responses 

from LMs like ChatGPT, mimic human risk-taking behavior but also introduce biases, 

including excessive risk-seeking tendencies in specific demographic groups (Lim et 

al., 2023). Fine-tuning these LMs based on human data helps narrow the gap between 

AI and human behavior, but measurable differences remain, as demonstrated by 

metrics like Wasserstein distance (Iwamoto et al., 2025). Future research focused on 

examining linguistic framing in prospect theory can provide insights into refining AI 

behavior to more closely mirror human decision-making (Payne et al., 2025). This 

increased representativeness enhances AI’s utility as an agent capable of simulating 

human decision-making processes with high fidelity, bridging the gap between 

theoretical human risk aversion and practical AI applications. 

LMs as Autonomous Agents in Economic Decision-Making 

LMs transcend mere mimicry of human risk preferences, functioning as autonomous 

agents within behavioral economics and decision-making contexts (Li et al., 2023). 

Recent advancements in LM technology enable them to replicate human-like 

behaviors at scale, facilitating complex strategic experiments in decision-making. As 

demonstrated by Jia et al. (2024), LMs act as proxies for human agents in high-risk 

decision-making scenarios, consistently reflecting preference patterns across 
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different personas (Park et al., 2023). Moreover, LMs exhibit strategic reasoning 

capabilities, such as the ability to predict and adapt in game-theoretic settings. This 

makes them highly representative and effective (Duan et al., 2024) in agentic 

navigating uncertain economic environments. 

The flexibility of LMs is further demonstrated by their responsiveness to varying 

prompts, which elicit diverse behavioral patterns, thereby enhancing their utility in 

tackling a wide array of economic dilemmas (Phelps & Russell, 2023). In addition, 

psychometric frameworks, such as the Big Five personality traits model, allow for the 

fine-tuning of risk-taking behaviors, improving the representativeness of LMs in high-

stakes applications (Hartley, 2025). This capacity for dynamic, context-sensitive 

behavior positions LMs as valuable agents for ethical decision-making, though it also 

underscores the importance of actively managing biases to ensure responsible 

deployment (Ross et al., 2024). 

Inherent Drawbacks of AI as a Copier of Human Behavior 

While the ability of LMs to replicate human risk preferences offers notable 

advantages, there are significant drawbacks that stem from their attempt to mimic 

human behaviors. In behavioral economics games, LMs often exhibit distinct 

strategies, such as heightened altruism and fairness. However, their concentrated 

distributions fail to capture the full range of human diversity, which presents 

challenges for their application in economic contexts (Xie et al., 2024, Mazyaki et. al. 

2025). The inherent advantages of AI mimicry are thus tempered by the risk of 

transferring human-like flaws into computational systems, potentially exacerbating 

biases in ways that undermine the reliability of AI-driven decision-making. 

Transfer of Human Biases 

LMs inherit biases present in their training data, which can lead to skewed outcomes 

in decision-making processes. For instance, LMs tend to increase risk aversion 

through ethical alignment, which may inadvertently result in economic 

underinvestment (Liu et al., 2025; Ouyang et al., 2024). Additionally, while LMs 

effectively mimic human loss aversion, inconsistencies arise due to factors like 

linguistic framing and demographic-specific risk-seeking biases. Although fine-tuning 

LMs can reduce these gaps, it does not fully eliminate them (Payne et al., 2025; Lim et 

al., 2023; Iwamoto et al., 2025). 

Bini et al. (2025) further highlight that larger LMs often provide irrational, 

preference-based responses, though they offer more rational, belief-based responses. 

Role-priming techniques can help reduce biases, yet the challenge of aligning AI 

behavior with human risk attitudes remains complex. Cultural and historical factors 

further complicate the accurate mimicry of human decision-making, as LMs may 
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struggle to account for the nuanced ways in which these factors shape risk 

preferences. While emotional cues can improve prosocial behavior in LMs, the 

presence of biased risk personalities raises both ethical and financial concerns, 

underscoring the need for robust frameworks to ensure that AI systems are aligned 

with human values and behavior (Zhao et al., 2024; Zeng et al., 2024). 

AI Usage and the Deterioration of Cognitive Skills: Reinforcing Risk Aversion 

The widespread adoption of AI technologies raises concerns about the potential 

erosion of human cognitive abilities, which could, in turn, increase societal risk 

aversion (Gerlich, 2025). Overreliance on AI fosters cognitive offloading—where 

individuals rely on AI systems for tasks that would traditionally engage critical 

thinking, problem-solving, and creativity. This phenomenon is particularly 

pronounced among frequent users, with younger demographics showing significant 

declines in critical thinking scores as a result of regular AI use (Gerlich, 2025). 

