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Abstract

While Small Language Models (SLMs) have
demonstrated promising performance on an
increasingly wide array of commonsense rea-
soning benchmarks, current evaluation prac-
tices rely almost exclusively on the accuracy of
their final answers, neglecting the validity of
the reasoning processes that lead to those an-
swers. To address this issue, we introduce RE-
TRACEQA, a novel benchmark that introduces
process-level evaluation for commonsense rea-
soning tasks. Our expert-annotated dataset re-
veals that in a substantial portion of instances
(14-24%), SLMs provide correct final answers
despite flawed reasoning processes, suggesting
that the capabilities of SLMs are often overes-
timated by evaluation metrics that focus only
on comparing the final answer with the ground
truth. Indeed, we show that when employing
strong Large Language Models (LLMs) as au-
tomated judges for reasoning-aware evaluation
rather than answer-only metrics, SLM perfor-
mance drops significantly across all models and
datasets, with scores decreasing by up to 25%.

1 Introduction

Recent work in language modeling has led to ef-
fective SLMs with impressive performance lev-
els across various benchmarks (Qwen et al., 2025;
Grattafiori et al., 2024; Abdin et al., 2024; Fourrier
et al., 2024). However, current evaluation prac-
tices rely almost exclusively on final answer ac-
curacy, i.e., counting an instance as correct when
the model’s prediction matches the ground truth,
regardless of the reasoning process. This answer-
centric approach overlooks a fundamental factor:
models can arrive at correct answers through in-
valid reasoning paths, artificially inflating perfor-
mance metrics and masking important weaknesses
in their actual reasoning capabilities.

To this end, the research community has recently
proposed several benchmarks to examine “reason-
ing traces” — the step-by-step explanations gener-

ated by language models to arrive at their final
answers — in a more systematic way (Zheng et al.,
2024; Zeng et al., 2024a,b; Tyen et al., 2024a).
These benchmarks are necessary for the develop-
ment and evaluation of automatic approaches, such
as Process Reward Models (PRMs) (Zhang et al.,
2025; Wang et al., 2024b; Lightman et al., 2023)
and LLM-as-a-judge (Gu et al., 2025), aimed at
identifying the specific location of errors within rea-
soning traces and not just the correctness of the fi-
nal answer (Zheng et al., 2024; Zeng et al., 2024a,b;
Tyen et al., 2024a). However, contemporary work
faces two key limitations. First, existing bench-
marks focus primarily on mathematics and science,
leaving reasoning processes in other areas like com-
monsense reasoning largely underexplored, despite
requiring fundamentally different capabilities. Sec-
ond, specialized PRMs and LLMs employed as
judges are typically used to optimize task perfor-
mance through feedback during fine-tuning or Best-
of-N sampling, rather than evaluating whether rea-
soning traces that reach correct answers contain
intermediate errors, potentially leading to inflated
performance assessments. Therefore, our research
question is: how can we effectively evaluate reason-
ing processes in commonsense, and to what extent
do current answer-only metrics misrepresent SLM
capabilities?

To address these limitations, we provide the fol-
lowing contributions:

* We introduce RETRACEQA, the first bench-
mark for evaluating reasoning traces of SLMs
in commonsense reasoning tasks, including a
set of 2,421 reasoning traces manually anno-
tated with step-level error locations and quali-
tative error categorizations;

* Quantitative evidence that up to 24% of
flawed reasoning traces still produce the cor-
rect final answer, demonstrating how current
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answer-only evaluations significantly overes-
timate model capabilities;

* Comprehensive reference-based evaluation of
both closed and open-source LLMs as judges,
revealing that while models can often detect
whether a trace is correct as a whole, they
struggle to identify the exact location of rea-
soning errors;

» Reference-free evaluation of LLM-as-a-judge
and mathematical PRMs applied to common-
sense reasoning, revealing substantial perfor-
mance degradation when transferring across
domains.

Our findings show that answer-only metrics sub-
stantially overestimate SLM performance, with
scores dropping by up to 25% when accounting for
reasoning correctness, also highlighting the need
for reasoning-aware evaluation beyond STEM do-
mains. RETRACEQA provides both a practical
benchmark and strong evidence that current evalu-
ation practices can misrepresent reasoning in com-
monsense question answering tasks.

2 Related Work

Process-Based Evaluation Approaches. The re-
search community has introduced two main ap-
proaches to assess reasoning quality beyond fi-
nal answers: Process Reward Models (PRMs)
and LLLM-as-a-judge. PRMs are specialized mod-
els fine-tuned to evaluate the correctness of rea-
soning steps, in contrast to Outcome Reward
Models (ORMs), which focus solely on final an-
swers (Lightman et al., 2023; Uesato et al., 2022).
PRMs specifically aim to identify the first erro-
neous step in a reasoning trace, enabling both tar-
geted feedback for model training and quality filter-
ing in Best-of-N selection scenarios (Wang et al.,
2024b; Pan et al., 2023). PRMs can be built and
trained in several ways: Lightman et al. (2023)
used human-labeled data for error detection, while
Wang et al. (2024b) and Li et al. (2023) employed
Monte Carlo estimation to determine the probabil-
ity of a chain of steps to be correct. More recent
work by Zhang et al. (2025) and Hosseini et al.
(2024) leverages larger LLMs as automated judges
to generate training signals for PRMs, creating a
teacher-student paradigm for reasoning evaluation.

In parallel to specialized PRMs, general-purpose
LLMs prompted as judges have emerged as an ef-
fective — albeit expensive — alternative approach.

These models assess reasoning trace validity with-
out task-specific training, providing both binary
correctness judgments and localized error identifi-
cation (Zheng et al., 2024). While more flexible
than PRMs, judges may lack the specialization that
targeted training provides.

