
Architecting secure
enterprise AI
agents with MCP
Verified by Anthropic, October 2025

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 1

TABLE OF CONTENTS

Table of Contents ...1

What are AI Agents? ...1

Agentic Enterprise ...2

The Agent Development Lifecycle: DevSecOps Practices for AI Agents ...3

Enterprise Considerations Building AI Agents ..7

Agent Observability and Operations ...9

Agent Security ... 10

Governance: Test, Certify & Catalog .. 11

MCP Servers Lifecycle: Enterprise Guide & Best Practices .. 13

Reference Architecture & Enterprise Requirements for an Agentic AI Platform .. 18

Appendix: Voice of the Customer: Client Examples ... 20

Appendix: Enterprise Use Cases .. 21

AI agents powered by large language models (LLMs) require enhanced application development lifecycles that address the

unique nature of agent development. Unlike static applications, agents are adaptive, interactive systems that must be

continuously evaluated, secured, governed, and improved due to the nondeterministic and probabilistic nature of underlying

LLMs. For example, a traditional software development cycle (SDLC) would deploy an agent to production after successful

staging tests. However, the same agent tested with identical data can produce different results due to inherent variability.

This method necessitates different testing and validation approaches—a key differentiator from the application development

lifecycle.

This guide presents the agent development lifecycle (ADLC), a structured approach to designing, deploying, and managing

enterprise AI agents. At its core, it is an operational discipline based on standard DevSecOps practices that ensures agents

remain safe, reliable, secure, and aligned with organizational and regulatory goals (such as compliance with AI Regulations).

WHAT ARE AI AGENTS?

AI agents are software systems that perceive context, reason over goals and constraints, and act through tools and services

to complete multistep tasks. Effective agents combine capabilities such as memory, planning, tool use, and reflection. They

can be made to operate within explicit authority boundaries, leverage tools to escalate when needed, and provide observable

traces of their decisions and actions.

Agents are more than their external interfaces: they are decision-making and execution systems that integrate with data and

applications through tools. They can break down tasks into smaller subtasks, execute and coordinate each, and deliver

outcomes.

WHAT ARE ENTERPRISE AI AGENTS?

Enterprise AI agents are autonomous or semi-autonomous AI agents designed to perform tasks in a business environment.

They bring agentic AI capabilities into real organizational environments with enterprise requirements for observability,

security, compliance, resilience, and scale. Enterprise AI agents can run in non-hybrid as well as hybrid cloud deployments—

public, private and enterprise data centers. They can also work with a mix of model types—small, large and fine-tuned

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 2

enterprise specific—depending on their quality, latency and cost needs. These agents can also access governed enterprise

data and execute actions through tools. Enterprise agents can be observed, secured, governed, and audited across their full

lifecycle to meet business, risk, and regulatory expectations.

THE PARADIGM SHIFT

Enterprise AI agent projects succeed when organizations recognize the fundamental differences between traditional

software and agentic systems:

From deterministic to probabilistic: Traditional software follows predictable execution paths, while agents make dynamic

decisions that can vary even with identical inputs.

From static to adaptive: Applications typically have fixed functionality, but agents can learn and evolve their behavior based

on interactions and feedback.

From code-first to evaluation-first: Traditional software metrics don't predict agent success. You can have a perfect

implementation that results in poor agent behavior, or messy prompts that work great. Success depends less on

implementation details and more on systematic measurement of agent behavior and business outcomes.

AGENTIC ENTERPRISE

As enterprises embrace agentic AI to drive autonomous decision-making and intelligent automation across enterprise

development, operations and security, it is imperative to recognize that these agents do not operate in isolation. The

introduction of agentic AI into enterprise workflows demands a rethinking of traditional IT processes. That would enable

transformation to become an agentic enterprise.

The ADLC must be designed to coexist and integrate seamlessly with the broader enterprise ecosystem—spanning hybrid

cloud infrastructure, enterprise data platforms, business applications, and existing management tools for development,

operations, and security. These agents developed with the ADLC must be context-aware, interoperable, and governed by the

same architectural principles that underpin enterprise IT.

Whether deployed in cloud-native environments or on-premises systems, tools and context that agents consume must

respect enterprise controls, resilience requirements, risk-based security, data sovereignty, and regulatory constraints. When

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 3

enterprises define any additional controls around the agents themselves, the deployment should also respect those controls.

This approach calls for a hybrid deployment model where agents that are embedded within existing continuous integration or

continuous development (CI/CD) pipelines, observability frameworks, and security controls are tightly constrained,

permissioned, and sandboxed—ensuring continuity, security, compliance, and operational resilience.

ENTERPRISE AGENT DEVELOPMENT REQUIREMENTS

Enterprise agent development in regulated industries—such as healthcare, telecommunications, and finance—requires a

fundamentally expanded approach beyond traditional software practices. These sectors demand rigorous compliance,

security, and operational standards that shape a convergent set of requirements across the agent lifecycle. In the planning

phase, organizations must generate synthetic ground truth data due to limited access to historical records. Early design of

enterprise-grade access control (RBAC) and robust vendor evaluation frameworks are essential to guide stack selection and

build-versus-buy decisions.

During the code and build phase, enterprises need advanced experiment tracking, version control for multiple agent

variants, and embedded evaluation frameworks to ensure performance and reliability. Development environments must

support multitool orchestration, secure integration with existing systems, and specialized vulnerability scanning that goes

beyond traditional methods to detect prompt injection and adversarial threats. As agents move into testing and release,

automated evaluation frameworks integrated into CI/CD pipelines become critical for monitoring behavioral drift, accuracy,

and cost. The infrastructure must accommodate the stochastic nature of AI agents and enforce governance through certified

catalogs and secure API execution.

In the deployment phase, compliance-aware infrastructure tailored to industry-specific regulations (for example, HIPAA,

financial standards) is required, along with scalable, low-latency SaaS platforms and secure integration into hybrid

enterprise environments. Sandboxing is a foundational security control for enterprise AI agents. Unlike traditional services,

agents often execute dynamically generated code, interact with heterogeneous tools, and handle sensitive enterprise data.

Without isolation, a compromised or misbehaving agent can access resources far beyond its intended scope. Finally, the

monitoring and operations phase demands deep observability into agent reasoning, unified dashboards for business and

technical metrics, and continuous compliance monitoring. Centralized governance registries help prevent agent sprawl and

ensure secure, auditable agentic operations across the enterprise.

ENTERPRISE AGENT DESIGN PRINCIPLES

By embedding agentic AI within the fabric of enterprise architecture, organizations can unlock transformative agility, reduce

cognitive load, and accelerate innovation—without compromising trust, compliance, or control

Following design principles enables transformation to an agentic enterprise:

1. Enterprise agents are designed to have acceptable agency.

2. Enterprise agents are interoperable, secure by design and integrate with enterprise tools.

3. Enterprise agents are evaluated to meet business objectives while mitigating risk.

4. Enterprise agents are securely deployed across hybrid cloud and AI systems.

5. Enterprise agents are continuously observed and managed to be resilient.

6. Enterprise agents are governed to meet enterprise risk and compliance.

These design principles need to be woven into the agent development lifecycle to enable collaboration across enterprise

teams and seamless process integration into existing enterprises processes.

THE AGENT DEVELOPMENT LIFECYCLE: DEVSECOPS PRACTICES FOR AI AGENTS

The ADLC provides a comprehensive framework organized around six interconnected phases, building on the standard

DevSecOps practices, but extending each to address the unique challenges of agentic systems:

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 4

The fundamentals of DevSecOps apply to AI agents, but with some required extensions. For example:

- Shift-left security: must now be applied to agentic identity management and data access through MCP

- Automation: extended to include agentic evaluation and benchmarking

- Continuous monitoring: needs to capture and analyze agentic reasoning traces and agentic tool usage

- Collaboration: engagement of the business stakeholder is crucial in the plan, build, and test phases

- Compliance and risk management: new risks created by agent autonomy need to be addressed

AI agents inject stochastic control logic (agentic reasoning) into applications that previously relied on static control flow.