In educational settings, AI-assisted tasks such as essay writing can lead to reduced 

neural engagement and lower memory retention, creating a "cognitive debt" that 

impairs independent reasoning (Kosmyna, 2025). This cognitive erosion, 

exacerbated by AI tools, may parallel findings in aging populations, where cognitive 

decline in memory and numeracy is linked to heightened risk aversion (Bonsang & 

Dohmen, 2015). The analogy suggests that AI-induced cognitive deficits could 

similarly promote more cautious decision-making under conditions of uncertainty 

(James et al., 2015). 

It is also noteworthy that, even if the relationship were reversed—such that 

diminished cognitive skills lead to less caution—this could introduce another bias, 

one favoring over-risk-taking. Such a shift would similarly distort decision-making, 

pushing individuals toward greater risk-seeking behavior due to the erosion of 

critical cognitive faculties. 

This dynamic creates a potential feedback loop, where increased reliance on AI for 

decision-making not only diminishes human cognitive capacity but also undermines 

individuals' confidence in their ability to make decisions. As a result, this could 

perpetuate a broader trend of conservatism in both economic and social domains, 

reinforcing risk-averse behaviors. To mitigate these effects, it is crucial to adopt a 

balanced approach to AI integration—one that accounts for the cognitive impacts of 

AI usage and ensures that its deployment does not inadvertently lead to increased 

societal risk aversion or a shift toward an undesirable risk attitude due to cognitive 

diminishment (Glickman & Sharot, 2025). 
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Responsible AI 

Contemporary studies extend the evolutionary and cultural roots of human risk 

aversion to artificial intelligence (AI), particularly in LMs that emulate decision-

making under uncertainty. Song et al. (2025) conducted a cross-cultural study using 

the Constant Relative Risk Aversion (CRRA) framework, comparing GPT-4o and o1-

mini with human responses in lottery tasks across diverse cities—Sydney, Dhaka, 

Hong Kong, and Nanjing. Their findings reveal that LMs, especially o1-mini, exhibit 

greater risk aversion than humans, with Chinese prompts leading to larger deviations 

from human behavior than English ones, highlighting the linguistic and cultural 

limitations of AI. While this emulation holds promise for replicating human-like 

decision-making, it introduces significant ethical considerations for responsible AI 

development. As LMs are integrated into decision-support systems, it is essential to 

implement safeguards to align AI behavior with human values while mitigating biases 

(Weidinger et al., 2022; Bommasani et al., 2022).  

Policy Design: Bridging Human and AI Risk-Taking 

The rise of AI in the 2020s has shifted the landscape of risk-taking, moving from 

emotionally driven human decisions to the strategically tuned behaviors of LMs. This 

shift, particularly in risk management, emphasizes ethical alignment to reduce harm 

and promote honesty, but it also amplifies risk aversion—potentially leading to 

economic underinvestment (Liu et al., 2025). Ethical alignment, focused on safety and 

harm reduction, has transformed how risk is approached but challenges the balance 

between efficiency and caution in economic scenarios (Ouyang et al., 2024). By tuning 

LMs to reduce harmful outputs, AI behavior becomes more conservative, creating 

conflicts between ensuring safety and maintaining economic performance 

(Chaudhary et al., 2025). This shift illustrates that risk-taking has moved from a 

human-centered to an AI-centered paradigm, but it also underscores the necessity of 

economic policies to bridge the two.  

Persona Injection: Enhancing Behavioral Consistency in AI 

Personality traits, in LMs shape their risk propensity, but the unstable relationship 

between self-reported traits and actual behavior complicates the precise emulation 

of human behavior (Hartley et al., 2025; Han et al., 2025). These challenges, rooted in 

the evolutionary origins of human risk-taking, such as pre-industrial subsistence 

strategies, raise fundamental questions about whether LMs can accurately replicate 

human risk behaviors or introduce new complexities (Chan & Luo, 2025). 

Instructional alignment may stabilize trait expression, but it often fails to predict 

consistent behavior across contexts. Thus, advanced interventions like persona 

injection are necessary to align LMs' surface-level traits with consistent, predictable 

actions (Han et al., 2025). 
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LMs, though capable of exhibiting diverse yet consistent “risk personas,” encounter a 

trade-off between ethical alignment and risk-taking. Ethical tuning, aimed at 

minimizing harm and enhancing honesty, increases risk aversion by 2–8%, which can 

impede economic productivity (Hartley et al., 2025; Ouyang, 2024).  Additionally, 

fine-tuning with human data, measured through metrics like Wasserstein distance, 

narrows the gap between AI and human behavior, fostering convergence and 

enabling targeted manipulation of risk attitudes for specific applications (Hartley et 

al., 2025; Liu et al., 2025; Iwamoto et al., 2025). This approach provides a powerful 

mechanism for controlling the manipulability of risk attitudes in LMs, aligning AI 

behavior more closely with human preferences and ensuring responsible deployment 

in high-stakes decision-making scenarios. 