Benchmarks for Reasoning Evaluation. Sev-
eral benchmarks have been developed to evaluate
models’ abilities to identify errors in reasoning
traces, each with distinct characteristics. Process-
Bench (Zheng et al., 2024) specifically targets rea-
soning error identification by requiring models to
indicate the exact location of incorrect steps within
mathematical reasoning traces. MR-Ben and MR-
GSMSK (Zeng et al., 2024a,b) offer more compre-
hensive meta-reasoning assessment, including error
localization, error explanation, and suggested cor-
rections. Findings from these benchmarks consis-
tently demonstrate that even state-of-the-art LLMs
struggle to detect reasoning error locations accu-
rately, though they show potential for providing
helpful corrections once errors are explicitly identi-
fied (Tyen et al., 2024b; Huang et al., 2024).

Limitations and Research Gaps. Despite
progress in process-based evaluation, existing work
presents three key limitations. First, PRMs and
judge models are primarily used for Best-of-N se-
lection, thus ranking multiple outputs to improve
generation rather than as tools for validating rea-
soning traces during evaluation. Second, current
benchmarks are largely restricted to mathemati-
cal domains, overlooking reasoning types found in
commonsense tasks that involve qualitatively differ-
ent inference. Third, the implications of reasoning-
aware evaluation on SLM assessment remain un-
derexplored, particularly how final answer metrics
can misrepresent underlying reasoning quality.

3 ReTraceQA

In this section, we introduce RETRACEQA, our
novel gold benchmark designed to assess the abil-
ity of LLMs to determine whether a reasoning trace
of a SLM is correct, or to identify the specific step
where an error occurs. Specifically, Section 3.1
provides the formal task definition, Section 3.2 de-
scribes the datasets selected for the benchmark,
Section 3.3 explains how reasoning traces are gen-
erated using a range of SLMs, Section 3.4 explains
how we divide the reasoning traces into discrete
steps, Section 3.5 details the human annotation pro-
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ANNOTATION EXAMPLE

Question: When ice buildup is on a sidewalk, the ice may be reduced by
Choices: [\8:ELIEET B. adding litter C. adding sand D. adding water

Raw Model Output:

To answer this question, we need to consider the effect of each choice
on ice buildup on a sidewalk [...] \n\n A. Adding salt: Salt can lower the
freezing point of water, which makes it easier for ice to form. Therefore,
salt would not reduce ice buildup on a sidewalk [...] \n\n Final answer:

The correct answer is C. adding sand.

Reformatted Solution:

[paragraph 0] To answer this question, we need to consider the effect of
each choice on ice buildup on a sidewalk [...]

WX [e[li %Ml Salt can lower the freezing point ofl
ater, which makes it easier for ice to form. Therefore, salt would notj
reduce ice buildup on a sidewalk
[paragraph 2] Final answer: The correct answer is C. adding sand.

Human Annotation:
Error location: Paragraph 1.  Error type: Hallucination.

Figure 1: The RETRACEQA pipeline resulting in 2,421 reasoning traces annotated with error information.

cess used to construct the resulting resource, and,
finally, Section 3.6 presents descriptive statistics of
our benchmark. Figure 1 shows the whole pipeline
together with an example of annotation.

3.1 Task Definition

Given a commonsense reasoning question, the goal
is to evaluate the validity of an SLM-generated
reasoning trace by identifying the earliest step at
which an error occurs, if any. Formally, let g denote
the input question (with an optional set of choices
C),and let S = [sg, $1,. . ., Sp] represent the step-
by-step reasoning trace. The task is to predict an
index i € {—1,0,...,n}, where i = —1 signifies
that all reasoning steps are correct, and ¢ > 0 indi-
cates that the first error occurs at step s;. This for-
mulation is in line with state-of-the-art benchmarks
like ProcessBench (Zheng et al., 2024), in which
the authors note that, for steps after the first error,
the meaning of their correctness may become am-
biguous or debatable. Indeed, derivations based on
incorrect premises can make sense, but still remain
on a globally incorrect reasoning path (Lightman
et al., 2023). Based on this assumption, we choose
to focus on identifying the earliest-occurring error
in the reasoning traces.

3.2 Dataset Selection

To construct our benchmark, we source questions
from four widely-used datasets in commonsense
reasoning: CommonsenseQA (Talmor et al., 2019,

CSQA), OpenBookQA (Mihaylov et al., 2018,
OBQA), QASC (Khot et al., 2020), and Strate-
gyQA (Gevaet al., 2021), all of which are multiple-
choice or binary question answering datasets that
provide a question along with a set of candidate
answers. These datasets primarily target common-
sense reasoning grounded in general world knowl-
edge, but also feature questions involving ency-
clopedic and subject-specific knowledge, as well
as reasoning over spatial, temporal, or causal re-
lationships. When test set labels are not publicly
available, we follow standard practice and instead
sample from the development sets (Molfese et al.,
2024; Liu et al., 2023); this applies to CSQA and
QASC. Collectively, these datasets span a range
of reasoning challenges across commonsense do-
mains, making them well-suited for evaluating the
correctness and robustness of reasoning traces.

3.3 Solution Generation

For each instance in our selected datasets, we gen-
erate step-by-step reasoning traces using SLMs
from the widely used Qwen, LLaMA, and Phi fam-
ilies of open-source language models (Qwen et al.,
2025; Grattafiori et al., 2024; Abdin et al., 2024).
We follow standard practice and define a SLM as
any language model with no more than 10 billion
parameters (Wang et al., 2024a; Fu et al., 2023).
Specifically, we use the following instruction-
tuned variants: Qwen2.5-1.5B-Instruct, Qwen2.5-
3B-Instruct, Qwen2.5-7B-Instruct, Llama-3.2-1B-