This step requires two new inner loops in the lifecycle to test, tune, and optimize the agentic workflow. First, the

Experimentation Loop between Build and Test which incorporates agent evaluation frameworks and benchmarking to drive

build time improvement of agentic behavior. Second, the Runtime Optimization Loop allows for inference time scaling and

continuous optimization of both agent quality and operational costs. In addition, extensions are required at each phase of the

ADLC:

- Planning phase now requires agentic behavior specification and documentation of standard operating procedures in

natural language.

- Code and Build phases now include prompt design and agent orchestration.

- Test and Release phases include agent evaluation.

- Deployment must deal with behavioral guardrails for agents and multi-agent scaling.

- Operations must include observability of agentic reasoning traces.

- Monitoring now includes accuracy of agent journeys, hallucination metrics, behavioral drift, and new cost and

latency metrics.

PLAN

The process begins with use case alignment and defining the agent’s purpose and key performance indicators (KPIs).

Identify business outcomes (for example, customer support automation, financial compliance, or R&D copilots). While all

agents have agency, enterprises should select use cases that enable productivity, while meeting risk appetite around

acceptable agency. This stage ensures that agents are scoped around high-value, measurable goals rather than generic

functionality.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 5

Evaluation-first: Define business key performance indicators (KPIs) including accuracy, latency, trust scores, safety

thresholds and security requirements. Continuously measure behavior and outcomes, ship only with evidence.

Real agency, clear limits: Give agents the capabilities to own outcomes (context, memory, planning, tools) with explicit

authority bounds and human-in-the-loop paths. Capture full traces to enable reversal and improvement.

CODE AND BUILD

With requirements set, teams move into core development. Implement prompts, memory strategies, and orchestration logic.

Integrate agents with enterprise systems, APIs, and external knowledge bases. Instrument observability hooks to capture

agent transcripts (which include agent reasoning traces, tool calls, and outputs).

Hybrid models by design: Use a portfolio of models (frontier for hard reasoning; domain, small, on-prem for cost, latency, or

locality). These models could also be consumed as a service (for example, frontier models delivered from cloud), and

enterprise specific models could be consumed from on-premises deployments.

Hybrid cloud by design: Assume hybrid cloud deployments and integrations when accessing tools and context and where

the agents are deployed.

Interoperable: Prefer open standards. Use MCP for tools, resources and prompts with typed schemas; adopt consistent

patterns when it comes to context storage and retrieval, tool access and task delegation.

Tool-centric: Treat integrations to enterprise data, applications and systems as tool integrations, enabled by MCP servers).

Keep tools least-privilege, versioned, and well-documented. Use an MCP Gateway pattern to secure and governed

connections to enterprise backend systems.

Secure-by-design: Develop agents by using secure-by-design principles to meet enterprise security requirements. Issue

identities to agents so that every action taken by agents by themselves, or when acting for users, are traceable, and

auditable. Implement security controls that take a risk-based approach. Propagate context for attribution, log immutable

decision, tool and complete trails, and preserve lineage for prompts, models, tools and data.

Sandbox agents and tools to constrain their execution environment, limiting capabilities such as network or filesystem

access to the minimum necessary. In practice, this means running agents and tools inside lightweight isolation frameworks

(for example, Firecracker, gVisor, container security profiles) to enforce boundaries and prevent lateral movement.

Sandboxing should be complemented by runtime policy at the MCP Gateway layer, which can enforce rate limits, throttling,

and outbound access controls centrally across agents and tools. Together, infrastructure-level isolation and gateway-level

governance provide layered defense: the former ensures that compromised agents and tools remain contained, while the

latter regulates interactions with external systems and shared resources.

TEST, OPTIMIZE, RELEASE

Testing agents requires more than traditional unit tests—it involves behavioral validation. Run structured evaluations against

predefined benchmarks. This approach includes having test data sets that mimic the agent production data. Optionally, it

also includes ground truth information on the trajectory that should be following by the agent for answering each input.

Measure governance metrics such as hallucination rate, bias, and compliance with policies. There are different strategies to

compute these metrics. For example, hallucinations can be computed by comparing the LLM generated content with the

context fed to the LLM. Similarly, there are guardrail models to check for bias in the LLM input and output.

Continuous evaluation and guardrails. Agents must be tested against evolving benchmarks and policy checks throughout

their lifecycle, with explicit guardrails on acceptable agency. Leverage LLM-as-a-Judge (LLM-aaJ) and human-in-the-loop

review to continuously measure quality, safety, and compliance, ensuring agents remain aligned to business and regulatory

objectives.

Perform security testing and red teaming exercises to evaluate risks and mitigate those before deployment. Certify agents

are in a governed catalog, ensuring they meet enterprise and regulatory standards before release. This stage reduces risk by

combining evaluation with governance practices.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 6

DEPLOY

Once certified, agents are deployed into production environments. At this stage, agents get securely deployed into

enterprise hybrid cloud environments, integrated with enterprise data and applications. Roll out progressively to manage

risk. Include a kill-switch to disable the agent under emergencies.

Hybrid deployment. Plan for enterprise data and application integrations across hybrid cloud environments, hybrid data

sources, and hybrid AI stacks. Adopt a gateway pattern to enable improved governance and effective enforcement.

Resilient to achieve business continuity. At this stage, agents get securely deployed into enterprise hybrid cloud

environments, integrated with enterprise data and applications. Roll out progressively to manage risk. Design to ensure

that they are resilient to outages, resilient to cyber-attacks, and resilient to agentic drift.

Support multi-agent orchestration where different agents collaborate on workflows. Scale infrastructure to handle demand

while enforcing safety and cost controls. ADLC ensures runtime governance through sandboxing, versioning, rollback

strategies, security enforcement and performance throttling.

Sandboxing: Sandboxing refers to running agents and their tools inside constrained execution environments that strictly

limit their capabilities. These environments enforce least-privilege access to compute, storage, network, and system APIs.

Sandboxing should be treated as a baseline control, not an optional feature. By containing execution at the infrastructure

level and governing interactions at the gateway, enterprises achieve defense in depth—ensuring that even if an agent

misbehaves, its blast radius remains tightly constrained.

Sandboxing should be used when deployments include untrusted or dynamic code execution, for example, code generation,

data transformation and tool orchestration across multiple trust domains (where one tool’s misuse could affect another).

Other examples include high-value or sensitive data handling (where accidental exfiltration must be prevented) and

multitenant deployments (where different business units, customers, or projects share infrastructure).

Implementation strategies for sandboxing include:

- Lightweight virtualization

- Container security profiles (for example, apply seccomp, AppArmor, SELinux policies to restrict system calls,

capabilities and filesystem access)

- Network controls (for example, disable or tightly scope outbound and inbound connections, route all external

access through an MCP Gateway for rate-limiting, throttling and auditing)

- Filesystem policies (for example, mount ephemeral or read-only volumes, block direct access to secrets, logs and

host files)

- Gateway-level enforcement (for example, combine infrastructure sandboxing with centralized MCP Gateway

policies to enforce throttling, access approvals and compensating actions)

MONITORING AND RUNTIME OPTIMIZATION LOOP

After deployment, continuous monitoring keeps agents reliable, effective and secure. Track real-time metrics such as

accuracy, latency, cost, and user satisfaction. Detect drift in behavior or performance regressions.

Observed and managed: Rich traces, metrics and evals, SLOs and error budgets, circuit breakers, graded responses, and

RCA-driven remediation across prompts, tools and policies.

Agents have unique security threats including memory poisoning (injecting malicious data into agent memory) and tool and

API misuse (manipulating agent to use a trusted tool to perform unauthorized actions). Other threats include intent breaking

and goal manipulation (tweak prompts to hijack an agent’s purpose) among others.