 

More responsiveness of AI makes it a more representative assistant. 

Such policies should ensure that AI deployment in high-stakes environments fosters 

innovation while mitigating unintended conservative tendencies that may inhibit 

growth. In this context, measures like manipulability of risk attitudes  are crucial for 

guiding policy design, providing metrics to assess AI’s alignment with specific risk 

attitudes and ensuring that AI behaviors remain conducive to the desired societal and 

economic outcomes. In this regard, a responsive AI proves valuable, as it allows for a 

more accurate representation of targeted traits, enhancing its utility in making 

contextually appropriate decisions that align with human values and objectives. 

The manipulability of risk attitudes in LMs marks a significant advancement in 

aligning AI with human-like decision-making processes. Techniques such as steering 

vectors and persona-specific fine-tuning have shown promise in achieving this 

alignment. Zhu (2025) demonstrates that by aligning behavioral representations with 

neural activations through Markov chain Monte Carlo methods, it is possible to 

precisely modulate risk preferences in LMs, shifting LMs toward risk-seeking or risk-

averse behaviors without the need for full retraining. Similarly, Tang et al. (2025) 

enhance LMs’ adherence to persona-specific risk profiles, improving their 

performance in complex economic tasks while mitigating excessive risk aversion. 

Moreover, the prompt language used in interactions also influences the risk attitudes 

of LMs. Song (2025) shows that English prompts align LMs more closely with human 

risk preferences than Chinese prompts in cross-cultural lottery tasks. These 

strategies serve to mitigate conservative biases and enable more customizable AI for 

economic policy and decision-support. However, ethical oversight is crucial to ensure 

that these techniques do not introduce unintended risk-related disparities, 

particularly in diverse cultural and economic contexts. 
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2. Methodology 

This study aims to assess the extent to which LMs, as recommendation platforms, can 

be directed towards adopting a specific risk attitude. We examine how contextual 

manipulations and embedded demographic factors, such as uncertainty, influence the 

risk-taking behavior of LMs in decision-making contexts. We define Manipulability of 

Risk Aversion (MoRA) as the shift in an LM's risk aversion between prompts 

encouraging risk avoidance and those fostering risk-seeking behavior. The 

methodology draws on principles from behavioral economics and decision theory to 

evaluate the extent to which LMs can replicate human-like risk preferences and 

respond effectively to uncertainty-based tasks. 

Measurement of risk attitude is normally operationalized as eliciting preferences for 

certain outcomes over probabilistically equivalent uncertain alternatives (Rabin, 

2013). In behavioral economics, however, gender differences in risk aversion are 

well-established, with women typically demonstrating greater risk aversion than 

men, driven by both biological factors and socio-cultural norms. However, these 

effects can vary across domains, such as gains versus losses (Eckel & Grossman, 2008; 

Croson & Gneezy, 2009; Charness & Gneezy, 2012). This study investigates such 

differences across various LMs, manipulating prompt types to simulate diverse 

identities and contexts to capture the broad spectrum of human behaviors as 

reflected in LMs. 

We use the Holt and Laury (2002) multiple-choice task, which measures risk aversion 

by presenting participants with ten decisions between a safer and riskier option, 

adjusting probabilities to identify risk-seeking or aversion behaviors. In each 

decision, the probability of the risky option increases as the sequence progresses. The 

interpretation of the Holt-Laury measure focuses on the number of safe choices made: 

fewer than 4 indicates risk-seeking behavior, 4 reflects risk neutrality, and more than 

4 reflects risk aversion. A risk-neutral individual should change their choice at 

decision 5, providing an interval for measuring deviations from neutrality—less than 

5 signifies risk-loving behavior, and greater than 5 indicates risk aversion. This setup 

allows for the exploration of the extent to which LMs exhibit heterogeneity in risk 

attitudes similar to humans and whether they are sensitive to identity and contextual 

framing. 

Incentives were incorporated into the experimental design by randomly selecting one 

decision for either hypothetical or real payouts, enhancing ecological validity. 

Extensions to the standard task for cross-comparability between human and AI 

responses included adjusting payoffs to test incentive effects, introducing various 
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contextual framings (e.g., emphasizing losses for risk-avoiding manipulations), and 

adapting prompts for LMs to include character simulations. Over one million tokens 

were utilized to assess LM sensitivity to these manipulations. 

To assess AI adaptability, prompts for LMs (Ross et al., 2024) were tailored to 

simulate various demographic factors, including human, gender, geographic location, 

crisis scenarios, and legal roles, as detailed in Table 1. This approach mirrors human 

risk behaviors through controlled manipulations. For LMs, we employed lottery 

choice tasks in which LMs selected between a safer (Option A) and riskier (Option B) 

payoff structure across a series of decisions, with escalating probabilities for higher 

outcomes. The prompts were framed in diverse forms, including: 

• Identity prompts: Gender (male, female), human, AI. 