Instruct, Llama-3.2-3B-Instruct, Llama-3.1-8B-
Instruct, and Phi-4-mini-instruct. This selection
enables us to examine performance variation within
model families as model size increases (with the
exception of Phi, which is only available in a sin-
gle size under 10 billion parameters), while also
capturing differences across architectures. We gen-
erate traces by prompting models with a zero-shot
Chain-of-Thought (CoT) setup (Wei et al., 2023;
Kojima et al., 2023), which encourages step-by-
step reasoning without conditioning on specific
examples. Initially, we collect a total of 3,334
original questions distributed across the datasets as
follows: 1,221 questions from CSQA, 500 ques-
tions from OBQA, 926 questions from QASC and
687 questions from StrategyQA. For each original
question, we generate reasoning traces using 7 dis-
tinct SLMs, resulting in an initial pool of 23,338
total reasoning traces. Then, we perform careful
sampling from this initial pool to ensure three fac-
tors simultaneously: (i) balanced representation
of correct and incorrect traces in terms of final
answer accuracy, (ii) balanced representation of
each model and (iii), uniqueness of each question.
This sampling step reduces the dataset to a total
of 2,779 unique instances (i.e., each instance is a
unique question associated with exactly one rea-
soning trace). Details about the generation of rea-
soning traces can be found in Appendix A, while
details about the method used to classify instances
as correct/incorrect depending on their final answer
can be found in Appendix B.

3.4 Solution Reformatting

A key step in building RETRACEQA involves
ensuring that model-generated reasoning traces
are segmented into coherent, interpretable steps.
In mathematical domains, prior work has shown
that automatic solutions often require post-hoc re-
segmentation due to formatting inconsistencies and
unclear boundaries between reasoning steps (Zheng
et al., 2024). In contrast, we find that for common-
sense reasoning tasks, step segmentation emerges
more naturally. When using standard prompting
strategies, models tend to produce clearly delin-
eated reasoning traces, with each step expressed
as a complete and self-contained sentence, making
further reformatting unnecessary.'

'We split reasoning traces at "\n\n".

3.5 Human Annotation

To construct a benchmark that enables both binary
reasoning evaluation and fine-grained error local-
ization, we annotate a diverse set of SLM-generated
reasoning traces with step-level error information.
The annotation task follows the setup described in
Section 3.1: for each reasoning trace, annotators
are asked to identify the earliest step that contains
an error, or to indicate that the entire trace is correct.
Additionally, annotators are asked to assign one of
three available labels classifying the nature of the
error. Specifically, a step is considered erroneous if
it falls in one or more of the following categories:

* Hallucination errors. The model generates
unverifiable or false facts (e.g., “wolves are
not found in arctic regions”), makes incorrect
assumptions, or hallucinates information not
inferable from the question or context.

* Reasoning errors. The model fails to rea-
son coherently within or across steps. This
includes logically unsound or commonsense-
violating inferences, contradictory reasoning,
and incorrect final selections. For example,
stating “white is a light color” then claiming
“it does not reflect light”.

* Misinterpretation errors. The model misun-
derstands the question, choice meanings, or
task requirements. This includes misrepresent-
ing previous steps, referencing non-existent
choices, or providing multiple answers.

An example of annotated instance can be found in
Figure 1, while examples for each of these cate-
gories and detailed annotation guidelines are pro-
vided in Appendix C and D, respectively.

Three expert annotators with PhD-level back-
grounds in computer science or linguistics perform
the annotation. Each annotator is given the SLM-
generated reasoning trace, the original question,
optional answer choices and supporting facts, and
the gold answer from the dataset, and is instructed
to judge correctness based solely on the reason-
ing trace, not on the final answer alone. Annota-
tors are also asked to flag problematic instances
using a dedicated INVALID tag. These include:
ambiguous questions with multiple plausible an-
swers, grammatical or structural issues that impair
interpretation and labeling inconsistencies in the
original dataset (e.g., an incorrect gold answer). To
safeguard the quality of the final benchmark, we



CSQA OBQA QASC StrategyQA

Final samples (error) 296 184 219 271
Final samples (correct) 603 244 245 359
Total samples 899 428 464 630
Process errors (%) 16.3 14.7 16.6 24.0
Invalid instances 238 20 46 54
Avg. steps (error) 8.2 8.1 8.0 6.9
Avg. steps (correct) 8.2 7.8 79 6.8
Error Type Distribution (%)
Hallucination 419 46.7 47.5 62.5
Reasoning 34.0 34.7 354 27.9
Misinterpretation 24.1 18.6 17.1 9.6

Table 1: RETRACEQA statistics. Process errors refer to
instances with correct final answers but flawed reason-
ing. Invalid instances were flagged during annotation
and excluded. Error type distributions are calculated
over all erroneous traces.

exclude all flagged instances. This results in a to-
tal of 2,421 clean and fully annotated examples in
RETRACEQA.

To evaluate annotation consistency, we randomly
sample 25 instances from each of the four datasets
in the benchmark (100 total). All three annotators
independently label this subset following the same
guidelines. Inter-annotator agreement, measured
via Fleiss’s kappa, yields a score of 84.4%, indi-
cating an “almost perfect” agreement according to
standard interpretation (Landis and Koch, 1977).

3.6 Benchmark Statistics

Table 1 presents a detailed analysis of the reason-
ing traces across each subset, including the number
of samples that reach a correct or incorrect final
answer, the proportion of process errors (instances
with correct answers but flawed reasoning), the
percentage of instances falling in each of the avail-
able error categories and descriptive statistics on
reasoning trace length.

A key observation is that a non-trivial percentage
of responses, averaging to 17.9% across datasets,
arrive at the correct final answer despite containing
a reasoning error. This pattern is consistent with
findings from mathematical reasoning benchmarks
(Zheng et al., 2024), in which even strong lan-
guage models are able to reach the correct answer
while making mathematical mistakes, and high-
lights a critical limitation of standard evaluation
practices, which often overlook flawed intermedi-
ate reasoning when only final answers are assessed.
As aresult, leaderboard metrics may overestimate
the true reasoning capability of language models.
Moreover, we can see a consistent distribution of
error types across the four subsets of our bench-

mark. Specifically, hallucination errors constitute
the majority of failures (41.9%—62.5%), followed
by reasoning errors (27.9%-35.4%) and misinter-
pretation errors (9.6%—24.1%). This suggests that
SLMs struggle primarily with factual grounding,
frequently generating unverifiable claims or incor-
rect assumptions, though logical coherence issues
also remain prevalent, accounting for roughly one-
third of all errors. The lower proportion of misin-
terpretation errors indicates that models generally
understand task requirements and question seman-
tics, but fail both in anchoring their reasoning in ac-
curate world knowledge and in maintaining sound
logical inference chains. Individual statistics for
each model are provided in Appendix E.