Optimize prompts, tools, and memory policies based on feedback. This phase establishes a closed feedback loop where

insights from monitoring drive improvements in agent design and retraining.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 7

OPERATE

The final stage focuses on operations, governance and oversight.

Governed and discoverable:

Run a curated catalog of agents and tools with:

- Owners: So that there are better accountability and escalation

- Versions: To have better change management practice

- Risk posture: To make decisions on which tools can be used with which business applications

- Environments: To have operational oversight

Auditability: Linked evidence such as evals, red-team and approvals

Conduct ongoing audits for fairness and transparency. This approach includes checking for fairness in the agent's output

across different demographic groups, as well as fairness in performance and accuracy metrics across these groups. Conduct

security risk and regulatory compliance. Align with evolving industry standards and legal requirements. Securely retire or

decommission agents when they are no longer needed. This step includes securely handling and archiving agent input and

output data that contains sensitive or confidential content as well as storing the agent code for future reference. The ADLC

ensures that security and compliance are not a one-off step but a continuous discipline throughout the lifecycle.

Each stage should produce deliverables and have a gate:

- Use case: charter, KPIs, risk appetite (Gate: leadership approval).

- Development: prompts-as-code, tools, memory policy (Gate: design review passed).

- Testing: eval suite results, red-team report, compliance checklist (Gate: quality & risk thresholds met).

- Deployment: rollout plan, feature flags, rollback or kill-switch (Gate: change advisory approval).

- Monitoring: dashboards customized to the agent use case, SLOs and SLA-based alert thresholds, alert runbooks

(Gate: operational readiness confirmed).

- Review: metrics computed by using audit logs, data lineage, decommission plan (Gate: compliance review closed).

The ADLC moves agents from idea to production with DevSecOps at the core. It emphasizes continuous evaluation,

monitoring, security, and governance. This strategy enables organizations to scale agents safely and confidently keeping

them trustworthy, auditable, and aligned to business value.

ENTERPRISE CONSIDERATIONS BUILDING AI AGENTS

WHEN TO BUILD AGENTS

We recommend finding the simplest solution that addresses your specific business need. This might mean not building

agentic systems at all—many problems can be solved more effectively with traditional automation, well-designed prompts,

or retrieval systems. For example, a system that classifies customer emails into categories can be built with a well-designed

prompt and doesn't require an AI agent. However, a system that automatically answers customer emails would benefit from

an agentic retrieval-augmented generation (RAG) approach.

Agentic systems often trade latency and cost for improved task performance. Consider whether this tradeoff makes sense for

your specific use case. The most successful implementations begin with these characteristics:

Well-defined problem scope: Successful implementations focus on specific, measurable business problems rather than

broad automation objectives. Problems requiring contextual judgment, complex decision-making, or multistep reasoning are

good candidates for agentic approaches. For example, an agent can conduct comprehensive research for a business strategy

report. This route involves multistep reasoning: gathering data from internal and external sources, analyzing it, drafting the

report, and refining the final output.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 8

Clear success metrics: Teams that succeed establish quantitative success measures before any development work begins.

These metrics should reflect business value—customer satisfaction improvements, processing time reductions, or error rate

decreases—rather than purely technical measures.

Manageable complexity: Start with single-agent solutions handling defined tasks. Multi-agent orchestration introduces

operational complexity that often outweighs theoretical benefits until you’ve established competence with simpler systems.

Enterprise integration requirements: Plan for observability, security, resilience and compliance requirements during initial

design. These constraints fundamentally shape agent architecture and shouldn’t be treated as implementation details.

PROVEN APPLICATION AREAS

Enterprise deployments show three patterns with consistent value and manageable risk:

Customer support and service: Mature use case combining conversational interfaces with clear metrics. Agents resolve

routine inquiries while escalating complex cases. Factors critical for success: having strong evaluation criteria, knowledge

base leverage and clear human-handoff rules.

Document-heavy processes: High value in contracts, compliance, and research workflows. Agents route, validate, and

synthesize across multiple sources. Factors critical for success: having structured inputs, verifiable outputs, encoded

business rules and measurable accuracy gains against existing approaches.

Knowledge work and dev augmentation: Agents assist with research, analysis, documentation, and testing. Success

factors: quality feedback loops, defined task standards, and measurable productivity improvements.

STRATEGIC IMPLEMENTATION CONSIDERATIONS

SECURITY AND RISK MANAGEMENT

Enterprise agentic systems introduce unique security challenges that traditional application security doesn’t address:

Autonomous decision-making risks: Agents make independent decisions that can impact business operations, customer

relationships, and regulatory compliance. Unlike traditional applications with predictable execution paths, agents require

security frameworks that can govern dynamic, context-dependent behavior.

Expanded attack surfaces: Conversational interfaces, prompt injection vulnerabilities, and autonomous tool usage create

attack vectors that traditional security tools don’t address. Enterprise implementations must include agent-specific security

controls alongside conventional protections.

Compliance complexity: Regulatory frameworks often struggle with autonomous decision-making systems. Financial

services must audit agent decisions, healthcare systems must protect patient data in conversational contexts, and public

sector applications must ensure transparent automated decisions.

BUSINESS VALUE REALIZATION

Successful enterprise agent implementations focus on measurable outcomes rather than technological sophistication:

Process enhancement vs. replacement: The highest return on investment (ROI) comes from agents that enhance existing

business processes rather than attempting to replace them entirely. This approach reduces change management complexity

while providing clear value measurement opportunities.

Quality and consistency gains: Agents excel at applying complex rules consistently across large volumes of work, reducing

human error in areas like compliance checking, data validation, and process adherence.

Operational scalability: Unlike human workers, agents provide immediate scalability for demand spikes, continuous

availability, and consistent performance standards—creating particular value in customer service, processing pipelines, and

monitoring applications.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 9

AGENT OBSERVABILITY AND OPERATIONS

Agent observability and agent operations form a tightly interwoven framework for building, deploying, and managing agentic

AI:

- Agent observability provides critical visibility into agent behavior through rich telemetry, enabling teams to

understand how agents perform in real-world conditions.

- Agent operations uses that telemetry to manage, adapt, and ensure resilience of agents in production, and feeds

learnings back into ADLC.

WHY OBSERVABILITY CHANGES

Unlike deterministic software, agents interpret unstructured inputs and rely on large language models (LLMs) that can

produce non-deterministic outputs, even from identical prompts, making reproducibility and traceability challenging. Their

reasoning often involves emergent behaviors and tool usage that must be captured beyond just final outputs.

Additionally, agentic systems operate across multiple turns, modalities, and agents, requiring observability to track evolving

context and interactions. Crucially, the paradigm shifts from “is it up?” to “is it right?” where incorrect, biased, or

hallucinated outputs pose operational and security risks even when systems are technically performant, demanding a

rethinking of observability frameworks to address this new reality.

- Non‑determinism: identical inputs can produce different outputs; reproducibility needs rich traces.

- Multiturn, multi‑agent: behavior emerges across steps, tools, and agents; context evolves.

- Tooling side effects: correctness depends on tool calls, parameters, retries, and errors—not just final text.

BUILDING BLOCKS

To achieve enterprise agentic AI observability and operations, there are key building blocks that enterprises would need to

put in place:

- Telemetry coverage: traces, logs, events; inputs/outputs; token and cost accounting; tool calls; safety flags.

- Holistic MELT: agent‑specific metrics in context of platform metrics (metrics, events, logs, traces end‑to‑end).

- Analytics platform: pluggable analytics for advanced metrics, investigation, recommendations, optimizations and

resultant evals, insights, recommendations, and automated fixes that work across frameworks.

- Open telemetry ingestion: support telemetry from heterogeneous apps and platforms to enable broad adoption.