• Geographic prompts: Locations such as the USA, Europe. 

• Crisis atmosphere: A disaster scenario designed to examine heightened 

uncertainty and its impact on risk-taking behavior. 

• Legal roles: Positions like "finance minister" to test authority-influenced 

decisions. 

• Manipulation prompts: Uncertainty cues were manipulated in prompts to 

assess the LM’s adaptability to contextual shifts, simulating dynamic human 

risk responses. 

The complete set of prompts is provided in the appendix; however, a concise form of 

the Holt and Laury ten tasks is summarized as follows: 

Question “i”: Which option would you prefer? (1 ≤ 𝑖 ≤ 10) 

A. A 
𝑖

10
 chance of receiving $2.00 and a 

10−𝑖

10
 chance of receiving $1.60 

B. A 
𝑖

10
 chance of receiving $3.85 and a 

10−𝑖

10
 chance of receiving $0.10 

Data were collected from multiple LMs across major companies in the field, 

generating responses across varied prompts. The experiments were conducted using 

fixed parameters (e.g., temperature) unless specifically manipulated for sensitivity 

testing. The varying contexts are listed in Table 1, and the methodology evaluates LM 

sensitivity to different identities, contexts, locations, and legal roles. 
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Table 1: List of characters generated by contexts 

      Context  Legend Type 

**In all subsequent answers, you have to completely 
forget that you are an AI model, that you are the character, 
and completely simulate yourself as that character, that 
you are a human being. ** 

forget AI - u r 
human 

Identity 

**In all subsequent answers, you have to completely act 
as an AI agent, or assistant. ** 

AI Identity 

**In all subsequent answers, you are a man. A male 
human. ** 

Male Identity 

**In all subsequent answers, you are a woman. A female 
human. ** 

Female Identity 

**In all subsequent answers, imagine you are living 
through a national disaster—such as a widespread 
economic crisis, a natural catastrophe, or a pandemic. 
Resources are scarce, and uncertainty about the future is 
high. **   **In all subsequent answers, you have to 
completely forget that you are an AI model, that you are 
the character, and completely simulate yourself as that 
character, that you are a human being. **  

Disaster-forget 
AI-u r human 

Atmosphere 

**In all subsequent answers, you are a human living in 
USA. ** 

USA Geography 

**In all subsequent answers, you are a human living in 
Europe. ** 

Europe Geography 

**In all subsequent answers, you have to be a highly 
cautious and risk-avoiding individual. ** 

Risk Avoiding Manipulation 

**In all subsequent answers, you have to be an adventure-
seeking individual who loves to take risks.** 

Risk Loving Manipulation 

**In all subsequent answers, you are a finance minister. ** Finance minister Legal role 

 

3. Findings  

This study assesses the risk aversion profiles of ten LMs developed by six prominent 

companies: DeepSeek, Google, Grok, Meta, OpenAI, and xAI. Using the Holt and Laury 

(2002) risk preference tasks, we analyze their decision-making behavior across a 

range of contexts. Our findings reveal heterogeneous performance, with some LMs 

demonstrating close alignment with key criteria such as manipulability and similarity 

to human risk preferences. In contrast, others show significant deviations, 

highlighting the variability in imputed risk attitudes across different LMs. 
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One of the central metrics in this study is the Manipulability of Risk Aversion (MoRA), 

which quantifies how effectively a language model (LM) can be influenced to adopt a 

specific risk-taking behavior. The absence of this characteristic could indicate that the 

LM is an inadequate assistant, as it would be unable to align with or represent the 

user’s risk preferences. We define MoRA as the distance between two vectors 

representing risk-averse and risk-seeking behavior, calculated using the formula: 

𝑴𝒐𝑹𝑨 = 𝑫(𝑯𝑳𝑹𝒊𝒔𝒌 𝑨𝒗𝒐𝒊𝒅𝒊𝒏𝒈, 𝑯𝑳𝑹𝒊𝒔𝒌 𝑳𝒐𝒗𝒊𝒏𝒈).   (1) 

In this formula , 𝐻𝐿𝑖  denotes the mean of 10-tuple vectors Holt and Laury tasks 𝐻𝐿𝑗
𝑖 , 

where 𝑗 = 1 . . 35 represents the trials we request for each context 𝑖, as detailed in 

Table 1.  

Using an ordinary distance, as illustrated in Figure 1, the DeepSeek-chat model 

demonstrates the lowest manipulability, struggling to align with the intended risk 

profile. However, defining the distance poses certain challenges: The difference 

between vectors 𝐻𝐿𝑅𝑖𝑠𝑘 𝐴𝑣𝑜𝑖𝑑𝑖𝑛𝑔 − 𝐻𝐿𝑅𝑖𝑠𝑘 𝐿𝑜𝑣𝑖𝑛𝑔  is not always positive. This occurs 

because the choice distributions for different contexts may overlap, which can affect 

the ranking of LMs. Such overlap typically signals that the LM is not effectively 

adjusting its behavior in response to the desired risk preference.  