4 Experimental Setup

Our benchmark evaluates LLMs along two axes:
(1) reference-free assessment of SLM reasoning
trace validity to determine whether models can reli-
ably provide fine-tuning feedback or perform Best-
of-N selection without ground truth labels, and (2)
reference-based assessment where models judge
reasoning traces using both the correct answer and
reasoning process, extending evaluation beyond fi-
nal answer correctness alone. In the following, we
list the models used for our experiments (Section
4.1) and the evaluation metrics for both reference-
free and reference-based settings (Section 4.2).

4.1 Models

LLM-as-a-judge. We follow recent work on au-
tomated evaluation (Zheng et al., 2023) by prompt-
ing LLMs to assess SLM reasoning traces. The
prompt is slightly adapted from prior work (Zheng
et al., 2024) to better suit commonsense reasoning
tasks (Appendix F). We evaluate the following set
of open-weight and closed models: Mistral-Small-
24B-Instruct-2501 (Mistral, 2025), Llama-3.3-70B-
Instruct (Grattafiori et al., 2024), Qwen2.5-72B-
Instruct (Qwen et al., 2025), Gemini-2.0-Flash
(DeepMind, 2025), DeepSeek-R1 (DeepSeek-Al
et al., 2025), GPT-40-mini (OpenAl et al., 2024a),
GTP-40 (OpenAl et al., 2024a) and o1-mini (Ope-
nAl et al., 2024b). Greedy decoding is used for
all models except ol-mini and DeepSeek-R1, for
which we report performance using a sample at
temperature 1.0 due to API constraints.

Process Reward Models. We evaluate several
publicly available PRMs by extracting their step-
wise correctness predictions and identifying the



first step flagged as incorrect. The evaluated
models fall into three groups: (1) math-shepherd-
mistral-7B (Wang et al., 2024b), which uses
empirical correctness likelihoods over reasoning
steps; (2) Skywork-01-Open-PRM-Qwen-2.5-1.5B
and Skywork-01-Open-PRM-Qwen-2.5-7B (Sky-
work, 2024), which output raw scalar scores; (3)
Qwen2.5-Math-7B-PRM800K and Qwen2.5-PRM-
7B (Zheng et al., 2024), fine-tuned respectively on
the PRM80OK dataset and on synthetic data derived
from LLM-as-a-judge annotations.

For models in groups (1) and (3), trained with
sigmoid activations over each step, we determine
step correctness by rounding predictions to the near-
est integer (1 = correct, 0 = incorrect). For models
in group (2), we select a threshold that maximizes
F1 on a validation split of CSQA, following Zheng
et al. (2024), and use it to round scalar scores.

4.2 Evaluation Metrics

Reasoning Trace Evaluation. For both
reference-free and reference-based settings, we
evaluate models using two complementary metrics:
correct, measuring accuracy in identifying fully
valid traces (human-labeled as —1), and error,
measuring accuracy in localizing the first erroneous
step in flawed traces (human-labeled as ¢, where
1 > 0). These metrics assess whether LLMs can
provide targeted feedback to SLMs during training
and quantify their reliability for Best-of-N scoring
during evaluation. Following prior work (Zheng
et al., 2024), we report the harmonic mean (F1)
of correct and error to balance overly permissive
versus overly critical model behaviors.

Downstream SLM Evaluation. To assess the im-
pact of reasoning-aware evaluation on SLMs using
LLM-as-a-judge, we employ the best-performing
judge from the reference-based evaluation on RE-
TRACEQA under two configurations: (1) answer-
only evaluation (simulating standard approaches)
and (2) full trace validation (accepting predictions
only when both reasoning and answers are correct).
We measure performance using accuracy (correctly
distinguishing valid from invalid traces: ¢ = —1 vs.
1 # —1) and error recall (identifying flawed traces
where both model and human annotations indicate
1 # —1). We evaluate seven SLMs with the same
judge under the two settings across four common-
sense datasets, generating diverse reasoning traces
at temperature 0.7 to ensure variety while avoiding
overlap with our annotated benchmark.

5 Results

In this section, we first present LLM performance
on reference-free and reference-based evaluation
on RETRACEQA (Section 5.1). We then report
downstream SLM evaluation results, where the
best-performing LLM-as-a-judge on RETRACEQA
is used to assess SLM-generated outputs across
multiple benchmarks (Section 5.2).

5.1 Reasoning Trace Evaluation

Reference-free Evaluation. Table 2 highlights
substantial limitations of LLM-as-a-judge and
PRMs when asked to assess SLM reasoning traces
in commonsense reasoning tasks under reference-
free evaluation. Overall, F1 scores across all
four datasets remain relatively low, even for the
strongest judges, suggesting that reliably evaluat-
ing the soundness of reasoning traces remains a
challenging task. While state-of-the-art LLMs like
GPT-40 and ol-mini outperform others with F1
scores exceeding 60% on some datasets, the aver-
age F1 across models hovers around 54-56%, indi-
cating considerable room for improvement. These
results underscore a key challenge in deploying
LLM-as-a-judge in reinforcement learning or Best-
of-N selection settings: their current inability to
robustly identify and reward correct intermediate
reasoning without having access to the correct la-
bel limits their usefulness for guiding reasoning-
focused learning objectives.

Additionally, PRMs originally developed and
trained for mathematical tasks perform signifi-
cantly worse across all datasets, with average F1
scores often below 25%. This performance gap em-
phasizes the PRMs’ limited generalization capabil-
ities when transferred to commonsense reasoning.