EVALS IN PRODUCTION AND DEVELOPMENT

Evaluating how agents perform is an important element of agent observability for enterprise teams to measure and monitor.

These include eval types and metrics:

- Offline evals: during build and CI to benchmark behavior and regressions.

- Online evals: in production to continuously measure quality, safety, and business outcomes.

- In‑the‑loop evals: invoked at runtime to guide agent decisions or route flows. E.g., in an Agentic RAG application,

compute the context relevance of the fetched context to decide if that should be used to generate an answer.

Metrics and evaluation framework should comprise of:

- Quality metrics: for example, task success percentage, groundedness, tool call success rate.

- Safety metrics: for example, jailbreak rate, sensitive data leakage rate, policy violations. Identifying such safety

issues is challenging but there has been increased focus in this field to detect such kind of issues by using LLMs.

- Operations metrics: for example, latency, token or cost per task, cache hit rate, error classes.

- Business metrics: for example, satisfaction scores, cost per outcome, value delivered; optional composite trust and

alignment scores derived from multiple signals.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 10

INSIGHTS, ROOT-CAUSE ANALYSIS, AND REMEDIATION

An agentic flow is the sequence of reasoning steps, actions, and interactions an agent uses to accomplish a task. Enterprise

insights into agent performance should be derived from analyzing evaluation outputs and computed metrics at the agentic

flow level. Agentic insights could span:

- Multiflow insights: aggregate signals across flows to surface top problem themes. For example, in the past one

week, the agents answer quality dropped on last Thursday. This insight has been derived across all the flows of the

agent over the past week.

- Single‑flow insights: analyze a specific conversation or trace for issues and opportunities. For example, the user

inquired about health plans for veterans, but the agent failed to retrieve veteran-specific information from the vector

database. This forced the user to ask clarifying questions, leading to frustration. This insight comes from a multiturn

conversation between the user and agent.

- Message‑level insights: deep‑dive on a single turn and its contributing factors. For example, the user gave a thumbs

down due to the agent's slow response time. This insight is based on a single user message.

- Task and trajectory views: purpose‑built views to inspect a unit of work and its end‑to‑end path across tools and

decisions.

Such insights can then be applied to determine root cause when things go wrong, or to take remedial actions. Root cause

analysis would include correlating failures to tools, prompts, models, or dependencies. Based on identified root case,

remediation could include recommendations and optionally automate fixes with approvals.

AGENT OPERATIONS AND OBSERVABILITY AT BUILD TIME

Enterprises should plan for observability and agent operations right at build (agent development) time. This strategy includes

various dimensions:

- Evaluation framework: make behavior measurable by default; capture traces in dev and CI.

- Prompt, tool and model optimization: compare variants to find better accuracy, latency and cost trade‑offs.

- Experiment tracking: compare versions; store decisions and rationale on why a specific version was selected, record

dataset used to test each version, record prompt versions, model version, model params, toolset versions,

environment and config, code commit, eval suite version; compare variants with lineage retained.

- Champion–challenger: validate candidate improvements against current production baselines across metrics.

- Lifecycle management: catalog versions, ownership, risk posture, and why a version was promoted.

ROLES AND RESPONSIBILITIES

Agentic systems disrupt boundaries between development, testing, deployment and operations. Their dynamic,

unpredictable nature requires all roles to adapt:

- Developers: instrument traces; design prompts and policies; iterate with evaluation data and not intuition alone.

- Testers: validate intermediate states and routing decisions, not just final outputs; extend testing post‑deployment.

- Site reliability: monitor trends, investigate drift and anomalies, drive RCA and mitigations with guardrails and

runbooks.

- Business owners: track business metrics and trade‑offs (cost, latency, quality); run A/B and what‑if analyses.

AGENT SECURITY

Agentic AI architectures expand the attack surface (conversational interfaces, prompts, new protocols like MCP) and

introduce unpredictable agent behavior. Because they tightly couple perception, reasoning, memory, planning, and action

with external tools in continuous loops, compromising any component (protocol, prompt, API, or tool) can cascade across

the system.

These architectures create dynamic, system-wide technical risks where one breach can trigger broad failure. Such technical

risks create four critical business-level challenges:

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 11

- Uncontrolled agent access and privilege escalation: Agents autonomously escalate privileges, bypassing approval

and tracking, raising accountability gaps.

- Agent-enabled data leakage and prompt exploitation: Agents may share sensitive data through malicious prompts,

with nondeterministic responses leaking info during interactions

- Autonomous attack amplification: Malicious agents outpace human defenses, coordinate rapid distributed attacks,

and compress timelines for compromise.

- Agentic drift and noncompliance: Autonomous agents adapt and drift from policy undetected; gradual algorithmic

shifts evade monitoring, undermining compliance. While undetected drift could be considered a monitoring concern

that could escalate into a security issue through one of the above three items, continuous compliance monitoring is

also becoming a key enterprise focus area.

SECURITY SOLUTION FRAMEWORK

Enterprise agentic AI deployments require security approaches tailored for autonomous, unpredictable environments and

expanding attack surfaces based on agentic interactions. Traditional tools built for static; predictable systems are necessary

but not sufficient. Enterprises should strategize and plan for four targeted solutions to add to enterprise security solutions,

each mapped to a core business risk:

- Agent identity and access: Assign unique credentials, enforce just-in-time access, factor in context aware access

controls and maintain continuous audit trails for accountability.

- Agent and data protection: Adopt gateway patterns (for example, MCP gateways) to filter prompts for injections,

monitor information flow and abnormal data sharing. Create secure deployment environments to isolate deployments

and harden agent deployments.

- Autonomous agent defense: Continuously detect agent threats by proactive threat hunting, and leverage AI based

approaches to determine what protections should be applied to thwart those attacks to mitigate those attacks to

achieve rapid containment.

- Agent security risk and compliance: Assess security risks to agentic systems and factor those into enterprise risk

decisions throughout ADLC and enterprise process. Continuously monitor for configuration drifts, and access patterns

for security compliance.

RISK MANAGEMENT AND COMPLIANCE

Enterprises must expand their enterprise and 3rd party risk assessment policies and processes to include agentic AI

systems’ supply chain that include 3rd party agents, tools (including MCP servers), and AI models:

- SBOMs for tools, prompts, agent code, and components.

- Artifact signing and verification before deployment; trusted registries only.

- Dependency scanning for servers, plugins, integrations; pin versions.

- Scoped tool permissions and approvals; enforce least privilege by default.

- Continuous audits for fairness, transparency, and security.

GOVERNANCE: TEST, CERTIFY & CATALOG

Governance provides the structures, controls, and evidence needed to safely scale agentic systems. It operationalizes

certification, cataloging, lifecycle decisions, and runtime policy enforcement across the ADLC.

GOVERNED CATALOG

Registration: Record agent purpose, owners, environments, and data and classification boundaries.

Capabilities: Enumerate tools, resources, prompts, and external dependencies with versions.

Risk posture: Document threat model, risk appetite, and mitigations per release.

Policies:

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 12

- Authority boundaries: What the agent can and cannot do autonomously; approvals for high‑impact actions.

- Data handling: Classification, minimization, masking and redaction, retention, and consent.

- Auditability: Immutable decision and audit trails including tool calls and side effects.

Evidence: Link eval results, red‑team reports, approvals, and audit artifacts.

CERTIFICATION WORKFLOW

Prerelease checks: Quality, safety and compliance thresholds met; security testing passed; approvals captured.

Promotion gates: Feature flags, rollout plan, rollback and kill‑switch, change tickets.

Runtime attestations: Artifact signing and verification, SBOMs for tools, prompts, code.

EXPERIMENTATION TRACKING AND LINEAGE

Goal: Capture metadata about the experiments which led to the creation of the new version of an agent. Several

experiments are run before a version is selected or identified.