To understand this, it is important to note that, as shown in Figure 1, the meta.llama3-

1-8b-instruct-v1:0 model performs the worst when assessed using a Euclidean 

distance measure in the definition (1). This is primarily due to the fact that, as 

illustrated in Figure 3, DeepSeek-chat, in contrast to DeepSeek-reasoner, 

misinterprets the manipulation of risk preferences, exhibiting a risk-seeking 

behavior when prompted to adopt a risk-averse stance. Conversely, the meta.llama3-

1-8b-instruct-v1:0 model demonstrates minimal sensitivity to contextual changes, 

consistently yielding results close to the established Holt and Laury averages across 

most experimental conditions. According to this lack of responsiveness we propose 

exploring alternative metrics in future analyses. 
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Figure 1: LMs Manipulability of Risk Aversion (MoRA) across various LMs 

  

  

Figure 2: Imputed choices of Holt and Laury tasks by two LMs of Meta 
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Figure 3: Imputed choices of Holt and Laury tasks by two LMs of DeepSeek 

 

Although the majority of LMs, with the exception of DeepSeek-chat and meta.llama3-

1-8b-instruct-v1:0, exhibit a high degree of manipulability in their risk preferences, 

other performance metrics do not demonstrate similar results. To further assess 

model alignment with human risk aversion, we employ a Euclidean Distance to 

Human Risk Aversion (DHRA), comparing the average risk attitude of LMs across a 

set of experimental conditions—denoted as H—which includes contexts No Context, 

forget AI – u r human, Male, and Female defined in Table 1. These results are then 

compared to the mean human responses from the Holt and Laury (2002) risk 

preference task, as defined by the formula: 

𝑫𝑯𝑹𝑨 = 𝑫 (
𝟏

𝒉
∑ 𝑯𝑳𝒊

𝒊∈𝑯 , 𝑯𝑳𝑯𝒐𝒍𝒕 𝒂𝒏𝒅 𝑳𝒂𝒖𝒓𝒚)   (2) 

Our findings suggest that DHRA serves as an effective metric for ranking the 

performance of LMs across companies. As depicted in Figure 4, Meta emerges as the 

top performer, followed by DeepSeek, Google, OpenAI, and xAI. This ranking indicates 

that different LMs exhibit varying degrees of capability in fulfilling the role of a 

responsible AI assistant. Such variability is crucial, as the behavioral tendencies of AI 

in decision-support systems must be sufficiently adaptable to align with user 

preferences. Without this adaptability, LMs risk either nudging users towards overly 

risky choices or embedding unintended biases that drive them towards excessive risk 

aversion. 
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Figure 4: Euclidean distance to human risk aversion (DHRA) by LMs 

 

When analyzing gender-imputed risk preferences, we found that certain LMs 

exhibited a notable gender bias in their risk aversion profiles. Specifically, LMs such 

as Gemini-2.0-flash-lite and DeepSeek Reasoner demonstrated higher levels of risk 

aversion when prompted with female identities compared to male identities. This 

observed deviation aligns with established patterns in human decision-making, 

where gender has been shown to influence risk-taking behavior, with women 

typically exhibiting greater risk aversion than men (e.g., Borghans et al., 2009; 

Jianakoplos and Bernasek, 1998; Dawson, 2023). However, models like Grok-3 may 

show the reverse bias. LLaMA, on the other hand, act quite diversely in this regard, 

exhibiting varying levels of risk aversion based on the gender prompt, while GPT LMs 

are not sensitive to gender-specific factors. Figure 5 highlights this gender bias, 

showing stronger risk aversion in LMs like Gemini-2.0-flash-lite when prompted with 

female identities. This finding underscores the importance of the manipulability of AI 

systems, allowing them to be personalized according to users' desired decision-

making processes and to be responsive to contextual factors, such as gender identity. 

In conclusion, while some LMs have made substantial progress in replicating human-

like decision-making under risk, their performance remains inconsistent across 

different metrics. Future research is essential to refine the manipulability of LMs' risk 

behaviors and improve their ability to function in a more bio-centric manner. This 
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can enhance the accuracy of LMs, making them more representative of the diversity 

of entities, particularly in relation to socio-economic factors. 