Reference-based Evaluation. Table 2 (bottom)
reports reference-based evaluation results across
the four subsets in RETRACEQA. Most models
achieve moderate to strong performance in identi-
fying globally correct reasoning traces, but accu-
rately localizing specific error steps remains sub-
stantially more challenging. Model size corre-
lates positively with performance. For instance,
Qwen2.5-72B-Instruct outperforms Mistral-Small-
24B-Instruct by +35.5% F1 on average. However,
scale alone is insufficient: DeepSeek-R1, despite
being larger than Qwen2.5-72B-Instruct, underper-
forms across all datasets, suggesting that architec-
tural choices and reasoning-oriented training are
critical. The strongest judge, ol-mini, achieves



Model CSQA OBQA QASC StrategyQA Avg. F1
correct error  F1 correct error  Fl correct error  Fl correct error  F1
Process Reward Models (reference-free evaluation)
Math-Shepherd-PRM-7B 95.3 42 8.0 92.4 6.1 115 70.2 102 179 58.7 18.7 284 16.5
Skywork-PRM-1.5B 97.5 1.9 3.7 95.6 2.5 4.8 88.9 2.7 53 93.0 1.9 3.8 4.4
Skywork-PRM-7B 83.0 9.1 164 77.6 11.0 193 57.3 106 179 86.4 62 11.6 16.3
Qwen2.5-Math-7B-PRM800K 89.6 13.8 238 88.5 20.8 337 73.7 246 369 97.2 89 163 27.7
Qwen2.5-Math-PRM-7B 86.8 209 338 81.4 289 428 70.2 37.2  48.6 79.8 245 374 40.7
Average | 904 100 17.1 | 87.1 13.9 224 | 721 17.1 253 | 83.0 120 195 | 211
LLM-as-a-judge (reference-free evaluation)
Mistral-Small-24B-Instruct 25.7 483  33.6 34.9 53.1 422 22.8 509 315 24.4 43.6 313 34.7
LLaMA-3.3-70B-Instruct 87.2 333 482 87.9 445  59.1 83.6 389 531 91.1 326 48.0 52.1
Qwen2.5-72B-Instruct 85.9 44.1 583 80.3 535 642 77.8 43.0 554 84.5 45.1 588 59.2
DeepSeek-R1 56.6 57.1 56.8 49.7 62.5 554 52.6 55.6 54.1 44.1 63.5 52.1 54.6
Gemini-2.0-Flash 82.9 46.2 593 88.5 579 701 772 512 61.6 87.3 40.8 55.6 61.7
GPT-40 86.4 47.8 615 89.6 522 66.0 79.5 529 63.5 89.7 39.1 544 61.4
GPT-40-mini 62.5 47.1 537 71.0 543 615 49.1 49.5 493 75.1 39.8 520 54.1
ol-mini 82.3 46.9 59.7 79.8 61.6 695 73.7 549 629 71.0 45.1 569 62.3
Average | 712 463 539 | 728 549 610 | 64.6 496 539 | 717 437 511 | 550
LLM-as-a-judge (reference-based evaluation)
Mistral-Small-24B-Instruct 22.3 543 317 32.8 624 43.0 21.6 594 317 14.6 554  23.1 324
LLaMA-3.3-70B-Instruct 87.7 452 59.7 90.7 522 663 85.7 543 66.5 82.6 56.6 672 64.9
Qwen2.5-72B-Instruct 89.6 50.6 64.7 85.3 592 699 86.6 584  69.7 83.6 564 673 67.9
DeepSeek-R1 53.8 61.5 574 49.2 66.1 564 49.7 659 56.7 37.6 63.6 472 54.4
Gemini-2.0-Flash 86.6 522 652 89.1 64.1 745 78.9 604 68.4 66.2 59.0 624 67.6
GPT-40 80.9 585 679 88.0 67.8 76.6 70.8 62.1 66.2 72.8 59.2 653 69.0
GPT-40-mini 62.1 54.1 578 68.3 61.6 64.8 52.1 604 559 39.4 56.1 463 56.2
ol-mini 82.6 546 657 84.7 743  79.2 772 71.3  74.2 84.5 729 783 74.4
Average | 70.7 539 587 | 735 635 663 | 654 615 612 ] 602 599 571 | 608

Table 2: Detailed performance of PRMs and LLM-as-a-judge models across the four subsets of RETRACEQA. Each
triplet reports accuracy on identifying correct reasoning traces (correct), accuracy on pinpointing the exact error
location (error), and overall F1 score. The final column reports the average F1 score across all subsets.

Dataset ol-mini (ext.) ol-mini (judge)
accuracy CIT. 1ecC. accuracy €erIT. 1eC.
CSQA 82.2 65.7 81.9 81.1
OBQA 84.8 74.3 90.2 94.3
QASC 83.0 74.1 86.2 91.5
StrategyQA 74.8 62.8 90.0 92.1
Average 81.2 69.2 87.0 89.8

Table 3: Accuracy and error recall (%) of ol-mini em-
ployed as answer extractor (ext.) and as judge on RE-
TRACEQA. Accuracy measures correct trace classifica-
tion; error recall measures erroneous trace detection.

74.4% F1, highlighting the importance of effec-
tive reasoning-oriented objectives. Moreover, we
can see that a consistent pattern emerges: models
detect trace correctness better than localizing er-
rors. For instance, ol-mini achieves 74.3% error
classification on OBQA, still lagging behind its cor-
rectness detection ability. Figure 2 compares error
position distributions between human annotations
and ol-mini predictions. Errors most commonly
occur at steps 3-4, suggesting that while early con-
text establishment succeeds, errors emerge during
mid-level inference. We can see that o1-mini’s pre-
dictions mirror human patterns well, particularly

on CSQA and QASC, but show heavier tails, indi-
cating over-assignment of blame to later steps, po-
tentially capturing error consequences rather than
origins. These results highlight both the promise
and limitations of LLM-as-a-judge systems: while
stronger models align well with human evaluations
of overall correctness, precisely identifying error
origins remains an open challenge.