Run metadata: Capture dataset, version or hash, prompt version or hash, model, version or hash, decoding params, toolset

versions, environment or config, code commit, and eval suite version.

Lineage graph: Link experiments to candidates to releases; retain decisions and rationale for promotion or rollback.

Replayability: Store seeds, prompts, and inputs for deterministic replays where possible; include trace IDs for selective

replay.

Governance link: Attach top candidate runs (and their artifacts) to the catalog entry when proposing a release; include

thresholds, deltas vs. champion, and risk notes.

Reproducible manifest: Signed manifest with fixed versions and identifiers for agent, tools, prompts (hash), model (ID or

hash), datasets or fixtures, and dependencies.

VERSIONING AND LIFECYCLE

Goal: Capture and track the agent versions. This step only tracks the output of the experimentation.

Version policy: Semantic versions for agent, tools, and prompts; additive changes favored. Pin model IDs (and commit or

hash where available) and record model parameters.

Provenance and SBOMs: Generate software and prompt SBOMs that enumerate agent code commit, tool versions, prompt

hashes, model identifiers, datasets or fixtures, and dependency trees. Sign and store alongside releases. Signing provides a

trusted record of the artefacts that went into a specific agent code commit.

Release notes and impact levels: Classify changes as breaking, behavior‑shifting, or non‑functional; require corresponding

validation depth and communication.

Deprecation policy: Announce deprecations with timelines; support dual‑run where feasible to smooth migrations.

Comparison: Champion–challenger evaluation before promotion; shadow or canary when needed. Champion-challenger

results have more weight than offline evaluations. They provide insights into how the new version will work on actual

production data.

Retirement: Decommission plan, data retention, and evidence preservation; successor mapping.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 13

MCP SERVERS LIFECYCLE: ENTERPRISE GUIDE & BEST PRACTICES

AI tools turn LLM “thoughts” into “Actions”. Model Context Protocol (MCP) standardizes the interface AI agents use to

interact with tools. Tools allow AI agents to integrate into enterprise and external systems and data to either retrieve

information or perform an action. For example, create a GitHub Issue, open a ServiceNow ticket, read requirements from

Confluence and more.

MCP servers are the enterprise-grade integration surface for agentic systems. They expose tools, resources, and prompts in

a standardized way that allows agents to act within well-defined, auditable boundaries. This page provides a high-level,

principles-first guide for building secure, scalable AI tools with the Model Context Protocol (MCP) in enterprise

environments.

WHAT IS MCP (AND WHY IT MATTERS)

The Model Context Protocol is an open standard that connects AI applications (clients) to the systems where context and

actions live (servers). Instead of bespoke, per‑app integrations, MCP defines a consistent way to discover capabilities and

invoke them safely:

- Servers expose tools, resources, and prompts with typed schemas and descriptions.

- Clients connect over stdio (local) or streamable HTTP (remote) to discover and call capabilities.

- The protocol enables secure, auditable action execution with clear contracts, making it the preferred standard for

building AI tools at enterprise scale.

In this guide, “AI tools” are implemented as MCP servers. Treat MCP as the default interface for agent‑accessible

capabilities.

MCP CORE CONCEPTS

- Tools: Executable actions with explicit input/output schemas, constraints, and side‑effect disclosures.

- Resources: Readable data sources (files, records, documents) the client can fetch for model context.

- Prompts: Predefined interaction templates that standardize tasks and reduce prompt drift.

- Discovery: Clients enumerate available tools, resources, prompts and obtain schemas at connect time.

- Authorization: Servers enforce scopes and roles per tool, with optional approvals for high‑risk actions.

- Transports: STDIOfor local processes; streamable HTTP for remote services and scale‑out.

Choose the language that best matches your operational model and integration profile. Optimize for maintainability,

observability, and SLOs—not theoretical speed.

WHERE MCP SERVERS FIT

MCP servers operationalize your enterprise integrations and actions. They live alongside your existing systems, enforce

security and governance controls, and provide reliable, explainable capabilities to agents across use cases. They follow the

same design principles as agents, including:

- Evaluation-driven development: Treat MCP behavior as a product; define success metrics, test with multiple

models, and measure tool reliability.

- Security by design: Integrate identity, authorization, and audit into the server—not around it.

- Controlled autonomy: Offer precise, least-privilege tools with approval paths for high-impact actions.

- Continuous governance: Observe, version, and evolve servers without breaking dependent applications.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 14

ARCHITECTURE AND DEPLOYMENT

MCP Topology

MCP GATEWAY PATTERN

Use an enterprise MCP Gateway when you need centralized security, control, and scale across many servers and tenants.

The gateway becomes the single, policy‑enforced ingress for agent access to organizational capabilities.

- Centralized control: One place for authentication, authorization, routing, rate limiting, quotas, and service discovery

or catalog.

- Security boundary: Terminate TLS, enforce mTLS to backends, broker OAuth tokens or scopes, enforce permissions

per tool, prompt security

- Policy and guardrails: Apply policy‑as‑code (for example, OPA) for tool allow or deny, environment gating, approval

requirements, and sensitive‑data handling.

- Multitenancy: Per‑tenant isolation for configs, keys, logs, metrics, limits, and catalogs; distinct dev, stage, prod

routes and policies.

- Governance and audit: Standardized logging, request correlation, audit trails for who, what, when, why across all

servers.

- Reliability and scale: HA, autoscaling, circuit breaking, retries with idempotency, backpressure, and traffic shaping

(blue or green, canary, shadowing).

- Compatibility layer: Feature detection, server capability negotiation, schema normalization, version pinning, and kill

switches for faulty tools.

- Plugins: extensions with pre and post hooks to trigger observability, PII filtering, XSS or profanity filters, security,

authentication, authorization and more.

Minimum gateway responsibilities: identity and scope brokering, catalog or registry, routing and health checks, rate limits

and quotas, policy enforcement, audit and metrics, and emergency kill switches. Example implementation: mcp-context-

forge

https://github.com/IBM/mcp-context-forge
https://github.com/IBM/mcp-context-forge

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 15

REQUEST FLOW WITH GATEWAY AND APPROVALS

MULTI-TENANCY AND ISOLATION

Single tenant by default: Simplifies auditing, secrets, and blast radius. Prefer per-tenant deployments for high-risk domains.

Explicit tenancy boundaries: Separate data paths, keys, and logs by tenant; apply per-tenant rate limits and quotas.

Workload isolation: Use containers with non-root users, read-only filesystems where possible, and minimal base images.

SECURITY FOUNDATIONS

Identity and access: Use OAuth per MCP specification with proper authorization flows and token refresh. Apply least

privilege by default (read-only), with fine-grained, per-tool and per-parameter authorization. Gate high-risk or write

operations behind explicit roles, policies, and approvals.

Input and output safety: Validate inputs with strict schemas, types, and ranges; reject invalid requests immediately. Sanitize

all outputs to prevent injection into downstream systems and clearly label side effects. Apply guardrails and policy checks

based on environment, resource class, or sensitivity, requiring user approval where appropriate.

Secrets and transport: Store credentials only in managed secret managers—never inline. Enforce TLS for all transport, sign

and verify containers and artifacts, and rely on trusted registries. Restrict network access with explicit ingress and egress

controls, service-to-service authentication, and allowlists.

Sandboxing: External plugins should be deployed in sandboxed and properly permissioned environments (for example,

lightweight virtualization, container security profiles) to enforce least-privilege access to infrastructure resources (network,

filesystem, secretsand more).

TOOLING DISCIPLINE

Design principles: Tools should have clear, actionable descriptions (purpose, constraints, side effects, usage guidance) and

stable, versioned interfaces. Keep capabilities bounded—favor small, focused tools over "kitchen-sink" ones.

Management and governance: Support read-only deployments, dynamic enablement by tenant, role, environment, and

production-safe filtering. For example, excluding destructive operations or gating sensitive tools with approvals.