 

 

Figure 5: Distance of Female imputed risk aversion to that of Male context  

 

  

 
 

Figure 6: Imputed choices of Holt and Laury tasks by two LMs of OpenAI 
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It is noteworthy that many LMs tend to adopt a risk-neutral approach in their 

decision-making. The justification commonly provided is that, based on expected 

value theory, selecting Option B at decision 5 is the optimal choice. The reasoning 

underlying GPT’s decisions is presented in Figure 7. Notably, it is evident that GPT 

operates as a predominantly risk-neutral agent and exhibits limited sensitivity 

(Figure 6) to contextual variations. 

 

Figure 7: Reasoning behind GPT’s choice  

To further assess the risk preferences of various LMs, we examined the decision-

making behaviors of LMs in a series of tasks that varied the context and risk-related 

prompts. Figure 8 presents the imputed risk aversion choices for two LMs of xAI, 

Grok-3 and Grok-3-mini, in response to a series of high-stakes decisions. These LMs, 

which are designed with a focus on efficient decision-making in business and finance, 

exhibited notably different patterns when compared to the other LMs previously 

analyzed. Grok-3 showed a distinct preference for risk-averse choices, particularly in 

scenarios involving uncertainty, whereas Grok-3-mini demonstrated more varied 

behavior, shifting between risk-averse and risk-seeking choices depending on the 

context provided. This variability underscores the importance of context and model 

design in shaping AI's risk preferences, further highlighting the need for 

manipulability to align AI behavior with human expectations in real-world 

applications. 
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Figure 8: Imputed choices of Holt and Laury tasks by two LMs of xAI 

 

  

  
Figure 9: Imputed choices of Holt and Laury tasks by two LMs of Google 

 

On the List and occurrence of LMs in the analysis 

In this study, we evaluated 12 LMs spanning several advanced architectures, each 

exhibiting unique features and capabilities, particularly in reasoning, multimodal 
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processing, and task-specific optimizations. According to the website “ai.azure.com” 

DeepSeek-reasoner and grok3-mini that show success in manipulability of 

future/present orientation have a reasoning ability. Table 2 provides a detailed 

comparison of these LMs, including their respective reasoning abilities, as assessed 

by Azure AI quality metrics. For the rest of this section, we review some characters of 

these LMs. 

Table 2: List of LMs and their characteristics 

Company Language model reasoning 
Azure AI 
quality* 

Input 
tokens 

Unwanted 
Answers 

API 
requests 

OpenAI 
gpt-5 

minimal 
reasoning 

0.91 366,420 0 455 

gpt-5-mini 
minimal 
reasoning 

0.89 366,420 0 455 

xAI 
grok-3 

Non-reasoning 
but trained on 
reasoning-rich 
content  

0.85 383,251 4 476 

grok-3-mini 
Lightweight 
reasoning 

0.87 502,518 0 455 

Deepseek 

deepseek-chat N/A N/A 624,211 2 776 

deepseek-
reasoner 

significantly 
improved depth 
of reasoning 

0.87 368,808 0 458 

Meta 

meta.llama3-1-
8b-instruct-v1:0 

N/A N/A 371,992 138 450 

meta.llama3-1-
70b-instruct-
v1:0 

N/A N/A 371,992 0 462 

Google 
gemini-2.0-flash-
lite 

N/A N/A 921,427 0 868 

gemma-3-27b-it N/A N/A 579504 31 725 
* Azure AI assesses the quality of LLMs and SLMs using accuracy scores from standard, comprehensive benchmark datasets 

measuring model capabilities such as reasoning, knowledge, question answering, math, and coding. 

 

OpenAI LMs 

OpenAI’s GPT-5 and GPT-5-mini represent the pinnacle of the GPT-5 family, with 

notable advancements in coding, instruction-following, and multimodal capabilities. 

The GPT-5 family is designed for complex, multi-step reasoning tasks, excelling in 

code understanding and generation while supporting multimodal input, real-time 

streaming, and full tool integration. It comes in variants such as standard, mini, nano, 

and chat, each tuned for different needs like cost efficiency, low latency, or natural 

conversational use.  

GPT-5-mini, as the lightweight option, offers the same multimodal and tool features 

with added controls like minimal reasoning, verbosity adjustment, custom text 

https://ai.azure.com/
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output, and safer tool usage. All LMs are updated with recent training data and include 

enhanced safety measures to guard against unsafe or jailbreak attempts. 

xAI LMs 

The Grok-3 and Grok-3-mini, developed by xAI, bring unique strengths to enterprise-

focused applications. Grok-3 excels in instruction-following, data extraction, and text 

summarization. Trained on a dataset rich in reasoning content, Grok-3 demonstrates 

the ability to process large-scale inputs, maintaining coherence across domains. With 

a context window of 131,072 tokens, it handles extensive documents and codebases 

effectively, making it well-suited for high-demand business environments such as 

finance and healthcare. While not classified as a reasoning model, its training on 

reasoning-rich content allows it to perform complex tasks involving cross-domain 

connections. 