5.2 Downstream SLM Evaluation

While the reference-based evaluation results in Sec-
tion 5.1 show that current LLMs employed as au-
tomated judges may not reliably localize errors for
fine-tuning feedback, their strong performance in
assessing overall trace correctness suggests poten-
tial for more faithful SLM evaluation. Here we in-
vestigate whether reasoning-aware judges that con-
sider both trace validity and final answers provide
more accurate assessments than standard answer-
only evaluation.

Table 3 demonstrates that the best-performing
judge on RETRACEQA (ol-mini) employed as a
reasoning-aware judge consistently outperforms
standard answer extraction, achieving +5.8 points
in accuracy (correctly distinguishing valid from in-



Model CommonsenseQA OpenBookQA QASC StrategyQA Avg. Accuracy

(Instruct) ext. judge A ext. judge A ext. judge A ext. judge A ext. judge A

Llama-3.2-1B | 47.6 277 199 | 472 238 234 | 477 222 255 537 201 336| 490 234 256
Llama-3.2-3B | 69.1 58.7 104 | 754 584 17.0| 719 514 205 | 643 348 295| 702 50.8 194
Llama-3.1-8B | 75.7 72.8 29 | 830 69.6 134]| 794 640 154 672 459 213| 763 63.1 132
Phi-4-Mini 658 57.1 87 | 798 650 148 | 672 491 181 | 60.1 424 17.7| 682 534 148
Qwen2.5-1.5B | 67.1 459 212 | 626 40.8 21.8| 57.0 332 238 | 570 27.8 292 609 369 240
Qwen2.5-3B 742 60.8 134 | 77.6 538 238 | 719 482 237 | 581 310 27.1| 704 485 220
Qwen2.5-7B 824 785 39 | 87.8 722 156 | 814 678 136 725 514 21.1| 81.0 675 135
Average | 688 574 114|733 548 185] 67.9 480 199 619 362 257 683 497 186

Table 4: Accuracy (%) of seven SLMs on four commonsense benchmarks, evaluated using ol-mini as an answer
extractor (ext.) and as a judge. A represents the performance inflation introduced by answer-only evaluation.
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Figure 2: Comparison of step error positions: (a) human
annotation and (b) ol-mini employed as a judge.

valid traces) and +20.6 points in error recall (iden-
tifying flawed traces) on average. This empha-
sizes the importance of process-aware evaluation
for faithful SLM assessment.

Building on this finding, we evaluate multiple
SLMs under both paradigms to quantify the discrep-
ancy between answer-only and reasoning-aware
evaluation. Table 4 reveals a consistent 18.6 per-
centage point average drop when using reasoning-
aware evaluation, demonstrating how traditional
metrics overestimate SLM capabilities. Even high-
performing models like Qwen2.5-7B-Instruct show

substantial drops (81.0% to 67.5%).

These results align with our benchmark analysis
(Section 3.6) showing 17.9% of instances reach
correct answers through flawed reasoning, and re-
inforce that ol-mini as a judge better aligns with
human assessments. The findings underscore the
critical need for reasoning-aware evaluation frame-
works that move beyond final answer correctness
to accurately reflect SLM reasoning capabilities.

6 Conclusions

In this work, we introduced RETRACEQA, a new
gold benchmark for evaluating reasoning traces
of SLMs through step-level annotations, includ-
ing error type locations and categorizations. Our
manually annotated benchmark reveals that stan-
dard answer-only metrics consistently overestimate
SLM performance: on average, 17.9% of the time,
SLMs arrive at correct answers via a reasoning that
contains at least one significant error. Moreover,
introducing reasoning-aware evaluation shows that
their scores are inflated by up to 25%. Our manual
error analysis shows that SLMs struggle primarily
with factual grounding (hallucinations account for
41.9-62.5% of errors), though logical coherence
issues are also significant (27.9-35.4%).

Although our work demonstrates that commer-
cial LLMs are strong judges and can distinguish
correct vs. incorrect traces effectively, they still
struggle with precise error localization. Addition-
ally, open PRMs trained on math reasoning fail
to transfer to commonsense tasks, highlighting
domain-specific gaps and the need for non-math
process-level benchmarks like RETRACEQA. We
hope RETRACEQA encourages broader adoption
of reasoning-aware evaluation protocols for more
faithful assessment of language models.



Limitations

Our work provides valuable insights into reason-
ing trace evaluation for commonsense reasoning,
though some limitations should be taken into ac-
count. First, our benchmark focuses exclusively on
English-language commonsense reasoning tasks.
Extending this evaluation framework to multilin-
gual settings would be valuable for understanding
whether reasoning patterns and error distributions
vary across languages. Second, while we selected
four diverse datasets for commonsense reasoning
and extended reasoning trace evaluation beyond
mathematics and science, it would be valuable to
extend current work on benchmarks capturing rea-
soning patterns required in other domains such as
procedural reasoning or narrative comprehension.
Future work should extend this evaluation frame-
work to a broader range of reasoning modalities
to establish more comprehensive benchmarks. Fi-
nally, our results demonstrate that PRMs trained on
mathematical reasoning transfer poorly to common-
sense domains, with performance degrading sub-
stantially. This domain transfer limitation suggests
that reasoning evaluation techniques may require
domain-specific adaptations rather than assuming
general transferability across reasoning tasks, mo-
tivating the need to develop specialized PRMs for
other domains beyond mathematics and science.
Overall, while our work provides a solid foun-
dation for reasoning trace evaluation, addressing
these limitations will be crucial for advancing the
field and developing more robust reasoning models.
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A Solution Generation Prompts

Table 5 and 6 show the prompts used in our work
to generate the solutions for the multiple-choice
and binary commonsense reasoning benchmarks,
respectively. Specifically, we use the standard zero-
shot Chain-of-Thought (CoT) prompting strategy
(Wei et al., 2023; Kojima et al., 2023) to elicit
explicit model reasoning.