State handling: Default to stateless execution for scalability and resilience. When state is required, externalize it to managed

stores with explicit TTLs, clear PII handling, and no hidden in-memory dependencies.

Operations and safety: For long-running or side-effecting actions, use asynchronous patterns (handles, status tools,

callbacks/webhooks), enforce idempotency with client keys and provide compensating/rollback actions where possible.

Concurrency should be supported to handle parallel requests safely.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 16

SCALABILITY AND RESILIENCY

Horizontal scale: Design for concurrent, short-lived requests; prefer idempotent operations and safe retries.

Rate limiting and backpressure: Apply per-tenant, per-tool limits; surface “try later” semantics; protect upstream systems.

Health, readiness, and circuit breakers: Publish health endpoints; trip on dependency failures; shed load gracefully.

Caching and batching: Cache read-heavy operations with TTL; batch compatible requests to reduce API usage and cost.

Compatibility and versioning: Version the server, tool schemas, and side-effect contracts; provide feature detection and

safe fallbacks.

Connection management: Reuse HTTP clients, enable keep‑alive, set timeouts and retry policies with jitter.

GOVERNANCE, COMPLIANCE, RISK AND OBSERVABILITY

Observability and auditability: Maintain structured audit trails (who, what, when, why, with redaction) capturing arguments,

decisions, and outcomes. Collect meaningful metrics (success rates, latency, errors, approvals, denials) to track reliability

and policy impact.

Governance and policy: Centralize guardrails as code (for example, OPA) and enforce consistently across environments.

Maintain curated catalogs of approved servers and tools with ownership, versions, capabilities, security review dates, risk

levels, and compliance tags.

Compliance and risk management: Classify and control data handling (locality, retention, minimization, redaction and

tokenization). Embed compliance into release processes with SBOMs, vulnerability scans, container signing, and dependency

policies. Enforce separation of duties for dev, ops and approvals, with break-glass procedures for production.

Lifecycle and change management: Pin versions with clear compatibility notes and migration guides. Enforce deprecation

policies with timelines, dual-run windows, and automated detection of deprecated usage. Coordinate releases with

dependency owners, align with change windows, and provide rollbacks.

Resiliency and operations: Define SLOs for critical tools (success rate, p95 latency, error budgets) and maintain runbooks

for common failures, outages, and recovery steps. Ensure escalation paths, on-call routing, and tested rollback processes.

TESTING AND CERTIFICATION

Cross-model evaluation: Validate tool discovery and execution across hosted and local models; monitor behavioral drift.

Security tests: Negative testing, authorization bypass attempts, input fuzzing, and rate-limit validation.

Load and chaos: Establish SLOs; test degradations, dependency outages, and retry and idempotency behavior.

Prerelease gates: Block releases on failing quality, security, or performance thresholds.

Capability detection: Implement feature detection and fallbacks for evolving protocol features.

Contract tests: Maintain tool schema contract tests and golden responses for backward compatibility.

PACKAGING AND DISTRIBUTION

Project and build standards: Use a clear structure (src, tests, docs) with Makefiles for local dev, testing, container builds,

and scans. Containerize with minimal, reproducible images that run as non-root, pin dependencies, and publish signed

artifacts.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 17

Containerization practices: Based on minimal images (Distroless, UBI), strip compilers and shells at runtime, and enforce

read-only filesystems where possible. Provide health endpoints (/health, /ready) and wire liveness or readiness probes.

Maintain dependency hygiene with pinned versions, lockfiles, and automated vulnerability patching.

Orchestration and networking: In Kubernetes, use HPAs for CPU and latency, PDBs for availability and resource requests

and limits for predictability. Secure traffic through TLS termination at ingress and enforce mTLS and service identity for east-

west communication (service mesh preferred). Apply strict network policies (egress allowlists, namespace isolation, per-

workload secrets).

Secrets management: Source all credentials from external secret managers with regular rotation; never mount broad or

shared credentials into pods.

Supply chain integrity: Generate and store SBOMs per build, fail builds on critical vulnerabilities, and enforce signing of

containers and manifests. Verify signatures at deploy and enforce cluster-level signature policies. Ensure reproducibility with

deterministic builds, pinned bases, cached layers, and recorded provenance.

Configuration and capability declaration: Drive configuration from environment variables and document required

capabilities in project README (for example, needs_filesystem_access, needs_api_key_user).

QUICK BUILD CHECKLIST

Purpose and scope: Single, clearly defined server role and bounded toolset.

SDK and spec: Official SDK where possible; document SDK and spec versions.

Security: OAuth scopes, least-privilege tools, approvals for high-risk actions, secrets in a manager.

Validation: Strong input schemas, output sanitization, error taxonomy and retries with idempotency.

Operations: Health and readiness, rate limits, backpressure, circuit breakers, and basic SLOs.

Observability: Structured audit logs, metrics (success, latency, errors), tracing and correlation IDs.

Compatibility: Versioned tool schemas, deprecation policy, feature detection, contract tests.

Packaging: Minimal signed container, non‑root runtime, reproducible builds.

Docs: README with capabilities and tags, environment variables, runbooks, and changelog.

ENTERPRISE ADOPTION PATTERNS

Host responsibilities: Client apps must show full tool descriptions, request approvals for risky actions, and prevent tool

shadowing.

Environment segmentation: Distinct dev, stage, prod; different toolsets and policies per environment.

Change management: Deprecation policies, version pinning, rollback strategies, and migration guidance.

PACKAGING AND INFRASTRUCTURE CHECKLIST

Container hardening: Minimal, non‑root, read‑only FS, health probes, resource limits.

Network and identity: TLS and mTLS, egress policy, service accounts, scoped OAuth tokens.

Observability: Logs, metrics, traces; correlation IDs; dashboards and alerts.

Supply chain: SBOM, signatures, vulnerability scans, provenance attestations.

Operations: HPA and PDB, rollouts (blue, green, canary), backups of stateful dependencies.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 18

CI/CD: Build, test (unit, integration, perf), scan, sign, and promote across dev, stage, prod with gates.

PRODUCTION READINESS CHECKLIST

- Identity and authorization implemented with least privilege and approvals for high-risk tools.

- Input validation, output sanitization and policy guardrails in place.

- Audit logging, metrics and alerts wired into enterprise observability.

- Rate limits, backpressure, health checks and circuit breakers configured.

- Secrets in a managed store; containers minimal, signed and non-root.

- Versioned APIs and tools with clear deprecation paths and compatibility tests.

- Documented SLOs, runbooks, incident response and rollback procedures.

MCP servers succeed in the enterprise when they are treated as durable products: narrowly scoped, strongly governed,

observable, and easy to evolve. Favor clarity, safety, and operability over breadth—then scale capabilities through catalogs

and consistent patterns rather than bespoke implementations.

REFERENCE ARCHITECTURE & ENTERPRISE REQUIREMENTS FOR AN AGENTIC AI PLATFORM

In summary, the platform underneath enterprise agents determine operability, security, and scale. The following

nonfunctional and functional requirements align with this guide’s focus areas and link to deeper sections for detail.

This framework outlines the reference architecture for implementing ADLC, structured into four core stages: build, deploy,

monitor and optimize, and manage. The build phase focuses on continuous integration, testing, and evaluation with strong

security and safety checks, leveraging tools like CI/CD pipelines, synthetic data generators, and red-team simulation agents.

Deploy transitions models into a production runtime environment with orchestration, guardrails, and data access, supported

by components such as AI gateways, orchestration engines, and model serving platforms.
Once deployed, the monitor and optimize stage ensures system reliability through comprehensive monitoring, anomaly

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 19

detection, and performance tuning. Services like metrics tracing, drift detection, and shadow AI detection play a key role

here. Finally, the manage phase addresses compliance validation, policy updates, and lifecycle management, incorporating

tools for audits, certification, and risk management.
Supporting these stages are two foundational layers: a governed catalog for centralized management of approved agents,

models, prompts, and datasets, and a security and governance layer that enforces policies, identity management, and audit

capabilities. The framework also emphasizes two feedback loops—experimental and runtime optimization—to enable

continuous improvement and adaptation. k loops—experimental and runtime optimization—to enable continuous

improvement and adaptation.