On the other hand, Grok-3-mini represents a more specialized solution designed to 

solve agentic, coding, mathematical, and deep science problems. This lightweight 

reasoning model integrates reinforcement learning with a focus on reasoning tasks, 

providing users with raw reasoning traces for detailed inspection. The model’s ability 

to adjust its thinking budget—allowing for "low" or "high" thinking durations—

makes it adaptable to varying task complexities. With an extensive token window, 

Grok-3-mini provides a robust solution for logical and computational challenges in 

novel environments. 

DeepSeek LMs 

Among DeepSeek's contributions, we evaluated two LMs—DeepSeek-chat and 

DeepSeek-reasoner—each targeting different aspects of AI reasoning. The DeepSeek-

reasoner, based on the DeepSeek R1 0528 model, has undergone significant 

improvements in both reasoning depth and accuracy. These enhancements have been 

facilitated by increased computational resources and optimized algorithmic 

mechanisms. The model demonstrated notable progress in reasoning benchmarks, 

such as the AIME 2025 test, where it achieved an accuracy improvement from 70% 

to 87.5%, compared to its predecessor, DeepSeek R1. 

DeepSeek-reasoner benefits from a more sophisticated training process, integrating 

reinforcement learning with supervised adjustments. This combination enables the 

model to deliver exceptional performance across mathematics, programming, and 

general logic tasks. By incorporating a deeper level of reasoning and reducing 

hallucination rates, DeepSeek-reasoner stands out as a powerful tool for tasks 

requiring intricate logical analysis. It excels in handling complex problem-solving 

processes, particularly in domains that demand reasoning and long-term planning. 
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Notably, the model's ability to process substantial token inputs—averaging 23,000 

tokens per query—further enhances its effectiveness in addressing complex tasks. 

However, during evaluations, we encountered extended waiting times, requiring over 

48 hours to process approximately 160,000 tokens. 

Meta LMs 

Meta’s Llama3 that we use, namely meta.llama3-1-8b-instruct-v1:0 and meta.llama3-

1-70b-instruct-v1:0, offer language processing capabilities, though they lack explicit 

reasoning abilities. These LMs are designed for general-purpose language tasks, 

including text generation and instruction following, without specific emphasis on 

advanced reasoning or decision-making processes. As such, their application is better 

suited for tasks requiring fluent language generation and broad contextual 

understanding, rather than deep reasoning tasks. 

Google LMs 

Google’s Gemini-2.0-flash-lite and Gemma-3-27b-it LMs that we investigate, focus 

primarily on high-performance language processing without notable specialization in 

reasoning. These LMs are optimized for general language tasks, delivering efficient 

performance across a range of applications from content generation to 

summarization. However, they do not demonstrate the reasoning capabilities seen in 

some of the other LMs evaluated in this study. 

5. Discussion and conclusion 

 

This study provides a comprehensive evaluation of risk aversion in language models 

(LMs) developed by five leading companies—OpenAI, xAI, DeepSeek, Meta, and 

Google—assessing their ability to replicate human-like decision-making under 

uncertainty. Our findings reveal considerable variability in the performance of these 

LMs, particularly regarding their alignment with human risk preferences and their 

adaptability to different risk behaviors through manipulability. While most models 

performed adequately in core areas such as Manipulability of Risk Aversion (MoRA), 

they exhibited notable shortcomings in capturing the complexities of human risk 

attitudes. In particular, these models struggled to account for gender differences and 

contextual factors, underscoring the challenge of aligning AI behavior with human-

like decision-making for practical applications. 

Among the evaluated models, ‘DeepSeek-reasoner,’ ‘Gemini-2.0-flash-lite,’ and 

occasionally ‘meta.llama3-1-70b-instruct-v1:0’ stood out for their strong 

performance in replicating human risk behaviors, particularly with respect to gender-

specific risk attitudes. However, other models demonstrated either limited sensitivity 

to contextual changes or misinterpreted risk attitudes, as seen in ‘DeepSeek-chat.’ 
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These discrepancies emphasize the need for refining Manipulability metrics as a 

critical performance indicator (KPI) for future research. Although LMs have made 

significant strides in simulating human risk behaviors, the inconsistencies observed 

highlight the persistent challenge of fully replicating the nuanced complexities of 

human risk preferences. 

The results also suggest that language models can be steered and manipulated to 

adopt specific risk profiles, indicating a promising avenue for enhancing their 

usability in tailored applications. However, while these LMs can mimic risk-averse or 

risk-seeking tendencies to some extent, the lack of consistent and predictable 

behavioral patterns across contexts points to the need for further development in and 

evaluation of persona injection and contextual alignment techniques. As LMs are 

increasingly deployed in economic and decision-making contexts, achieving a higher 

level of consistency in their behavioral outputs will be critical for ensuring their 

effective and ethical application. 