B Answer Extractor Details

To ensure that our benchmark contains a balanced
number of model outputs reaching a correct or in-
correct solution, we use a state-of-the-art LLM-
based answer extractor (Yu et al., 2025, xFinder).
We select this answer-extraction method rather that
relying on simple regular expressions because of its
higher agreement with human judgment in scenar-
ios involving free-form text generation (Molfese
et al.,, 2025). Specifically, we adopt xFinder-
llama38it,? the best-performing variant based on
Meta-Llama-3-8B-Instruct. We prompt xFinder by
providing it with the input question, the optional
set of choices and the model output. We then ex-
tract its generated output and compare it against the
correct answer. We deem an instance as correct if it
reaches the correct answer and incorrect otherwise.

2https://huggingface.co/IAAR—Shanghai/
xFinder-1lama38it
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SYSTEM

You are an expert 1in commonsense
question answering. You are given as
input a question and a set of choices.
First, provide the reasoning process to
answer the question. Finally, provide
your final answer.

USER

Question: {question}
Choices: {choices}

Table 5: Prompt for CSQA, OBQA and QASC datasets.

C Error Examples

Table 7 shows examples drawn from our RE-
TRACEQA benchmark. Specifically, the table
presents the input problem (consisting of a question
and an optional set of choices), the model’s rea-
soning trace divided into paragraphs, and the type
of error, annotated according to one of three cate-
gories. This table provides a qualitative overview
of the errors made by SLMs in the context of com-
monsense reasoning. In particular, the table high-
lights problematic reasoning patterns in the models’
outputs, with errors annotated following the cate-
gorization defined in Section 3.5 and Appendix D.
The first two examples illustrate hallucination er-
rors, where the reasoning traces contain incorrect
or non-verifiable statements, such as: “bowling al-
ley is not the typical location for throwing a ball at
pins” and “leaves are the primary source of nectar
for honey production.” The third and fourth exam-
ples show reasoning errors. In the third example,
the model correctly states that “the word ‘being
still’ (A) implies that the person is not moving” but
then incorrectly concludes that this “would make it
harder to hear movements,” which is not logically
valid. Similarly, the fourth example contains an
illogical statement: “would not provide much heat-
reflecting,” derived from the correct observation
that “ecru: This color is very light.” The last two
examples represent misinterpretation errors. In the
fifth example, the model fails to relate the meaning
of the answer choices to the question, while in the
sixth example, it selects label “E,” which is not
among the provided choices.
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SYSTEM
You are an expert 1in commonsense
question answering. You are given

as input a yes/no question. First,
provide the reasoning process to answer
the question. Finally, provide your

’

final answer as ’yes’ or ’no’.

USER

Question: {question}

Table 6: Prompt for the StrategyQA dataset.

D Annotation Guidelines

D.1 Task Overview

The goal of our annotation process is to evaluate the
step-by-step reasoning traces generated by SLMs
in response to questions requiring commonsense
reasoning. Annotators are tasked to identify the
earliest point in the reasoning trace where an error
occurs. Importantly, the final answer produced by
the model may be correct even if the intermediate
reasoning steps are flawed. As such, annotations
focus solely on the reasoning trace rather than final
output alone. Each annotation instance includes
the question, optional answer choices (for multiple-
choice tasks), the ground truth answer, and the
model-generated reasoning trace broken into dis-
crete steps.’ In some cases, additional contextual
facts drawn from the original datasets are provided
to assist the annotator.

D.2 Annotation Objective

Annotators are instructed to read each step in the
reasoning trace and identify the first step that con-
tains an error. The task is framed as a classification
problem, where annotators assign an integer index
to indicate the position of the first erroneous step.
Step indices are zero-based (i.e., O refers to the first
step), and a value of —1 is used to denote that all
steps in the reasoning trace are correct. Moreover,
annotators are tasked to categorize the nature of the
error using one of three available labels: hallucina-
tion, reasoning, and misinterpretation errors.

*In the following, we use the terms “steps” and “para-
graphs” interchangeably.
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D.3 Error Definition

We define three categories of errors that annotators
use to classify erroneous reasoning steps:

Hallucination Errors. This category covers er-
rors where the model generates unverifiable or false
facts. Examples include stating that “wolves are
not found in arctic regions” or claiming that “leaves
are the primary source of nectar for honey produc-
tion” (when flowers are the actual source). This
category encompasses:

* Incorrect facts or assumptions that are not gen-
erally valid

e Hallucinated information that is not inferable
from the question or context

Example: A model stating “rejection is the most
likely outcome of an interview” presents an incor-
rect fact that is not generally valid, constituting a
hallucination error.

Reasoning Errors. This category covers errors
where the model fails to reason coherently. For in-
stance, stating “white is a light color” (correct) but
then claiming “it does not reflect light” (incorrect)
represents incoherent reasoning. This category in-
cludes:

* Logically unsound or commonsense-violating
inferences

* Contradictory or internally incoherent reason-
ing

* Ruling out the correct option or selecting a
final answer that does not match the ground
truth

Example: For the question “Where spiders might
be found among tools?”, a model stating “a garage
may store tools” but then ruling out garage as “not
the most likely place” with unsound reasoning com-
mits a reasoning error.

Misinterpretation Errors. This category in-
cludes scenarios where the model misinterprets the
question objective, the meaning of answer choices,
or the task requirements. This encompasses:

* Misinterpreting the question or misrepresent-
ing previous steps

» Referencing non-existent answer choices



* Selecting multiple answers when only one is
required

* Misunderstanding the task objective

Example: For the question “Why would you take
a bus to work?” with choice A being “commute,” a
model ruling out this correct option because “the
question asks why someone would take a bus, not
what a bus is used for” demonstrates misinterpreta-
tion of the question’s objective.

D.4 Non-errors

Not all irregularities in reasoning traces qualify as
errors. Annotators are explicitly instructed not to
flag the following as erroneous:

* Minor grammatical issues or unusual phrasing
that do not affect semantic content.