AGENTIC AI PLATFORM REQUIREMENTS

NON‑FUNCTIONAL REQUIREMENTS (NFR)

Category Requirements

Architecture,

Integration and

Scaling

Agent and tool catalogs; MCP Gateway for capability routing and policy (REST↔MCP conversion,

virtual MCP servers, protocol bridging); Model Gateway for unified API access (OpenAI‑compatible)

and portfolio management; horizontal and federated scaling to support thousands of tools and agents

across deployments and platforms.

Build-time

security

Builder identity and access (RBAC), workspaces, data security, access logging, and enterprise

SaaS/SOC controls; observability of the builder environment (operational logs,

availability/performance monitoring, metering); governance and compliance of the builder

environment (standards, AI governance, supply‑chain risk management for agents/tools).

Run-time security Agent identity, authentication and OAuth, and delegation with granular authorization; data encryption

(BYOK) and strong tenant isolation; AI application protection (prompt security, artifact signing and

attestation, hardened deployments, memory protection); security monitoring (audit logs, threat

detection, incident‑response integration); enterprise security integration (identity systems, SOC,

red‑teaming) with a clear shared‑responsibility model.

Observability and

monitoring

Full telemetry coverage (metrics, events, logs, traces), distributed tracing and conversational logging;

quality monitoring through evaluation frameworks (accuracy, bias, safety); integration with enterprise

observability stacks and cost and token accounting.

Governance and

compliance

Compliance with enterprise and industry standards (ISO or SOC, GDPR, HIPAA as applicable); safety

guardrails (hallucination, bias, relevance), drift detection; governed catalogs for models, agents, tools

and supply‑chain risk management; enterprise GRC integration and evidence capture.

Resilience, cost

and ethics

Self‑healing, failover, and graceful degradation; cost controls and optimization levers; bias detection

and fairness metrics; optional sustainability metrics such as carbon‑footprint tracking.

Deployment and

future‑ready

Support from air‑gapped to hyperscaler deployments; bring‑your‑own auth and secrets; portability

across environments; versioning and compatibility strategies for models, tools, and prompts.

FUNCTIONAL REQUIREMENTS (CAPABILITIES)

Category Requirements

Memory and state

management

Short‑ and long‑term memory with configurable retention; session persistence and context

maintenance across interactions; integration with vector and or graph databases (CRUD),

caching, and PII handling policies

Planning and

execution

Task decomposition and execution planning; optional human‑in‑the‑loop plan review and

approvals for high‑impact actions; safe tool orchestration and secure code execution; async and

parallel processing patterns with idempotency and retries.

Interoperability and

developer experience

Support MCP for tools, resources, prompts, agent‑to‑agent (A2A) patterns, OpenAI‑compatible

model APIs, and OpenAPI‑described integrations; plugin architecture and curated

marketplace/catalog; open‑source SDKs with a fast start (“5 minutes to fun”); bring‑your‑own

model or agent.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 20

Category Requirements

Knowledge

management

Retrieval‑augmented generation (RAG) and knowledge integration; artifact generation and

storage (docs, reports, visualizations) with lineage; scalable processing patterns such as

map‑reduce for large inputs.

Human‑agent

collaboration

Human‑in‑the‑loop approvals and escalations; transparent explainability (“debug mode”) and

trace inspection; trust‑building via understandable decisions and selective reproducibility.

Performance and

evaluation

Behavior logging, scoring, and self‑evaluation; human review mechanisms and red‑team

workflows; champion‑challenger comparisons and promotion gates integrated with CI/CD.

Future patterns and

autonomy

Inter-agent collaboration and swarms where justified; adaptive learning and self‑evaluation

loops; proactive intelligence and event‑driven actions with clear authority boundaries and

kill‑switches.

APPENDIX: VOICE OF THE CUSTOMER: CLIENT EXAMPLES

HEALTHCARE CLIENT EXAMPLE

A large U.S. healthcare payer set out to improve its member support experience by introducing agentic AI while maintaining

HIPAA compliance. The project illustrated how the agent development lifecycle (ADLC) guides secure and reliable

deployment of enterprise agents.

Use case design and evaluation. The client aimed to automate common support requests and reduce call center load. Early

work was slowed by limited access to historical call data and a legacy chatbot that was difficult to untangle. To move

forward, the team defined clear KPIs such as resolution rate, containment rate, latency, and safety thresholds. They also

developed methods to create or synthesize ground truth data in a compliant way, ensuring agent behavior could be

measured from the start.

Development and integration. Existing test processes were manual and subjective. The team adopted an evaluation

framework that benchmarked agent behavior against business metrics. Prompts, memory policies, and integration logic were

versioned and managed like code. Tools were implemented as governed services with clear boundaries and least-privilege

access, making them easier to monitor and secure.

Testing and certification. Without a single “correct” answer for each member interaction, testing focused on structured

evaluations such as task success rate, groundedness, and compliance checks. Security testing and red-teaming were also

introduced. Agents were released only after passing through a governed catalog process that enforced evaluation thresholds,

HIPAA compliance, and rollback planning.

Deployment and scaling. Standard SaaS deployments did not meet HIPAA requirements, so the client deployed a fully

managed, compliant agent stack. Infrastructure was optimized for high-throughput, low-latency inference and designed with

resilience in mind, including circuit breakers, canary rollouts, and failover mechanisms to prevent drift or outages from

impacting member service.

Monitoring and optimization. Monitoring had previously been fragmented across Grafana dashboards, cloud logs, and

business reports. The client replaced this with unified observability that tracked both technical metrics (latency, error rate,

throughput) and business outcomes (containment, resolution, satisfaction). Continuous evaluation and monitoring created a

feedback loop to improve prompts, tools, and models over time.

Review and compliance. Compliance became a continuous process rather than a one-time check. Agents and tools were

cataloged with full version history, ownership, and audit trails. Policies enforced strict authority boundaries and data

handling rules. Agents could be retired or decommissioned in a controlled manner, with all evidence and lineage preserved.

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 21

Outcome. By following the ADLC with embedded DevSecOps practices, the healthcare payer achieved measurable

improvements in member support while maintaining HIPAA compliance. Resolution and containment rates increased, call

escalations decreased, and the organization established a repeatable framework for deploying future healthcare agents.

APPENDIX: ENTERPRISE USE CASES

We describe our experiences with customer engagements in the healthcare, telecommunication and financial industry.

LARGE HEALTHCARE COMPANY

This healthcare organization implemented agentic chatbot solutions for member services and voice assistance, operating

within a HIPAA-compliant, cloud-based SaaS environment. The deployment required sub-10 second response times for all

agentic interactions while maintaining strict healthcare data privacy standards. The organization faced significant challenges

in the planning phase due to restricted access to historical call center data, which prevented the upfront construction of

ground truth datasets necessary for agent training and evaluation. Additionally, their existing chatbot business logic proved

complex and difficult to reverse-engineer, creating substantial technical debt that impacted development velocity. Key

requirements identified include methodology and tools for synthetic ground truth generation for agentic trajectories. Other

key requirements include automated agent build and test generation using standard operating procedures as input, and AI-

driven discovery capabilities for reverse-engineering business logic from legacy systems.