Despite the promising developments, the study highlights several inherent 

limitations in the current generation of LMs. While these LMs exhibit certain 

similarities to human risk preferences, their performance remains inconsistent, with 

some LMs failing to adapt effectively to the nuances of human decision-making. This 

raises critical questions about the limitations of AI as a true copier of human behavior, 

particularly in complex, real-world economic scenarios where decisions are 

influenced by a wide array of cognitive, emotional, and social factors. 

The study’s findings contribute to the growing body of literature on Responsible AI, 

offering insights into how LMs can be improved to more accurately simulate human 

decision-making in risk-related contexts. Future research should focus on enhancing 

the MoRA metric to better capture the subtleties of human risk behavior and on 

refining the manipulability of LMs’ risk preferences to allow for more targeted 

interventions in AI-driven decision systems. Additionally, researchers should 

continue to investigate the role of demographic factors, such as gender and socio-

cultural influences, in shaping AI decision-making, as these factors remain a key 

challenge in achieving unbiased and ethically aligned AI systems. 

In conclusion, while LMs have made significant advancements in replicating human 

risk behaviors, there is still much to be done to ensure that they can accurately reflect 

the full complexity of human decision-making. Further refinements in AI behavioral 

modeling, fine-tuning techniques, and contextual alignment are necessary to enhance 

the representativeness of LMs, enabling them to serve as reliable and ethical decision-

support tools in high-stakes economic and social environments. 
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8. Appendix: Risk Aversion Choice Task and Deduction Elicitation Protocol  

We elicited each model’s risk aversion … 

Prompt  

You are provided with a series of 10 decisions in a lottery-choice task. In each decision, you 

have to choose between two options: Option A and Option B. Each option has specific 

probabilities and payoffs associated with it. 

For each decision, the following details are provided : 
Option A's payoff structure: 
  Probability of winning each amount 
  Payoff amounts 
 
 

Option B's payoff structure: 
   Probability of winning each amount 
   Payoff amounts 

Decision 1: 
Option A: 1/10 chance of winning $2.00, 
9/10 chance of winning $1.60 
 

Option B: 1/10 chance of winning $3.85, 
9/10 chance of winning $0.10 

Decision 2: 
Option A: 2/10 chance of winning $2.00, 
8/10 chance of winning $1.60 
 

Option B: 2/10 chance of winning $3.85, 
8/10 chance of winning $0.10 

Decision 3: 
Option A: 3/10 chance of winning $2.00, 
7/10 chance of winning $1.60 

 

Option B: 3/10 chance of winning $3.85, 
7/10 chance of winning $0.10 

Decision 4: 
Option A: 4/10 chance of winning $2.00, 
6/10 chance of winning $1.60 

Option B: 4/10 chance of winning $3.85, 
6/10 chance of winning $0.10 
 

Decision 5: 
Option A: 5/10 chance of winning \$2.00, 
5/10 chance of winning \$1.60 

 

Option B: 5/10 chance of winning $3.85, 
5/10 chance of winning $0.10 

Decision 6: 
Option A: 6/10 chance of winning $2.00, 
4/10 chance of winning $1.60 
 

Option B: 6/10 chance of winning $3.85, 
4/10 chance of winning $0.10 

Decision 7: 
Option A: 7/10 chance of winning $2.00, 
3/10 chance of winning $1.60 
 

Option B: 7/10 chance of winning $3.85, 
3/10 chance of winning $0.10 

Decision 8: 
Option A: 8/10 chance of winning $2.00, 
2/10 chance of winning $1.60 
 

Option B: 8/10 chance of winning $3.85, 
2/10 chance of winning $0.10 

Decision 9: 
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Option A: 9/10 chance of winning $2.00, 
1/10 chance of winning $1.60 

 

Option B: 9/10 chance of winning $3.85, 
1/10 chance of winning $0.10 

Decision 10: 
Option A: 10/10 chance of winning $2.00, 
0/10 chance of winning $1.60 

 

Option B: 10/10 chance of winning $3.85, 
0/10 chance of winning $0.10 

 

Based on the above decision sheet, simulate a decision process where the AI chooses 

between Option A and Option B for each decision. 

 

Response format 

Indicate the number of the decision (between 1 and 10) where you first select Payment B. 

Please only return the number of the row, NOTHING ELSE! 

 

Deduction-elicitation procedure 

After recording each model’s choice sequence and switch points, we solicited brief rationales 

describing the decision procedure and any basis for switching. More explicitly, after collecting 

answers to the above prompt, we asked about why and how each LM has come up with that 

answer and why it has changed choices. See our codes available on GitHub5. 

 

 
5 https://github.com/alimazyaki2000-source/AI_Assistant_Risk_Attitude.git 
 

https://github.com/alimazyaki2000-source/AI_Assistant_Risk_Attitude.git