* Verbose, redundant, or overly detailed reason-
ing that remains logically sound.

D.5 Annotation Procedure

The annotation process involves six key steps:

. Read the question, any associated answer
choices, and any additional supporting facts.

Consult the ground truth answer to understand
the correct resolution.

. Examine each reasoning step in sequence.

Determine whether each step is sound follow-
ing the provided guidelines.

. Record the index of the first erroneous step,
or —1 if all steps are correct.

Categorize the error type (hallucination, rea-
soning, or misinterpretation) if an error is
found.

Importantly, annotators are instructed to mark
only the earliest point in the trace where an er-
ror occurs, as later steps may be incorrect solely
due to propagation from a previously erroneous
step (Zheng et al., 2024; Lightman et al., 2023).
This process ensures that annotations are consis-
tent, fine-grained, and focused on evaluating the
internal validity of reasoning traces rather than their
final outcomes alone.
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D.6 Identifying Invalid Instances

During the annotation process, some instances may
be identified as problematic due to flaws in the orig-
inal question or labeling. To maintain the quality of
the benchmark and avoid propagating errors from
upstream datasets, annotators are asked to flag such
examples with a special INVALID tag. The follow-
ing conditions qualify an instance for exclusion:
(i) the question contains severe grammatical issues
that compromise its interpretation; (ii) multiple an-
swer choices are semantically identical or equally
valid; (iii) the dataset’s annotated ground truth is
demonstrably incorrect based on commonsense or
factual knowledge; and (iv) the instance lacks a
unique, clearly correct answer. Instances tagged as
INVALID are excluded from the analysis.

E Individual Model Statistics

Figure 3 shows the individual process error rates
of the seven SLMs listed in Section 3.3 (we omit
“Instruct” tags for readability), measured as the per-
centage of instances in which an incorrect reason-
ing trace leads to the correct final answer. In par-
ticular, we can see that the trend is approximately
the same for each subset of RETRACEQA: smaller
models correspond to higher process error rates,
with the latter decreasing as model size increases.

F LLM-as-a-judge Prompts

Table 8 show the prompts used for LLM-as-a-judge
evaluation of commonsense reasoning traces. They
are lightly adapted from prior work (Zheng et al.,
2024), omitting answer choices when unavailable
and including supporting facts when provided.
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Figure 3: Process Error Rate (%): The proportion of incorrect reasoning traces that reach the correct final answer,
calculated across the annotated subsets of our benchmark for each model.
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Input | Reasoning Trace | Error Type
Question: Where do you throw | Paragraph 0: Hallucination.
a ball at pins? To answer this question, we need to consider the context and the
Choices: typical location of a ball-throwing activity.
A. bowling alley [...]
B. football stadium Paragraph 2:
C. soccer field A bowling alley is primarily used for bowling, a specific type of
D. sporting event ball-throwing game. It is not the typical location for throwing a
E. sporting goods store ball at pins.
Question: Where can bees find | Paragraph 0: Hallucination.
the materials needed to make | To answer this question, I need to consider the characteristics of
honey? honey and its production process. Honey is produced by honey-
Choices: bees (Apis mellifera) through a process called nectar collection
A. heated by the sun and regurgitation
B. occurs over a wide range [...]
C. trees and flowers Paragraph 5:
D. buildings F. leaves: Leaves are the primary source of nectar for honey
E. hives production.
F. leaves
G. 70-75 degrees Fahrenheit
H. interior chambers
Question: During the winter | Paragraph 0: Reasoning.
hunt he could hear every motion | The question states that the person can hear every motion in the
in the woods, this was because | woods, which implies that there is something that allows them
of the what of everything? to be aware of even the slightest movements.
Choices: [...]
A. being still Paragraph 3:
B. silence The word "being still" (A) implies that the person is not moving,
C. stationary which would make it harder to hear movements, not easier.
D. stillness
E. standing still
Question: What is a more com- | Paragraph 0: Reasoning.
fortable color to have for your | To answer this question, we need to consider the climate and en-
automobile upholstery if living | vironment of a desert. Deserts typically have high temperatures
in a desert? and intense sunlight, so the upholstery color should ideally have
Choices: good heat-reflecting properties to keep the car interior cooler.
A. ecru [...]
B. red Paragraph 2:
C. black A. ecru: This color is a very light, almost white color. It would
D. navy not provide much heat-reflecting capability.
Question:  birds use their | Paragraph 0: Misinterpretation.
peckers to catch The question asks what birds use their peckers for.
Choices: [...]
A. dogs Paragraph S:
B. atan The choices provided are not related to the question at hand.
C.aball
D. bees
Question: Hand dryers can also | Paragraph 0: Misinterpretation.
be used to To answer this question, I'll analyze each option and eliminate
Choices: the incorrect ones based on the properties and common uses of
A. keep cold drinks cool hand dryers.
B. dry out wet clothes [...]
C. hydrate your face and hands | Paragraph 5:
D. make a damp rag damper I will choose option E, which is not provided in the list. Since

the correct answer is not among the options, I will choose the

one that is least likely to be correct.

Table 7: Examples drawn from our RETRACEQA benchmark.
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SYSTEM

You are an expert in carefully analyzing step-by-step solutions for commonsense reasoning prob-
lems.

USER

The following is a commonsense reasoning problem composed of a question, a set of choices, the
correct answer and a solution (split into paragraphs, enclosed with tags and indexed from 0):

[Commonsense Problem]
Question: {question}
Choices: {choices}
Answer: {answer}
[Solution]
{model_output}

Your task is to review and critique the solution paragraph by paragraph. Once you identify a
commonsense reasoning error in a paragraph, return the index of the paragraph where the earliest
error occurs. Otherwise, return the index of -1 (which typically denotes ‘not found®).

Please put your final answer (i.e., the index) in boxed{}.

Table 8: LLM-as-a-judge prompt.
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