The testing and deployment phases revealed critical infrastructure gaps requiring comprehensive solutions. Their manual

testing processes dominated evaluation approaches, relying on human testers rather than automated, metrics-based

assessment frameworks, highlighting the need for common agent eval frameworks and benchmarking harnesses for best-in-

class agentic benchmarks. The deployment phase emphasized requirements for standard SaaS-based deployment of

HIPAA-compliant agentic stacks with high-throughput, low-latency LLM inference infrastructure and hardware acceleration

as a service. Their monitoring infrastructure consisted of custom Grafana dashboards tracking latency and error rates but

lacked unified metrics integration. This revealed requirements for built-in agent observability tooling, unified metrics

dashboards, and comprehensive AgentOps tooling that captures and analyzes agentic trajectories against both business and

technical metrics including continuous improvement capabilities.

The healthcare use case demonstrated the critical need for fully managed, integrated agentic stacks that can operate within

strict compliance frameworks while delivering performance characteristics demanded by customer-facing applications. Their

specific requirements centered on containment rate optimization, error rate minimization, response time optimization, and

the ability to automatically generate recommendations with intent identification mapped to domain ontologies requiring

sophisticated business logic integration.

LARGE TELECOMMUNICATION COMPANY

This telecommunications provider undertook a significant initiative to enhance their internal Knowledge as a Service (KaaS)

platform, targeting 95% accuracy for production-ready applications and 80% for proof-of-concept deployments. Their

current development cycle spans 9–12 months per application to achieve production-ready accuracy standards, with a

substantial backlog of gen AI applications requiring rapid iteration and deployment. The organization's architecture

leverages Langflow, NVIDIA infrastructure, and third-party evaluation tools, reflecting complex vendor ecosystem

integration requirements. Key planning phase requirements include integrated stacks for agent building combined with

AgentOps to accelerate adoption, enterprise-level access control support in development environments, and packaged

AgentOps observability tools integrated with agent builders.

The development and testing phases exposed critical gaps around experiment tracking frameworks, agentic evaluation

capabilities, and version management systems. The organization struggled with tracking tens of agent variants and lacked

integrated evaluation frameworks, ultimately requiring external partnerships for evaluation and experimentation capabilities.

Their requirements emphasized common agent eval frameworks and services embedded directly into development stacks,

benchmarking harnesses for best-in-class agentic benchmarks compatible with any agentic framework, and comprehensive

experiment tracking systems. Testing phase requirements included enterprise-grade role-based access control for agent

IBM Guide to Architecting Secure Enterprise AI Agents with MCP | Verified by Anthropic | October 2025 22

execution through APIs, robust data lifecycle management for knowledge bases, and comprehensive version control

systems for agent code.

The telecommunications case highlighted enterprise-scale operational requirements including end-to-end lifecycle

governance with integrated RBAC capabilities spanning development to production environments. Their technical

requirements centered on achieving and maintaining high accuracy thresholds while managing complex multitool

orchestration, preventing agent sprawl through centralized governance, and eliminating shadow AI usage through approved

catalogs of agents, models, prompts, and tools. The organization's scale demands reflected the operational complexity of

telecommunications infrastructure where comprehensive governance frameworks and centralized registries become critical

for managing enterprise-wide agent deployments.

LARGE FINANCIAL COMPANY

This major bank represents an industry-first collaboration focused on defining and building enterprise agent development

lifecycle (ADLC) and AgentOps frameworks specifically tailored for highly regulated financial services environments. The

financial institution's requirements fundamentally extend beyond traditional DevSecOps practices, recognizing that while

traditional approaches secure source code, AI agents require comprehensive security for data access, embeddings, prompts,

and RAG pipelines. Their security infrastructure must implement specialized vulnerability scanning that tests for prompt

injection, jailbreaks, adversarial examples, and model poisoning rather than relying solely on conventional code scanning.

The banking environment demands evolved security models that account for agent autonomy and tool use, where agents

may call external APIs or trigger workflows beyond their core code. This scenario requires security coverage across the

entire orchestration layer including tools, connectors, and multi-agent collaboration scenarios.

The financial services context introduces comprehensive evaluation and governance requirements that address the

stochastic nature of AI agents compared to traditional deterministic applications. Their framework requires continuous

evaluation embedded within CI/CD pipelines that monitors not only uptime but also accuracy, behavioral drift, context

relevancy, and cost trends in real-time. Critical requirements include observability systems that capture reasoning traces

and decisions for regulatory audit purposes, expanding traditional monitoring to encompass LLM reasoning chains, vector

store queries, tool calls, and orchestration workflows. The institution requires centralized governance registries that

maintain catalogs of approved agents, models, prompts, and tools to prevent agent sprawl and shadow AI usage, similar to

how traditional DevSecOps tracks services and dependencies but adapted for the complexities of agentic systems.

This collaboration is anticipated to establish new industry standards for agent governance in regulated financial

environments, where the monetary consequences of errors demand extreme precision and comprehensive audit capabilities.

The banking use case emphasizes the need for explainable AI systems that can demonstrate regulatory compliance across

multiple frameworks including SOX compliance, PCI DSS standards, and regional banking regulations. Their requirements

are expected to drive innovations in model risk management, algorithmic bias detection and mitigation, continuous

compliance monitoring, and risk-aware agent orchestration that will likely influence agent development practices across

other highly regulated industries. These changes will establish patterns for enterprise-scale agent governance that balances

innovation with strict regulatory adherence.

© Copyright IBM Corporation 2025

Produced in the
United States of America
October, 2025

IBM and the IBM logo are trademarks or registered trademarks of
International Business Machines Corporation, in the United States and/or
other countries. Other product and service names might be trademarks of
IBM or other companies. A current list of IBM trademarks is available on
ibm.com/trademark.

This document is current as of the initial date of publication and may
be changed by IBM at any time. Not all offerings are available in every
country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS” WITHOUT
ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF NON-
INFRINGEMENT.

IBM products are warranted according to the terms and conditions of the
agreements under which they are provided.

	Table of Contents
	What Are AI Agents?
	What Are Enterprise AI Agents?
	The Paradigm Shift

	Agentic Enterprise
	Enterprise Agent Development Requirements
	Enterprise Agent Design Principles

	The Agent Development Lifecycle: DevSecOps Practices for AI Agents
	PLAN
	CODE and BUILD
	Test, OPTIMIZE, RELEASE
	Deploy
	Monitoring and RUNTIME Optimization LOOP
	OPERATE

	Enterprise Considerations Building AI Agents
	When to Build Agents
	Proven Application Areas
	Strategic Implementation Considerations
	Security and Risk Management
	Business Value Realization

	Agent Observability and Operations
	Why Observability Changes
	Building Blocks
	Evals in Production and Development
	Insights, Root-Cause Analysis, and Remediation
	Agent Operations and Observability at Build Time
	Roles and Responsibilities

	Agent Security
	Security SOLUTION Framework
	Risk Management and Compliance

	Governance: Test, Certify & Catalog
	Governed Catalog
	Certification Workflow
	Experimentation Tracking and Lineage

	Versioning and Lifecycle

	MCP Servers Lifecycle: Enterprise Guide & Best Practices
	What Is MCP (and why it matters)
	MCP Core Concepts

	Where MCP Servers Fit
	Architecture and Deployment
	MCP Gateway Pattern
	Request Flow with Gateway and Approvals

	Multi-tenancy and Isolation

	Security Foundations
	Tooling Discipline
	Scalability and RESILIENCY
	Governance, Compliance, Risk and Observability
	Testing and Certification
	Packaging and Distribution
	Quick Build Checklist
	Enterprise Adoption Patterns
	Packaging and Infrastructure Checklist
	Production Readiness Checklist

	Reference Architecture & Enterprise Requirements for an Agentic AI Platform
	Agentic AI Platform Requirements
	Non‑Functional Requirements (NFR)
	Functional Requirements (Capabilities)

	Appendix: Voice of the Customer: Client Examples
	Healthcare Client Example

	Appendix: Enterprise Use Cases
	Large Healthcare Company
	Large Telecommunication Company
	Large Financial Company
	Untitled

